1 /* 2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 3 * Author: Joerg Roedel <jroedel@suse.de> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19 #define pr_fmt(fmt) "iommu: " fmt 20 21 #include <linux/device.h> 22 #include <linux/kernel.h> 23 #include <linux/bug.h> 24 #include <linux/types.h> 25 #include <linux/module.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/iommu.h> 29 #include <linux/idr.h> 30 #include <linux/notifier.h> 31 #include <linux/err.h> 32 #include <linux/pci.h> 33 #include <linux/bitops.h> 34 #include <linux/property.h> 35 #include <trace/events/iommu.h> 36 37 static struct kset *iommu_group_kset; 38 static DEFINE_IDA(iommu_group_ida); 39 static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_DMA; 40 41 struct iommu_callback_data { 42 const struct iommu_ops *ops; 43 }; 44 45 struct iommu_group { 46 struct kobject kobj; 47 struct kobject *devices_kobj; 48 struct list_head devices; 49 struct mutex mutex; 50 struct blocking_notifier_head notifier; 51 void *iommu_data; 52 void (*iommu_data_release)(void *iommu_data); 53 char *name; 54 int id; 55 struct iommu_domain *default_domain; 56 struct iommu_domain *domain; 57 }; 58 59 struct group_device { 60 struct list_head list; 61 struct device *dev; 62 char *name; 63 }; 64 65 struct iommu_group_attribute { 66 struct attribute attr; 67 ssize_t (*show)(struct iommu_group *group, char *buf); 68 ssize_t (*store)(struct iommu_group *group, 69 const char *buf, size_t count); 70 }; 71 72 static const char * const iommu_group_resv_type_string[] = { 73 [IOMMU_RESV_DIRECT] = "direct", 74 [IOMMU_RESV_RESERVED] = "reserved", 75 [IOMMU_RESV_MSI] = "msi", 76 [IOMMU_RESV_SW_MSI] = "msi", 77 }; 78 79 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 80 struct iommu_group_attribute iommu_group_attr_##_name = \ 81 __ATTR(_name, _mode, _show, _store) 82 83 #define to_iommu_group_attr(_attr) \ 84 container_of(_attr, struct iommu_group_attribute, attr) 85 #define to_iommu_group(_kobj) \ 86 container_of(_kobj, struct iommu_group, kobj) 87 88 static LIST_HEAD(iommu_device_list); 89 static DEFINE_SPINLOCK(iommu_device_lock); 90 91 int iommu_device_register(struct iommu_device *iommu) 92 { 93 spin_lock(&iommu_device_lock); 94 list_add_tail(&iommu->list, &iommu_device_list); 95 spin_unlock(&iommu_device_lock); 96 97 return 0; 98 } 99 100 void iommu_device_unregister(struct iommu_device *iommu) 101 { 102 spin_lock(&iommu_device_lock); 103 list_del(&iommu->list); 104 spin_unlock(&iommu_device_lock); 105 } 106 107 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 108 unsigned type); 109 static int __iommu_attach_device(struct iommu_domain *domain, 110 struct device *dev); 111 static int __iommu_attach_group(struct iommu_domain *domain, 112 struct iommu_group *group); 113 static void __iommu_detach_group(struct iommu_domain *domain, 114 struct iommu_group *group); 115 116 static int __init iommu_set_def_domain_type(char *str) 117 { 118 bool pt; 119 int ret; 120 121 ret = kstrtobool(str, &pt); 122 if (ret) 123 return ret; 124 125 iommu_def_domain_type = pt ? IOMMU_DOMAIN_IDENTITY : IOMMU_DOMAIN_DMA; 126 return 0; 127 } 128 early_param("iommu.passthrough", iommu_set_def_domain_type); 129 130 static ssize_t iommu_group_attr_show(struct kobject *kobj, 131 struct attribute *__attr, char *buf) 132 { 133 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 134 struct iommu_group *group = to_iommu_group(kobj); 135 ssize_t ret = -EIO; 136 137 if (attr->show) 138 ret = attr->show(group, buf); 139 return ret; 140 } 141 142 static ssize_t iommu_group_attr_store(struct kobject *kobj, 143 struct attribute *__attr, 144 const char *buf, size_t count) 145 { 146 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 147 struct iommu_group *group = to_iommu_group(kobj); 148 ssize_t ret = -EIO; 149 150 if (attr->store) 151 ret = attr->store(group, buf, count); 152 return ret; 153 } 154 155 static const struct sysfs_ops iommu_group_sysfs_ops = { 156 .show = iommu_group_attr_show, 157 .store = iommu_group_attr_store, 158 }; 159 160 static int iommu_group_create_file(struct iommu_group *group, 161 struct iommu_group_attribute *attr) 162 { 163 return sysfs_create_file(&group->kobj, &attr->attr); 164 } 165 166 static void iommu_group_remove_file(struct iommu_group *group, 167 struct iommu_group_attribute *attr) 168 { 169 sysfs_remove_file(&group->kobj, &attr->attr); 170 } 171 172 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 173 { 174 return sprintf(buf, "%s\n", group->name); 175 } 176 177 /** 178 * iommu_insert_resv_region - Insert a new region in the 179 * list of reserved regions. 180 * @new: new region to insert 181 * @regions: list of regions 182 * 183 * The new element is sorted by address with respect to the other 184 * regions of the same type. In case it overlaps with another 185 * region of the same type, regions are merged. In case it 186 * overlaps with another region of different type, regions are 187 * not merged. 188 */ 189 static int iommu_insert_resv_region(struct iommu_resv_region *new, 190 struct list_head *regions) 191 { 192 struct iommu_resv_region *region; 193 phys_addr_t start = new->start; 194 phys_addr_t end = new->start + new->length - 1; 195 struct list_head *pos = regions->next; 196 197 while (pos != regions) { 198 struct iommu_resv_region *entry = 199 list_entry(pos, struct iommu_resv_region, list); 200 phys_addr_t a = entry->start; 201 phys_addr_t b = entry->start + entry->length - 1; 202 int type = entry->type; 203 204 if (end < a) { 205 goto insert; 206 } else if (start > b) { 207 pos = pos->next; 208 } else if ((start >= a) && (end <= b)) { 209 if (new->type == type) 210 goto done; 211 else 212 pos = pos->next; 213 } else { 214 if (new->type == type) { 215 phys_addr_t new_start = min(a, start); 216 phys_addr_t new_end = max(b, end); 217 218 list_del(&entry->list); 219 entry->start = new_start; 220 entry->length = new_end - new_start + 1; 221 iommu_insert_resv_region(entry, regions); 222 } else { 223 pos = pos->next; 224 } 225 } 226 } 227 insert: 228 region = iommu_alloc_resv_region(new->start, new->length, 229 new->prot, new->type); 230 if (!region) 231 return -ENOMEM; 232 233 list_add_tail(®ion->list, pos); 234 done: 235 return 0; 236 } 237 238 static int 239 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 240 struct list_head *group_resv_regions) 241 { 242 struct iommu_resv_region *entry; 243 int ret = 0; 244 245 list_for_each_entry(entry, dev_resv_regions, list) { 246 ret = iommu_insert_resv_region(entry, group_resv_regions); 247 if (ret) 248 break; 249 } 250 return ret; 251 } 252 253 int iommu_get_group_resv_regions(struct iommu_group *group, 254 struct list_head *head) 255 { 256 struct group_device *device; 257 int ret = 0; 258 259 mutex_lock(&group->mutex); 260 list_for_each_entry(device, &group->devices, list) { 261 struct list_head