xref: /openbmc/linux/drivers/iommu/iommu.c (revision 7d4e6ccd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/device.h>
10 #include <linux/kernel.h>
11 #include <linux/bug.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/export.h>
15 #include <linux/slab.h>
16 #include <linux/errno.h>
17 #include <linux/iommu.h>
18 #include <linux/idr.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/pci.h>
22 #include <linux/bitops.h>
23 #include <linux/property.h>
24 #include <linux/fsl/mc.h>
25 #include <trace/events/iommu.h>
26 
27 static struct kset *iommu_group_kset;
28 static DEFINE_IDA(iommu_group_ida);
29 
30 static unsigned int iommu_def_domain_type __read_mostly;
31 static bool iommu_dma_strict __read_mostly = true;
32 static u32 iommu_cmd_line __read_mostly;
33 
34 struct iommu_group {
35 	struct kobject kobj;
36 	struct kobject *devices_kobj;
37 	struct list_head devices;
38 	struct mutex mutex;
39 	struct blocking_notifier_head notifier;
40 	void *iommu_data;
41 	void (*iommu_data_release)(void *iommu_data);
42 	char *name;
43 	int id;
44 	struct iommu_domain *default_domain;
45 	struct iommu_domain *domain;
46 };
47 
48 struct group_device {
49 	struct list_head list;
50 	struct device *dev;
51 	char *name;
52 };
53 
54 struct iommu_group_attribute {
55 	struct attribute attr;
56 	ssize_t (*show)(struct iommu_group *group, char *buf);
57 	ssize_t (*store)(struct iommu_group *group,
58 			 const char *buf, size_t count);
59 };
60 
61 static const char * const iommu_group_resv_type_string[] = {
62 	[IOMMU_RESV_DIRECT]			= "direct",
63 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
64 	[IOMMU_RESV_RESERVED]			= "reserved",
65 	[IOMMU_RESV_MSI]			= "msi",
66 	[IOMMU_RESV_SW_MSI]			= "msi",
67 };
68 
69 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
70 
71 static void iommu_set_cmd_line_dma_api(void)
72 {
73 	iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
74 }
75 
76 static bool iommu_cmd_line_dma_api(void)
77 {
78 	return !!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API);
79 }
80 
81 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
82 struct iommu_group_attribute iommu_group_attr_##_name =		\
83 	__ATTR(_name, _mode, _show, _store)
84 
85 #define to_iommu_group_attr(_attr)	\
86 	container_of(_attr, struct iommu_group_attribute, attr)
87 #define to_iommu_group(_kobj)		\
88 	container_of(_kobj, struct iommu_group, kobj)
89 
90 static LIST_HEAD(iommu_device_list);
91 static DEFINE_SPINLOCK(iommu_device_lock);
92 
93 /*
94  * Use a function instead of an array here because the domain-type is a
95  * bit-field, so an array would waste memory.
96  */
97 static const char *iommu_domain_type_str(unsigned int t)
98 {
99 	switch (t) {
100 	case IOMMU_DOMAIN_BLOCKED:
101 		return "Blocked";
102 	case IOMMU_DOMAIN_IDENTITY:
103 		return "Passthrough";
104 	case IOMMU_DOMAIN_UNMANAGED:
105 		return "Unmanaged";
106 	case IOMMU_DOMAIN_DMA:
107 		return "Translated";
108 	default:
109 		return "Unknown";
110 	}
111 }
112 
113 static int __init iommu_subsys_init(void)
114 {
115 	bool cmd_line = iommu_cmd_line_dma_api();
116 
117 	if (!cmd_line) {
118 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
119 			iommu_set_default_passthrough(false);
120 		else
121 			iommu_set_default_translated(false);
122 
123 		if (iommu_default_passthrough() && mem_encrypt_active()) {
124 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
125 			iommu_set_default_translated(false);
126 		}
127 	}
128 
129 	pr_info("Default domain type: %s %s\n",
130 		iommu_domain_type_str(iommu_def_domain_type),
131 		cmd_line ? "(set via kernel command line)" : "");
132 
133 	return 0;
134 }
135 subsys_initcall(iommu_subsys_init);
136 
137 int iommu_device_register(struct iommu_device *iommu)
138 {
139 	spin_lock(&iommu_device_lock);
140 	list_add_tail(&iommu->list, &iommu_device_list);
141 	spin_unlock(&iommu_device_lock);
