xref: /openbmc/linux/drivers/iommu/iommu.c (revision 812f77b749a8ae11f58dacf0d3ed65e7ede47458)
1 /*
2  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3  * Author: Joerg Roedel <jroedel@suse.de>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  */
18 
19 #define pr_fmt(fmt)    "iommu: " fmt
20 
21 #include <linux/device.h>
22 #include <linux/kernel.h>
23 #include <linux/bug.h>
24 #include <linux/types.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/iommu.h>
29 #include <linux/idr.h>
30 #include <linux/notifier.h>
31 #include <linux/err.h>
32 #include <linux/pci.h>
33 #include <linux/bitops.h>
34 #include <linux/property.h>
35 #include <trace/events/iommu.h>
36 
37 static struct kset *iommu_group_kset;
38 static DEFINE_IDA(iommu_group_ida);
39 static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_DMA;
40 
41 struct iommu_callback_data {
42 	const struct iommu_ops *ops;
43 };
44 
45 struct iommu_group {
46 	struct kobject kobj;
47 	struct kobject *devices_kobj;
48 	struct list_head devices;
49 	struct mutex mutex;
50 	struct blocking_notifier_head notifier;
51 	void *iommu_data;
52 	void (*iommu_data_release)(void *iommu_data);
53 	char *name;
54 	int id;
55 	struct iommu_domain *default_domain;
56 	struct iommu_domain *domain;
57 };
58 
59 struct group_device {
60 	struct list_head list;
61 	struct device *dev;
62 	char *name;
63 };
64 
65 struct iommu_group_attribute {
66 	struct attribute attr;
67 	ssize_t (*show)(struct iommu_group *group, char *buf);
68 	ssize_t (*store)(struct iommu_group *group,
69 			 const char *buf, size_t count);
70 };
71 
72 static const char * const iommu_group_resv_type_string[] = {
73 	[IOMMU_RESV_DIRECT]	= "direct",
74 	[IOMMU_RESV_RESERVED]	= "reserved",
75 	[IOMMU_RESV_MSI]	= "msi",
76 	[IOMMU_RESV_SW_MSI]	= "msi",
77 };
78 
79 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
80 struct iommu_group_attribute iommu_group_attr_##_name =		\
81 	__ATTR(_name, _mode, _show, _store)
82 
83 #define to_iommu_group_attr(_attr)	\
84 	container_of(_attr, struct iommu_group_attribute, attr)
85 #define to_iommu_group(_kobj)		\
86 	container_of(_kobj, struct iommu_group, kobj)
87 
88 static LIST_HEAD(iommu_device_list);
89 static DEFINE_SPINLOCK(iommu_device_lock);
90 
91 int iommu_device_register(struct iommu_device *iommu)
92 {
93 	spin_lock(&iommu_device_lock);
94 	list_add_tail(&iommu->list, &iommu_device_list);
95 	spin_unlock(&iommu_device_lock);
96 
97 	return 0;
98 }
99 
100 void iommu_device_unregister(struct iommu_device *iommu)
101 {
102 	spin_lock(&iommu_device_lock);
103 	list_del(&iommu->list);
104 	spin_unlock(&iommu_device_lock);
105 }
106 
107 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
108 						 unsigned type);
109 static int __iommu_attach_device(struct iommu_domain *domain,
110 				 struct device *dev);
111 static int __iommu_attach_group(struct iommu_domain *domain,
112 				struct iommu_group *group);
113 static void __iommu_detach_group(struct iommu_domain *domain,
114 				 struct iommu_group *group);
115 
116 static int __init iommu_set_def_domain_type(char *str)
117 {
118 	bool pt;
119 
120 	if (!str || strtobool(str, &pt))
121 		return -EINVAL;
122 
123 	iommu_def_domain_type = pt ? IOMMU_DOMAIN_IDENTITY : IOMMU_DOMAIN_DMA;
124 	return 0;
125 }
126 early_param("iommu.passthrough", iommu_set_def_domain_type);
127 
128 static ssize_t iommu_group_attr_show(struct kobject *kobj,
129 				     struct attribute *__attr, char *buf)
130 {
131 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
132 	struct iommu_group *group = to_iommu_group(kobj);
133 	ssize_t ret = -EIO;
134 
135 	if (attr->show)
136 		ret = attr->show(group, buf);
137 	return ret;
138 }
139 
140 static ssize_t iommu_group_attr_store(struct kobject *kobj,
141 				      struct attribute *__attr,
142 				      const char *buf, size_t count)
143 {
144 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
145 	struct iommu_group *group = to_iommu_group(kobj);
146 	ssize_t ret = -EIO;
147 
148 	if (attr->store)
149 		ret = attr->store(group, buf, count);
150 	return ret;
151 }
152 
153 static const struct sysfs_ops iommu_group_sysfs_ops = {
154 	.show = iommu_group_attr_show,
155 	.store = iommu_group_attr_store,
156 };
157 
158 static int iommu_group_create_file(struct iommu_group *group,
159 				   struct iommu_group_attribute *attr)
160 {
161 	return sysfs_create_file(&group->kobj, &attr->attr);
162 }
163 
164 static void iommu_group_remove_file(struct iommu_group *group,
165 				    struct iommu_group_attribute *attr)
166 {
167 	sysfs_remove_file(&group->kobj, &attr->attr);
168 }
169 
170 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
171 {
172 	return sprintf(buf, "%s\n", group->name);
173 }
174 
175 /**
176  * iommu_insert_resv_region - Insert a new region in the
177  * list of reserved regions.
178  * @new: new region to insert
179  * @regions: list of regions
180  *
181  * The new element is sorted by address with respect to the other
182  * regions of the same type. In case it overlaps with another
183  * region of the same type, regions are merged. In case it
184  * overlaps with another region of different type, regions are
185  * not merged.
