xref: /openbmc/linux/drivers/iommu/iommu.c (revision 81113b04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/device.h>
10 #include <linux/kernel.h>
11 #include <linux/bug.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/export.h>
15 #include <linux/slab.h>
16 #include <linux/errno.h>
17 #include <linux/iommu.h>
18 #include <linux/idr.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/pci.h>
22 #include <linux/bitops.h>
23 #include <linux/property.h>
24 #include <linux/fsl/mc.h>
25 #include <linux/module.h>
26 #include <trace/events/iommu.h>
27 
28 static struct kset *iommu_group_kset;
29 static DEFINE_IDA(iommu_group_ida);
30 
31 static unsigned int iommu_def_domain_type __read_mostly;
32 static bool iommu_dma_strict __read_mostly = true;
33 static u32 iommu_cmd_line __read_mostly;
34 
35 struct iommu_group {
36 	struct kobject kobj;
37 	struct kobject *devices_kobj;
38 	struct list_head devices;
39 	struct mutex mutex;
40 	struct blocking_notifier_head notifier;
41 	void *iommu_data;
42 	void (*iommu_data_release)(void *iommu_data);
43 	char *name;
44 	int id;
45 	struct iommu_domain *default_domain;
46 	struct iommu_domain *domain;
47 	struct list_head entry;
48 };
49 
50 struct group_device {
51 	struct list_head list;
52 	struct device *dev;
53 	char *name;
54 };
55 
56 struct iommu_group_attribute {
57 	struct attribute attr;
58 	ssize_t (*show)(struct iommu_group *group, char *buf);
59 	ssize_t (*store)(struct iommu_group *group,
60 			 const char *buf, size_t count);
61 };
62 
63 static const char * const iommu_group_resv_type_string[] = {
64 	[IOMMU_RESV_DIRECT]			= "direct",
65 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
66 	[IOMMU_RESV_RESERVED]			= "reserved",
67 	[IOMMU_RESV_MSI]			= "msi",
68 	[IOMMU_RESV_SW_MSI]			= "msi",
69 };
70 
71 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
72 
73 static void iommu_set_cmd_line_dma_api(void)
74 {
75 	iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
76 }
77 
78 static bool iommu_cmd_line_dma_api(void)
79 {
80 	return !!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API);
81 }
82 
83 static int iommu_alloc_default_domain(struct iommu_group *group,
84 				      struct device *dev);
85 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
86 						 unsigned type);
87 static int __iommu_attach_device(struct iommu_domain *domain,
88 				 struct device *dev);
89 static int __iommu_attach_group(struct iommu_domain *domain,
90 				struct iommu_group *group);
91 static void __iommu_detach_group(struct iommu_domain *domain,
92 				 struct iommu_group *group);
93 static int iommu_create_device_direct_mappings(struct iommu_group *group,
94 					       struct device *dev);
95 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
96 
97 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
98 struct iommu_group_attribute iommu_group_attr_##_name =		\
99 	__ATTR(_name, _mode, _show, _store)
100 
101 #define to_iommu_group_attr(_attr)	\
102 	container_of(_attr, struct iommu_group_attribute, attr)
103 #define to_iommu_group(_kobj)		\
104 	container_of(_kobj, struct iommu_group, kobj)
105 
106 static LIST_HEAD(iommu_device_list);
107 static DEFINE_SPINLOCK(iommu_device_lock);
108 
109 /*
110  * Use a function instead of an array here because the domain-type is a
111  * bit-field, so an array would waste memory.
112  */
113 static const char *iommu_domain_type_str(unsigned int t)
114 {
115 	switch (t) {
116 	case IOMMU_DOMAIN_BLOCKED:
117 		return "Blocked";
118 	case IOMMU_DOMAIN_IDENTITY:
119 		return "Passthrough";
120 	case IOMMU_DOMAIN_UNMANAGED:
121 		return "Unmanaged";
122 	case IOMMU_DOMAIN_DMA:
123 		return "Translated";
124 	default:
125 		return "Unknown";
126 	}
127 }
128 
129 static int __init iommu_subsys_init(void)
130 {
131 	bool cmd_line = iommu_cmd_line_dma_api();
132 
133 	if (!cmd_line) {
134 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
135 			iommu_set_default_passthrough(false);
136 		else
137 			iommu_set_default_translated(false);
138 
139 		if (iommu_default_passthrough() && mem_encrypt_active()) {
140 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
141 			iommu_set_default_translated(false);
142 		}
143 	}
144 
145 	pr_info("Default domain type: %s %s\n",
146 		iommu_domain_type_str(iommu_def_domain_type),
147 		cmd_line ? "(set via kernel command line)" : "");
148 
149 	return 0;
150 }
151 subsys_initcall(iommu_subsys_init);
152 
153 int iommu_device_register(struct iommu_device *iommu)
154 {
155 	spin_lock(&iommu_device_lock);
156 	list_add_tail(&iommu->list, &iommu_device_list);
157 	spin_unlock(&iommu_device_lock);
158 	return 0;
159 }
160 EXPORT_SYMBOL_GPL(iommu_device_register);
161 
162 void iommu_device_unregister(struct iommu_device *iommu)
163 {
164 	spin_lock(&iommu_device_lock);
165 	list_del(&iommu->list);
166 	spin_unlock(&iommu_device_lock);
167 }
168 EXPORT_SYMBOL_GPL(iommu_device_unregister);
169 
170 static struct dev_iommu *dev_iommu_get(struct device *dev)
171 {
172 	struct dev_iommu *param = dev->iommu;
173 
174 	if (param)
175 		return param;
176 
177 	param = kzalloc(sizeof(*param), GFP_KERNEL);
178 	if (!param)
179 		return NULL;
180 
181 	mutex_init(&param->lock);
182 	dev->iommu = param;
183 	return param;
184 }
185 
186 static void dev_iommu_free(struct device *dev)
187 {
188 	iommu_fwspec_free(dev);
189 	kfree(dev->iommu);
190 	dev->iommu = NULL;
191 }
192 
193 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
194 {
195 	const struct iommu_ops *ops = dev->bus->iommu_ops;
196 	struct iommu_device *iommu_dev;
197 	struct iommu_group *group;
198 	int ret;
199 
200 	if (!ops)
201 		return -ENODEV;
202 
203 	if (!dev_iommu_get(dev))
204 		return -ENOMEM;
205 
206 	if (!try_module_get(ops->owner)) {
207 		ret = -EINVAL;
208 		goto err_free;
209 	}
210 
211 	iommu_dev = ops->probe_device(dev);
212 	if (IS_ERR(iommu_dev)) {
213 		ret = PTR_ERR(iommu_dev);
214 		goto out_module_put;
215 	}
216 
217 	dev->iommu->iommu_dev = iommu_dev;
218 
219 	group = iommu_group_get_for_dev(dev);
220 	if (IS_ERR(group)) {
221 		ret = PTR_ERR(group);
222 		goto out_release;
223 	}
224 	iommu_group_put(group);
225 
226 	if (group_list && !group->default_domain && list_empty(&group->entry))
227 		list_add_tail(&group->entry, group_list);
228 
229 	iommu_device_link(iommu_dev, dev);
230 
231 	return 0;
232 
233 out_release:
234 	ops->release_device(dev);
235 
236 out_module_put:
237 	module_put(ops->owner);
238 
239 err_free:
240 	dev_iommu_free(dev);
241 
242 	return ret;
243 }
244 
245 int iommu_probe_device(struct device *dev)
246 {
247 	const struct iommu_ops *ops = dev->bus->iommu_ops;
248 	struct iommu_group *group;
249 	int ret;
250 
251 	ret = __iommu_probe_device(dev, NULL);
252 	if (ret)
253 		goto err_out;
254 
255 	group = iommu_group_get(dev);
256 	if (!group)
257 		goto err_release;
258 
259 	/*
260 	 * Try to allocate a default domain - needs support from the
261 	 * IOMMU driver. There are still some drivers which don't
262 	 * support default domains, so the return value is not yet
263 	 * checked.
264 	 */
265 	iommu_alloc_default_domain(group, dev);
266 
267 	if (group->default_domain) {
268 		ret = __iommu_attach_device(group->default_domain, dev);
269 		if (ret) {
270 			iommu_group_put(group);
271 			goto err_release;
272 		}
273 	}
274 
275 	iommu_create_device_direct_mappings(group, dev);
276 
277 	iommu_group_put(group);
278 
279 	if (ops->probe_finalize)
280 		ops->probe_finalize(dev);
281 
282 	return 0;
283 
284 err_release:
285 	iommu_release_device(dev);
286 
287 err_out:
288 	return ret;
289 
290 }
291 
292 void iommu_release_device(struct device *dev)
293 {
294 	const struct iommu_ops *ops = dev->bus->iommu_ops;
295 
296 	if (!dev->iommu)
297 		return;
298 
299 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
300 
301 	ops->release_device(dev);
302 
303 	iommu_group_remove_device(dev);
304 	module_put(ops->owner);
305 	dev_iommu_free(dev);
306 }
307 
308 static int __init iommu_set_def_domain_type(char *str)
309 {
310 	bool pt;
311 	int ret;
312 
313 	ret = kstrtobool(str, &pt);
314 	if (ret)
315 		return ret;
316 
317 	if (pt)
318 		iommu_set_default_passthrough(true);
319 	else
320 		iommu_set_default_translated(true);
321 
322 	return 0;
323 }
324 early_param("iommu.passthrough", iommu_set_def_domain_type);
325 
326 static int __init iommu_dma_setup(char *str)
327 {
328 	return kstrtobool(str, &iommu_dma_strict);
329 }
330 early_param("iommu.strict", iommu_dma_setup);
331 
332 static ssize_t iommu_group_attr_show(struct kobject *kobj,
333 				     struct attribute *__attr, char *buf)
334 {
335 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
336 	struct iommu_group *group = to_iommu_group(kobj);
337 	ssize_t ret = -EIO;
338 
339 	if (attr->show)
340 		ret = attr->show(group, buf);
341 	return ret;
342 }
343 
344 static ssize_t iommu_group_attr_store(struct kobject *kobj,
345 				      struct attribute *__attr,
346 				      const char *buf, size_t count)
347 {
348 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
349 	struct iommu_group *group = to_iommu_group(kobj);
350 	ssize_t ret = -EIO;
351 
352 	if (attr->store)
353 		ret = attr->store(group, buf, count);
354 	return ret;
355 }
356 
357 static const struct sysfs_ops iommu_group_sysfs_ops = {
358 	.show = iommu_group_attr_show,
359 	.store = iommu_group_attr_store,
360 };
361 
362 static int iommu_group_create_file(struct iommu_group *group,
363 				   struct iommu_group_attribute *attr)
364 {
365 	return sysfs_create_file(&group->kobj, &attr->attr);
366 }
367 
368 static void iommu_group_remove_file(struct iommu_group *group,
369 				    struct iommu_group_attribute *attr)
370 {
371 	sysfs_remove_file(&group->kobj, &attr->attr);
372 }
373 
374 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
375 {
376 	return sprintf(buf, "%s\n", group->name);
377 }
378 
379 /**
380  * iommu_insert_resv_region - Insert a new region in the
381  * list of reserved regions.
382  * @new: new region to insert
383  * @regions: list of regions
384  *
385  * Elements are sorted by start address and overlapping segments
386  * of the same type are merged.