dev_resv_regions; 262 263 INIT_LIST_HEAD(&dev_resv_regions); 264 iommu_get_resv_regions(device->dev, &dev_resv_regions); 265 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 266 iommu_put_resv_regions(device->dev, &dev_resv_regions); 267 if (ret) 268 break; 269 } 270 mutex_unlock(&group->mutex); 271 return ret; 272 } 273 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 274 275 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 276 char *buf) 277 { 278 struct iommu_resv_region *region, *next; 279 struct list_head group_resv_regions; 280 char *str = buf; 281 282 INIT_LIST_HEAD(&group_resv_regions); 283 iommu_get_group_resv_regions(group, &group_resv_regions); 284 285 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 286 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 287 (long long int)region->start, 288 (long long int)(region->start + 289 region->length - 1), 290 iommu_group_resv_type_string[region->type]); 291 kfree(region); 292 } 293 294 return (str - buf); 295 } 296 297 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 298 299 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 300 iommu_group_show_resv_regions, NULL); 301 302 static void iommu_group_release(struct kobject *kobj) 303 { 304 struct iommu_group *group = to_iommu_group(kobj); 305 306 pr_debug("Releasing group %d\n", group->id); 307 308 if (group->iommu_data_release) 309 group->iommu_data_release(group->iommu_data); 310 311 ida_simple_remove(&iommu_group_ida, group->id); 312 313 if (group->default_domain) 314 iommu_domain_free(group->default_domain); 315 316 kfree(group->name); 317 kfree(group); 318 } 319 320 static struct kobj_type iommu_group_ktype = { 321 .sysfs_ops = &iommu_group_sysfs_ops, 322 .release = iommu_group_release, 323 }; 324 325 /** 326 * iommu_group_alloc - Allocate a new group 327 * 328 * This function is called by an iommu driver to allocate a new iommu 329 * group. The iommu group represents the minimum granularity of the iommu. 330 * Upon successful return, the caller holds a reference to the supplied 331 * group in order to hold the group until devices are added. Use 332 * iommu_group_put() to release this extra reference count, allowing the 333 * group to be automatically reclaimed once it has no devices or external 334 * references. 335 */ 336 struct iommu_group *iommu_group_alloc(void) 337 { 338 struct iommu_group *group; 339 int ret; 340 341 group = kzalloc(sizeof(*group), GFP_KERNEL); 342 if (!group) 343 return ERR_PTR(-ENOMEM); 344 345 group->kobj.kset = iommu_group_kset; 346 mutex_init(&group->mutex); 347 INIT_LIST_HEAD(&group->devices); 348 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 349 350 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 351 if (ret < 0) { 352 kfree(group); 353 return ERR_PTR(ret); 354 } 355 group->id = ret; 356 357 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 358 NULL, "%d", group->id); 359 if (ret) { 360 ida_simple_remove(&iommu_group_ida, group->id); 361 kfree(group); 362 return ERR_PTR(ret); 363 } 364 365 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 366 if (!group->devices_kobj) { 367 kobject_put(&group->kobj); /* triggers .release & free */ 368 return ERR_PTR(-ENOMEM); 369 } 370 371 /* 372 * The devices_kobj holds a reference on the group kobject, so 373 * as long as that exists so will the group. We can therefore 374 * use the devices_kobj for reference counting. 375 */ 376 kobject_put(&group->kobj); 377 378 ret = iommu_group_create_file(group, 379 &iommu_group_attr_reserved_regions); 380 if (ret) 381 return ERR_PTR(ret); 382 383 pr_debug("Allocated group %d\n", group->id); 384 385 return group; 386 } 387 EXPORT_SYMBOL_GPL(iommu_group_alloc); 388 389 struct iommu_group *iommu_group_get_by_id(int id) 390 { 391 struct kobject *group_kobj; 392 struct iommu_group *group; 393 const char *name; 394 395 if (!iommu_group_kset) 396 return NULL; 397 398 name = kasprintf(GFP_KERNEL, "%d", id); 399 if (!name) 400 return NULL; 401 402 group_kobj = kset_find_obj(iommu_group_kset, name); 403 kfree(name); 404 405 if (!group_kobj) 406 return NULL; 407 408 group = container_of(group_kobj, struct iommu_group, kobj); 409 BUG_ON(group->id != id); 410 411 kobject_get(group->devices_kobj); 412 kobject_put(&group->kobj); 413 414 return group; 415 } 416 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 417 418 /** 419 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 420 * @group: the group 421 * 422 * iommu drivers can store data in the group for use when doing iommu 423 * operations. This function provides a way to retrieve it. Caller 424 * should hold a group reference. 425 */ 426 void *iommu_group_get_iommudata(struct iommu_group *group) 427 { 428 return group->iommu_data; 429 } 430 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 431 432 /** 433 * iommu_group_set_iommudata - set iommu_data for a group 434 * @group: the group 435 * @iommu_data: new data 436 * @release: release function for iommu_data 437 * 438 * iommu drivers can store data in the group for use when doing iommu 439 * operations. This function provides a way to set the data after 440 * the group has been allocated. Caller should hold a group reference. 441 */ 442 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 443 void (*release)(void *iommu_data)) 444 { 445 group->iommu_data = iommu_data; 446 group->iommu_data_release = release; 447 } 448 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 449 450 /** 451 * iommu_group_set_name - set name for a group 452 * @group: the group 453 * @name: name 454 * 455 * Allow iommu driver to set a name for a group. When set it will 456 * appear in a name attribute file under the group in sysfs. 457 */ 458 int iommu_group_set_name(struct iommu_group *group, const char *name) 459 { 460 int ret; 461 462 if (group->name) { 463 iommu_group_remove_file(group, &iommu_group_attr_name); 464 kfree(group->name); 465 group->name = NULL; 466 if (!name) 467 return 0; 468 } 469 470 group->name = kstrdup(name, GFP_KERNEL); 471 if (!group->name) 472 return -ENOMEM; 473 474 ret = iommu_group_create_file(group, &iommu_group_attr_name); 475 if (ret) { 476 kfree(group->name); 477 group->name = NULL; 478 return ret; 479 } 480 481 return 0; 482 } 483 EXPORT_SYMBOL_GPL(iommu_group_set_name); 484 485 static int iommu_group_create_direct_mappings(struct iommu_group *group, 486 struct device *dev) 487 { 488 struct iommu_domain *domain = group->default_domain; 489 struct iommu_resv_region *entry; 490 struct list_head mappings; 491 unsigned long pg_size; 492 int ret = 0; 493 494 if (!domain || domain->type != IOMMU_DOMAIN_DMA) 495 return 0; 496 497 BUG_ON(!domain->pgsize_bitmap); 498 499 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 500 INIT_LIST_HEAD(&mappings); 501 502 iommu_get_resv_regions(dev, &mappings); 503 504 /* We need to consider overlapping regions for different