186  */
187 static int iommu_insert_resv_region(struct iommu_resv_region *new,
188 				    struct list_head *regions)
189 {
190 	struct iommu_resv_region *region;
191 	phys_addr_t start = new->start;
192 	phys_addr_t end = new->start + new->length - 1;
193 	struct list_head *pos = regions->next;
194 
195 	while (pos != regions) {
196 		struct iommu_resv_region *entry =
197 			list_entry(pos, struct iommu_resv_region, list);
198 		phys_addr_t a = entry->start;
199 		phys_addr_t b = entry->start + entry->length - 1;
200 		int type = entry->type;
201 
202 		if (end < a) {
203 			goto insert;
204 		} else if (start > b) {
205 			pos = pos->next;
206 		} else if ((start >= a) && (end <= b)) {
207 			if (new->type == type)
208 				goto done;
209 			else
210 				pos = pos->next;
211 		} else {
212 			if (new->type == type) {
213 				phys_addr_t new_start = min(a, start);
214 				phys_addr_t new_end = max(b, end);
215 
216 				list_del(&entry->list);
217 				entry->start = new_start;
218 				entry->length = new_end - new_start + 1;
219 				iommu_insert_resv_region(entry, regions);
220 			} else {
221 				pos = pos->next;
222 			}
223 		}
224 	}
225 insert:
226 	region = iommu_alloc_resv_region(new->start, new->length,
227 					 new->prot, new->type);
228 	if (!region)
229 		return -ENOMEM;
230 
231 	list_add_tail(&region->list, pos);
232 done:
233 	return 0;
234 }
235 
236 static int
237 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
238 				 struct list_head *group_resv_regions)
239 {
240 	struct iommu_resv_region *entry;
241 	int ret = 0;
242 
243 	list_for_each_entry(entry, dev_resv_regions, list) {
244 		ret = iommu_insert_resv_region(entry, group_resv_regions);
245 		if (ret)
246 			break;
247 	}
248 	return ret;
249 }
250 
251 int iommu_get_group_resv_regions(struct iommu_group *group,
252 				 struct list_head *head)
253 {
254 	struct group_device *device;
255 	int ret = 0;
256 
257 	mutex_lock(&group->mutex);
258 	list_for_each_entry(device, &group->devices, list) {
259 		struct list_head dev_resv_regions;
260 
261 		INIT_LIST_HEAD(&dev_resv_regions);
262 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
263 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
264 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
265 		if (ret)
266 			break;
267 	}
268 	mutex_unlock(&group->mutex);
269 	return ret;
270 }
271 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
272 
273 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
274 					     char *buf)
275 {
276 	struct iommu_resv_region *region, *next;
277 	struct list_head group_resv_regions;
278 	char *str = buf;
279 
280 	INIT_LIST_HEAD(&group_resv_regions);
281 	iommu_get_group_resv_regions(group, &group_resv_regions);
282 
283 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
284 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
285 			       (long long int)region->start,
286 			       (long long int)(region->start +
287 						region->length - 1),
288 			       iommu_group_resv_type_string[region->type]);
289 		kfree(region);
290 	}
291 
292 	return (str - buf);
293 }
294 
295 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
296 
297 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
298 			iommu_group_show_resv_regions, NULL);
299 
300 static void iommu_group_release(struct kobject *kobj)
301 {
302 	struct iommu_group *group = to_iommu_group(kobj);
303 
304 	pr_debug("Releasing group %d\n", group->id);
305 
306 	if (group->iommu_data_release)
307 		group->iommu_data_release(group->iommu_data);
308 
309 	ida_simple_remove(&iommu_group_ida, group->id);
310 
311 	if (group->default_domain)
312 		iommu_domain_free(group->default_domain);
313 
314 	kfree(group->name);
315 	kfree(group);
316 }
317 
318 static struct kobj_type iommu_group_ktype = {
319 	.sysfs_ops = &iommu_group_sysfs_ops,
320 	.release = iommu_group_release,
321 };
322 
323 /**
324  * iommu_group_alloc - Allocate a new group
325  * @name: Optional name to associate with group, visible in sysfs
326  *
327  * This function is called by an iommu driver to allocate a new iommu
328  * group.  The iommu group represents the minimum granularity of the iommu.
329  * Upon successful return, the caller holds a reference to the supplied
330  * group in order to hold the group until devices are added.  Use
331  * iommu_group_put() to release this extra reference count, allowing the
332  * group to be automatically reclaimed once it has no devices or external
333  * references.
334  */
335 struct iommu_group *iommu_group_alloc(void)
336 {
337 	struct iommu_group *group;
338 	int ret;
339 
340 	group = kzalloc(sizeof(*group), GFP_KERNEL);
341 	if (!group)
342 		return ERR_PTR(-ENOMEM);
343 
344 	group->kobj.kset = iommu_group_kset;
345 	mutex_init(&group->mutex);
346 	INIT_LIST_HEAD(&group->devices);
347 	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
348 
349 	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
350 	if (ret < 0) {
351 		kfree(group);
352 		return ERR_PTR(ret);
353 	}
354 	group->id = ret;
355 
356 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
357 				   NULL, "%d", group->id);
358 	if (ret) {
359 		ida_simple_remove(&iommu_group_ida, group->id);
360 		kfree(group);
361 		return ERR_PTR(ret);
362 	}
363 
364 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
365 	if (!group->devices_kobj) {
366 		kobject_put(&group->kobj); /* triggers .release & free */
367 		return ERR_PTR(-ENOMEM);
368 	}
369 
370 	/*
371 	 * The devices_kobj holds a reference on the group kobject, so
372 	 * as long as that exists so will the group.  We can therefore
373 	 * use the devices_kobj for reference counting.
374 	 */
375 	kobject_put(&group->kobj);
376 
377 	ret = iommu_group_create_file(group,
378 				      &iommu_group_attr_reserved_regions);
379 	if (ret)
380 		return ERR_PTR(ret);
381 
382 	pr_debug("Allocated group %d\n", group->id);
383 
384 	return group;
385 }
386 EXPORT_SYMBOL_GPL(iommu_group_alloc);
387 
388 struct iommu_group *iommu_group_get_by_id(int id)
389 {
390 	struct kobject *group_kobj;
391 	struct iommu_group *group;
392 	const char *name;
393 
394 	if (!iommu_group_kset)
395 		return NULL;
396 
397 	name = kasprintf(GFP_KERNEL, "%d", id);
398 	if (!name)
399 		return NULL;
400 
401 	group_kobj = kset_find_obj(iommu_group_kset, name);
402 	kfree(name);
403 
404 	if (!group_kobj)
405 		return NULL;
406 
407 	group = container_of(group_kobj, struct iommu_group, kobj);
408 	BUG_ON(group->id != id);
409 
410 	kobject_get(group->devices_kobj);
411 	kobject_put(&group->kobj);
412 
413 	return group;
414 }
415 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
416 
417 /**
418  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
419  * @group: the group
420  *
421  * iommu drivers can store data in the group for use when doing iommu
422  * operations.  This function provides a way to retrieve it.  Caller
423  * should hold a group reference.
424  */
425 void *iommu_group_get_iommudata(struct iommu_group *group)
426 {
427 	return group->iommu_data;
428 }
429 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
430 
431 /**
432  * iommu_group_set_iommudata - set iommu_data for a group
433  * @group: the group
434  * @iommu_data: new data
435  * @release: release function for iommu_data
436  *
437  * iommu drivers can store data in the group for use when doing iommu
438  * operations.  This function provides a way to set the data after
439  * the group has been allocated.  Caller should hold a group reference.
440  */
441 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
442 			       void (*release)(void *iommu_data))
443 {
444 	group->iommu_data = iommu_data;
445 	group->iommu_data_release = release;
446 }
447 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
448 
449 /**
450  * iommu_group_set_name - set name for a group
451  * @group: the group
452  * @name: name
453  *
454  * Allow iommu driver to set a name for a group.  When set it will
455  * appear in a name attribute file under the group in sysfs.