142 	return 0;
143 }
144 
145 void iommu_device_unregister(struct iommu_device *iommu)
146 {
147 	spin_lock(&iommu_device_lock);
148 	list_del(&iommu->list);
149 	spin_unlock(&iommu_device_lock);
150 }
151 
152 static struct iommu_param *iommu_get_dev_param(struct device *dev)
153 {
154 	struct iommu_param *param = dev->iommu_param;
155 
156 	if (param)
157 		return param;
158 
159 	param = kzalloc(sizeof(*param), GFP_KERNEL);
160 	if (!param)
161 		return NULL;
162 
163 	mutex_init(&param->lock);
164 	dev->iommu_param = param;
165 	return param;
166 }
167 
168 static void iommu_free_dev_param(struct device *dev)
169 {
170 	kfree(dev->iommu_param);
171 	dev->iommu_param = NULL;
172 }
173 
174 int iommu_probe_device(struct device *dev)
175 {
176 	const struct iommu_ops *ops = dev->bus->iommu_ops;
177 	int ret;
178 
179 	WARN_ON(dev->iommu_group);
180 	if (!ops)
181 		return -EINVAL;
182 
183 	if (!iommu_get_dev_param(dev))
184 		return -ENOMEM;
185 
186 	ret = ops->add_device(dev);
187 	if (ret)
188 		iommu_free_dev_param(dev);
189 
190 	return ret;
191 }
192 
193 void iommu_release_device(struct device *dev)
194 {
195 	const struct iommu_ops *ops = dev->bus->iommu_ops;
196 
197 	if (dev->iommu_group)
198 		ops->remove_device(dev);
199 
200 	iommu_free_dev_param(dev);
201 }
202 
203 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
204 						 unsigned type);
205 static int __iommu_attach_device(struct iommu_domain *domain,
206 				 struct device *dev);
207 static int __iommu_attach_group(struct iommu_domain *domain,
208 				struct iommu_group *group);
209 static void __iommu_detach_group(struct iommu_domain *domain,
210 				 struct iommu_group *group);
211 
212 static int __init iommu_set_def_domain_type(char *str)
213 {
214 	bool pt;
215 	int ret;
216 
217 	ret = kstrtobool(str, &pt);
218 	if (ret)
219 		return ret;
220 
221 	if (pt)
222 		iommu_set_default_passthrough(true);
223 	else
224 		iommu_set_default_translated(true);
225 
226 	return 0;
227 }
228 early_param("iommu.passthrough", iommu_set_def_domain_type);
229 
230 static int __init iommu_dma_setup(char *str)
231 {
232 	return kstrtobool(str, &iommu_dma_strict);
233 }
234 early_param("iommu.strict", iommu_dma_setup);
235 
236 static ssize_t iommu_group_attr_show(struct kobject *kobj,
237 				     struct attribute *__attr, char *buf)
238 {
239 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
240 	struct iommu_group *group = to_iommu_group(kobj);
241 	ssize_t ret = -EIO;
242 
243 	if (attr->show)
244 		ret = attr->show(group, buf);
245 	return ret;
246 }
247 
248 static ssize_t iommu_group_attr_store(struct kobject *kobj,
249 				      struct attribute *__attr,
250 				      const char *buf, size_t count)
251 {
252 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
253 	struct iommu_group *group = to_iommu_group(kobj);
254 	ssize_t ret = -EIO;
255 
256 	if (attr->store)
257 		ret = attr->store(group, buf, count);
258 	return ret;
259 }
260 
261 static const struct sysfs_ops iommu_group_sysfs_ops = {
262 	.show = iommu_group_attr_show,
263 	.store = iommu_group_attr_store,
264 };
265 
266 static int iommu_group_create_file(struct iommu_group *group,
267 				   struct iommu_group_attribute *attr)
268 {
269 	return sysfs_create_file(&group->kobj, &attr->attr);
270 }
271 
272 static void iommu_group_remove_file(struct iommu_group *group,
273 				    struct iommu_group_attribute *attr)
274 {
275 	sysfs_remove_file(&group->kobj, &attr->attr);
276 }
277 
278 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
279 {
280 	return sprintf(buf, "%s\n", group->name);
281 }
282 
283 /**
284  * iommu_insert_resv_region - Insert a new region in the
285  * list of reserved regions.
286  * @new: new region to insert
287  * @regions: list of regions
288  *
289  * Elements are sorted by start address and overlapping segments
290  * of the same type are merged.