387  */
388 static int iommu_insert_resv_region(struct iommu_resv_region *new,
389 				    struct list_head *regions)
390 {
391 	struct iommu_resv_region *iter, *tmp, *nr, *top;
392 	LIST_HEAD(stack);
393 
394 	nr = iommu_alloc_resv_region(new->start, new->length,
395 				     new->prot, new->type);
396 	if (!nr)
397 		return -ENOMEM;
398 
399 	/* First add the new element based on start address sorting */
400 	list_for_each_entry(iter, regions, list) {
401 		if (nr->start < iter->start ||
402 		    (nr->start == iter->start && nr->type <= iter->type))
403 			break;
404 	}
405 	list_add_tail(&nr->list, &iter->list);
406 
407 	/* Merge overlapping segments of type nr->type in @regions, if any */
408 	list_for_each_entry_safe(iter, tmp, regions, list) {
409 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
410 
411 		/* no merge needed on elements of different types than @new */
412 		if (iter->type != new->type) {
413 			list_move_tail(&iter->list, &stack);
414 			continue;
415 		}
416 
417 		/* look for the last stack element of same type as @iter */
418 		list_for_each_entry_reverse(top, &stack, list)
419 			if (top->type == iter->type)
420 				goto check_overlap;
421 
422 		list_move_tail(&iter->list, &stack);
423 		continue;
424 
425 check_overlap:
426 		top_end = top->start + top->length - 1;
427 
428 		if (iter->start > top_end + 1) {
429 			list_move_tail(&iter->list, &stack);
430 		} else {
431 			top->length = max(top_end, iter_end) - top->start + 1;
432 			list_del(&iter->list);
433 			kfree(iter);
434 		}
435 	}
436 	list_splice(&stack, regions);
437 	return 0;
438 }
439 
440 static int
441 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
442 				 struct list_head *group_resv_regions)
443 {
444 	struct iommu_resv_region *entry;
445 	int ret = 0;
446 
447 	list_for_each_entry(entry, dev_resv_regions, list) {
448 		ret = iommu_insert_resv_region(entry, group_resv_regions);
449 		if (ret)
450 			break;
451 	}
452 	return ret;
453 }
454 
455 int iommu_get_group_resv_regions(struct iommu_group *group,
456 				 struct list_head *head)
457 {
458 	struct group_device *device;
459 	int ret = 0;
460 
461 	mutex_lock(&group->mutex);
462 	list_for_each_entry(device, &group->devices, list) {
463 		struct list_head dev_resv_regions;
464 
465 		INIT_LIST_HEAD(&dev_resv_regions);
466 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
467 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
468 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
469 		if (ret)
470 			break;
471 	}
472 	mutex_unlock(&group->mutex);
473 	return ret;
474 }
475 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
476 
477 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
478 					     char *buf)
479 {
480 	struct iommu_resv_region *region, *next;
481 	struct list_head group_resv_regions;
482 	char *str = buf;
483 
484 	INIT_LIST_HEAD(&group_resv_regions);
485 	iommu_get_group_resv_regions(group, &group_resv_regions);
486 
487 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
488 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
489 			       (long long int)region->start,
490 			       (long long int)(region->start +
491 						region->length - 1),
492 			       iommu_group_resv_type_string[region->type]);
493 		kfree(region);
494 	}
495 
496 	return (str - buf);
497 }
498 
499 static ssize_t iommu_group_show_type(struct iommu_group *group,
500 				     char *buf)
501 {
502 	char *type = "unknown\n";
503 
504 	if (group->default_domain) {
505 		switch (group->default_domain->type) {
506 		case IOMMU_DOMAIN_BLOCKED:
507 			type = "blocked\n";
508 			break;
509 		case IOMMU_DOMAIN_IDENTITY:
510 			type = "identity\n";
511 			break;
512 		case IOMMU_DOMAIN_UNMANAGED:
513 			type = "unmanaged\n";
514 			break;
515 		case IOMMU_DOMAIN_DMA:
516 			type = "DMA\n";
517 			break;
518 		}
519 	}
520 	strcpy(buf, type);
521 
522 	return strlen(type);
523 }
524 
525 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
526 
527 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
528 			iommu_group_show_resv_regions, NULL);
529 
530 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL);
531 
532 static void iommu_group_release(struct kobject *kobj)
533 {
534 	struct iommu_group *group = to_iommu_group(kobj);
535 
536 	pr_debug("Releasing group %d\n", group->id);
537 
538 	if (group->iommu_data_release)
539 		group->iommu_data_release(group->iommu_data);
540 
541 	ida_simple_remove(&iommu_group_ida, group->id);
542 
543 	if (group->default_domain)
544 		iommu_domain_free(group->default_domain);
545 
546 	kfree(group->name);
547 	kfree(group);
548 }
549 
550 static struct kobj_type iommu_group_ktype = {
551 	.sysfs_ops = &iommu_group_sysfs_ops,
552 	.release = iommu_group_release,
553 };
554 
555 /**
556  * iommu_group_alloc - Allocate a new group
557  *
558  * This function is called by an iommu driver to allocate a new iommu
559  * group.  The iommu group represents the minimum granularity of the iommu.
560  * Upon successful return, the caller holds a reference to the supplied
561  * group in order to hold the group until devices are added.  Use
562  * iommu_group_put() to release this extra reference count, allowing the
563  * group to be automatically reclaimed once it has no devices or external
564  * references.
565  */
566 struct iommu_group *iommu_group_alloc(void)
567 {
568 	struct iommu_group *group;
569 	int ret;
570 
571 	group = kzalloc(sizeof(*group), GFP_KERNEL);
572 	if (!group)
573 		return ERR_PTR(-ENOMEM);
574 
575 	group->kobj.kset = iommu_group_kset;
576 	mutex_init(&group->mutex);
577 	INIT_LIST_HEAD(&group->devices);
578 	INIT_LIST_HEAD(&group->entry);
579 	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
580 
581 	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
582 	if (ret < 0) {
583 		kfree(group);
584 		return ERR_PTR(ret);
585 	}
586 	group->id = ret;
587 
588 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
589 				   NULL, "%d", group->id);
590 	if (ret) {
591 		ida_simple_remove(&iommu_group_ida, group->id);
592 		kobject_put(&group->kobj);
593 		return ERR_PTR(ret);
594 	}
595 
596 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
597 	if (!group->devices_kobj) {
598 		kobject_put(&group->kobj); /* triggers .release & free */
599 		return ERR_PTR(-ENOMEM);
600 	}
601 
602 	/*
603 	 * The devices_kobj holds a reference on the group kobject, so
604 	 * as long as that exists so will the group.  We can therefore
605 	 * use the devices_kobj for reference counting.
606 	 */
607 	kobject_put(&group->kobj);
608 
609 	ret = iommu_group_create_file(group,
610 				      &iommu_group_attr_reserved_regions);
611 	if (ret)
612 		return ERR_PTR(ret);
613 
614 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
615 	if (ret)
616 		return ERR_PTR(ret);
617 
618 	pr_debug("Allocated group %d\n", group->id);
619 
620 	return group;
621 }
622 EXPORT_SYMBOL_GPL(iommu_group_alloc);
623 
624 struct iommu_group *iommu_group_get_by_id(int id)
625 {
626 	struct kobject *group_kobj;
627 	struct iommu_group *group;
628 	const char *name;
629 
630 	if (!iommu_group_kset)
631 		return NULL;
632 
633 	name = kasprintf(GFP_KERNEL, "%d", id);
634 	if (!name)
635 		return NULL;
636 
637 	group_kobj = kset_find_obj(iommu_group_kset, name);
638 	kfree(name);
639 
640 	if (!group_kobj)
641 		return NULL;
642 
643 	group = container_of(group_kobj, struct iommu_group, kobj);
644 	BUG_ON(group->id != id);
645 
646 	kobject_get(group->devices_kobj);
647 	kobject_put(&group->kobj);
648 
649 	return group;
650 }
651 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
652 
653 /**
654  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
655  * @group: the group
656  *
657  * iommu drivers can store data in the group for use when doing iommu
658  * operations.  This function provides a way to retrieve it.  Caller
659  * should hold a group reference.
660  */
661 void *iommu_group_get_iommudata(struct iommu_group *group)
662 {
663 	return group->iommu_data;
664 }
665 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
666 
667 /**
668  * iommu_group_set_iommudata - set iommu_data for a group
669  * @group: the group
670  * @iommu_data: new data
671  * @release: release function for iommu_data
672  *
673  * iommu drivers can store data in the group for use when doing iommu
674  * operations.  This function provides a way to set the data after
675  * the group has been allocated.  Caller should hold a group reference.
676  */
677 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
678 			       void (*release)(void *iommu_data))
679 {
680 	group->iommu_data = iommu_data;
681 	group->iommu_data_release = release;
682 }
683 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
684 
685 /**
686  * iommu_group_set_name - set name for a group
687  * @group: the group
688  * @name: name
689  *
690  * Allow iommu driver to set a name for a group.  When set it will
691  * appear in a name attribute file under the group in sysfs.
692  */
693 int iommu_group_set_name(struct iommu_group *group, const char *name)
694 {
695 	int ret;
696 
697 	if (group->name) {
698 		iommu_group_remove_file(group, &iommu_group_attr_name);
699 		kfree(group->name);
700 		group->name = NULL;
701 		if (!name)
702 			return 0;
703 	}
704 
705 	group->name = kstrdup(name, GFP_KERNEL);
706 	if (!group->name)
707 		return -ENOMEM;
708 
709 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
710 	if (ret) {
711 		kfree(group->name);
712 		group->name = NULL;
713 		return ret;
714 	}
715 
716 	return 0;
717 }
718 EXPORT_SYMBOL_GPL(iommu_group_set_name);
719 
720 static int iommu_create_device_direct_mappings(struct iommu_group *group,
721 					       struct device *dev)
722 {
723 	struct iommu_domain *domain = group->default_domain;
724 	struct iommu_resv_region *entry;
725 	struct list_head mappings;
726 	unsigned long pg_size;
727 	int ret = 0;
728 
729 	if (!domain || domain->type != IOMMU_DOMAIN_DMA)
730 		return 0;
731 
732 	BUG_ON(!domain->pgsize_bitmap);
733 
734 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
735 	INIT_LIST_HEAD(&mappings);
736 
737 	iommu_get_resv_regions(dev, &mappings);
738 
739 	/* We need to consider overlapping regions for different devices */
740 	list_for_each_entry(entry, &mappings, list) {
741 		dma_addr_t start, end, addr;
742 
743 		if (domain->ops->apply_resv_region)
744 			domain->ops->apply_resv_region(dev, domain, entry);
745 
746 		start = ALIGN(entry->start, pg_size);
747 		end   = ALIGN(entry->start + entry->length, pg_size);
748 
749 		if (entry->type != IOMMU_RESV_DIRECT &&
750 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
751 			continue;
752 
753 		for (addr = start; addr < end; addr += pg_size) {
754 			phys_addr_t phys_addr;
755 
756 			phys_addr = iommu_iova_to_phys(domain, addr);
757 			if (phys_addr)
758 				continue;
759 
760 			ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
761 			if (ret)
762 				goto out;
763 		}
764 
765 	}
766 
767 	iommu_flush_iotlb_all(domain);
768 
769 out:
770 	iommu_put_resv_regions(dev, &mappings);
771 
772 	return ret;
773 }
774 
775 static bool iommu_is_attach_deferred(struct iommu_domain *domain,
776 				     struct device *dev)
777 {
778 	if (domain->ops->is_attach_deferred)
779 		return domain->ops->is_attach_deferred(domain, dev);
780 
781 	return false;
782 }
783 
784 /**
785  * iommu_group_add_device - add a device to an iommu group
786  * @group: the group into which to add the device (reference should be held)
787  * @dev: the device
788  *
789  * This function is called by an iommu driver to add a device into a
790  * group.  Adding a device increments the group reference count.