456  */
457 int iommu_group_set_name(struct iommu_group *group, const char *name)
458 {
459 	int ret;
460 
461 	if (group->name) {
462 		iommu_group_remove_file(group, &iommu_group_attr_name);
463 		kfree(group->name);
464 		group->name = NULL;
465 		if (!name)
466 			return 0;
467 	}
468 
469 	group->name = kstrdup(name, GFP_KERNEL);
470 	if (!group->name)
471 		return -ENOMEM;
472 
473 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
474 	if (ret) {
475 		kfree(group->name);
476 		group->name = NULL;
477 		return ret;
478 	}
479 
480 	return 0;
481 }
482 EXPORT_SYMBOL_GPL(iommu_group_set_name);
483 
484 static int iommu_group_create_direct_mappings(struct iommu_group *group,
485 					      struct device *dev)
486 {
487 	struct iommu_domain *domain = group->default_domain;
488 	struct iommu_resv_region *entry;
489 	struct list_head mappings;
490 	unsigned long pg_size;
491 	int ret = 0;
492 
493 	if (!domain || domain->type != IOMMU_DOMAIN_DMA)
494 		return 0;
495 
496 	BUG_ON(!domain->pgsize_bitmap);
497 
498 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
499 	INIT_LIST_HEAD(&mappings);
500 
501 	iommu_get_resv_regions(dev, &mappings);
502 
503 	/* We need to consider overlapping regions for different devices */
504 	list_for_each_entry(entry, &mappings, list) {
505 		dma_addr_t start, end, addr;
506 
507 		if (domain->ops->apply_resv_region)
508 			domain->ops->apply_resv_region(dev, domain, entry);
509 
510 		start = ALIGN(entry->start, pg_size);
511 		end   = ALIGN(entry->start + entry->length, pg_size);
512 
513 		if (entry->type != IOMMU_RESV_DIRECT)
514 			continue;
515 
516 		for (addr = start; addr < end; addr += pg_size) {
517 			phys_addr_t phys_addr;
518 
519 			phys_addr = iommu_iova_to_phys(domain, addr);
520 			if (phys_addr)
521 				continue;
522 
523 			ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
524 			if (ret)
525 				goto out;
526 		}
527 
528 	}
529 
530 	iommu_flush_tlb_all(domain);
531 
532 out:
533 	iommu_put_resv_regions(dev, &mappings);
534 
535 	return ret;
536 }
537 
538 /**
539  * iommu_group_add_device - add a device to an iommu group
540  * @group: the group into which to add the device (reference should be held)
541  * @dev: the device
542  *
543  * This function is called by an iommu driver to add a device into a
544  * group.  Adding a device increments the group reference count.
545  */
546 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
547 {
548 	int ret, i = 0;
549 	struct group_device *device;
550 
551 	device = kzalloc(sizeof(*device), GFP_KERNEL);
552 	if (!device)
553 		return -ENOMEM;
554 
555 	device->dev = dev;
556 
557 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
558 	if (ret)
559 		goto err_free_device;
560 
561 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
562 rename:
563 	if (!device->name) {
564 		ret = -ENOMEM;
565 		goto err_remove_link;
566 	}
567 
568 	ret = sysfs_create_link_nowarn(group->devices_kobj,
569 				       &dev->kobj, device->name);
570 	if (ret) {
571 		if (ret == -EEXIST && i >= 0) {
572 			/*
573 			 * Account for the slim chance of collision
574 			 * and append an instance to the name.
575 			 */
576 			kfree(device->name);
577 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
578 						 kobject_name(&dev->kobj), i++);
579 			goto rename;
580 		}
581 		goto err_free_name;
582 	}
583 
584 	kobject_get(group->devices_kobj);
585 
586 	dev->iommu_group = group;
587 
588 	iommu_group_create_direct_mappings(group, dev);
589 
590 	mutex_lock(&group->mutex);
591 	list_add_tail(&device->list, &group->devices);
592 	if (group->domain)
593 		ret = __iommu_attach_device(group->domain, dev);
594 	mutex_unlock(&group->mutex);
595 	if (ret)
596 		goto err_put_group;
597 
598 	/* Notify any listeners about change to group. */
599 	blocking_notifier_call_chain(&group->notifier,
600 				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
601 
602 	trace_add_device_to_group(group->id, dev);
603 
604 	pr_info("Adding device %s to group %d\n", dev_name(dev), group->id);
605 
606 	return 0;
607 
608 err_put_group:
609 	mutex_lock(&group->mutex);
610 	list_del(&device->list);
611 	mutex_unlock(&group->mutex);
612 	dev->iommu_group = NULL;
613 	kobject_put(group->devices_kobj);
614 err_free_name:
615 	kfree(device->name);
616 err_remove_link:
617 	sysfs_remove_link(&dev->kobj, "iommu_group");
618 err_free_device:
619 	kfree(device);
620 	pr_err("Failed to add device %s to group %d: %d\n", dev_name(dev), group->id, ret);
621 	return ret;
622 }
623 EXPORT_SYMBOL_GPL(iommu_group_add_device);
624 
625 /**
626  * iommu_group_remove_device - remove a device from it's current group
627  * @dev: device to be removed
628  *
629  * This function is called by an iommu driver to remove the device from
630  * it's current group.  This decrements the iommu group reference count.
631  */
632 void iommu_group_remove_device(struct device *dev)
633 {
634 	struct iommu_group *group = dev->iommu_group;
635 	struct group_device *tmp_device, *device = NULL;
636 
637 	pr_info("Removing device %s from group %d\n", dev_name(dev), group->id);
638 
639 	/* Pre-notify listeners that a device is being removed. */
640 	blocking_notifier_call_chain(&group->notifier,
641 				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
642 
643 	mutex_lock(&group->mutex);
644 	list_for_each_entry(tmp_device, &group->devices, list) {
645 		if (tmp_device->dev == dev) {
646 			device = tmp_device;
647 			list_del(&device->list);
648 			break;
649 		}
650 	}
651 	mutex_unlock(&group->mutex);
652 
653 	if (!device)
654 		return;
655 
656 	sysfs_remove_link(group->devices_kobj, device->name);
657 	sysfs_remove_link(&dev->kobj, "iommu_group");
658 
659 	trace_remove_device_from_group(group->id, dev);
660 
661 	kfree(device->name);
662 	kfree(device);
663 	dev->iommu_group = NULL;
664 	kobject_put(group->devices_kobj);
665 }
666 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
667 
668 static int iommu_group_device_count(struct iommu_group *group)
669 {
670 	struct group_device *entry;
671 	int ret = 0;
672 
673 	list_for_each_entry(entry, &group->devices, list)
674 		ret++;
675 
676 	return ret;
677 }
678 
679 /**
680  * iommu_group_for_each_dev - iterate over each device in the group
681  * @group: the group
682  * @data: caller opaque data to be passed to callback function
683  * @fn: caller supplied callback function
684  *
685  * This function is called by group users to iterate over group devices.
686  * Callers should hold a reference count to the group during callback.
687  * The group->mutex is held across callbacks, which will block calls to
688  * iommu_group_add/remove_device.
689  */
690 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
691 				      int (*fn)(struct device *, void *))
692 {
693 	struct group_device *device;
694 	int ret = 0;
695 
696 	list_for_each_entry(device, &group->devices, list) {
697 		ret = fn(device->dev, data);
698 		if (ret)
699 			break;
700 	}
701 	return ret;
702 }
703 
704 
705 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
706 			     int (*fn)(struct device *, void *))
707 {
708 	int ret;
709 
710 	mutex_lock(&group->mutex);
711 	ret = __iommu_group_for_each_dev(group, data, fn);
712 	mutex_unlock(&group->mutex);
713 
714 	return ret;
715 }
716 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
717 
718 /**
719  * iommu_group_get - Return the group for a device and increment reference
720  * @dev: get the group that this device belongs to
721  *
722  * This function is called by iommu drivers and users to get the group
723  * for the specified device.  If found, the group is returned and the group
724  * reference in incremented, else NULL.
725  */
726 struct iommu_group *iommu_group_get(struct device *dev)
727 {
728 	struct iommu_group *group = dev->iommu_group;
729 
730 	if (group)
731 		kobject_get(group->devices_kobj);
732 
733 	return group;
734 }
735 EXPORT_SYMBOL_GPL(iommu_group_get);
736 
737 /**
738  * iommu_group_ref_get - Increment reference on a group
739  * @group: the group to use, must not be NULL
740  *
741  * This function is called by iommu drivers to take additional references on an
742  * existing group.  Returns the given group for convenience.