291  */
292 int iommu_insert_resv_region(struct iommu_resv_region *new,
293 			     struct list_head *regions)
294 {
295 	struct iommu_resv_region *iter, *tmp, *nr, *top;
296 	LIST_HEAD(stack);
297 
298 	nr = iommu_alloc_resv_region(new->start, new->length,
299 				     new->prot, new->type);
300 	if (!nr)
301 		return -ENOMEM;
302 
303 	/* First add the new element based on start address sorting */
304 	list_for_each_entry(iter, regions, list) {
305 		if (nr->start < iter->start ||
306 		    (nr->start == iter->start && nr->type <= iter->type))
307 			break;
308 	}
309 	list_add_tail(&nr->list, &iter->list);
310 
311 	/* Merge overlapping segments of type nr->type in @regions, if any */
312 	list_for_each_entry_safe(iter, tmp, regions, list) {
313 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
314 
315 		/* no merge needed on elements of different types than @new */
316 		if (iter->type != new->type) {
317 			list_move_tail(&iter->list, &stack);
318 			continue;
319 		}
320 
321 		/* look for the last stack element of same type as @iter */
322 		list_for_each_entry_reverse(top, &stack, list)
323 			if (top->type == iter->type)
324 				goto check_overlap;
325 
326 		list_move_tail(&iter->list, &stack);
327 		continue;
328 
329 check_overlap:
330 		top_end = top->start + top->length - 1;
331 
332 		if (iter->start > top_end + 1) {
333 			list_move_tail(&iter->list, &stack);
334 		} else {
335 			top->length = max(top_end, iter_end) - top->start + 1;
336 			list_del(&iter->list);
337 			kfree(iter);
338 		}
339 	}
340 	list_splice(&stack, regions);
341 	return 0;
342 }
343 
344 static int
345 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
346 				 struct list_head *group_resv_regions)
347 {
348 	struct iommu_resv_region *entry;
349 	int ret = 0;
350 
351 	list_for_each_entry(entry, dev_resv_regions, list) {
352 		ret = iommu_insert_resv_region(entry, group_resv_regions);
353 		if (ret)
354 			break;
355 	}
356 	return ret;
357 }
358 
359 int iommu_get_group_resv_regions(struct iommu_group *group,
360 				 struct list_head *head)
361 {
362 	struct group_device *device;
363 	int ret = 0;
364 
365 	mutex_lock(&group->mutex);
366 	list_for_each_entry(device, &group->devices, list) {
367 		struct list_head dev_resv_regions;
368 
369 		INIT_LIST_HEAD(&dev_resv_regions);
370 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
371 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
372 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
373 		if (ret)
374 			break;
375 	}
376 	mutex_unlock(&group->mutex);
377 	return ret;
378 }
379 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
380 
381 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
382 					     char *buf)
383 {
384 	struct iommu_resv_region *region, *next;
385 	struct list_head group_resv_regions;
386 	char *str = buf;
387 
388 	INIT_LIST_HEAD(&group_resv_regions);
389 	iommu_get_group_resv_regions(group, &group_resv_regions);
390 
391 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
392 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
393 			       (long long int)region->start,
394 			       (long long int)(region->start +
395 						region->length - 1),
396 			       iommu_group_resv_type_string[region->type]);
397 		kfree(region);
398 	}
399 
400 	return (str - buf);
401 }
402 
403 static ssize_t iommu_group_show_type(struct iommu_group *group,
404 				     char *buf)
405 {
406 	char *type = "unknown\n";
407 
408 	if (group->default_domain) {
409 		switch (group->default_domain->type) {
410 		case IOMMU_DOMAIN_BLOCKED:
411 			type = "blocked\n";
412 			break;
413 		case IOMMU_DOMAIN_IDENTITY:
414 			type = "identity\n";
415 			break;
416 		case IOMMU_DOMAIN_UNMANAGED:
417 			type = "unmanaged\n";
418 			break;
419 		case IOMMU_DOMAIN_DMA:
420 			type = "DMA\n";
421 			break;
422 		}
423 	}
424 	strcpy(buf, type);
425 
426 	return strlen(type);
427 }
428 
429 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
430 
431 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
432 			iommu_group_show_resv_regions, NULL);
433 
434 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL);
435 
436 static void iommu_group_release(struct kobject *kobj)
437 {
438 	struct iommu_group *group = to_iommu_group(kobj);
439 
440 	pr_debug("Releasing group %d\n", group->id);
441 
442 	if (group->iommu_data_release)
443 		group->iommu_data_release(group->iommu_data);
444 
445 	ida_simple_remove(&iommu_group_ida, group->id);
446 
447 	if (group->default_domain)
448 		iommu_domain_free(group->default_domain);
449 
450 	kfree(group->name);
451 	kfree(group);
452 }
453 
454 static struct kobj_type iommu_group_ktype = {
455 	.sysfs_ops = &iommu_group_sysfs_ops,
456 	.release = iommu_group_release,
457 };
458 
459 /**
460  * iommu_group_alloc - Allocate a new group
461  *
462  * This function is called by an iommu driver to allocate a new iommu
463  * group.  The iommu group represents the minimum granularity of the iommu.