791  */
792 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
793 {
794 	int ret, i = 0;
795 	struct group_device *device;
796 
797 	device = kzalloc(sizeof(*device), GFP_KERNEL);
798 	if (!device)
799 		return -ENOMEM;
800 
801 	device->dev = dev;
802 
803 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
804 	if (ret)
805 		goto err_free_device;
806 
807 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
808 rename:
809 	if (!device->name) {
810 		ret = -ENOMEM;
811 		goto err_remove_link;
812 	}
813 
814 	ret = sysfs_create_link_nowarn(group->devices_kobj,
815 				       &dev->kobj, device->name);
816 	if (ret) {
817 		if (ret == -EEXIST && i >= 0) {
818 			/*
819 			 * Account for the slim chance of collision
820 			 * and append an instance to the name.
821 			 */
822 			kfree(device->name);
823 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
824 						 kobject_name(&dev->kobj), i++);
825 			goto rename;
826 		}
827 		goto err_free_name;
828 	}
829 
830 	kobject_get(group->devices_kobj);
831 
832 	dev->iommu_group = group;
833 
834 	mutex_lock(&group->mutex);
835 	list_add_tail(&device->list, &group->devices);
836 	if (group->domain  && !iommu_is_attach_deferred(group->domain, dev))
837 		ret = __iommu_attach_device(group->domain, dev);
838 	mutex_unlock(&group->mutex);
839 	if (ret)
840 		goto err_put_group;
841 
842 	/* Notify any listeners about change to group. */
843 	blocking_notifier_call_chain(&group->notifier,
844 				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
845 
846 	trace_add_device_to_group(group->id, dev);
847 
848 	dev_info(dev, "Adding to iommu group %d\n", group->id);
849 
850 	return 0;
851 
852 err_put_group:
853 	mutex_lock(&group->mutex);
854 	list_del(&device->list);
855 	mutex_unlock(&group->mutex);
856 	dev->iommu_group = NULL;
857 	kobject_put(group->devices_kobj);
858 	sysfs_remove_link(group->devices_kobj, device->name);
859 err_free_name:
860 	kfree(device->name);
861 err_remove_link:
862 	sysfs_remove_link(&dev->kobj, "iommu_group");
863 err_free_device:
864 	kfree(device);
865 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
866 	return ret;
867 }
868 EXPORT_SYMBOL_GPL(iommu_group_add_device);
869 
870 /**
871  * iommu_group_remove_device - remove a device from it's current group
872  * @dev: device to be removed
873  *
874  * This function is called by an iommu driver to remove the device from
875  * it's current group.  This decrements the iommu group reference count.
876  */
877 void iommu_group_remove_device(struct device *dev)
878 {
879 	struct iommu_group *group = dev->iommu_group;
880 	struct group_device *tmp_device, *device = NULL;
881 
882 	dev_info(dev, "Removing from iommu group %d\n", group->id);
883 
884 	/* Pre-notify listeners that a device is being removed. */
885 	blocking_notifier_call_chain(&group->notifier,
886 				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
887 
888 	mutex_lock(&group->mutex);
889 	list_for_each_entry(tmp_device, &group->devices, list) {
890 		if (tmp_device->dev == dev) {
891 			device = tmp_device;
892 			list_del(&device->list);
893 			break;
894 		}
895 	}
896 	mutex_unlock(&group->mutex);
897 
898 	if (!device)
899 		return;
900 
901 	sysfs_remove_link(group->devices_kobj, device->name);
902 	sysfs_remove_link(&dev->kobj, "iommu_group");
903 
904 	trace_remove_device_from_group(group->id, dev);
905 
906 	kfree(device->name);
907 	kfree(device);
908 	dev->iommu_group = NULL;
909 	kobject_put(group->devices_kobj);
910 }
911 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
912 
913 static int iommu_group_device_count(struct iommu_group *group)
914 {
915 	struct group_device *entry;
916 	int ret = 0;
917 
918 	list_for_each_entry(entry, &group->devices, list)
919 		ret++;
920 
921 	return ret;
922 }
923 
924 /**
925  * iommu_group_for_each_dev - iterate over each device in the group
926  * @group: the group
927  * @data: caller opaque data to be passed to callback function
928  * @fn: caller supplied callback function
929  *
930  * This function is called by group users to iterate over group devices.
931  * Callers should hold a reference count to the group during callback.
932  * The group->mutex is held across callbacks, which will block calls to
933  * iommu_group_add/remove_device.
934  */
935 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
936 				      int (*fn)(struct device *, void *))
937 {
938 	struct group_device *device;
939 	int ret = 0;
940 
941 	list_for_each_entry(device, &group->devices, list) {
942 		ret = fn(device->dev, data);
943 		if (ret)
944 			break;
945 	}
946 	return ret;
947 }
948 
949 
950 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
951 			     int (*fn)(struct device *, void *))
952 {
953 	int ret;
954 
955 	mutex_lock(&group->mutex);
956 	ret = __iommu_group_for_each_dev(group, data, fn);
957 	mutex_unlock(&group->mutex);
958 
959 	return ret;
960 }
961 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
962 
963 /**
964  * iommu_group_get - Return the group for a device and increment reference
965  * @dev: get the group that this device belongs to
966  *
967  * This function is called by iommu drivers and users to get the group
968  * for the specified device.  If found, the group is returned and the group
969  * reference in incremented, else NULL.
970  */
971 struct iommu_group *iommu_group_get(struct device *dev)
972 {
973 	struct iommu_group *group = dev->iommu_group;
974 
975 	if (group)
976 		kobject_get(group->devices_kobj);
977 
978 	return group;
979 }
980 EXPORT_SYMBOL_GPL(iommu_group_get);
981 
982 /**
983  * iommu_group_ref_get - Increment reference on a group
984  * @group: the group to use, must not be NULL
985  *
986  * This function is called by iommu drivers to take additional references on an
987  * existing group.  Returns the given group for convenience.
988  */
989 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
990 {
991 	kobject_get(group->devices_kobj);
992 	return group;
993 }
994 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
995 
996 /**
997  * iommu_group_put - Decrement group reference
998  * @group: the group to use
999  *
1000  * This function is called by iommu drivers and users to release the
1001  * iommu group.  Once the reference count is zero, the group is released.
1002  */
1003 void iommu_group_put(struct iommu_group *group)
1004 {
1005 	if (group)
1006 		kobject_put(group->devices_kobj);
1007 }
1008 EXPORT_SYMBOL_GPL(iommu_group_put);
1009 
1010 /**
1011  * iommu_group_register_notifier - Register a notifier for group changes
1012  * @group: the group to watch
1013  * @nb: notifier block to signal
1014  *
1015  * This function allows iommu group users to track changes in a group.
1016  * See include/linux/iommu.h for actions sent via this notifier.  Caller
1017  * should hold a reference to the group throughout notifier registration.
1018  */
1019 int iommu_group_register_notifier(struct iommu_group *group,
1020 				  struct notifier_block *nb)
1021 {
1022 	return blocking_notifier_chain_register(&group->notifier, nb);
1023 }
1024 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
1025 
1026 /**
1027  * iommu_group_unregister_notifier - Unregister a notifier
1028  * @group: the group to watch
1029  * @nb: notifier block to signal
1030  *
1031  * Unregister a previously registered group notifier block.
1032  */
1033 int iommu_group_unregister_notifier(struct iommu_group *group,
1034 				    struct notifier_block *nb)
1035 {
1036 	return blocking_notifier_chain_unregister(&group->notifier, nb);
1037 }
1038 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
1039 
1040 /**
1041  * iommu_register_device_fault_handler() - Register a device fault handler
1042  * @dev: the device
1043  * @handler: the fault handler
1044  * @data: private data passed as argument to the handler
1045  *
1046  * When an IOMMU fault event is received, this handler gets called with the
1047  * fault event and data as argument. The handler should return 0 on success. If
1048  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1049  * complete the fault by calling iommu_page_response() with one of the following
1050  * response code:
1051  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1052  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1053  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1054  *   page faults if possible.
1055  *
1056  * Return 0 if the fault handler was installed successfully, or an error.
1057  */
1058 int iommu_register_device_fault_handler(struct device *dev,
1059 					iommu_dev_fault_handler_t handler,
1060 					void *data)
1061 {
1062 	struct dev_iommu *param = dev->iommu;
1063 	int ret = 0;
1064 
1065 	if (!param)
1066 		return -EINVAL;
1067 
1068 	mutex_lock(&param->lock);
1069 	/* Only allow one fault handler registered for each device */
1070 	if (param->fault_param) {
1071 		ret = -EBUSY;
1072 		goto done_unlock;
1073 	}
1074 
1075 	get_device(dev);
1076 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1077 	if (!param->fault_param) {
1078 		put_device(dev);
1079 		ret = -ENOMEM;
1080 		goto done_unlock;
1081 	}
1082 	param->fault_param->handler = handler;
1083 	param->fault_param->data = data;
1084 	mutex_init(&param->fault_param->lock);
1085 	INIT_LIST_HEAD(&param->fault_param->faults);
1086 
1087 done_unlock:
1088 	mutex_unlock(&param->lock);
1089 
1090 	return ret;
1091 }
1092 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1093 
1094 /**
1095  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1096  * @dev: the device
1097  *
1098  * Remove the device fault handler installed with
1099  * iommu_register_device_fault_handler().
1100  *
1101  * Return 0 on success, or an error.
1102  */
1103 int iommu_unregister_device_fault_handler(struct device *dev)
1104 {
1105 	struct dev_iommu *param = dev->iommu;
1106 	int ret = 0;
1107 
1108 	if (!param)
1109 		return -EINVAL;
1110 
1111 	mutex_lock(&param->lock);
1112 
1113 	if (!param->fault_param)
1114 		goto unlock;
1115 
1116 	/* we cannot unregister handler if there are pending faults */
1117 	if (!list_empty(&param->fault_param->faults)) {
1118 		ret = -EBUSY;
1119 		goto unlock;
1120 	}
1121 
1122 	kfree(param->fault_param);
1123 	param->fault_param = NULL;
1124 	put_device(dev);
1125 unlock:
1126 	mutex_unlock(&param->lock);
1127 
1128 	return ret;
1129 }
1130 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1131 
1132 /**
1133  * iommu_report_device_fault() - Report fault event to device driver
1134  * @dev: the device
1135  * @evt: fault event data
1136  *
1137  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1138  * handler. When this function fails and the fault is recoverable, it is the
1139  * caller's responsibility to complete the fault.
1140  *
1141  * Return 0 on success, or an error.