743  */
744 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
745 {
746 	kobject_get(group->devices_kobj);
747 	return group;
748 }
749 
750 /**
751  * iommu_group_put - Decrement group reference
752  * @group: the group to use
753  *
754  * This function is called by iommu drivers and users to release the
755  * iommu group.  Once the reference count is zero, the group is released.
756  */
757 void iommu_group_put(struct iommu_group *group)
758 {
759 	if (group)
760 		kobject_put(group->devices_kobj);
761 }
762 EXPORT_SYMBOL_GPL(iommu_group_put);
763 
764 /**
765  * iommu_group_register_notifier - Register a notifier for group changes
766  * @group: the group to watch
767  * @nb: notifier block to signal
768  *
769  * This function allows iommu group users to track changes in a group.
770  * See include/linux/iommu.h for actions sent via this notifier.  Caller
771  * should hold a reference to the group throughout notifier registration.
772  */
773 int iommu_group_register_notifier(struct iommu_group *group,
774 				  struct notifier_block *nb)
775 {
776 	return blocking_notifier_chain_register(&group->notifier, nb);
777 }
778 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
779 
780 /**
781  * iommu_group_unregister_notifier - Unregister a notifier
782  * @group: the group to watch
783  * @nb: notifier block to signal
784  *
785  * Unregister a previously registered group notifier block.
786  */
787 int iommu_group_unregister_notifier(struct iommu_group *group,
788 				    struct notifier_block *nb)
789 {
790 	return blocking_notifier_chain_unregister(&group->notifier, nb);
791 }
792 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
793 
794 /**
795  * iommu_group_id - Return ID for a group
796  * @group: the group to ID
797  *
798  * Return the unique ID for the group matching the sysfs group number.
799  */
800 int iommu_group_id(struct iommu_group *group)
801 {
802 	return group->id;
803 }
804 EXPORT_SYMBOL_GPL(iommu_group_id);
805 
806 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
807 					       unsigned long *devfns);
808 
809 /*
810  * To consider a PCI device isolated, we require ACS to support Source
811  * Validation, Request Redirection, Completer Redirection, and Upstream
812  * Forwarding.  This effectively means that devices cannot spoof their
813  * requester ID, requests and completions cannot be redirected, and all
814  * transactions are forwarded upstream, even as it passes through a
815  * bridge where the target device is downstream.
816  */
817 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
818 
819 /*
820  * For multifunction devices which are not isolated from each other, find
821  * all the other non-isolated functions and look for existing groups.  For
822  * each function, we also need to look for aliases to or from other devices
823  * that may already have a group.
824  */
825 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
826 							unsigned long *devfns)
827 {
828 	struct pci_dev *tmp = NULL;
829 	struct iommu_group *group;
830 
831 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
832 		return NULL;
833 
834 	for_each_pci_dev(tmp) {
835 		if (tmp == pdev || tmp->bus != pdev->bus ||
836 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
837 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
838 			continue;
839 
840 		group = get_pci_alias_group(tmp, devfns);
841 		if (group) {
842 			pci_dev_put(tmp);
843 			return group;
844 		}
845 	}
846 
847 	return NULL;
848 }
849 
850 /*
851  * Look for aliases to or from the given device for existing groups. DMA
852  * aliases are only supported on the same bus, therefore the search
853  * space is quite small (especially since we're really only looking at pcie
854  * device, and therefore only expect multiple slots on the root complex or
855  * downstream switch ports).  It's conceivable though that a pair of
856  * multifunction devices could have aliases between them that would cause a
857  * loop.  To prevent this, we use a bitmap to track where we've been.
858  */
859 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
860 					       unsigned long *devfns)
861 {
862 	struct pci_dev *tmp = NULL;
863 	struct iommu_group *group;
864 
865 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
866 		return NULL;
867 
868 	group = iommu_group_get(&pdev->dev);
869 	if (group)
870 		return group;
871 
872 	for_each_pci_dev(tmp) {
873 		if (tmp == pdev || tmp->bus != pdev->bus)
874 			continue;
875 
876 		/* We alias them or they alias us */
877 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
878 			group = get_pci_alias_group(tmp, devfns);
879 			if (group) {
880 				pci_dev_put(tmp);
881 				return group;
882 			}
883 
884 			group = get_pci_function_alias_group(tmp, devfns);
885 			if (group) {
886 				pci_dev_put(tmp);
887 				return group;
888 			}
889 		}
890 	}
891 
892 	return NULL;
893 }
894 
895 struct group_for_pci_data {
896 	struct pci_dev *pdev;
897 	struct iommu_group *group;
898 };
899 
900 /*
901  * DMA alias iterator callback, return the last seen device.  Stop and return
902  * the IOMMU group if we find one along the way.
903  */
904 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
905 {
906 	struct group_for_pci_data *data = opaque;
907 
908 	data->pdev = pdev;
909 	data->group = iommu_group_get(&pdev->dev);
910 
911 	return data->group != NULL;
912 }
913 
914 /*
915  * Generic device_group call-back function. It just allocates one
916  * iommu-group per device.
917  */
918 struct iommu_group *generic_device_group(struct device *dev)
919 {
920 	return iommu_group_alloc();
921 }
922 
923 /*
924  * Use standard PCI bus topology, isolation features, and DMA alias quirks
925  * to find or create an IOMMU group for a device.
926  */
927 struct iommu_group *pci_device_group(struct device *dev)
928 {
929 	struct pci_dev *pdev = to_pci_dev(dev);
930 	struct group_for_pci_data data;
931 	struct pci_bus *bus;
932 	struct iommu_group *group = NULL;
933 	u64 devfns[4] = { 0 };
934 
935 	if (WARN_ON(!dev_is_pci(dev)))
936 		return ERR_PTR(-EINVAL);
937 
938 	/*
939 	 * Find the upstream DMA alias for the device.  A device must not
940 	 * be aliased due to topology in order to have its own IOMMU group.
941 	 * If we find an alias along the way that already belongs to a
942 	 * group, use it.
943 	 */
944 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
945 		return data.group;
946 
947 	pdev = data.pdev;
948 
949 	/*
950 	 * Continue upstream from the point of minimum IOMMU granularity
951 	 * due to aliases to the point where devices are protected from
952 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
953 	 * group, use it.
954 	 */
955 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
956 		if (!bus->self)
957 			continue;
958 
959 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
960 			break;
961 
962 		pdev = bus->self;
963 
964 		group = iommu_group_get(&pdev->dev);
965 		if (group)
966 			return group;
967 	}
968 
969 	/*
970 	 * Look for existing groups on device aliases.  If we alias another
971 	 * device or another device aliases us, use the same group.
972 	 */
973 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
974 	if (group)
975 		return group;
976 
977 	/*
978 	 * Look for existing groups on non-isolated functions on the same
979 	 * slot and aliases of those funcions, if any.  No need to clear
980 	 * the search bitmap, the tested devfns are still valid.
981 	 */
982 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
983 	if (group)
984 		return group;
985 
986 	/* No shared group found, allocate new */
987 	return iommu_group_alloc();
988 }
989 
990 /**
991  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
992  * @dev: target device
993  *
994  * This function is intended to be called by IOMMU drivers and extended to
995  * support common, bus-defined algorithms when determining or creating the
996  * IOMMU group for a device.  On success, the caller will hold a reference
997  * to the returned IOMMU group, which will already include the provided
998  * device.  The reference should be released with iommu_group_put().