devices */ 505 list_for_each_entry(entry, &mappings, list) { 506 dma_addr_t start, end, addr; 507 508 if (domain->ops->apply_resv_region) 509 domain->ops->apply_resv_region(dev, domain, entry); 510 511 start = ALIGN(entry->start, pg_size); 512 end = ALIGN(entry->start + entry->length, pg_size); 513 514 if (entry->type != IOMMU_RESV_DIRECT) 515 continue; 516 517 for (addr = start; addr < end; addr += pg_size) { 518 phys_addr_t phys_addr; 519 520 phys_addr = iommu_iova_to_phys(domain, addr); 521 if (phys_addr) 522 continue; 523 524 ret = iommu_map(domain, addr, addr, pg_size, entry->prot); 525 if (ret) 526 goto out; 527 } 528 529 } 530 531 iommu_flush_tlb_all(domain); 532 533 out: 534 iommu_put_resv_regions(dev, &mappings); 535 536 return ret; 537 } 538 539 /** 540 * iommu_group_add_device - add a device to an iommu group 541 * @group: the group into which to add the device (reference should be held) 542 * @dev: the device 543 * 544 * This function is called by an iommu driver to add a device into a 545 * group. Adding a device increments the group reference count. 546 */ 547 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 548 { 549 int ret, i = 0; 550 struct group_device *device; 551 552 device = kzalloc(sizeof(*device), GFP_KERNEL); 553 if (!device) 554 return -ENOMEM; 555 556 device->dev = dev; 557 558 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 559 if (ret) 560 goto err_free_device; 561 562 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 563 rename: 564 if (!device->name) { 565 ret = -ENOMEM; 566 goto err_remove_link; 567 } 568 569 ret = sysfs_create_link_nowarn(group->devices_kobj, 570 &dev->kobj, device->name); 571 if (ret) { 572 if (ret == -EEXIST && i >= 0) { 573 /* 574 * Account for the slim chance of collision 575 * and append an instance to the name. 576 */ 577 kfree(device->name); 578 device->name = kasprintf(GFP_KERNEL, "%s.%d", 579 kobject_name(&dev->kobj), i++); 580 goto rename; 581 } 582 goto err_free_name; 583 } 584 585 kobject_get(group->devices_kobj); 586 587 dev->iommu_group = group; 588 589 iommu_group_create_direct_mappings(group, dev); 590 591 mutex_lock(&group->mutex); 592 list_add_tail(&device->list, &group->devices); 593 if (group->domain) 594 ret = __iommu_attach_device(group->domain, dev); 595 mutex_unlock(&group->mutex); 596 if (ret) 597 goto err_put_group; 598 599 /* Notify any listeners about change to group. */ 600 blocking_notifier_call_chain(&group->notifier, 601 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 602 603 trace_add_device_to_group(group->id, dev); 604 605 pr_info("Adding device %s to group %d\n", dev_name(dev), group->id); 606 607 return 0; 608 609 err_put_group: 610 mutex_lock(&group->mutex); 611 list_del(&device->list); 612 mutex_unlock(&group->mutex); 613 dev->iommu_group = NULL; 614 kobject_put(group->devices_kobj); 615 err_free_name: 616 kfree(device->name); 617 err_remove_link: 618 sysfs_remove_link(&dev->kobj, "iommu_group"); 619 err_free_device: 620 kfree(device); 621 pr_err("Failed to add device %s to group %d: %d\n", dev_name(dev), group->id, ret); 622 return ret; 623 } 624 EXPORT_SYMBOL_GPL(iommu_group_add_device); 625 626 /** 627 * iommu_group_remove_device - remove a device from it's current group 628 * @dev: device to be removed 629 * 630 * This function is called by an iommu driver to remove the device from 631 * it's current group. This decrements the iommu group reference count. 632 */ 633 void iommu_group_remove_device(struct device *dev) 634 { 635 struct iommu_group *group = dev->iommu_group; 636 struct group_device *tmp_device, *device = NULL; 637 638 pr_info("Removing device %s from group %d\n", dev_name(dev), group->id); 639 640 /* Pre-notify listeners that a device is being removed. */ 641 blocking_notifier_call_chain(&group->notifier, 642 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 643 644 mutex_lock(&group->mutex); 645 list_for_each_entry(tmp_device, &group->devices, list) { 646 if (tmp_device->dev == dev) { 647 device = tmp_device; 648 list_del(&device->list); 649 break; 650 } 651 } 652 mutex_unlock(&group->mutex); 653 654 if (!device) 655 return; 656 657 sysfs_remove_link(group->devices_kobj, device->name); 658 sysfs_remove_link(&dev->kobj, "iommu_group"); 659 660 trace_remove_device_from_group(group->id, dev); 661 662 kfree(device->name); 663 kfree(device); 664 dev->iommu_group = NULL; 665 kobject_put(group->devices_kobj); 666 } 667 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 668 669 static int iommu_group_device_count(struct iommu_group *group) 670 { 671 struct group_device *entry; 672 int ret = 0; 673 674 list_for_each_entry(entry, &group->devices, list) 675 ret++; 676 677 return ret; 678 } 679 680 /** 681 * iommu_group_for_each_dev - iterate over each device in the group 682 * @group: the group 683 * @data: caller opaque data to be passed to callback function 684 * @fn: caller supplied callback function 685 * 686 * This function is called by group users to iterate over group devices. 687 * Callers should hold a reference count to the group during callback. 688 * The group->mutex is held across callbacks, which will block calls to 689 * iommu_group_add/remove_device. 690 */ 691 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 692 int (*fn)(struct device *, void *)) 693 { 694 struct group_device *device; 695 int ret = 0; 696 697 list_for_each_entry(device, &group->devices, list) { 698 ret = fn(device->dev, data); 699 if (ret) 700 break; 701 } 702 return ret; 703 } 704 705 706 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 707 int (*fn)(struct device *, void *)) 708 { 709 int ret; 710 711 mutex_lock(&group->mutex); 712 ret = __iommu_group_for_each_dev(group, data, fn); 713 mutex_unlock(&group->mutex); 714 715 return ret; 716 } 717 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 718 719 /** 720 * iommu_group_get - Return the group for a device and increment reference 721 * @dev: get the group that this device belongs to 722 * 723 * This function is called by iommu drivers and users to get the group 724 * for the specified device. If found, the group is returned and the group 725 * reference in incremented, else NULL. 726 */ 727 struct iommu_group *iommu_group_get(struct device *dev) 728 { 729 struct iommu_group *group = dev->iommu_group; 730 731 if (group) 732 kobject_get(group->devices_kobj); 733 734 return group; 735 } 736 EXPORT_SYMBOL_GPL(iommu_group_get); 737 738 /** 739 * iommu_group_ref_get - Increment reference on a group 740 * @group: the group to use, must not be NULL 741 * 742 * This function is called by iommu drivers to take additional references on an 743 * existing group. Returns the given group for convenience. 