1142  */
1143 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1144 {
1145 	struct dev_iommu *param = dev->iommu;
1146 	struct iommu_fault_event *evt_pending = NULL;
1147 	struct iommu_fault_param *fparam;
1148 	int ret = 0;
1149 
1150 	if (!param || !evt)
1151 		return -EINVAL;
1152 
1153 	/* we only report device fault if there is a handler registered */
1154 	mutex_lock(&param->lock);
1155 	fparam = param->fault_param;
1156 	if (!fparam || !fparam->handler) {
1157 		ret = -EINVAL;
1158 		goto done_unlock;
1159 	}
1160 
1161 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1162 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1163 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1164 				      GFP_KERNEL);
1165 		if (!evt_pending) {
1166 			ret = -ENOMEM;
1167 			goto done_unlock;
1168 		}
1169 		mutex_lock(&fparam->lock);
1170 		list_add_tail(&evt_pending->list, &fparam->faults);
1171 		mutex_unlock(&fparam->lock);
1172 	}
1173 
1174 	ret = fparam->handler(&evt->fault, fparam->data);
1175 	if (ret && evt_pending) {
1176 		mutex_lock(&fparam->lock);
1177 		list_del(&evt_pending->list);
1178 		mutex_unlock(&fparam->lock);
1179 		kfree(evt_pending);
1180 	}
1181 done_unlock:
1182 	mutex_unlock(&param->lock);
1183 	return ret;
1184 }
1185 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1186 
1187 int iommu_page_response(struct device *dev,
1188 			struct iommu_page_response *msg)
1189 {
1190 	bool needs_pasid;
1191 	int ret = -EINVAL;
1192 	struct iommu_fault_event *evt;
1193 	struct iommu_fault_page_request *prm;
1194 	struct dev_iommu *param = dev->iommu;
1195 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1196 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1197 
1198 	if (!domain || !domain->ops->page_response)
1199 		return -ENODEV;
1200 
1201 	if (!param || !param->fault_param)
1202 		return -EINVAL;
1203 
1204 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1205 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1206 		return -EINVAL;
1207 
1208 	/* Only send response if there is a fault report pending */
1209 	mutex_lock(&param->fault_param->lock);
1210 	if (list_empty(&param->fault_param->faults)) {
1211 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1212 		goto done_unlock;
1213 	}
1214 	/*
1215 	 * Check if we have a matching page request pending to respond,
1216 	 * otherwise return -EINVAL
1217 	 */
1218 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1219 		prm = &evt->fault.prm;
1220 		if (prm->grpid != msg->grpid)
1221 			continue;
1222 
1223 		/*
1224 		 * If the PASID is required, the corresponding request is
1225 		 * matched using the group ID, the PASID valid bit and the PASID
1226 		 * value. Otherwise only the group ID matches request and
1227 		 * response.
1228 		 */
1229 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1230 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1231 			continue;
1232 
1233 		if (!needs_pasid && has_pasid) {
1234 			/* No big deal, just clear it. */
1235 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1236 			msg->pasid = 0;
1237 		}
1238 
1239 		ret = domain->ops->page_response(dev, evt, msg);
1240 		list_del(&evt->list);
1241 		kfree(evt);
1242 		break;
1243 	}
1244 
1245 done_unlock:
1246 	mutex_unlock(&param->fault_param->lock);
1247 	return ret;
1248 }
1249 EXPORT_SYMBOL_GPL(iommu_page_response);
1250 
1251 /**
1252  * iommu_group_id - Return ID for a group
1253  * @group: the group to ID
1254  *
1255  * Return the unique ID for the group matching the sysfs group number.
1256  */
1257 int iommu_group_id(struct iommu_group *group)
1258 {
1259 	return group->id;
1260 }
1261 EXPORT_SYMBOL_GPL(iommu_group_id);
1262 
1263 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1264 					       unsigned long *devfns);
1265 
1266 /*
1267  * To consider a PCI device isolated, we require ACS to support Source
1268  * Validation, Request Redirection, Completer Redirection, and Upstream
1269  * Forwarding.  This effectively means that devices cannot spoof their
1270  * requester ID, requests and completions cannot be redirected, and all
1271  * transactions are forwarded upstream, even as it passes through a
1272  * bridge where the target device is downstream.
1273  */
1274 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1275 
1276 /*
1277  * For multifunction devices which are not isolated from each other, find
1278  * all the other non-isolated functions and look for existing groups.  For
1279  * each function, we also need to look for aliases to or from other devices
1280  * that may already have a group.
1281  */
1282 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1283 							unsigned long *devfns)
1284 {
1285 	struct pci_dev *tmp = NULL;
1286 	struct iommu_group *group;
1287 
1288 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1289 		return NULL;
1290 
1291 	for_each_pci_dev(tmp) {
1292 		if (tmp == pdev || tmp->bus != pdev->bus ||
1293 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1294 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1295 			continue;
1296 
1297 		group = get_pci_alias_group(tmp, devfns);
1298 		if (group) {
1299 			pci_dev_put(tmp);
1300 			return group;
1301 		}
1302 	}
1303 
1304 	return NULL;
1305 }
1306 
1307 /*
1308  * Look for aliases to or from the given device for existing groups. DMA
1309  * aliases are only supported on the same bus, therefore the search
1310  * space is quite small (especially since we're really only looking at pcie
1311  * device, and therefore only expect multiple slots on the root complex or
1312  * downstream switch ports).  It's conceivable though that a pair of
1313  * multifunction devices could have aliases between them that would cause a
1314  * loop.  To prevent this, we use a bitmap to track where we've been.
1315  */
1316 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1317 					       unsigned long *devfns)
1318 {
1319 	struct pci_dev *tmp = NULL;
1320 	struct iommu_group *group;
1321 
1322 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1323 		return NULL;
1324 
1325 	group = iommu_group_get(&pdev->dev);
1326 	if (group)
1327 		return group;
1328 
1329 	for_each_pci_dev(tmp) {
1330 		if (tmp == pdev || tmp->bus != pdev->bus)
1331 			continue;
1332 
1333 		/* We alias them or they alias us */
1334 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1335 			group = get_pci_alias_group(tmp, devfns);
1336 			if (group) {
1337 				pci_dev_put(tmp);
1338 				return group;
1339 			}
1340 
1341 			group = get_pci_function_alias_group(tmp, devfns);
1342 			if (group) {
1343 				pci_dev_put(tmp);
1344 				return group;
1345 			}
1346 		}
1347 	}
1348 
1349 	return NULL;
1350 }
1351 
1352 struct group_for_pci_data {
1353 	struct pci_dev *pdev;
1354 	struct iommu_group *group;
1355 };
1356 
1357 /*
1358  * DMA alias iterator callback, return the last seen device.  Stop and return
1359  * the IOMMU group if we find one along the way.
1360  */
1361 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1362 {
1363 	struct group_for_pci_data *data = opaque;
1364 
1365 	data->pdev = pdev;
1366 	data->group = iommu_group_get(&pdev->dev);
1367 
1368 	return data->group != NULL;
1369 }
1370 
1371 /*
1372  * Generic device_group call-back function. It just allocates one
1373  * iommu-group per device.
1374  */
1375 struct iommu_group *generic_device_group(struct device *dev)
1376 {
1377 	return iommu_group_alloc();
1378 }
1379 EXPORT_SYMBOL_GPL(generic_device_group);
1380 
1381 /*
1382  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1383  * to find or create an IOMMU group for a device.
1384  */
1385 struct iommu_group *pci_device_group(struct device *dev)
1386 {
1387 	struct pci_dev *pdev = to_pci_dev(dev);
1388 	struct group_for_pci_data data;
1389 	struct pci_bus *bus;
1390 	struct iommu_group *group = NULL;
1391 	u64 devfns[4] = { 0 };
1392 
1393 	if (WARN_ON(!dev_is_pci(dev)))
1394 		return ERR_PTR(-EINVAL);
1395 
1396 	/*
1397 	 * Find the upstream DMA alias for the device.  A device must not
1398 	 * be aliased due to topology in order to have its own IOMMU group.
1399 	 * If we find an alias along the way that already belongs to a
1400 	 * group, use it.
1401 	 */
1402 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1403 		return data.group;
1404 
1405 	pdev = data.pdev;
1406 
1407 	/*
1408 	 * Continue upstream from the point of minimum IOMMU granularity
1409 	 * due to aliases to the point where devices are protected from
1410 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1411 	 * group, use it.
1412 	 */
1413 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1414 		if (!bus->self)
1415 			continue;
1416 
1417 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1418 			break;
1419 
1420 		pdev = bus->self;
1421 
1422 		group = iommu_group_get(&pdev->dev);
1423 		if (group)
1424 			return group;
1425 	}
1426 
1427 	/*
1428 	 * Look for existing groups on device aliases.  If we alias another
1429 	 * device or another device aliases us, use the same group.
1430 	 */
1431 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1432 	if (group)
1433 		return group;
1434 
1435 	/*
1436 	 * Look for existing groups on non-isolated functions on the same
1437 	 * slot and aliases of those funcions, if any.  No need to clear
1438 	 * the search bitmap, the tested devfns are still valid.
1439 	 */
1440 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1441 	if (group)
1442 		return group;
1443 
1444 	/* No shared group found, allocate new */
1445 	return iommu_group_alloc();
1446 }
1447 EXPORT_SYMBOL_GPL(pci_device_group);
1448 
1449 /* Get the IOMMU group for device on fsl-mc bus */
1450 struct iommu_group *fsl_mc_device_group(struct device *dev)
1451 {
1452 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1453 	struct iommu_group *group;
1454 
1455 	group = iommu_group_get(cont_dev);
1456 	if (!group)
1457 		group = iommu_group_alloc();
1458 	return group;
1459 }
1460 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1461 
1462 static int iommu_get_def_domain_type(struct device *dev)
1463 {
1464 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1465 	unsigned int type = 0;
1466 
1467 	if (ops->def_domain_type)
1468 		type = ops->def_domain_type(dev);
1469 
1470 	return (type == 0) ? iommu_def_domain_type : type;
1471 }
1472 
1473 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1474 					    struct iommu_group *group,
1475 					    unsigned int type)
1476 {
1477 	struct iommu_domain *dom;
1478 
1479 	dom = __iommu_domain_alloc(bus, type);
1480 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1481 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1482 		if (dom)
1483 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1484 				type, group->name);
1485 	}
1486 
1487 	if (!dom)
1488 		return -ENOMEM;
1489 
1490 	group->default_domain = dom;
1491 	if (!group->domain)
1492 		group->domain = dom;
1493 
1494 	if (!iommu_dma_strict) {
1495 		int attr = 1;
1496 		iommu_domain_set_attr(dom,
1497 				      DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE,
1498 				      &attr);
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 static int iommu_alloc_default_domain(struct iommu_group *group,
1505 				      struct device *dev)
1506 {
1507 	unsigned int type;
1508 
1509 	if (group->default_domain)
1510 		return 0;
1511 
1512 	type = iommu_get_def_domain_type(dev);
1513 
1514 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1515 }
1516 
1517 /**
1518  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1519  * @dev: target device
1520  *
1521  * This function is intended to be called by IOMMU drivers and extended to
1522  * support common, bus-defined algorithms when determining or creating the
1523  * IOMMU group for a device.  On success, the caller will hold a reference
1524  * to the returned IOMMU group, which will already include the provided
1525  * device.  The reference should be released with iommu_group_put().