999  */
1000 struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1001 {
1002 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1003 	struct iommu_group *group;
1004 	int ret;
1005 
1006 	group = iommu_group_get(dev);
1007 	if (group)
1008 		return group;
1009 
1010 	if (!ops)
1011 		return ERR_PTR(-EINVAL);
1012 
1013 	group = ops->device_group(dev);
1014 	if (WARN_ON_ONCE(group == NULL))
1015 		return ERR_PTR(-EINVAL);
1016 
1017 	if (IS_ERR(group))
1018 		return group;
1019 
1020 	/*
1021 	 * Try to allocate a default domain - needs support from the
1022 	 * IOMMU driver.
1023 	 */
1024 	if (!group->default_domain) {
1025 		struct iommu_domain *dom;
1026 
1027 		dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type);
1028 		if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) {
1029 			dev_warn(dev,
1030 				 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA",
1031 				 iommu_def_domain_type);
1032 			dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA);
1033 		}
1034 
1035 		group->default_domain = dom;
1036 		if (!group->domain)
1037 			group->domain = dom;
1038 	}
1039 
1040 	ret = iommu_group_add_device(group, dev);
1041 	if (ret) {
1042 		iommu_group_put(group);
1043 		return ERR_PTR(ret);
1044 	}
1045 
1046 	return group;
1047 }
1048 
1049 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1050 {
1051 	return group->default_domain;
1052 }
1053 
1054 static int add_iommu_group(struct device *dev, void *data)
1055 {
1056 	struct iommu_callback_data *cb = data;
1057 	const struct iommu_ops *ops = cb->ops;
1058 	int ret;
1059 
1060 	if (!ops->add_device)
1061 		return 0;
1062 
1063 	WARN_ON(dev->iommu_group);
1064 
1065 	ret = ops->add_device(dev);
1066 
1067 	/*
1068 	 * We ignore -ENODEV errors for now, as they just mean that the
1069 	 * device is not translated by an IOMMU. We still care about
1070 	 * other errors and fail to initialize when they happen.
1071 	 */
1072 	if (ret == -ENODEV)
1073 		ret = 0;
1074 
1075 	return ret;
1076 }
1077 
1078 static int remove_iommu_group(struct device *dev, void *data)
1079 {
1080 	struct iommu_callback_data *cb = data;
1081 	const struct iommu_ops *ops = cb->ops;
1082 
1083 	if (ops->remove_device && dev->iommu_group)
1084 		ops->remove_device(dev);
1085 
1086 	return 0;
1087 }
1088 
1089 static int iommu_bus_notifier(struct notifier_block *nb,
1090 			      unsigned long action, void *data)
1091 {
1092 	struct device *dev = data;
1093 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1094 	struct iommu_group *group;
1095 	unsigned long group_action = 0;
1096 
1097 	/*
1098 	 * ADD/DEL call into iommu driver ops if provided, which may
1099 	 * result in ADD/DEL notifiers to group->notifier
1100 	 */
1101 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1102 		if (ops->add_device) {
1103 			int ret;
1104 
1105 			ret = ops->add_device(dev);
1106 			return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1107 		}
1108 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1109 		if (ops->remove_device && dev->iommu_group) {
1110 			ops->remove_device(dev);
1111 			return 0;
1112 		}
1113 	}
1114 
1115 	/*
1116 	 * Remaining BUS_NOTIFYs get filtered and republished to the
1117 	 * group, if anyone is listening
1118 	 */
1119 	group = iommu_group_get(dev);
1120 	if (!group)
1121 		return 0;
1122 
1123 	switch (action) {
1124 	case BUS_NOTIFY_BIND_DRIVER:
1125 		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1126 		break;
1127 	case BUS_NOTIFY_BOUND_DRIVER:
1128 		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1129 		break;
1130 	case BUS_NOTIFY_UNBIND_DRIVER:
1131 		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1132 		break;
1133 	case BUS_NOTIFY_UNBOUND_DRIVER:
1134 		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1135 		break;
1136 	}
1137 
1138 	if (group_action)
1139 		blocking_notifier_call_chain(&group->notifier,
1140 					     group_action, dev);
1141 
1142 	iommu_group_put(group);
1143 	return 0;
1144 }
1145 
1146 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1147 {
1148 	int err;
1149 	struct notifier_block *nb;
1150 	struct iommu_callback_data cb = {
1151 		.ops = ops,
1152 	};
1153 
1154 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1155 	if (!nb)
1156 		return -ENOMEM;
1157 
1158 	nb->notifier_call = iommu_bus_notifier;
1159 
1160 	err = bus_register_notifier(bus, nb);
1161 	if (err)
1162 		goto out_free;
1163 
1164 	err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group);
1165 	if (err)
1166 		goto out_err;
1167 
1168 
1169 	return 0;
1170 
1171 out_err:
1172 	/* Clean up */
1173 	bus_for_each_dev(bus, NULL, &cb, remove_iommu_group);
1174 	bus_unregister_notifier(bus, nb);
1175 
1176 out_free:
1177 	kfree(nb);
1178 
1179 	return err;
1180 }
1181 
1182 /**
1183  * bus_set_iommu - set iommu-callbacks for the bus
1184  * @bus: bus.
1185  * @ops: the callbacks provided by the iommu-driver
1186  *
1187  * This function is called by an iommu driver to set the iommu methods
1188  * used for a particular bus. Drivers for devices on that bus can use
1189  * the iommu-api after these ops are registered.
1190  * This special function is needed because IOMMUs are usually devices on
1191  * the bus itself, so the iommu drivers are not initialized when the bus
1192  * is set up. With this function the iommu-driver can set the iommu-ops
1193  * afterwards.
1194  */
1195 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1196 {
1197 	int err;
1198 
1199 	if (bus->iommu_ops != NULL)
1200 		return -EBUSY;
1201 
1202 	bus->iommu_ops = ops;
1203 
1204 	/* Do IOMMU specific setup for this bus-type */
1205 	err = iommu_bus_init(bus, ops);
1206 	if (err)
1207 		bus->iommu_ops = NULL;
1208 
1209 	return err;
1210 }
1211 EXPORT_SYMBOL_GPL(bus_set_iommu);
1212 
1213 bool iommu_present(struct bus_type *bus)
1214 {
1215 	return bus->iommu_ops != NULL;
1216 }
1217 EXPORT_SYMBOL_GPL(iommu_present);
1218 
1219 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1220 {
1221 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1222 		return false;
1223 
1224 	return bus->iommu_ops->capable(cap);
1225 }
1226 EXPORT_SYMBOL_GPL(iommu_capable);
1227 
1228 /**
1229  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1230  * @domain: iommu domain
1231  * @handler: fault handler
1232  * @token: user data, will be passed back to the fault handler
1233  *
1234  * This function should be used by IOMMU users which want to be notified
1235  * whenever an IOMMU fault happens.
1236  *
1237  * The fault handler itself should return 0 on success, and an appropriate
1238  * error code otherwise.