744 */ 745 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 746 { 747 kobject_get(group->devices_kobj); 748 return group; 749 } 750 751 /** 752 * iommu_group_put - Decrement group reference 753 * @group: the group to use 754 * 755 * This function is called by iommu drivers and users to release the 756 * iommu group. Once the reference count is zero, the group is released. 757 */ 758 void iommu_group_put(struct iommu_group *group) 759 { 760 if (group) 761 kobject_put(group->devices_kobj); 762 } 763 EXPORT_SYMBOL_GPL(iommu_group_put); 764 765 /** 766 * iommu_group_register_notifier - Register a notifier for group changes 767 * @group: the group to watch 768 * @nb: notifier block to signal 769 * 770 * This function allows iommu group users to track changes in a group. 771 * See include/linux/iommu.h for actions sent via this notifier. Caller 772 * should hold a reference to the group throughout notifier registration. 773 */ 774 int iommu_group_register_notifier(struct iommu_group *group, 775 struct notifier_block *nb) 776 { 777 return blocking_notifier_chain_register(&group->notifier, nb); 778 } 779 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 780 781 /** 782 * iommu_group_unregister_notifier - Unregister a notifier 783 * @group: the group to watch 784 * @nb: notifier block to signal 785 * 786 * Unregister a previously registered group notifier block. 787 */ 788 int iommu_group_unregister_notifier(struct iommu_group *group, 789 struct notifier_block *nb) 790 { 791 return blocking_notifier_chain_unregister(&group->notifier, nb); 792 } 793 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 794 795 /** 796 * iommu_group_id - Return ID for a group 797 * @group: the group to ID 798 * 799 * Return the unique ID for the group matching the sysfs group number. 800 */ 801 int iommu_group_id(struct iommu_group *group) 802 { 803 return group->id; 804 } 805 EXPORT_SYMBOL_GPL(iommu_group_id); 806 807 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 808 unsigned long *devfns); 809 810 /* 811 * To consider a PCI device isolated, we require ACS to support Source 812 * Validation, Request Redirection, Completer Redirection, and Upstream 813 * Forwarding. This effectively means that devices cannot spoof their 814 * requester ID, requests and completions cannot be redirected, and all 815 * transactions are forwarded upstream, even as it passes through a 816 * bridge where the target device is downstream. 817 */ 818 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 819 820 /* 821 * For multifunction devices which are not isolated from each other, find 822 * all the other non-isolated functions and look for existing groups. For 823 * each function, we also need to look for aliases to or from other devices 824 * that may already have a group. 825 */ 826 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 827 unsigned long *devfns) 828 { 829 struct pci_dev *tmp = NULL; 830 struct iommu_group *group; 831 832 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 833 return NULL; 834 835 for_each_pci_dev(tmp) { 836 if (tmp == pdev || tmp->bus != pdev->bus || 837 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 838 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 839 continue; 840 841 group = get_pci_alias_group(tmp, devfns); 842 if (group) { 843 pci_dev_put(tmp); 844 return group; 845 } 846 } 847 848 return NULL; 849 } 850 851 /* 852 * Look for aliases to or from the given device for existing groups. DMA 853 * aliases are only supported on the same bus, therefore the search 854 * space is quite small (especially since we're really only looking at pcie 855 * device, and therefore only expect multiple slots on the root complex or 856 * downstream switch ports). It's conceivable though that a pair of 857 * multifunction devices could have aliases between them that would cause a 858 * loop. To prevent this, we use a bitmap to track where we've been. 859 */ 860 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 861 unsigned long *devfns) 862 { 863 struct pci_dev *tmp = NULL; 864 struct iommu_group *group; 865 866 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 867 return NULL; 868 869 group = iommu_group_get(&pdev->dev); 870 if (group) 871 return group; 872 873 for_each_pci_dev(tmp) { 874 if (tmp == pdev || tmp->bus != pdev->bus) 875 continue; 876 877 /* We alias them or they alias us */ 878 if (pci_devs_are_dma_aliases(pdev, tmp)) { 879 group = get_pci_alias_group(tmp, devfns); 880 if (group) { 881 pci_dev_put(tmp); 882 return group; 883 } 884 885 group = get_pci_function_alias_group(tmp, devfns); 886 if (group) { 887 pci_dev_put(tmp); 888 return group; 889 } 890 } 891 } 892 893 return NULL; 894 } 895 896 struct group_for_pci_data { 897 struct pci_dev *pdev; 898 struct iommu_group *group; 899 }; 900 901 /* 902 * DMA alias iterator callback, return the last seen device. Stop and return 903 * the IOMMU group if we find one along the way. 904 */ 905 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 906 { 907 struct group_for_pci_data *data = opaque; 908 909 data->pdev = pdev; 910 data->group = iommu_group_get(&pdev->dev); 911 912 return data->group != NULL; 913 } 914 915 /* 916 * Generic device_group call-back function. It just allocates one 917 * iommu-group per device. 918 */ 919 struct iommu_group *generic_device_group(struct device *dev) 920 { 921 return iommu_group_alloc(); 922 } 923 924 /* 925 * Use standard PCI bus topology, isolation features, and DMA alias quirks 926 * to find or create an IOMMU group for a device. 927 */ 928 struct iommu_group *pci_device_group(struct device *dev) 929 { 930 struct pci_dev *pdev = to_pci_dev(dev); 931 struct group_for_pci_data data; 932 struct pci_bus *bus; 933 struct iommu_group *group = NULL; 934 u64 devfns[4] = { 0 }; 935 936 if (WARN_ON(!dev_is_pci(dev))) 937 return ERR_PTR(-EINVAL); 938 939 /* 940 * Find the upstream DMA alias for the device. A device must not 941 * be aliased due to topology in order to have its own IOMMU group. 942 * If we find an alias along the way that already belongs to a 943 * group, use it. 944 */ 945 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 946 return data.group; 947 948 pdev = data.pdev; 949 950 /* 951 * Continue upstream from the point of minimum IOMMU granularity 952 * due to aliases to the point where devices are protected from 953 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 954 * group, use it. 955 */ 956 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 957 if (!bus->self) 958 continue; 959 960 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 961 break; 962 963 pdev = bus->self; 964 965 group = iommu_group_get(&pdev->dev); 966 if (group) 967 return group; 968 } 969 970 /* 971 * Look for existing groups on device aliases. If we alias another 972 * device or another device aliases us, use the same group. 973 */ 974 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 975 if (group) 976 return group; 977 978 /* 979 * Look for existing groups on non-isolated functions on the same 980 * slot and aliases of those funcions, if any. No need to clear 981 * the search bitmap, the tested devfns are still valid. 