1526  */
1527 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1528 {
1529 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1530 	struct iommu_group *group;
1531 	int ret;
1532 
1533 	group = iommu_group_get(dev);
1534 	if (group)
1535 		return group;
1536 
1537 	if (!ops)
1538 		return ERR_PTR(-EINVAL);
1539 
1540 	group = ops->device_group(dev);
1541 	if (WARN_ON_ONCE(group == NULL))
1542 		return ERR_PTR(-EINVAL);
1543 
1544 	if (IS_ERR(group))
1545 		return group;
1546 
1547 	ret = iommu_group_add_device(group, dev);
1548 	if (ret)
1549 		goto out_put_group;
1550 
1551 	return group;
1552 
1553 out_put_group:
1554 	iommu_group_put(group);
1555 
1556 	return ERR_PTR(ret);
1557 }
1558 
1559 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1560 {
1561 	return group->default_domain;
1562 }
1563 
1564 static int probe_iommu_group(struct device *dev, void *data)
1565 {
1566 	struct list_head *group_list = data;
1567 	struct iommu_group *group;
1568 	int ret;
1569 
1570 	/* Device is probed already if in a group */
1571 	group = iommu_group_get(dev);
1572 	if (group) {
1573 		iommu_group_put(group);
1574 		return 0;
1575 	}
1576 
1577 	ret = __iommu_probe_device(dev, group_list);
1578 	if (ret == -ENODEV)
1579 		ret = 0;
1580 
1581 	return ret;
1582 }
1583 
1584 static int remove_iommu_group(struct device *dev, void *data)
1585 {
1586 	iommu_release_device(dev);
1587 
1588 	return 0;
1589 }
1590 
1591 static int iommu_bus_notifier(struct notifier_block *nb,
1592 			      unsigned long action, void *data)
1593 {
1594 	unsigned long group_action = 0;
1595 	struct device *dev = data;
1596 	struct iommu_group *group;
1597 
1598 	/*
1599 	 * ADD/DEL call into iommu driver ops if provided, which may
1600 	 * result in ADD/DEL notifiers to group->notifier
1601 	 */
1602 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1603 		int ret;
1604 
1605 		ret = iommu_probe_device(dev);
1606 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1607 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1608 		iommu_release_device(dev);
1609 		return NOTIFY_OK;
1610 	}
1611 
1612 	/*
1613 	 * Remaining BUS_NOTIFYs get filtered and republished to the
1614 	 * group, if anyone is listening
1615 	 */
1616 	group = iommu_group_get(dev);
1617 	if (!group)
1618 		return 0;
1619 
1620 	switch (action) {
1621 	case BUS_NOTIFY_BIND_DRIVER:
1622 		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1623 		break;
1624 	case BUS_NOTIFY_BOUND_DRIVER:
1625 		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1626 		break;
1627 	case BUS_NOTIFY_UNBIND_DRIVER:
1628 		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1629 		break;
1630 	case BUS_NOTIFY_UNBOUND_DRIVER:
1631 		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1632 		break;
1633 	}
1634 
1635 	if (group_action)
1636 		blocking_notifier_call_chain(&group->notifier,
1637 					     group_action, dev);
1638 
1639 	iommu_group_put(group);
1640 	return 0;
1641 }
1642 
1643 struct __group_domain_type {
1644 	struct device *dev;
1645 	unsigned int type;
1646 };
1647 
1648 static int probe_get_default_domain_type(struct device *dev, void *data)
1649 {
1650 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1651 	struct __group_domain_type *gtype = data;
1652 	unsigned int type = 0;
1653 
1654 	if (ops->def_domain_type)
1655 		type = ops->def_domain_type(dev);
1656 
1657 	if (type) {
1658 		if (gtype->type && gtype->type != type) {
1659 			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1660 				 iommu_domain_type_str(type),
1661 				 dev_name(gtype->dev),
1662 				 iommu_domain_type_str(gtype->type));
1663 			gtype->type = 0;
1664 		}
1665 
1666 		if (!gtype->dev) {
1667 			gtype->dev  = dev;
1668 			gtype->type = type;
1669 		}
1670 	}
1671 
1672 	return 0;
1673 }
1674 
1675 static void probe_alloc_default_domain(struct bus_type *bus,
1676 				       struct iommu_group *group)
1677 {
1678 	struct __group_domain_type gtype;
1679 
1680 	memset(&gtype, 0, sizeof(gtype));
1681 
1682 	/* Ask for default domain requirements of all devices in the group */
1683 	__iommu_group_for_each_dev(group, &gtype,
1684 				   probe_get_default_domain_type);
1685 
1686 	if (!gtype.type)
1687 		gtype.type = iommu_def_domain_type;
1688 
1689 	iommu_group_alloc_default_domain(bus, group, gtype.type);
1690 
1691 }
1692 
1693 static int iommu_group_do_dma_attach(struct device *dev, void *data)
1694 {
1695 	struct iommu_domain *domain = data;
1696 	int ret = 0;
1697 
1698 	if (!iommu_is_attach_deferred(domain, dev))
1699 		ret = __iommu_attach_device(domain, dev);
1700 
1701 	return ret;
1702 }
1703 
1704 static int __iommu_group_dma_attach(struct iommu_group *group)
1705 {
1706 	return __iommu_group_for_each_dev(group, group->default_domain,
1707 					  iommu_group_do_dma_attach);
1708 }
1709 
1710 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1711 {
1712 	struct iommu_domain *domain = data;
1713 
1714 	if (domain->ops->probe_finalize)
1715 		domain->ops->probe_finalize(dev);
1716 
1717 	return 0;
1718 }
1719 
1720 static void __iommu_group_dma_finalize(struct iommu_group *group)
1721 {
1722 	__iommu_group_for_each_dev(group, group->default_domain,
1723 				   iommu_group_do_probe_finalize);
1724 }
1725 
1726 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1727 {
1728 	struct iommu_group *group = data;
1729 
1730 	iommu_create_device_direct_mappings(group, dev);
1731 
1732 	return 0;
1733 }
1734 
1735 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1736 {
1737 	return __iommu_group_for_each_dev(group, group,
1738 					  iommu_do_create_direct_mappings);
1739 }
1740 
1741 int bus_iommu_probe(struct bus_type *bus)
1742 {
1743 	struct iommu_group *group, *next;
1744 	LIST_HEAD(group_list);
1745 	int ret;
1746 
1747 	/*
1748 	 * This code-path does not allocate the default domain when
1749 	 * creating the iommu group, so do it after the groups are
1750 	 * created.
1751 	 */
1752 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1753 	if (ret)
1754 		return ret;
1755 
1756 	list_for_each_entry_safe(group, next, &group_list, entry) {
1757 		/* Remove item from the list */
1758 		list_del_init(&group->entry);
1759 
1760 		mutex_lock(&group->mutex);
1761 
1762 		/* Try to allocate default domain */
1763 		probe_alloc_default_domain(bus, group);
1764 
1765 		if (!group->default_domain) {
1766 			mutex_unlock(&group->mutex);
1767 			continue;
1768 		}
1769 
1770 		iommu_group_create_direct_mappings(group);
1771 
1772 		ret = __iommu_group_dma_attach(group);
1773 
1774 		mutex_unlock(&group->mutex);
1775 
1776 		if (ret)
1777 			break;
1778 
1779 		__iommu_group_dma_finalize(group);
1780 	}
1781 
1782 	return ret;
1783 }
1784 
1785 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1786 {
1787 	struct notifier_block *nb;
1788 	int err;
1789 
1790 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1791 	if (!nb)
1792 		return -ENOMEM;
1793 
1794 	nb->notifier_call = iommu_bus_notifier;
1795 
1796 	err = bus_register_notifier(bus, nb);
1797 	if (err)
1798 		goto out_free;
1799 
1800 	err = bus_iommu_probe(bus);
1801 	if (err)
1802 		goto out_err;
1803 
1804 
1805 	return 0;
1806 
1807 out_err:
1808 	/* Clean up */
1809 	bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1810 	bus_unregister_notifier(bus, nb);
1811 
1812 out_free:
1813 	kfree(nb);
1814 
1815 	return err;
1816 }
1817 
1818 /**
1819  * bus_set_iommu - set iommu-callbacks for the bus
1820  * @bus: bus.
1821  * @ops: the callbacks provided by the iommu-driver
1822  *
1823  * This function is called by an iommu driver to set the iommu methods
1824  * used for a particular bus. Drivers for devices on that bus can use
1825  * the iommu-api after these ops are registered.
1826  * This special function is needed because IOMMUs are usually devices on
1827  * the bus itself, so the iommu drivers are not initialized when the bus
1828  * is set up. With this function the iommu-driver can set the iommu-ops
1829  * afterwards.
1830  */
1831 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1832 {
1833 	int err;
1834 
1835 	if (ops == NULL) {
1836 		bus->iommu_ops = NULL;
1837 		return 0;
1838 	}
1839 
1840 	if (bus->iommu_ops != NULL)
1841 		return -EBUSY;
1842 
1843 	bus->iommu_ops = ops;
1844 
1845 	/* Do IOMMU specific setup for this bus-type */
1846 	err = iommu_bus_init(bus, ops);
1847 	if (err)
1848 		bus->iommu_ops = NULL;
1849 
1850 	return err;
1851 }
1852 EXPORT_SYMBOL_GPL(bus_set_iommu);
1853 
1854 bool iommu_present(struct bus_type *bus)
1855 {
1856 	return bus->iommu_ops != NULL;
1857 }
1858 EXPORT_SYMBOL_GPL(iommu_present);
1859 
1860 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1861 {
1862 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1863 		return false;
1864 
1865 	return bus->iommu_ops->capable(cap);
1866 }
1867 EXPORT_SYMBOL_GPL(iommu_capable);
1868 
1869 /**
1870  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1871  * @domain: iommu domain
1872  * @handler: fault handler
1873  * @token: user data, will be passed back to the fault handler
1874  *
1875  * This function should be used by IOMMU users which want to be notified
1876  * whenever an IOMMU fault happens.
1877  *
1878  * The fault handler itself should return 0 on success, and an appropriate
1879  * error code otherwise.
1880  */
1881 void iommu_set_fault_handler(struct iommu_domain *domain,
1882 					iommu_fault_handler_t handler,
1883 					void *token)
1884 {
1885 	BUG_ON(!domain);
1886 
1887 	domain->handler = handler;
1888 	domain->handler_token = token;
1889 }
1890 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1891 
1892 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1893 						 unsigned type)
1894 {
1895 	struct iommu_domain *domain;
1896 
1897 	if (bus == NULL || bus->iommu_ops == NULL)
1898 		return NULL;
1899 
1900 	domain = bus->iommu_ops->domain_alloc(type);
1901 	if (!domain)
1902 		return NULL;
1903 
1904 	domain->ops  = bus->iommu_ops;
1905 	domain->type = type;
1906 	/* Assume all sizes by default; the driver may override this later */
1907 	domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
1908 
1909 	return domain;
1910 }
1911 
1912 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1913 {
1914 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1915 }
1916 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1917 
1918 void iommu_domain_free(struct iommu_domain *domain)
1919 {
1920 	domain->ops->domain_free(domain);
1921 }
1922 EXPORT_SYMBOL_GPL(iommu_domain_free);
1923 
1924 static int __iommu_attach_device(struct iommu_domain *domain,
1925 				 struct device *dev)
1926 {
1927 	int ret;
1928 
1929 	if (unlikely(domain->ops->attach_dev == NULL))
1930 		return -ENODEV;
1931 
1932 	ret = domain->ops->attach_dev(domain, dev);
1933 	if (!ret)
1934 		trace_attach_device_to_domain(dev);
1935 	return ret;
1936 }
1937 
1938 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1939 {
1940 	struct iommu_group *group;
1941 	int ret;
1942 
1943 	group = iommu_group_get(dev);
1944 	if (!group)
1945 		return -ENODEV;
1946 
1947 	/*
1948 	 * Lock the group to make sure the device-count doesn't
1949 	 * change while we are attaching
1950 	 */
1951 	mutex_lock(&group->mutex);
1952 	ret = -EINVAL;
1953 	if (iommu_group_device_count(group) != 1)
1954 		goto out_unlock;
1955 
1956 	ret = __iommu_attach_group(domain, group);
1957 
1958 out_unlock:
1959 	mutex_unlock(&group->mutex);
1960 	iommu_group_put(group);
1961 
1962 	return ret;
1963 }
1964 EXPORT_SYMBOL_GPL(iommu_attach_device);
1965 
1966 /*
1967  * Check flags and other user provided data for valid combinations. We also
1968  * make sure no reserved fields or unused flags are set. This is to ensure
1969  * not breaking userspace in the future when these fields or flags are used.