1239  */
1240 void iommu_set_fault_handler(struct iommu_domain *domain,
1241 					iommu_fault_handler_t handler,
1242 					void *token)
1243 {
1244 	BUG_ON(!domain);
1245 
1246 	domain->handler = handler;
1247 	domain->handler_token = token;
1248 }
1249 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1250 
1251 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1252 						 unsigned type)
1253 {
1254 	struct iommu_domain *domain;
1255 
1256 	if (bus == NULL || bus->iommu_ops == NULL)
1257 		return NULL;
1258 
1259 	domain = bus->iommu_ops->domain_alloc(type);
1260 	if (!domain)
1261 		return NULL;
1262 
1263 	domain->ops  = bus->iommu_ops;
1264 	domain->type = type;
1265 	/* Assume all sizes by default; the driver may override this later */
1266 	domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
1267 
1268 	return domain;
1269 }
1270 
1271 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1272 {
1273 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1274 }
1275 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1276 
1277 void iommu_domain_free(struct iommu_domain *domain)
1278 {
1279 	domain->ops->domain_free(domain);
1280 }
1281 EXPORT_SYMBOL_GPL(iommu_domain_free);
1282 
1283 static int __iommu_attach_device(struct iommu_domain *domain,
1284 				 struct device *dev)
1285 {
1286 	int ret;
1287 	if ((domain->ops->is_attach_deferred != NULL) &&
1288 	    domain->ops->is_attach_deferred(domain, dev))
1289 		return 0;
1290 
1291 	if (unlikely(domain->ops->attach_dev == NULL))
1292 		return -ENODEV;
1293 
1294 	ret = domain->ops->attach_dev(domain, dev);
1295 	if (!ret)
1296 		trace_attach_device_to_domain(dev);
1297 	return ret;
1298 }
1299 
1300 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1301 {
1302 	struct iommu_group *group;
1303 	int ret;
1304 
1305 	group = iommu_group_get(dev);
1306 	/*
1307 	 * Lock the group to make sure the device-count doesn't
1308 	 * change while we are attaching
1309 	 */
1310 	mutex_lock(&group->mutex);
1311 	ret = -EINVAL;
1312 	if (iommu_group_device_count(group) != 1)
1313 		goto out_unlock;
1314 
1315 	ret = __iommu_attach_group(domain, group);
1316 
1317 out_unlock:
1318 	mutex_unlock(&group->mutex);
1319 	iommu_group_put(group);
1320 
1321 	return ret;
1322 }
1323 EXPORT_SYMBOL_GPL(iommu_attach_device);
1324 
1325 static void __iommu_detach_device(struct iommu_domain *domain,
1326 				  struct device *dev)
1327 {
1328 	if ((domain->ops->is_attach_deferred != NULL) &&
1329 	    domain->ops->is_attach_deferred(domain, dev))
1330 		return;
1331 
1332 	if (unlikely(domain->ops->detach_dev == NULL))
1333 		return;
1334 
1335 	domain->ops->detach_dev(domain, dev);
1336 	trace_detach_device_from_domain(dev);
1337 }
1338 
1339 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
1340 {
1341 	struct iommu_group *group;
1342 
1343 	group = iommu_group_get(dev);
1344 
1345 	mutex_lock(&group->mutex);
1346 	if (iommu_group_device_count(group) != 1) {
1347 		WARN_ON(1);
1348 		goto out_unlock;
1349 	}
1350 
1351 	__iommu_detach_group(domain, group);
1352 
1353 out_unlock:
1354 	mutex_unlock(&group->mutex);
1355 	iommu_group_put(group);
1356 }
1357 EXPORT_SYMBOL_GPL(iommu_detach_device);
1358 
1359 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
1360 {
1361 	struct iommu_domain *domain;
1362 	struct iommu_group *group;
1363 
1364 	group = iommu_group_get(dev);
1365 	if (!group)
1366 		return NULL;
1367 
1368 	domain = group->domain;
1369 
1370 	iommu_group_put(group);
1371 
1372 	return domain;
1373 }
1374 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
1375 
1376 /*
1377  * IOMMU groups are really the natrual working unit of the IOMMU, but
1378  * the IOMMU API works on domains and devices.  Bridge that gap by
1379  * iterating over the devices in a group.  Ideally we'd have a single
1380  * device which represents the requestor ID of the group, but we also
1381  * allow IOMMU drivers to create policy defined minimum sets, where
1382  * the physical hardware may be able to distiguish members, but we
1383  * wish to group them at a higher level (ex. untrusted multi-function
1384  * PCI devices).  Thus we attach each device.
1385  */
1386 static int iommu_group_do_attach_device(struct device *dev, void *data)
1387 {
1388 	struct iommu_domain *domain = data;
1389 
1390 	return __iommu_attach_device(domain, dev);
1391 }
1392 
1393 static int __iommu_attach_group(struct iommu_domain *domain,
1394 				struct iommu_group *group)
1395 {
1396 	int ret;
1397 
1398 	if (group->default_domain && group->domain != group->default_domain)
1399 		return -EBUSY;
1400 
1401 	ret = __iommu_group_for_each_dev(group, domain,
1402 					 iommu_group_do_attach_device);
1403 	if (ret == 0)
1404 		group->domain = domain;
1405 
1406 	return ret;
1407 }
1408 
1409 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
1410 {
1411 	int ret;
1412 
1413 	mutex_lock(&group->mutex);
1414 	ret = __iommu_attach_group(domain, group);
1415 	mutex_unlock(&group->mutex);
1416 
1417 	return ret;
1418 }
1419 EXPORT_SYMBOL_GPL(iommu_attach_group);
1420 
1421 static int iommu_group_do_detach_device(struct device *dev, void *data)
1422 {
1423 	struct iommu_domain *domain = data;
1424 
1425 	__iommu_detach_device(domain, dev);
1426 
1427 	return 0;
1428 }
1429 
1430 static void __iommu_detach_group(struct iommu_domain *domain,
1431 				 struct iommu_group *group)
1432 {
1433 	int ret;
1434 
1435 	if (!group->default_domain) {
1436 		__iommu_group_for_each_dev(group, domain,
1437 					   iommu_group_do_detach_device);
1438 		group->domain = NULL;
1439 		return;
1440 	}
1441 
1442 	if (group->domain == group->default_domain)
1443 		return;
1444 
1445 	/* Detach by re-attaching to the default domain */
1446 	ret = __iommu_group_for_each_dev(group, group->default_domain,
1447 					 iommu_group_do_attach_device);
1448 	if (ret != 0)
1449 		WARN_ON(1);
1450 	else
1451 		group->domain = group->default_domain;
1452 }
1453 
1454 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
1455 {
1456 	mutex_lock(&group->mutex);
1457 	__iommu_detach_group(domain, group);
1458 	mutex_unlock(&group->mutex);
1459 }
1460 EXPORT_SYMBOL_GPL(iommu_detach_group);
1461 
1462 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1463 {
1464 	if (unlikely(domain->ops->iova_to_phys == NULL))
1465 		return 0;
1466 
1467 	return domain->ops->iova_to_phys(domain, iova);
1468 }
1469 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
1470 
1471 static size_t iommu_pgsize(struct iommu_domain *domain,
1472 			   unsigned long addr_merge, size_t size)
1473 {
1474 	unsigned int pgsize_idx;
1475 	size_t pgsize;
1476 
1477 	/* Max page size that still fits into 'size' */
1478 	pgsize_idx = __fls(size);
1479 
1480 	/* need to consider alignment requirements ? */
1481 	if (likely(addr_merge)) {
1482 		/* Max page size allowed by address */
1483 		unsigned int align_pgsize_idx = __ffs(addr_merge);
1484 		pgsize_idx = min(pgsize_idx, align_pgsize_idx);
1485 	}
1486 
1487 	/* build a mask of acceptable page sizes */
1488 	pgsize = (1UL << (pgsize_idx + 1)) - 1;
1489 
1490 	/* throw away page sizes not supported by the hardware */
1491 	pgsize &= domain->pgsize_bitmap;
1492 
1493 	/* make sure we're still sane */
1494 	BUG_ON(!pgsize);
1495 
1496 	/* pick the biggest page */
1497 	pgsize_idx = __fls(pgsize);
1498 	pgsize = 1UL << pgsize_idx;