982 */ 983 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 984 if (group) 985 return group; 986 987 /* No shared group found, allocate new */ 988 return iommu_group_alloc(); 989 } 990 991 /** 992 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 993 * @dev: target device 994 * 995 * This function is intended to be called by IOMMU drivers and extended to 996 * support common, bus-defined algorithms when determining or creating the 997 * IOMMU group for a device. On success, the caller will hold a reference 998 * to the returned IOMMU group, which will already include the provided 999 * device. The reference should be released with iommu_group_put(). 1000 */ 1001 struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1002 { 1003 const struct iommu_ops *ops = dev->bus->iommu_ops; 1004 struct iommu_group *group; 1005 int ret; 1006 1007 group = iommu_group_get(dev); 1008 if (group) 1009 return group; 1010 1011 if (!ops) 1012 return ERR_PTR(-EINVAL); 1013 1014 group = ops->device_group(dev); 1015 if (WARN_ON_ONCE(group == NULL)) 1016 return ERR_PTR(-EINVAL); 1017 1018 if (IS_ERR(group)) 1019 return group; 1020 1021 /* 1022 * Try to allocate a default domain - needs support from the 1023 * IOMMU driver. 1024 */ 1025 if (!group->default_domain) { 1026 struct iommu_domain *dom; 1027 1028 dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type); 1029 if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) { 1030 dev_warn(dev, 1031 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA", 1032 iommu_def_domain_type); 1033 dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA); 1034 } 1035 1036 group->default_domain = dom; 1037 if (!group->domain) 1038 group->domain = dom; 1039 } 1040 1041 ret = iommu_group_add_device(group, dev); 1042 if (ret) { 1043 iommu_group_put(group); 1044 return ERR_PTR(ret); 1045 } 1046 1047 return group; 1048 } 1049 1050 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1051 { 1052 return group->default_domain; 1053 } 1054 1055 static int add_iommu_group(struct device *dev, void *data) 1056 { 1057 struct iommu_callback_data *cb = data; 1058 const struct iommu_ops *ops = cb->ops; 1059 int ret; 1060 1061 if (!ops->add_device) 1062 return 0; 1063 1064 WARN_ON(dev->iommu_group); 1065 1066 ret = ops->add_device(dev); 1067 1068 /* 1069 * We ignore -ENODEV errors for now, as they just mean that the 1070 * device is not translated by an IOMMU. We still care about 1071 * other errors and fail to initialize when they happen. 1072 */ 1073 if (ret == -ENODEV) 1074 ret = 0; 1075 1076 return ret; 1077 } 1078 1079 static int remove_iommu_group(struct device *dev, void *data) 1080 { 1081 struct iommu_callback_data *cb = data; 1082 const struct iommu_ops *ops = cb->ops; 1083 1084 if (ops->remove_device && dev->iommu_group) 1085 ops->remove_device(dev); 1086 1087 return 0; 1088 } 1089 1090 static int iommu_bus_notifier(struct notifier_block *nb, 1091 unsigned long action, void *data) 1092 { 1093 struct device *dev = data; 1094 const struct iommu_ops *ops = dev->bus->iommu_ops; 1095 struct iommu_group *group; 1096 unsigned long group_action = 0; 1097 1098 /* 1099 * ADD/DEL call into iommu driver ops if provided, which may 1100 * result in ADD/DEL notifiers to group->notifier 1101 */ 1102 if (action == BUS_NOTIFY_ADD_DEVICE) { 1103 if (ops->add_device) { 1104 int ret; 1105 1106 ret = ops->add_device(dev); 1107 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1108 } 1109 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1110 if (ops->remove_device && dev->iommu_group) { 1111 ops->remove_device(dev); 1112 return 0; 1113 } 1114 } 1115 1116 /* 1117 * Remaining BUS_NOTIFYs get filtered and republished to the 1118 * group, if anyone is listening 1119 */ 1120 group = iommu_group_get(dev); 1121 if (!group) 1122 return 0; 1123 1124 switch (action) { 1125 case BUS_NOTIFY_BIND_DRIVER: 1126 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1127 break; 1128 case BUS_NOTIFY_BOUND_DRIVER: 1129 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1130 break; 1131 case BUS_NOTIFY_UNBIND_DRIVER: 1132 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1133 break; 1134 case BUS_NOTIFY_UNBOUND_DRIVER: 1135 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1136 break; 1137 } 1138 1139 if (group_action) 1140 blocking_notifier_call_chain(&group->notifier, 1141 group_action, dev); 1142 1143 iommu_group_put(group); 1144 return 0; 1145 } 1146 1147 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1148 { 1149 int err; 1150 struct notifier_block *nb; 1151 struct iommu_callback_data cb = { 1152 .ops = ops, 1153 }; 1154 1155 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1156 if (!nb) 1157 return -ENOMEM; 1158 1159 nb->notifier_call = iommu_bus_notifier; 1160 1161 err = bus_register_notifier(bus, nb); 1162 if (err) 1163 goto out_free; 1164 1165 err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group); 1166 if (err) 1167 goto out_err; 1168 1169 1170 return 0; 1171 1172 out_err: 1173 /* Clean up */ 1174 bus_for_each_dev(bus, NULL, &cb, remove_iommu_group); 1175 bus_unregister_notifier(bus, nb); 1176 1177 out_free: 1178 kfree(nb); 1179 1180 return err; 1181 } 1182 1183 /** 1184 * bus_set_iommu - set iommu-callbacks for the bus 1185 * @bus: bus. 1186 * @ops: the callbacks provided by the iommu-driver 1187 * 1188 * This function is called by an iommu driver to set the iommu methods 1189 * used for a particular bus. Drivers for devices on that bus can use 1190 * the iommu-api after these ops are registered. 1191 * This special function is needed because IOMMUs are usually devices on 1192 * the bus itself, so the iommu drivers are not initialized when the bus 1193 * is set up. With this function the iommu-driver can set the iommu-ops 1194 * afterwards. 1195 */ 1196 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1197 { 1198 int err; 1199 1200 if (bus->iommu_ops != NULL) 1201 return -EBUSY; 1202 1203 bus->iommu_ops = ops; 1204 1205 /* Do IOMMU specific setup for this bus-type */ 1206 err = iommu_bus_init(bus, ops); 1207 if (err) 1208 bus->iommu_ops = NULL; 1209 1210 return err; 1211 } 1212 EXPORT_SYMBOL_GPL(bus_set_iommu); 1213 1214 bool iommu_present(struct bus_type *bus) 1215 { 1216 return bus->iommu_ops != NULL; 1217 } 1218 EXPORT_SYMBOL_GPL(iommu_present); 1219 1220 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1221 { 1222 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1223 return false; 1224 1225 return bus->iommu_ops->capable(cap); 1226 } 1227 EXPORT_SYMBOL_GPL(iommu_capable); 1228 1229 /** 1230 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1231 * @domain: iommu domain 1232 * @handler: fault handler 1233 * @token: user data, will be passed back to the fault handler 1234 * 1235 * This function should be used by IOMMU users which want to be notified 1236 * whenever an IOMMU fault happens. 