1970  */
1971 static int iommu_check_cache_invl_data(struct iommu_cache_invalidate_info *info)
1972 {
1973 	u32 mask;
1974 	int i;
1975 
1976 	if (info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
1977 		return -EINVAL;
1978 
1979 	mask = (1 << IOMMU_CACHE_INV_TYPE_NR) - 1;
1980 	if (info->cache & ~mask)
1981 		return -EINVAL;
1982 
1983 	if (info->granularity >= IOMMU_INV_GRANU_NR)
1984 		return -EINVAL;
1985 
1986 	switch (info->granularity) {
1987 	case IOMMU_INV_GRANU_ADDR:
1988 		if (info->cache & IOMMU_CACHE_INV_TYPE_PASID)
1989 			return -EINVAL;
1990 
1991 		mask = IOMMU_INV_ADDR_FLAGS_PASID |
1992 			IOMMU_INV_ADDR_FLAGS_ARCHID |
1993 			IOMMU_INV_ADDR_FLAGS_LEAF;
1994 
1995 		if (info->granu.addr_info.flags & ~mask)
1996 			return -EINVAL;
1997 		break;
1998 	case IOMMU_INV_GRANU_PASID:
1999 		mask = IOMMU_INV_PASID_FLAGS_PASID |
2000 			IOMMU_INV_PASID_FLAGS_ARCHID;
2001 		if (info->granu.pasid_info.flags & ~mask)
2002 			return -EINVAL;
2003 
2004 		break;
2005 	case IOMMU_INV_GRANU_DOMAIN:
2006 		if (info->cache & IOMMU_CACHE_INV_TYPE_DEV_IOTLB)
2007 			return -EINVAL;
2008 		break;
2009 	default:
2010 		return -EINVAL;
2011 	}
2012 
2013 	/* Check reserved padding fields */
2014 	for (i = 0; i < sizeof(info->padding); i++) {
2015 		if (info->padding[i])
2016 			return -EINVAL;
2017 	}
2018 
2019 	return 0;
2020 }
2021 
2022 int iommu_uapi_cache_invalidate(struct iommu_domain *domain, struct device *dev,
2023 				void __user *uinfo)
2024 {
2025 	struct iommu_cache_invalidate_info inv_info = { 0 };
2026 	u32 minsz;
2027 	int ret;
2028 
2029 	if (unlikely(!domain->ops->cache_invalidate))
2030 		return -ENODEV;
2031 
2032 	/*
2033 	 * No new spaces can be added before the variable sized union, the
2034 	 * minimum size is the offset to the union.
2035 	 */
2036 	minsz = offsetof(struct iommu_cache_invalidate_info, granu);
2037 
2038 	/* Copy minsz from user to get flags and argsz */
2039 	if (copy_from_user(&inv_info, uinfo, minsz))
2040 		return -EFAULT;
2041 
2042 	/* Fields before the variable size union are mandatory */
2043 	if (inv_info.argsz < minsz)
2044 		return -EINVAL;
2045 
2046 	/* PASID and address granu require additional info beyond minsz */
2047 	if (inv_info.granularity == IOMMU_INV_GRANU_PASID &&
2048 	    inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.pasid_info))
2049 		return -EINVAL;
2050 
2051 	if (inv_info.granularity == IOMMU_INV_GRANU_ADDR &&
2052 	    inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.addr_info))
2053 		return -EINVAL;
2054 
2055 	/*
2056 	 * User might be using a newer UAPI header which has a larger data
2057 	 * size, we shall support the existing flags within the current
2058 	 * size. Copy the remaining user data _after_ minsz but not more
2059 	 * than the current kernel supported size.
2060 	 */
2061 	if (copy_from_user((void *)&inv_info + minsz, uinfo + minsz,
2062 			   min_t(u32, inv_info.argsz, sizeof(inv_info)) - minsz))
2063 		return -EFAULT;
2064 
2065 	/* Now the argsz is validated, check the content */
2066 	ret = iommu_check_cache_invl_data(&inv_info);
2067 	if (ret)
2068 		return ret;
2069 
2070 	return domain->ops->cache_invalidate(domain, dev, &inv_info);
2071 }
2072 EXPORT_SYMBOL_GPL(iommu_uapi_cache_invalidate);
2073 
2074 static int iommu_check_bind_data(struct iommu_gpasid_bind_data *data)
2075 {
2076 	u64 mask;
2077 	int i;
2078 
2079 	if (data->version != IOMMU_GPASID_BIND_VERSION_1)
2080 		return -EINVAL;
2081 
2082 	/* Check the range of supported formats */
2083 	if (data->format >= IOMMU_PASID_FORMAT_LAST)
2084 		return -EINVAL;
2085 
2086 	/* Check all flags */
2087 	mask = IOMMU_SVA_GPASID_VAL;
2088 	if (data->flags & ~mask)
2089 		return -EINVAL;
2090 
2091 	/* Check reserved padding fields */
2092 	for (i = 0; i < sizeof(data->padding); i++) {
2093 		if (data->padding[i])
2094 			return -EINVAL;
2095 	}
2096 
2097 	return 0;
2098 }
2099 
2100 static int iommu_sva_prepare_bind_data(void __user *udata,
2101 				       struct iommu_gpasid_bind_data *data)
2102 {
2103 	u32 minsz;
2104 
2105 	/*
2106 	 * No new spaces can be added before the variable sized union, the
2107 	 * minimum size is the offset to the union.
2108 	 */
2109 	minsz = offsetof(struct iommu_gpasid_bind_data, vendor);
2110 
2111 	/* Copy minsz from user to get flags and argsz */
2112 	if (copy_from_user(data, udata, minsz))
2113 		return -EFAULT;
2114 
2115 	/* Fields before the variable size union are mandatory */
2116 	if (data->argsz < minsz)
2117 		return -EINVAL;
2118 	/*
2119 	 * User might be using a newer UAPI header, we shall let IOMMU vendor
2120 	 * driver decide on what size it needs. Since the guest PASID bind data
2121 	 * can be vendor specific, larger argsz could be the result of extension
2122 	 * for one vendor but it should not affect another vendor.
2123 	 * Copy the remaining user data _after_ minsz
2124 	 */
2125 	if (copy_from_user((void *)data + minsz, udata + minsz,
2126 			   min_t(u32, data->argsz, sizeof(*data)) - minsz))
2127 		return -EFAULT;
2128 
2129 	return iommu_check_bind_data(data);
2130 }
2131 
2132 int iommu_uapi_sva_bind_gpasid(struct iommu_domain *domain, struct device *dev,
2133 			       void __user *udata)
2134 {
2135 	struct iommu_gpasid_bind_data data = { 0 };
2136 	int ret;
2137 
2138 	if (unlikely(!domain->ops->sva_bind_gpasid))
2139 		return -ENODEV;
2140 
2141 	ret = iommu_sva_prepare_bind_data(udata, &data);
2142 	if (ret)
2143 		return ret;
2144 
2145 	return domain->ops->sva_bind_gpasid(domain, dev, &data);
2146 }
2147 EXPORT_SYMBOL_GPL(iommu_uapi_sva_bind_gpasid);
2148 
2149 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2150 			     ioasid_t pasid)
2151 {
2152 	if (unlikely(!domain->ops->sva_unbind_gpasid))
2153 		return -ENODEV;
2154 
2155 	return domain->ops->sva_unbind_gpasid(dev, pasid);
2156 }
2157 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid);
2158 
2159 int iommu_uapi_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2160 				 void __user *udata)
2161 {
2162 	struct iommu_gpasid_bind_data data = { 0 };
2163 	int ret;
2164 
2165 	if (unlikely(!domain->ops->sva_bind_gpasid))
2166 		return -ENODEV;
2167 
2168 	ret = iommu_sva_prepare_bind_data(udata, &data);
2169 	if (ret)
2170 		return ret;
2171 
2172 	return iommu_sva_unbind_gpasid(domain, dev, data.hpasid);
2173 }
2174 EXPORT_SYMBOL_GPL(iommu_uapi_sva_unbind_gpasid);
2175 
2176 static void __iommu_detach_device(struct iommu_domain *domain,
2177 				  struct device *dev)
2178 {
2179 	if (iommu_is_attach_deferred(domain, dev))
2180 		return;
2181 
2182 	if (unlikely(domain->ops->detach_dev == NULL))
2183 		return;
2184 
2185 	domain->ops->detach_dev(domain, dev);
2186 	trace_detach_device_from_domain(dev);
2187 }
2188 
2189 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2190 {
2191 	struct iommu_group *group;
2192 
2193 	group = iommu_group_get(dev);
2194 	if (!group)
2195 		return;
2196 
2197 	mutex_lock(&group->mutex);
2198 	if (iommu_group_device_count(group) != 1) {
2199 		WARN_ON(1);
2200 		goto out_unlock;
2201 	}
2202 
2203 	__iommu_detach_group(domain, group);
2204 
2205 out_unlock:
2206 	mutex_unlock(&group->mutex);
2207 	iommu_group_put(group);
2208 }
2209 EXPORT_SYMBOL_GPL(iommu_detach_device);
2210 
2211 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2212 {
2213 	struct iommu_domain *domain;
2214 	struct iommu_group *group;
2215 
2216 	group = iommu_group_get(dev);
2217 	if (!group)
2218 		return NULL;
2219 
2220 	domain = group->domain;
2221 
2222 	iommu_group_put(group);
2223 
2224 	return domain;
2225 }
2226 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2227 
2228 /*
2229  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2230  * guarantees that the group and its default domain are valid and correct.
2231  */
2232 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2233 {
2234 	return dev->iommu_group->default_domain;
2235 }
2236 
2237 /*
2238  * IOMMU groups are really the natural working unit of the IOMMU, but
2239  * the IOMMU API works on domains and devices.  Bridge that gap by
2240  * iterating over the devices in a group.  Ideally we'd have a single
2241  * device which represents the requestor ID of the group, but we also
2242  * allow IOMMU drivers to create policy defined minimum sets, where
2243  * the physical hardware may be able to distiguish members, but we
2244  * wish to group them at a higher level (ex. untrusted multi-function
2245  * PCI devices).  Thus we attach each device.