1499 
1500 	return pgsize;
1501 }
1502 
1503 int iommu_map(struct iommu_domain *domain, unsigned long iova,
1504 	      phys_addr_t paddr, size_t size, int prot)
1505 {
1506 	unsigned long orig_iova = iova;
1507 	unsigned int min_pagesz;
1508 	size_t orig_size = size;
1509 	phys_addr_t orig_paddr = paddr;
1510 	int ret = 0;
1511 
1512 	if (unlikely(domain->ops->map == NULL ||
1513 		     domain->pgsize_bitmap == 0UL))
1514 		return -ENODEV;
1515 
1516 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1517 		return -EINVAL;
1518 
1519 	/* find out the minimum page size supported */
1520 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1521 
1522 	/*
1523 	 * both the virtual address and the physical one, as well as
1524 	 * the size of the mapping, must be aligned (at least) to the
1525 	 * size of the smallest page supported by the hardware
1526 	 */
1527 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
1528 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
1529 		       iova, &paddr, size, min_pagesz);
1530 		return -EINVAL;
1531 	}
1532 
1533 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
1534 
1535 	while (size) {
1536 		size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
1537 
1538 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
1539 			 iova, &paddr, pgsize);
1540 
1541 		ret = domain->ops->map(domain, iova, paddr, pgsize, prot);
1542 		if (ret)
1543 			break;
1544 
1545 		iova += pgsize;
1546 		paddr += pgsize;
1547 		size -= pgsize;
1548 	}
1549 
1550 	/* unroll mapping in case something went wrong */
1551 	if (ret)
1552 		iommu_unmap(domain, orig_iova, orig_size - size);
1553 	else
1554 		trace_map(orig_iova, orig_paddr, orig_size);
1555 
1556 	return ret;
1557 }
1558 EXPORT_SYMBOL_GPL(iommu_map);
1559 
1560 static size_t __iommu_unmap(struct iommu_domain *domain,
1561 			    unsigned long iova, size_t size,
1562 			    bool sync)
1563 {
1564 	const struct iommu_ops *ops = domain->ops;
1565 	size_t unmapped_page, unmapped = 0;
1566 	unsigned long orig_iova = iova;
1567 	unsigned int min_pagesz;
1568 
1569 	if (unlikely(ops->unmap == NULL ||
1570 		     domain->pgsize_bitmap == 0UL))
1571 		return -ENODEV;
1572 
1573 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1574 		return -EINVAL;
1575 
1576 	/* find out the minimum page size supported */
1577 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1578 
1579 	/*
1580 	 * The virtual address, as well as the size of the mapping, must be
1581 	 * aligned (at least) to the size of the smallest page supported
1582 	 * by the hardware
1583 	 */
1584 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
1585 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
1586 		       iova, size, min_pagesz);
1587 		return -EINVAL;
1588 	}
1589 
1590 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
1591 
1592 	/*
1593 	 * Keep iterating until we either unmap 'size' bytes (or more)
1594 	 * or we hit an area that isn't mapped.
1595 	 */
1596 	while (unmapped < size) {
1597 		size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
1598 
1599 		unmapped_page = ops->unmap(domain, iova, pgsize);
1600 		if (!unmapped_page)
1601 			break;
1602 
1603 		if (sync && ops->iotlb_range_add)
1604 			ops->iotlb_range_add(domain, iova, pgsize);
1605 
1606 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
1607 			 iova, unmapped_page);
1608 
1609 		iova += unmapped_page;
1610 		unmapped += unmapped_page;
1611 	}
1612 
1613 	if (sync && ops->iotlb_sync)
1614 		ops->iotlb_sync(domain);
1615 
1616 	trace_unmap(orig_iova, size, unmapped);
1617 	return unmapped;
1618 }
1619 
1620 size_t iommu_unmap(struct iommu_domain *domain,
1621 		   unsigned long iova, size_t size)
1622 {
1623 	return __iommu_unmap(domain, iova, size, true);
1624 }
1625 EXPORT_SYMBOL_GPL(iommu_unmap);
1626 
1627 size_t iommu_unmap_fast(struct iommu_domain *domain,
1628 			unsigned long iova, size_t size)
1629 {
1630 	return __iommu_unmap(domain, iova, size, false);
1631 }
1632 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
1633 
1634 size_t default_iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
1635 			 struct scatterlist *sg, unsigned int nents, int prot)
1636 {
1637 	struct scatterlist *s;
1638 	size_t mapped = 0;
1639 	unsigned int i, min_pagesz;
1640 	int ret;
1641 
1642 	if (unlikely(domain->pgsize_bitmap == 0UL))
1643 		return 0;
1644 
1645 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1646 
1647 	for_each_sg(sg, s, nents, i) {
1648 		phys_addr_t phys = page_to_phys(sg_page(s)) + s->offset;
1649 
1650 		/*
1651 		 * We are mapping on IOMMU page boundaries, so offset within
1652 		 * the page must be 0. However, the IOMMU may support pages
1653 		 * smaller than PAGE_SIZE, so s->offset may still represent
1654 		 * an offset of that boundary within the CPU page.
1655 		 */
1656 		if (!IS_ALIGNED(s->offset, min_pagesz))
1657 			goto out_err;
1658 
1659 		ret = iommu_map(domain, iova + mapped, phys, s->length, prot);
1660 		if (ret)
1661 			goto out_err;
1662 
1663 		mapped += s->length;
1664 	}
1665 
1666 	return mapped;
1667 
1668 out_err:
1669 	/* undo mappings already done */
1670 	iommu_unmap(domain, iova, mapped);
1671 
1672 	return 0;
1673 
1674 }
1675 EXPORT_SYMBOL_GPL(default_iommu_map_sg);
1676 
1677 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
1678 			       phys_addr_t paddr, u64 size, int prot)
1679 {
1680 	if (unlikely(domain->ops->domain_window_enable == NULL))
1681 		return -ENODEV;
1682 
1683 	return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
1684 						 prot);
1685 }
1686 EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
1687 
1688 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
1689 {
1690 	if (unlikely(domain->ops->domain_window_disable == NULL))
1691 		return;
1692 
1693 	return domain->ops->domain_window_disable(domain, wnd_nr);
1694 }
1695 EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
1696 
1697 /**
1698  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
1699  * @domain: the iommu domain where the fault has happened
1700  * @dev: the device where the fault has happened
1701  * @iova: the faulting address
1702  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
1703  *
1704  * This function should be called by the low-level IOMMU implementations
1705  * whenever IOMMU faults happen, to allow high-level users, that are
1706  * interested in such events, to know about them.
1707  *
1708  * This event may be useful for several possible use cases:
1709  * - mere logging of the event
1710  * - dynamic TLB/PTE loading
1711  * - if restarting of the faulting device is required
1712  *
1713  * Returns 0 on success and an appropriate error code otherwise (if dynamic
1714  * PTE/TLB loading will one day be supported, implementations will be able
1715  * to tell whether it succeeded or not according to this return value).
1716  *
1717  * Specifically, -ENOSYS is returned if a fault handler isn't installed
1718  * (though fault handlers can also return -ENOSYS, in case they want to
1719  * elicit the default behavior of the IOMMU drivers).
1720  */
1721 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
1722 		       unsigned long iova, int flags)
1723 {
1724 	int ret = -ENOSYS;
1725 
1726 	/*
1727 	 * if upper layers showed interest and installed a fault handler,
1728 	 * invoke it.