1237 * 1238 * The fault handler itself should return 0 on success, and an appropriate 1239 * error code otherwise. 1240 */ 1241 void iommu_set_fault_handler(struct iommu_domain *domain, 1242 iommu_fault_handler_t handler, 1243 void *token) 1244 { 1245 BUG_ON(!domain); 1246 1247 domain->handler = handler; 1248 domain->handler_token = token; 1249 } 1250 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1251 1252 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1253 unsigned type) 1254 { 1255 struct iommu_domain *domain; 1256 1257 if (bus == NULL || bus->iommu_ops == NULL) 1258 return NULL; 1259 1260 domain = bus->iommu_ops->domain_alloc(type); 1261 if (!domain) 1262 return NULL; 1263 1264 domain->ops = bus->iommu_ops; 1265 domain->type = type; 1266 /* Assume all sizes by default; the driver may override this later */ 1267 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1268 1269 return domain; 1270 } 1271 1272 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1273 { 1274 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1275 } 1276 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1277 1278 void iommu_domain_free(struct iommu_domain *domain) 1279 { 1280 domain->ops->domain_free(domain); 1281 } 1282 EXPORT_SYMBOL_GPL(iommu_domain_free); 1283 1284 static int __iommu_attach_device(struct iommu_domain *domain, 1285 struct device *dev) 1286 { 1287 int ret; 1288 if ((domain->ops->is_attach_deferred != NULL) && 1289 domain->ops->is_attach_deferred(domain, dev)) 1290 return 0; 1291 1292 if (unlikely(domain->ops->attach_dev == NULL)) 1293 return -ENODEV; 1294 1295 ret = domain->ops->attach_dev(domain, dev); 1296 if (!ret) 1297 trace_attach_device_to_domain(dev); 1298 return ret; 1299 } 1300 1301 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1302 { 1303 struct iommu_group *group; 1304 int ret; 1305 1306 group = iommu_group_get(dev); 1307 if (!group) 1308 return -ENODEV; 1309 1310 /* 1311 * Lock the group to make sure the device-count doesn't 1312 * change while we are attaching 1313 */ 1314 mutex_lock(&group->mutex); 1315 ret = -EINVAL; 1316 if (iommu_group_device_count(group) != 1) 1317 goto out_unlock; 1318 1319 ret = __iommu_attach_group(domain, group); 1320 1321 out_unlock: 1322 mutex_unlock(&group->mutex); 1323 iommu_group_put(group); 1324 1325 return ret; 1326 } 1327 EXPORT_SYMBOL_GPL(iommu_attach_device); 1328 1329 static void __iommu_detach_device(struct iommu_domain *domain, 1330 struct device *dev) 1331 { 1332 if ((domain->ops->is_attach_deferred != NULL) && 1333 domain->ops->is_attach_deferred(domain, dev)) 1334 return; 1335 1336 if (unlikely(domain->ops->detach_dev == NULL)) 1337 return; 1338 1339 domain->ops->detach_dev(domain, dev); 1340 trace_detach_device_from_domain(dev); 1341 } 1342 1343 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 1344 { 1345 struct iommu_group *group; 1346 1347 group = iommu_group_get(dev); 1348 if (!group) 1349 return; 1350 1351 mutex_lock(&group->mutex); 1352 if (iommu_group_device_count(group) != 1) { 1353 WARN_ON(1); 1354 goto out_unlock; 1355 } 1356 1357 __iommu_detach_group(domain, group); 1358 1359 out_unlock: 1360 mutex_unlock(&group->mutex); 1361 iommu_group_put(group); 1362 } 1363 EXPORT_SYMBOL_GPL(iommu_detach_device); 1364 1365 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 1366 { 1367 struct iommu_domain *domain; 1368 struct iommu_group *group; 1369 1370 group = iommu_group_get(dev); 1371 if (!group) 1372 return NULL; 1373 1374 domain = group->domain; 1375 1376 iommu_group_put(group); 1377 1378 return domain; 1379 } 1380 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 1381 1382 /* 1383 * IOMMU groups are really the natrual working unit of the IOMMU, but 1384 * the IOMMU API works on domains and devices. Bridge that gap by 1385 * iterating over the devices in a group. Ideally we'd have a single 1386 * device which represents the requestor ID of the group, but we also 1387 * allow IOMMU drivers to create policy defined minimum sets, where 1388 * the physical hardware may be able to distiguish members, but we 1389 * wish to group them at a higher level (ex. untrusted multi-function 1390 * PCI devices). Thus we attach each device. 1391 */ 1392 static int iommu_group_do_attach_device(struct device *dev, void *data) 1393 { 1394 struct iommu_domain *domain = data; 1395 1396 return __iommu_attach_device(domain, dev); 1397 } 1398 1399 static int __iommu_attach_group(struct iommu_domain *domain, 1400 struct iommu_group *group) 1401 { 1402 int ret; 1403 1404 if (group->default_domain && group->domain != group->default_domain) 1405 return -EBUSY; 1406 1407 ret = __iommu_group_for_each_dev(group, domain, 1408 iommu_group_do_attach_device); 1409 if (ret == 0) 1410 group->domain = domain; 1411 1412 return ret; 1413 } 1414 1415 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 1416 { 1417 int ret; 1418 1419 mutex_lock(&group->mutex); 1420 ret = __iommu_attach_group(domain, group); 1421 mutex_unlock(&group->mutex); 1422 1423 return ret; 1424 } 1425 EXPORT_SYMBOL_GPL(iommu_attach_group); 1426 1427 static int iommu_group_do_detach_device(struct device *dev, void *data) 1428 { 1429 struct iommu_domain *domain = data; 1430 1431 __iommu_detach_device(domain, dev); 1432 1433 return 0; 1434 } 1435 1436 static void __iommu_detach_group(struct iommu_domain *domain, 1437 struct iommu_group *group) 1438 { 1439 int ret; 1440 1441 if (!group->default_domain) { 1442 __iommu_group_for_each_dev(group, domain, 1443 iommu_group_do_detach_device); 1444 group->domain = NULL; 1445 return; 1446 } 1447 1448 if (group->domain == group->default_domain) 1449 return; 1450 1451 /* Detach by re-attaching to the default domain */ 1452 ret = __iommu_group_for_each_dev(group, group->default_domain, 1453 iommu_group_do_attach_device); 1454 if (ret != 0) 1455 WARN_ON(1); 1456 else 1457 group->domain = group->default_domain; 1458 } 1459 1460 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 1461 { 1462 mutex_lock(&group->mutex); 1463 __iommu_detach_group(domain, group); 1464 mutex_unlock(&group->mutex); 1465 } 1466 EXPORT_SYMBOL_GPL(iommu_detach_group); 1467 1468 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 1469 { 1470 if (unlikely(domain->ops->iova_to_phys == NULL)) 1471 return 0; 1472 1473 return domain->ops->iova_to_phys(domain, iova); 1474 } 1475 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 1476 1477 static size_t iommu_pgsize(struct iommu_domain *domain, 1478 unsigned long addr_merge, size_t size) 1479 { 1480 unsigned int pgsize_idx; 1481 size_t pgsize; 1482 1483 /* Max page size that still fits into 'size' */ 1484 pgsize_idx = __fls(size); 1485 1486 /* need to consider alignment requirements ? */ 1487 if (likely(addr_merge)) { 1488 /* Max