464  * Upon successful return, the caller holds a reference to the supplied
465  * group in order to hold the group until devices are added.  Use
466  * iommu_group_put() to release this extra reference count, allowing the
467  * group to be automatically reclaimed once it has no devices or external
468  * references.
469  */
470 struct iommu_group *iommu_group_alloc(void)
471 {
472 	struct iommu_group *group;
473 	int ret;
474 
475 	group = kzalloc(sizeof(*group), GFP_KERNEL);
476 	if (!group)
477 		return ERR_PTR(-ENOMEM);
478 
479 	group->kobj.kset = iommu_group_kset;
480 	mutex_init(&group->mutex);
481 	INIT_LIST_HEAD(&group->devices);
482 	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
483 
484 	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
485 	if (ret < 0) {
486 		kfree(group);
487 		return ERR_PTR(ret);
488 	}
489 	group->id = ret;
490 
491 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
492 				   NULL, "%d", group->id);
493 	if (ret) {
494 		ida_simple_remove(&iommu_group_ida, group->id);
495 		kfree(group);
496 		return ERR_PTR(ret);
497 	}
498 
499 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
500 	if (!group->devices_kobj) {
501 		kobject_put(&group->kobj); /* triggers .release & free */
502 		return ERR_PTR(-ENOMEM);
503 	}
504 
505 	/*
506 	 * The devices_kobj holds a reference on the group kobject, so
507 	 * as long as that exists so will the group.  We can therefore
508 	 * use the devices_kobj for reference counting.
509 	 */
510 	kobject_put(&group->kobj);
511 
512 	ret = iommu_group_create_file(group,
513 				      &iommu_group_attr_reserved_regions);
514 	if (ret)
515 		return ERR_PTR(ret);
516 
517 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
518 	if (ret)
519 		return ERR_PTR(ret);
520 
521 	pr_debug("Allocated group %d\n", group->id);
522 
523 	return group;
524 }
525 EXPORT_SYMBOL_GPL(iommu_group_alloc);
526 
527 struct iommu_group *iommu_group_get_by_id(int id)
528 {
529 	struct kobject *group_kobj;
530 	struct iommu_group *group;
531 	const char *name;
532 
533 	if (!iommu_group_kset)
534 		return NULL;
535 
536 	name = kasprintf(GFP_KERNEL, "%d", id);
537 	if (!name)
538 		return NULL;
539 
540 	group_kobj = kset_find_obj(iommu_group_kset, name);
541 	kfree(name);
542 
543 	if (!group_kobj)
544 		return NULL;
545 
546 	group = container_of(group_kobj, struct iommu_group, kobj);
547 	BUG_ON(group->id != id);
548 
549 	kobject_get(group->devices_kobj);
550 	kobject_put(&group->kobj);
551 
552 	return group;
553 }
554 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
555 
556 /**
557  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
558  * @group: the group
559  *
560  * iommu drivers can store data in the group for use when doing iommu
561  * operations.  This function provides a way to retrieve it.  Caller
562  * should hold a group reference.
563  */
564 void *iommu_group_get_iommudata(struct iommu_group *group)
565 {
566 	return group->iommu_data;
567 }
568 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
569 
570 /**
571  * iommu_group_set_iommudata - set iommu_data for a group
572  * @group: the group
573  * @iommu_data: new data
574  * @release: release function for iommu_data
575  *
576  * iommu drivers can store data in the group for use when doing iommu
577  * operations.  This function provides a way to set the data after
578  * the group has been allocated.  Caller should hold a group reference.
579  */
580 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
581 			       void (*release)(void *iommu_data))
582 {
583 	group->iommu_data = iommu_data;
584 	group->iommu_data_release = release;
585 }
586 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
587 
588 /**
589  * iommu_group_set_name - set name for a group
590  * @group: the group
591  * @name: name
592  *
593  * Allow iommu driver to set a name for a group.  When set it will
594  * appear in a name attribute file under the group in sysfs.