2246  */
2247 static int iommu_group_do_attach_device(struct device *dev, void *data)
2248 {
2249 	struct iommu_domain *domain = data;
2250 
2251 	return __iommu_attach_device(domain, dev);
2252 }
2253 
2254 static int __iommu_attach_group(struct iommu_domain *domain,
2255 				struct iommu_group *group)
2256 {
2257 	int ret;
2258 
2259 	if (group->default_domain && group->domain != group->default_domain)
2260 		return -EBUSY;
2261 
2262 	ret = __iommu_group_for_each_dev(group, domain,
2263 					 iommu_group_do_attach_device);
2264 	if (ret == 0)
2265 		group->domain = domain;
2266 
2267 	return ret;
2268 }
2269 
2270 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2271 {
2272 	int ret;
2273 
2274 	mutex_lock(&group->mutex);
2275 	ret = __iommu_attach_group(domain, group);
2276 	mutex_unlock(&group->mutex);
2277 
2278 	return ret;
2279 }
2280 EXPORT_SYMBOL_GPL(iommu_attach_group);
2281 
2282 static int iommu_group_do_detach_device(struct device *dev, void *data)
2283 {
2284 	struct iommu_domain *domain = data;
2285 
2286 	__iommu_detach_device(domain, dev);
2287 
2288 	return 0;
2289 }
2290 
2291 static void __iommu_detach_group(struct iommu_domain *domain,
2292 				 struct iommu_group *group)
2293 {
2294 	int ret;
2295 
2296 	if (!group->default_domain) {
2297 		__iommu_group_for_each_dev(group, domain,
2298 					   iommu_group_do_detach_device);
2299 		group->domain = NULL;
2300 		return;
2301 	}
2302 
2303 	if (group->domain == group->default_domain)
2304 		return;
2305 
2306 	/* Detach by re-attaching to the default domain */
2307 	ret = __iommu_group_for_each_dev(group, group->default_domain,
2308 					 iommu_group_do_attach_device);
2309 	if (ret != 0)
2310 		WARN_ON(1);
2311 	else
2312 		group->domain = group->default_domain;
2313 }
2314 
2315 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2316 {
2317 	mutex_lock(&group->mutex);
2318 	__iommu_detach_group(domain, group);
2319 	mutex_unlock(&group->mutex);
2320 }
2321 EXPORT_SYMBOL_GPL(iommu_detach_group);
2322 
2323 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2324 {
2325 	if (unlikely(domain->ops->iova_to_phys == NULL))
2326 		return 0;
2327 
2328 	return domain->ops->iova_to_phys(domain, iova);
2329 }
2330 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2331 
2332 static size_t iommu_pgsize(struct iommu_domain *domain,
2333 			   unsigned long addr_merge, size_t size)
2334 {
2335 	unsigned int pgsize_idx;
2336 	size_t pgsize;
2337 
2338 	/* Max page size that still fits into 'size' */
2339 	pgsize_idx = __fls(size);
2340 
2341 	/* need to consider alignment requirements ? */
2342 	if (likely(addr_merge)) {
2343 		/* Max page size allowed by address */
2344 		unsigned int align_pgsize_idx = __ffs(addr_merge);
2345 		pgsize_idx = min(pgsize_idx, align_pgsize_idx);
2346 	}
2347 
2348 	/* build a mask of acceptable page sizes */
2349 	pgsize = (1UL << (pgsize_idx + 1)) - 1;
2350 
2351 	/* throw away page sizes not supported by the hardware */
2352 	pgsize &= domain->pgsize_bitmap;
2353 
2354 	/* make sure we're still sane */
2355 	BUG_ON(!pgsize);
2356 
2357 	/* pick the biggest page */
2358 	pgsize_idx = __fls(pgsize);
2359 	pgsize = 1UL << pgsize_idx;
2360 
2361 	return pgsize;
2362 }
2363 
2364 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2365 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2366 {
2367 	const struct iommu_ops *ops = domain->ops;
2368 	unsigned long orig_iova = iova;
2369 	unsigned int min_pagesz;
2370 	size_t orig_size = size;
2371 	phys_addr_t orig_paddr = paddr;
2372 	int ret = 0;
2373 
2374 	if (unlikely(ops->map == NULL ||
2375 		     domain->pgsize_bitmap == 0UL))
2376 		return -ENODEV;
2377 
2378 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2379 		return -EINVAL;
2380 
2381 	/* find out the minimum page size supported */
2382 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2383 
2384 	/*
2385 	 * both the virtual address and the physical one, as well as
2386 	 * the size of the mapping, must be aligned (at least) to the
2387 	 * size of the smallest page supported by the hardware
2388 	 */
2389 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2390 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2391 		       iova, &paddr, size, min_pagesz);
2392 		return -EINVAL;
2393 	}
2394 
2395 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2396 
2397 	while (size) {
2398 		size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
2399 
2400 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
2401 			 iova, &paddr, pgsize);
2402 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2403 
2404 		if (ret)
2405 			break;
2406 
2407 		iova += pgsize;
2408 		paddr += pgsize;
2409 		size -= pgsize;
2410 	}
2411 
2412 	if (ops->iotlb_sync_map)
2413 		ops->iotlb_sync_map(domain);
2414 
2415 	/* unroll mapping in case something went wrong */
2416 	if (ret)
2417 		iommu_unmap(domain, orig_iova, orig_size - size);
2418 	else
2419 		trace_map(orig_iova, orig_paddr, orig_size);
2420 
2421 	return ret;
2422 }
2423 
2424 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2425 	      phys_addr_t paddr, size_t size, int prot)
2426 {
2427 	might_sleep();
2428 	return __iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2429 }
2430 EXPORT_SYMBOL_GPL(iommu_map);
2431 
2432 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2433 	      phys_addr_t paddr, size_t size, int prot)
2434 {
2435 	return __iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2436 }
2437 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2438 
2439 static size_t __iommu_unmap(struct iommu_domain *domain,
2440 			    unsigned long iova, size_t size,
2441 			    struct iommu_iotlb_gather *iotlb_gather)
2442 {
2443 	const struct iommu_ops *ops = domain->ops;
2444 	size_t unmapped_page, unmapped = 0;
2445 	unsigned long orig_iova = iova;
2446 	unsigned int min_pagesz;
2447 
2448 	if (unlikely(ops->unmap == NULL ||
2449 		     domain->pgsize_bitmap == 0UL))
2450 		return 0;
2451 
2452 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2453 		return 0;
2454 
2455 	/* find out the minimum page size supported */
2456 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2457 
2458 	/*
2459 	 * The virtual address, as well as the size of the mapping, must be
2460 	 * aligned (at least) to the size of the smallest page supported
2461 	 * by the hardware
2462 	 */
2463 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2464 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2465 		       iova, size, min_pagesz);
2466 		return 0;
2467 	}
2468 
2469 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2470 
2471 	/*
2472 	 * Keep iterating until we either unmap 'size' bytes (or more)
2473 	 * or we hit an area that isn't mapped.
2474 	 */
2475 	while (unmapped < size) {
2476 		size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
2477 
2478 		unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather);
2479 		if (!unmapped_page)
2480 			break;
2481 
2482 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2483 			 iova, unmapped_page);
2484 
2485 		iova += unmapped_page;
2486 		unmapped += unmapped_page;
2487 	}
2488 
2489 	trace_unmap(orig_iova, size, unmapped);
2490 	return unmapped;
2491 }
2492 
2493 size_t iommu_unmap(struct iommu_domain *domain,
2494 		   unsigned long iova, size_t size)
2495 {
2496 	struct iommu_iotlb_gather iotlb_gather;
2497 	size_t ret;
2498 
2499 	iommu_iotlb_gather_init(&iotlb_gather);
2500 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2501 	iommu_iotlb_sync(domain, &iotlb_gather);
2502 
2503 	return ret;
2504 }
2505 EXPORT_SYMBOL_GPL(iommu_unmap);
2506 
2507 size_t iommu_unmap_fast(struct iommu_domain *domain,
2508 			unsigned long iova, size_t size,
2509 			struct iommu_iotlb_gather *iotlb_gather)
2510 {
2511 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2512 }
2513 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2514 
2515 static size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2516 			     struct scatterlist *sg, unsigned int nents, int prot,
2517 			     gfp_t gfp)
2518 {
2519 	size_t len = 0, mapped = 0;
2520 	phys_addr_t start;
2521 	unsigned int i = 0;
2522 	int ret;
2523 
2524 	while (i <= nents) {
2525 		phys_addr_t s_phys = sg_phys(sg);
2526 
2527 		if (len && s_phys != start + len) {
2528 			ret = __iommu_map(domain, iova + mapped, start,
2529 					len, prot, gfp);
2530 
2531 			if (ret)
2532 				goto out_err;
2533 
2534 			mapped += len;
2535 			len = 0;
2536 		}
2537 
2538 		if (len) {
2539 			len += sg->length;
2540 		} else {
2541 			len = sg->length;
2542 			start = s_phys;
2543 		}
2544 
2545 		if (++i < nents)
2546 			sg = sg_next(sg);
2547 	}
2548 
2549 	return mapped;
2550 
2551 out_err:
2552 	/* undo mappings already done */
2553 	iommu_unmap(domain, iova, mapped);
2554 
2555 	return 0;
2556 
2557 }
2558 
2559 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2560 		    struct scatterlist *sg, unsigned int nents, int prot)
2561 {
2562 	might_sleep();
2563 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2564 }
2565 EXPORT_SYMBOL_GPL(iommu_map_sg);
2566 
2567 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2568 		    struct scatterlist *sg, unsigned int nents, int prot)
2569 {
2570 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2571 }
2572 EXPORT_SYMBOL_GPL(iommu_map_sg_atomic);
2573 
2574 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
2575 			       phys_addr_t paddr, u64 size, int prot)
2576 {
2577 	if (unlikely(domain->ops->domain_window_enable == NULL))
2578 		return -ENODEV;
2579 
2580 	return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
2581 						 prot);
2582 }
2583 EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
2584 
2585 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
2586 {
2587 	if (unlikely(domain->ops->domain_window_disable == NULL))
2588 		return;
2589 
2590 	return domain->ops->domain_window_disable(domain, wnd_nr);
2591 }
2592 EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
2593 
2594 /**
2595  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2596  * @domain: the iommu domain where the fault has happened
2597  * @dev: the device where the fault has happened
2598  * @iova: the faulting address
2599  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2600  *
2601  * This function should be called by the low-level IOMMU implementations
2602  * whenever IOMMU faults happen, to allow high-level users, that are
2603  * interested in such events, to know about them.
2604  *
2605  * This event may be useful for several possible use cases:
2606  * - mere logging of the event
2607  * - dynamic TLB/PTE loading
2608  * - if restarting of the faulting device is required
2609  *
2610  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2611  * PTE/TLB loading will one day be supported, implementations will be able
2612  * to tell whether it succeeded or not according to this return value).
2613  *
2614  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2615  * (though fault handlers can also return -ENOSYS, in case they want to
2616  * elicit the default behavior of the IOMMU drivers).
2617  */
2618 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2619 		       unsigned long iova, int flags)
2620 {
2621 	int ret = -ENOSYS;
2622 
2623 	/*
2624 	 * if upper layers showed interest and installed a fault handler,
2625 	 * invoke it.