page size allowed by address */ 1489 unsigned int align_pgsize_idx = __ffs(addr_merge); 1490 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 1491 } 1492 1493 /* build a mask of acceptable page sizes */ 1494 pgsize = (1UL << (pgsize_idx + 1)) - 1; 1495 1496 /* throw away page sizes not supported by the hardware */ 1497 pgsize &= domain->pgsize_bitmap; 1498 1499 /* make sure we're still sane */ 1500 BUG_ON(!pgsize); 1501 1502 /* pick the biggest page */ 1503 pgsize_idx = __fls(pgsize); 1504 pgsize = 1UL << pgsize_idx; 1505 1506 return pgsize; 1507 } 1508 1509 int iommu_map(struct iommu_domain *domain, unsigned long iova, 1510 phys_addr_t paddr, size_t size, int prot) 1511 { 1512 unsigned long orig_iova = iova; 1513 unsigned int min_pagesz; 1514 size_t orig_size = size; 1515 phys_addr_t orig_paddr = paddr; 1516 int ret = 0; 1517 1518 if (unlikely(domain->ops->map == NULL || 1519 domain->pgsize_bitmap == 0UL)) 1520 return -ENODEV; 1521 1522 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1523 return -EINVAL; 1524 1525 /* find out the minimum page size supported */ 1526 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1527 1528 /* 1529 * both the virtual address and the physical one, as well as 1530 * the size of the mapping, must be aligned (at least) to the 1531 * size of the smallest page supported by the hardware 1532 */ 1533 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 1534 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 1535 iova, &paddr, size, min_pagesz); 1536 return -EINVAL; 1537 } 1538 1539 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 1540 1541 while (size) { 1542 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 1543 1544 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 1545 iova, &paddr, pgsize); 1546 1547 ret = domain->ops->map(domain, iova, paddr, pgsize, prot); 1548 if (ret) 1549 break; 1550 1551 iova += pgsize; 1552 paddr += pgsize; 1553 size -= pgsize; 1554 } 1555 1556 /* unroll mapping in case something went wrong */ 1557 if (ret) 1558 iommu_unmap(domain, orig_iova, orig_size - size); 1559 else 1560 trace_map(orig_iova, orig_paddr, orig_size); 1561 1562 return ret; 1563 } 1564 EXPORT_SYMBOL_GPL(iommu_map); 1565 1566 static size_t __iommu_unmap(struct iommu_domain *domain, 1567 unsigned long iova, size_t size, 1568 bool sync) 1569 { 1570 const struct iommu_ops *ops = domain->ops; 1571 size_t unmapped_page, unmapped = 0; 1572 unsigned long orig_iova = iova; 1573 unsigned int min_pagesz; 1574 1575 if (unlikely(ops->unmap == NULL || 1576 domain->pgsize_bitmap == 0UL)) 1577 return 0; 1578 1579 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1580 return 0; 1581 1582 /* find out the minimum page size supported */ 1583 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1584 1585 /* 1586 * The virtual address, as well as the size of the mapping, must be 1587 * aligned (at least) to the size of the smallest page supported 1588 * by the hardware 1589 */ 1590 if (!IS_ALIGNED(iova | size, min_pagesz)) { 1591 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 1592 iova, size, min_pagesz); 1593 return 0; 1594 } 1595 1596 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 1597 1598 /* 1599 * Keep iterating until we either unmap 'size' bytes (or more) 1600 * or we hit an area that isn't mapped. 1601 */ 1602 while (unmapped < size) { 1603 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 1604 1605 unmapped_page = ops->unmap(domain, iova, pgsize); 1606 if (!unmapped_page) 1607 break; 1608 1609 if (sync && ops->iotlb_range_add) 1610 ops->iotlb_range_add(domain, iova, pgsize); 1611 1612 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 1613 iova, unmapped_page); 1614 1615 iova += unmapped_page; 1616 unmapped += unmapped_page; 1617 } 1618 1619 if (sync && ops->iotlb_sync) 1620 ops->iotlb_sync(domain); 1621 1622 trace_unmap(orig_iova, size, unmapped); 1623 return unmapped; 1624 } 1625 1626 size_t iommu_unmap(struct iommu_domain *domain, 1627 unsigned long iova, size_t size) 1628 { 1629 return __iommu_unmap(domain, iova, size, true); 1630 } 1631 EXPORT_SYMBOL_GPL(iommu_unmap); 1632 1633 size_t iommu_unmap_fast(struct iommu_domain *domain, 1634 unsigned long iova, size_t size) 1635 { 1636 return __iommu_unmap(domain, iova, size, false); 1637 } 1638 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 1639 1640 size_t default_iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 1641 struct scatterlist *sg, unsigned int nents, int prot) 1642 { 1643 struct scatterlist *s; 1644 size_t mapped = 0; 1645 unsigned int i, min_pagesz; 1646 int ret; 1647 1648 if (unlikely(domain->pgsize_bitmap == 0UL)) 1649 return 0; 1650 1651 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1652 1653 for_each_sg(sg, s, nents, i) { 1654 phys_addr_t phys = page_to_phys(sg_page(s)) + s->offset; 1655 1656 /* 1657 * We are mapping on IOMMU page boundaries, so offset within 1658 * the page must be 0. However, the IOMMU may support pages 1659 * smaller than PAGE_SIZE, so s->offset may still represent 1660 * an offset of that boundary within the CPU page. 1661 */ 1662 if (!IS_ALIGNED(s->offset, min_pagesz)) 1663 goto out_err; 1664 1665 ret = iommu_map(domain, iova + mapped, phys, s->length, prot); 1666 if (ret) 1667 goto out_err; 1668 1669 mapped += s->length; 1670 } 1671 1672 return mapped; 1673 1674 out_err: 1675 /* undo mappings already done */ 1676 iommu_unmap(domain, iova, mapped); 1677 1678 return 0; 1679 1680 } 1681 EXPORT_SYMBOL_GPL(default_iommu_map_sg); 1682 1683 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, 1684 phys_addr_t paddr, u64 size, int prot) 1685 { 1686 if (unlikely(domain->ops->domain_window_enable == NULL)) 1687 return -ENODEV; 1688 1689 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, 1690 prot); 1691 } 1692 EXPORT_SYMBOL_GPL(iommu_domain_window_enable); 1693 1694 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) 1695 { 1696 if (unlikely(domain->ops->domain_window_disable == NULL)) 1697 return; 1698 1699 return domain->ops->domain_window_disable(domain, wnd_nr); 1700 } 1701 EXPORT_SYMBOL_GPL(iommu_domain_window_disable); 1702 1703 /** 1704 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 1705 * @domain: the iommu domain where the fault has happened 1706 * @dev: the device where the fault has happened 1707 * @iova: the faulting address 1708 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 1709 * 1710 * This function should be called by the low-level IOMMU implementations 1711 * whenever IOMMU faults happen, to allow high-level users, that are 1712 * interested in such events, to know about them. 1713 * 1714 * This event may be useful for several possible use cases: 1715 * - mere logging of the event 1716 * - dynamic TLB/PTE loading 1717 * - if restarting of the faulting device is required 1718 * 1719 * Returns 0 on success and an appropriate error code otherwise (if dynamic 1720 * PTE/TLB loading will one day be supported, implementations will be able 1721 * to tell whether it succeeded or not according to this return value). 