1729 	 */
1730 	if (domain->handler)
1731 		ret = domain->handler(domain, dev, iova, flags,
1732 						domain->handler_token);
1733 
1734 	trace_io_page_fault(dev, iova, flags);
1735 	return ret;
1736 }
1737 EXPORT_SYMBOL_GPL(report_iommu_fault);
1738 
1739 static int __init iommu_init(void)
1740 {
1741 	iommu_group_kset = kset_create_and_add("iommu_groups",
1742 					       NULL, kernel_kobj);
1743 	BUG_ON(!iommu_group_kset);
1744 
1745 	return 0;
1746 }
1747 core_initcall(iommu_init);
1748 
1749 int iommu_domain_get_attr(struct iommu_domain *domain,
1750 			  enum iommu_attr attr, void *data)
1751 {
1752 	struct iommu_domain_geometry *geometry;
1753 	bool *paging;
1754 	int ret = 0;
1755 	u32 *count;
1756 
1757 	switch (attr) {
1758 	case DOMAIN_ATTR_GEOMETRY:
1759 		geometry  = data;
1760 		*geometry = domain->geometry;
1761 
1762 		break;
1763 	case DOMAIN_ATTR_PAGING:
1764 		paging  = data;
1765 		*paging = (domain->pgsize_bitmap != 0UL);
1766 		break;
1767 	case DOMAIN_ATTR_WINDOWS:
1768 		count = data;
1769 
1770 		if (domain->ops->domain_get_windows != NULL)
1771 			*count = domain->ops->domain_get_windows(domain);
1772 		else
1773 			ret = -ENODEV;
1774 
1775 		break;
1776 	default:
1777 		if (!domain->ops->domain_get_attr)
1778 			return -EINVAL;
1779 
1780 		ret = domain->ops->domain_get_attr(domain, attr, data);
1781 	}
1782 
1783 	return ret;
1784 }
1785 EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
1786 
1787 int iommu_domain_set_attr(struct iommu_domain *domain,
1788 			  enum iommu_attr attr, void *data)
1789 {
1790 	int ret = 0;
1791 	u32 *count;
1792 
1793 	switch (attr) {
1794 	case DOMAIN_ATTR_WINDOWS:
1795 		count = data;
1796 
1797 		if (domain->ops->domain_set_windows != NULL)
1798 			ret = domain->ops->domain_set_windows(domain, *count);
1799 		else
1800 			ret = -ENODEV;
1801 
1802 		break;
1803 	default:
1804 		if (domain->ops->domain_set_attr == NULL)
1805 			return -EINVAL;
1806 
1807 		ret = domain->ops->domain_set_attr(domain, attr, data);
1808 	}
1809 
1810 	return ret;
1811 }
1812 EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
1813 
1814 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
1815 {
1816 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1817 
1818 	if (ops && ops->get_resv_regions)
1819 		ops->get_resv_regions(dev, list);
1820 }
1821 
1822 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
1823 {
1824 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1825 
1826 	if (ops && ops->put_resv_regions)
1827 		ops->put_resv_regions(dev, list);
1828 }
1829 
1830 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
1831 						  size_t length, int prot,
1832 						  enum iommu_resv_type type)
1833 {
1834 	struct iommu_resv_region *region;
1835 
1836 	region = kzalloc(sizeof(*region), GFP_KERNEL);
1837 	if (!region)
1838 		return NULL;
1839 
1840 	INIT_LIST_HEAD(&region->list);
1841 	region->start = start;
1842 	region->length = length;
1843 	region->prot = prot;
1844 	region->type = type;
1845 	return region;
1846 }
1847 
1848 /* Request that a device is direct mapped by the IOMMU */
1849 int iommu_request_dm_for_dev(struct device *dev)
1850 {
1851 	struct iommu_domain *dm_domain;
1852 	struct iommu_group *group;
1853 	int ret;
1854 
1855 	/* Device must already be in a group before calling this function */
1856 	group = iommu_group_get_for_dev(dev);
1857 	if (IS_ERR(group))
1858 		return PTR_ERR(group);
1859 
1860 	mutex_lock(&group->mutex);
1861 
1862 	/* Check if the default domain is already direct mapped */
1863 	ret = 0;
1864 	if (group->default_domain &&
1865 	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY)
1866 		goto out;
1867 
1868 	/* Don't change mappings of existing devices */
1869 	ret = -EBUSY;
1870 	if (iommu_group_device_count(group) != 1)
1871 		goto out;
1872 
1873 	/* Allocate a direct mapped domain */
1874 	ret = -ENOMEM;
1875 	dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY);
1876 	if (!dm_domain)
1877 		goto out;
1878 
1879 	/* Attach the device to the domain */
1880 	ret = __iommu_attach_group(dm_domain, group);
1881 	if (ret) {
1882 		iommu_domain_free(dm_domain);
1883 		goto out;
1884 	}
1885 
1886 	/* Make the direct mapped domain the default for this group */
1887 	if (group->default_domain)
1888 		iommu_domain_free(group->default_domain);
1889 	group->default_domain = dm_domain;
1890 
1891 	pr_info("Using direct mapping for device %s\n", dev_name(dev));
1892 
1893 	ret = 0;
1894 out:
1895 	mutex_unlock(&group->mutex);
1896 	iommu_group_put(group);
1897 
1898 	return ret;
1899 }
1900 
1901 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
1902 {
1903 	const struct iommu_ops *ops = NULL;
1904 	struct iommu_device *iommu;
1905 
1906 	spin_lock(&iommu_device_lock);
1907 	list_for_each_entry(iommu, &iommu_device_list, list)
1908 		if (iommu->fwnode == fwnode) {
1909 			ops = iommu->ops;
1910 			break;
1911 		}
1912 	spin_unlock(&iommu_device_lock);
1913 	return ops;
1914 }
1915 
1916 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
1917 		      const struct iommu_ops *ops)
1918 {
1919 	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1920 
1921 	if (fwspec)
1922 		return ops == fwspec->ops ? 0 : -EINVAL;
1923 
1924 	fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL);
1925 	if (!fwspec)
1926 		return -ENOMEM;
1927 
1928 	of_node_get(to_of_node(iommu_fwnode));
1929 	fwspec->iommu_fwnode = iommu_fwnode;
1930 	fwspec->ops = ops;
1931 	dev->iommu_fwspec = fwspec;
1932 	return 0;
1933 }
1934 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
1935 
1936 void iommu_fwspec_free(struct device *dev)
1937 {
1938 	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1939 
1940 	if (fwspec) {
1941 		fwnode_handle_put(fwspec->iommu_fwnode);
1942 		kfree(fwspec);
1943 		dev->iommu_fwspec = NULL;
1944 	}
1945 }
1946 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
1947 
1948 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
1949 {
1950 	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1951 	size_t size;
1952 	int i;
1953 
1954 	if (!fwspec)
1955 		return -EINVAL;
1956 
1957 	size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]);
1958 	if (size > sizeof(*fwspec)) {
1959 		fwspec = krealloc(dev->iommu_fwspec, size, GFP_KERNEL);
1960 		if (!fwspec)
1961 			return -ENOMEM;
1962 
1963 		dev->iommu_fwspec = fwspec;
1964 	}
1965 
1966 	for (i = 0; i < num_ids; i++)
1967 		fwspec->ids[fwspec->num_ids + i] = ids[i];
1968 
1969 	fwspec->num_ids += num_ids;
1970 	return 0;
1971 }
1972 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
1973