595  */
596 int iommu_group_set_name(struct iommu_group *group, const char *name)
597 {
598 	int ret;
599 
600 	if (group->name) {
601 		iommu_group_remove_file(group, &iommu_group_attr_name);
602 		kfree(group->name);
603 		group->name = NULL;
604 		if (!name)
605 			return 0;
606 	}
607 
608 	group->name = kstrdup(name, GFP_KERNEL);
609 	if (!group->name)
610 		return -ENOMEM;
611 
612 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
613 	if (ret) {
614 		kfree(group->name);
615 		group->name = NULL;
616 		return ret;
617 	}
618 
619 	return 0;
620 }
621 EXPORT_SYMBOL_GPL(iommu_group_set_name);
622 
623 static int iommu_group_create_direct_mappings(struct iommu_group *group,
624 					      struct device *dev)
625 {
626 	struct iommu_domain *domain = group->default_domain;
627 	struct iommu_resv_region *entry;
628 	struct list_head mappings;
629 	unsigned long pg_size;
630 	int ret = 0;
631 
632 	if (!domain || domain->type != IOMMU_DOMAIN_DMA)
633 		return 0;
634 
635 	BUG_ON(!domain->pgsize_bitmap);
636 
637 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
638 	INIT_LIST_HEAD(&mappings);
639 
640 	iommu_get_resv_regions(dev, &mappings);
641 
642 	/* We need to consider overlapping regions for different devices */
643 	list_for_each_entry(entry, &mappings, list) {
644 		dma_addr_t start, end, addr;
645 
646 		if (domain->ops->apply_resv_region)
647 			domain->ops->apply_resv_region(dev, domain, entry);
648 
649 		start = ALIGN(entry->start, pg_size);
650 		end   = ALIGN(entry->start + entry->length, pg_size);
651 
652 		if (entry->type != IOMMU_RESV_DIRECT &&
653 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
654 			continue;
655 
656 		for (addr = start; addr < end; addr += pg_size) {
657 			phys_addr_t phys_addr;
658 
659 			phys_addr = iommu_iova_to_phys(domain, addr);
660 			if (phys_addr)
661 				continue;
662 
663 			ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
664 			if (ret)
665 				goto out;
666 		}
667 
668 	}
669 
670 	iommu_flush_tlb_all(domain);
671 
672 out:
673 	iommu_put_resv_regions(dev, &mappings);
674 
675 	return ret;
676 }
677 
678 /**
679  * iommu_group_add_device - add a device to an iommu group
680  * @group: the group into which to add the device (reference should be held)
681  * @dev: the device
682  *
683  * This function is called by an iommu driver to add a device into a
684  * group.  Adding a device increments the group reference count.
685  */
686 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
687 {
688 	int ret, i = 0;
689 	struct group_device *device;
690 
691 	device = kzalloc(sizeof(*device), GFP_KERNEL);
692 	if (!device)
693 		return -ENOMEM;
694 
695 	device->dev = dev;
696 
697 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
698 	if (ret)
699 		goto err_free_device;
700 
701 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
702 rename:
703 	if (!device->name) {
704 		ret = -ENOMEM;
705 		goto err_remove_link;
706 	}
707 
708 	ret = sysfs_create_link_nowarn(group->devices_kobj,
709 				       &dev->kobj, device->name);
710 	if (ret) {
711 		if (ret == -EEXIST && i >= 0) {
712 			/*
713 			 * Account for the slim chance of collision
714 			 * and append an instance to the name.