1722 * 1723 * Specifically, -ENOSYS is returned if a fault handler isn't installed 1724 * (though fault handlers can also return -ENOSYS, in case they want to 1725 * elicit the default behavior of the IOMMU drivers). 1726 */ 1727 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 1728 unsigned long iova, int flags) 1729 { 1730 int ret = -ENOSYS; 1731 1732 /* 1733 * if upper layers showed interest and installed a fault handler, 1734 * invoke it. 1735 */ 1736 if (domain->handler) 1737 ret = domain->handler(domain, dev, iova, flags, 1738 domain->handler_token); 1739 1740 trace_io_page_fault(dev, iova, flags); 1741 return ret; 1742 } 1743 EXPORT_SYMBOL_GPL(report_iommu_fault); 1744 1745 static int __init iommu_init(void) 1746 { 1747 iommu_group_kset = kset_create_and_add("iommu_groups", 1748 NULL, kernel_kobj); 1749 BUG_ON(!iommu_group_kset); 1750 1751 return 0; 1752 } 1753 core_initcall(iommu_init); 1754 1755 int iommu_domain_get_attr(struct iommu_domain *domain, 1756 enum iommu_attr attr, void *data) 1757 { 1758 struct iommu_domain_geometry *geometry; 1759 bool *paging; 1760 int ret = 0; 1761 u32 *count; 1762 1763 switch (attr) { 1764 case DOMAIN_ATTR_GEOMETRY: 1765 geometry = data; 1766 *geometry = domain->geometry; 1767 1768 break; 1769 case DOMAIN_ATTR_PAGING: 1770 paging = data; 1771 *paging = (domain->pgsize_bitmap != 0UL); 1772 break; 1773 case DOMAIN_ATTR_WINDOWS: 1774 count = data; 1775 1776 if (domain->ops->domain_get_windows != NULL) 1777 *count = domain->ops->domain_get_windows(domain); 1778 else 1779 ret = -ENODEV; 1780 1781 break; 1782 default: 1783 if (!domain->ops->domain_get_attr) 1784 return -EINVAL; 1785 1786 ret = domain->ops->domain_get_attr(domain, attr, data); 1787 } 1788 1789 return ret; 1790 } 1791 EXPORT_SYMBOL_GPL(iommu_domain_get_attr); 1792 1793 int iommu_domain_set_attr(struct iommu_domain *domain, 1794 enum iommu_attr attr, void *data) 1795 { 1796 int ret = 0; 1797 u32 *count; 1798 1799 switch (attr) { 1800 case DOMAIN_ATTR_WINDOWS: 1801 count = data; 1802 1803 if (domain->ops->domain_set_windows != NULL) 1804 ret = domain->ops->domain_set_windows(domain, *count); 1805 else 1806 ret = -ENODEV; 1807 1808 break; 1809 default: 1810 if (domain->ops->domain_set_attr == NULL) 1811 return -EINVAL; 1812 1813 ret = domain->ops->domain_set_attr(domain, attr, data); 1814 } 1815 1816 return ret; 1817 } 1818 EXPORT_SYMBOL_GPL(iommu_domain_set_attr); 1819 1820 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 1821 { 1822 const struct iommu_ops *ops = dev->bus->iommu_ops; 1823 1824 if (ops && ops->get_resv_regions) 1825 ops->get_resv_regions(dev, list); 1826 } 1827 1828 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 1829 { 1830 const struct iommu_ops *ops = dev->bus->iommu_ops; 1831 1832 if (ops && ops->put_resv_regions) 1833 ops->put_resv_regions(dev, list); 1834 } 1835 1836 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 1837 size_t length, int prot, 1838 enum iommu_resv_type type) 1839 { 1840 struct iommu_resv_region *region; 1841 1842 region = kzalloc(sizeof(*region), GFP_KERNEL); 1843 if (!region) 1844 return NULL; 1845 1846 INIT_LIST_HEAD(®ion->list); 1847 region->start = start; 1848 region->length = length; 1849 region->prot = prot; 1850 region->type = type; 1851 return region; 1852 } 1853 1854 /* Request that a device is direct mapped by the IOMMU */ 1855 int iommu_request_dm_for_dev(struct device *dev) 1856 { 1857 struct iommu_domain *dm_domain; 1858 struct iommu_group *group; 1859 int ret; 1860 1861 /* Device must already be in a group before calling this function */ 1862 group = iommu_group_get_for_dev(dev); 1863 if (IS_ERR(group)) 1864 return PTR_ERR(group); 1865 1866 mutex_lock(&group->mutex); 1867 1868 /* Check if the default domain is already direct mapped */ 1869 ret = 0; 1870 if (group->default_domain && 1871 group->default_domain->type == IOMMU_DOMAIN_IDENTITY) 1872 goto out; 1873 1874 /* Don't change mappings of existing devices */ 1875 ret = -EBUSY; 1876 if (iommu_group_device_count(group) != 1) 1877 goto out; 1878 1879 /* Allocate a direct mapped domain */ 1880 ret = -ENOMEM; 1881 dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY); 1882 if (!dm_domain) 1883 goto out; 1884 1885 /* Attach the device to the domain */ 1886 ret = __iommu_attach_group(dm_domain, group); 1887 if (ret) { 1888 iommu_domain_free(dm_domain); 1889 goto out; 1890 } 1891 1892 /* Make the direct mapped domain the default for this group */ 1893 if (group->default_domain) 1894 iommu_domain_free(group->default_domain); 1895 group->default_domain = dm_domain; 1896 1897 pr_info("Using direct mapping for device %s\n", dev_name(dev)); 1898 1899 ret = 0; 1900 out: 1901 mutex_unlock(&group->mutex); 1902 iommu_group_put(group); 1903 1904 return ret; 1905 } 1906 1907 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 1908 { 1909 const struct iommu_ops *ops = NULL; 1910 struct iommu_device *iommu; 1911 1912 spin_lock(&iommu_device_lock); 1913 list_for_each_entry(iommu, &iommu_device_list, list) 1914 if (iommu->fwnode == fwnode) { 1915 ops = iommu->ops; 1916 break; 1917 } 1918 spin_unlock(&iommu_device_lock); 1919 return ops; 1920 } 1921 1922 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 1923 const struct iommu_ops *ops) 1924 { 1925 struct iommu_fwspec *fwspec = dev->iommu_fwspec; 1926 1927 if (fwspec) 1928 return ops == fwspec->ops ? 0 : -EINVAL; 1929 1930 fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL); 1931 if (!fwspec) 1932 return -ENOMEM; 1933 1934 of_node_get(to_of_node(iommu_fwnode)); 1935 fwspec->iommu_fwnode = iommu_fwnode; 1936 fwspec->ops = ops; 1937 dev->iommu_fwspec = fwspec; 1938 return 0; 1939 } 1940 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 1941 1942 void iommu_fwspec_free(struct device *dev) 1943 { 1944 struct iommu_fwspec *fwspec = dev->iommu_fwspec; 1945 1946 if (fwspec) { 1947 fwnode_handle_put(fwspec->iommu_fwnode); 1948 kfree(fwspec); 1949 dev->iommu_fwspec = NULL; 1950 } 1951 } 1952 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 1953 1954 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 1955 { 1956 struct iommu_fwspec *fwspec = dev->iommu_fwspec; 1957 size_t size; 1958 int i; 1959 1960 if (!fwspec) 1961 return -EINVAL; 1962 1963 size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]); 1964 if (size > sizeof(*fwspec)) { 1965 fwspec = krealloc(dev->iommu_fwspec, size, GFP_KERNEL); 1966 if (!fwspec) 1967 return -ENOMEM; 1968 1969 dev->iommu_fwspec = fwspec; 1970 } 1971 1972 for (i = 0; i < num_ids; i++) 1973 fwspec->ids[fwspec->num_ids + i] = ids[i]; 1974 1975 fwspec->num_ids += num_ids; 1976 return 0; 1977 } 1978 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 1979