2626 	 */
2627 	if (domain->handler)
2628 		ret = domain->handler(domain, dev, iova, flags,
2629 						domain->handler_token);
2630 
2631 	trace_io_page_fault(dev, iova, flags);
2632 	return ret;
2633 }
2634 EXPORT_SYMBOL_GPL(report_iommu_fault);
2635 
2636 static int __init iommu_init(void)
2637 {
2638 	iommu_group_kset = kset_create_and_add("iommu_groups",
2639 					       NULL, kernel_kobj);
2640 	BUG_ON(!iommu_group_kset);
2641 
2642 	iommu_debugfs_setup();
2643 
2644 	return 0;
2645 }
2646 core_initcall(iommu_init);
2647 
2648 int iommu_domain_get_attr(struct iommu_domain *domain,
2649 			  enum iommu_attr attr, void *data)
2650 {
2651 	struct iommu_domain_geometry *geometry;
2652 	bool *paging;
2653 	int ret = 0;
2654 
2655 	switch (attr) {
2656 	case DOMAIN_ATTR_GEOMETRY:
2657 		geometry  = data;
2658 		*geometry = domain->geometry;
2659 
2660 		break;
2661 	case DOMAIN_ATTR_PAGING:
2662 		paging  = data;
2663 		*paging = (domain->pgsize_bitmap != 0UL);
2664 		break;
2665 	default:
2666 		if (!domain->ops->domain_get_attr)
2667 			return -EINVAL;
2668 
2669 		ret = domain->ops->domain_get_attr(domain, attr, data);
2670 	}
2671 
2672 	return ret;
2673 }
2674 EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
2675 
2676 int iommu_domain_set_attr(struct iommu_domain *domain,
2677 			  enum iommu_attr attr, void *data)
2678 {
2679 	int ret = 0;
2680 
2681 	switch (attr) {
2682 	default:
2683 		if (domain->ops->domain_set_attr == NULL)
2684 			return -EINVAL;
2685 
2686 		ret = domain->ops->domain_set_attr(domain, attr, data);
2687 	}
2688 
2689 	return ret;
2690 }
2691 EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
2692 
2693 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2694 {
2695 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2696 
2697 	if (ops && ops->get_resv_regions)
2698 		ops->get_resv_regions(dev, list);
2699 }
2700 
2701 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2702 {
2703 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2704 
2705 	if (ops && ops->put_resv_regions)
2706 		ops->put_resv_regions(dev, list);
2707 }
2708 
2709 /**
2710  * generic_iommu_put_resv_regions - Reserved region driver helper
2711  * @dev: device for which to free reserved regions
2712  * @list: reserved region list for device
2713  *
2714  * IOMMU drivers can use this to implement their .put_resv_regions() callback
2715  * for simple reservations. Memory allocated for each reserved region will be
2716  * freed. If an IOMMU driver allocates additional resources per region, it is
2717  * going to have to implement a custom callback.
2718  */
2719 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list)
2720 {
2721 	struct iommu_resv_region *entry, *next;
2722 
2723 	list_for_each_entry_safe(entry, next, list, list)
2724 		kfree(entry);
2725 }
2726 EXPORT_SYMBOL(generic_iommu_put_resv_regions);
2727 
2728 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2729 						  size_t length, int prot,
2730 						  enum iommu_resv_type type)
2731 {
2732 	struct iommu_resv_region *region;
2733 
2734 	region = kzalloc(sizeof(*region), GFP_KERNEL);
2735 	if (!region)
2736 		return NULL;
2737 
2738 	INIT_LIST_HEAD(&region->list);
2739 	region->start = start;
2740 	region->length = length;
2741 	region->prot = prot;
2742 	region->type = type;
2743 	return region;
2744 }
2745 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2746 
2747 void iommu_set_default_passthrough(bool cmd_line)
2748 {
2749 	if (cmd_line)
2750 		iommu_set_cmd_line_dma_api();
2751 
2752 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2753 }
2754 
2755 void iommu_set_default_translated(bool cmd_line)
2756 {
2757 	if (cmd_line)
2758 		iommu_set_cmd_line_dma_api();
2759 
2760 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2761 }
2762 
2763 bool iommu_default_passthrough(void)
2764 {
2765 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2766 }
2767 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2768 
2769 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2770 {
2771 	const struct iommu_ops *ops = NULL;
2772 	struct iommu_device *iommu;
2773 
2774 	spin_lock(&iommu_device_lock);
2775 	list_for_each_entry(iommu, &iommu_device_list, list)
2776 		if (iommu->fwnode == fwnode) {
2777 			ops = iommu->ops;
2778 			break;
2779 		}
2780 	spin_unlock(&iommu_device_lock);
2781 	return ops;
2782 }
2783 
2784 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2785 		      const struct iommu_ops *ops)
2786 {
2787 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2788 
2789 	if (fwspec)
2790 		return ops == fwspec->ops ? 0 : -EINVAL;
2791 
2792 	if (!dev_iommu_get(dev))
2793 		return -ENOMEM;
2794 
2795 	/* Preallocate for the overwhelmingly common case of 1 ID */
2796 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2797 	if (!fwspec)
2798 		return -ENOMEM;
2799 
2800 	of_node_get(to_of_node(iommu_fwnode));
2801 	fwspec->iommu_fwnode = iommu_fwnode;
2802 	fwspec->ops = ops;
2803 	dev_iommu_fwspec_set(dev, fwspec);
2804 	return 0;
2805 }
2806 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2807 
2808 void iommu_fwspec_free(struct device *dev)
2809 {
2810 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2811 
2812 	if (fwspec) {
2813 		fwnode_handle_put(fwspec->iommu_fwnode);
2814 		kfree(fwspec);
2815 		dev_iommu_fwspec_set(dev, NULL);
2816 	}
2817 }
2818 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2819 
2820 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2821 {
2822 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2823 	int i, new_num;
2824 
2825 	if (!fwspec)
2826 		return -EINVAL;
2827 
2828 	new_num = fwspec->num_ids + num_ids;
2829 	if (new_num > 1) {
2830 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2831 				  GFP_KERNEL);
2832 		if (!fwspec)
2833 			return -ENOMEM;
2834 
2835 		dev_iommu_fwspec_set(dev, fwspec);
2836 	}
2837 
2838 	for (i = 0; i < num_ids; i++)
2839 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2840 
2841 	fwspec->num_ids = new_num;
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2845 
2846 /*
2847  * Per device IOMMU features.
2848  */
2849 bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat)
2850 {
2851 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2852 
2853 	if (ops && ops->dev_has_feat)
2854 		return ops->dev_has_feat(dev, feat);
2855 
2856 	return false;
2857 }
2858 EXPORT_SYMBOL_GPL(iommu_dev_has_feature);
2859 
2860 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2861 {
2862 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2863 
2864 	if (ops && ops->dev_enable_feat)
2865 		return ops->dev_enable_feat(dev, feat);
2866 
2867 	return -ENODEV;
2868 }
2869 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2870 
2871 /*
2872  * The device drivers should do the necessary cleanups before calling this.
2873  * For example, before disabling the aux-domain feature, the device driver
2874  * should detach all aux-domains. Otherwise, this will return -EBUSY.
2875  */
2876 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2877 {
2878 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2879 
2880 	if (ops && ops->dev_disable_feat)
2881 		return ops->dev_disable_feat(dev, feat);
2882 
2883 	return -EBUSY;
2884 }
2885 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2886 
2887 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2888 {
2889 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2890 
2891 	if (ops && ops->dev_feat_enabled)
2892 		return ops->dev_feat_enabled(dev, feat);
2893 
2894 	return false;
2895 }
2896 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2897 
2898 /*
2899  * Aux-domain specific attach/detach.
2900  *
2901  * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns
2902  * true. Also, as long as domains are attached to a device through this
2903  * interface, any tries to call iommu_attach_device() should fail
2904  * (iommu_detach_device() can't fail, so we fail when trying to re-attach).
2905  * This should make us safe against a device being attached to a guest as a
2906  * whole while there are still pasid users on it (aux and sva).
2907  */
2908 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev)
2909 {
2910 	int ret = -ENODEV;
2911 
2912 	if (domain->ops->aux_attach_dev)
2913 		ret = domain->ops->aux_attach_dev(domain, dev);
2914 
2915 	if (!ret)
2916 		trace_attach_device_to_domain(dev);
2917 
2918 	return ret;
2919 }
2920 EXPORT_SYMBOL_GPL(iommu_aux_attach_device);
2921 
2922 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev)
2923 {
2924 	if (domain->ops->aux_detach_dev) {
2925 		domain->ops->aux_detach_dev(domain, dev);
2926 		trace_detach_device_from_domain(dev);
2927 	}
2928 }
2929 EXPORT_SYMBOL_GPL(iommu_aux_detach_device);
2930 
2931 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
2932 {
2933 	int ret = -ENODEV;
2934 
2935 	if (domain->ops->aux_get_pasid)
2936 		ret = domain->ops->aux_get_pasid(domain, dev);
2937 
2938 	return ret;
2939 }
2940 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid);
2941 
2942 /**
2943  * iommu_sva_bind_device() - Bind a process address space to a device
2944  * @dev: the device
2945  * @mm: the mm to bind, caller must hold a reference to it
2946  *
2947  * Create a bond between device and address space, allowing the device to access
2948  * the mm using the returned PASID. If a bond already exists between @device and
2949  * @mm, it is returned and an additional reference is taken. Caller must call
2950  * iommu_sva_unbind_device() to release each reference.
2951  *
2952  * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
2953  * initialize the required SVA features.
2954  *
2955  * On error, returns an ERR_PTR value.
2956  */
2957 struct iommu_sva *
2958 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
2959 {
2960 	struct iommu_group *group;
2961 	struct iommu_sva *handle = ERR_PTR(-EINVAL);
2962 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2963 
2964 	if (!ops || !ops->sva_bind)
2965 		return ERR_PTR(-ENODEV);
2966 
2967 	group = iommu_group_get(dev);
2968 	if (!group)
2969 		return ERR_PTR(-ENODEV);
2970 
2971 	/* Ensure device count and domain don't change while we're binding */
2972 	mutex_lock(&group->mutex);
2973 
2974 	/*
2975 	 * To keep things simple, SVA currently doesn't support IOMMU groups
2976 	 * with more than one device. Existing SVA-capable systems are not
2977 	 * affected by the problems that required IOMMU groups (lack of ACS
2978 	 * isolation, device ID aliasing and other hardware issues).
2979 	 */
2980 	if (iommu_group_device_count(group) != 1)
2981 		goto out_unlock;
2982 
2983 	handle = ops->sva_bind(dev, mm, drvdata);
2984 
2985 out_unlock:
2986 	mutex_unlock(&group->mutex);
2987 	iommu_group_put(group);
2988 
2989 	return handle;
2990 }
2991 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
2992 
2993 /**
2994  * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
2995  * @handle: the handle returned by iommu_sva_bind_device()
2996  *
2997  * Put reference to a bond between device and address space. The device should
2998  * not be issuing any more transaction for this PASID. All outstanding page
2999  * requests for this PASID must have been flushed to the IOMMU.
3000  *
3001  * Returns 0 on success, or an error value
3002  */
3003 void iommu_sva_unbind_device(struct iommu_sva *handle)
3004 {
3005 	struct iommu_group *group;
3006 	struct device *dev = handle->dev;
3007 	const struct iommu_ops *ops = dev->bus->iommu_ops;
3008 
3009 	if (!ops || !ops->sva_unbind)
3010 		return;
3011 
3012 	group = iommu_group_get(dev);
3013 	if (!group)
3014 		return;
3015 
3016 	mutex_lock(&group->mutex);
3017 	ops->sva_unbind(handle);
3018 	mutex_unlock(&group->mutex);
3019 
3020 	iommu_group_put(group);
3021 }
3022 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
3023 
3024 u32 iommu_sva_get_pasid(struct iommu_sva *handle)
3025 {
3026 	const struct iommu_ops *ops = handle->dev->bus->iommu_ops;
3027 
3028 	if (!ops || !ops->sva_get_pasid)
3029 		return IOMMU_PASID_INVALID;
3030 
3031 	return ops->sva_get_pasid(handle);
3032 }
3033 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
3034