715 			 */
716 			kfree(device->name);
717 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
718 						 kobject_name(&dev->kobj), i++);
719 			goto rename;
720 		}
721 		goto err_free_name;
722 	}
723 
724 	kobject_get(group->devices_kobj);
725 
726 	dev->iommu_group = group;
727 
728 	iommu_group_create_direct_mappings(group, dev);
729 
730 	mutex_lock(&group->mutex);
731 	list_add_tail(&device->list, &group->devices);
732 	if (group->domain)
733 		ret = __iommu_attach_device(group->domain, dev);
734 	mutex_unlock(&group->mutex);
735 	if (ret)
736 		goto err_put_group;
737 
738 	/* Notify any listeners about change to group. */
739 	blocking_notifier_call_chain(&group->notifier,
740 				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
741 
742 	trace_add_device_to_group(group->id, dev);
743 
744 	dev_info(dev, "Adding to iommu group %d\n", group->id);
745 
746 	return 0;
747 
748 err_put_group:
749 	mutex_lock(&group->mutex);
750 	list_del(&device->list);
751 	mutex_unlock(&group->mutex);
752 	dev->iommu_group = NULL;
753 	kobject_put(group->devices_kobj);
754 	sysfs_remove_link(group->devices_kobj, device->name);
755 err_free_name:
756 	kfree(device->name);
757 err_remove_link:
758 	sysfs_remove_link(&dev->kobj, "iommu_group");
759 err_free_device:
760 	kfree(device);
761 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
762 	return ret;
763 }
764 EXPORT_SYMBOL_GPL(iommu_group_add_device);
765 
766 /**
767  * iommu_group_remove_device - remove a device from it's current group
768  * @dev: device to be removed
769  *
770  * This function is called by an iommu driver to remove the device from
771  * it's current group.  This decrements the iommu group reference count.
772  */
773 void iommu_group_remove_device(struct device *dev)
774 {
775 	struct iommu_group *group = dev->iommu_group;
776 	struct group_device *tmp_device, *device = NULL;
777 
778 	dev_info(dev, "Removing from iommu group %d\n", group->id);
779 
780 	/* Pre-notify listeners that a device is being removed. */
781 	blocking_notifier_call_chain(&group->notifier,
782 				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
783 
784 	mutex_lock(&group->mutex);
785 	list_for_each_entry(tmp_device, &group->devices, list) {
786 		if (tmp_device->dev == dev) {
787 			device = tmp_device;
788 			list_del(&device->list);
789 			break;
790 		}
791 	}
792 	mutex_unlock(&group->mutex);
793 
794 	if (!device)
795 		return;
796 
797 	sysfs_remove_link(group->devices_kobj, device->name);
798 	sysfs_remove_link(&dev->kobj, "iommu_group");
799 
800 	trace_remove_device_from_group(group->id, dev);
801 
802 	kfree(device->name);
803 	kfree(device);
804 	dev->iommu_group = NULL;
805 	kobject_put(group->devices_kobj);
806 }
807 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
808 
809 static int iommu_group_device_count(struct iommu_group *group)
810 {
811 	struct group_device *entry;
812 	int ret = 0;
813 
814 	list_for_each_entry(entry, &group->devices, list)
815 		ret++;
816 
817 	return ret;
818 }
819 
820 /**
821  * iommu_group_for_each_dev - iterate over each device in the group
822  * @group: the group
823  * @data: caller opaque data to be passed to callback function
824  * @fn: caller supplied callback function
825  *
826  * This function is called by group users to iterate over group devices.
827  * Callers should hold a reference count to the group during callback.
828  * The group->mutex is held across callbacks, which will block calls to
829  * iommu_group_add/remove_device.
830  */
831 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
832 				      int (*fn)(struct device *, void *))
833 {
834 	struct group_device *device;
835 	int ret = 0;
836 
837 	list_for_each_entry(device, &group->devices, list) {
838 		ret = fn(device->dev, data);
839 		if (ret)
840 			break;
841 	}
842 	return ret;
843 }
844 
845 
846 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
847 			     int (*fn)(struct device *, void *))
848 {
849 	int ret;
850 
851 	mutex_lock(&group->mutex);
852 	ret = __iommu_group_for_each_dev(group, data, fn);
853 	mutex_unlock(&group->mutex);
854 
855 	return ret;
856 }
857 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
858 
859 /**
860  * iommu_group_get - Return the group for a device and increment reference
861  * @dev: get the group that this device belongs to
862  *
863  * This function is called by iommu drivers and users to get the group
864  * for the specified device.  If found, the group is returned and the group
865  * reference in incremented, else NULL.
866  */
867 struct iommu_group *iommu_group_get(struct device *dev)
868 {
869 	struct iommu_group *group = dev->iommu_group;
870 
871 	if (group)
872 		kobject_get(group->devices_kobj);
873 
874 	return group;
875 }
876 EXPORT_SYMBOL_GPL(iommu_group_get);
877 
878 /**
879  * iommu_group_ref_get - Increment reference on a group
880  * @group: the group to use, must not be NULL
881  *
882  * This function is called by iommu drivers to take additional references on an
883  * existing group.  Returns the given group for convenience.
884  */
885 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
886 {
887 	kobject_get(group->devices_kobj);
888 	return group;
889 }
890 
891 /**
892  * iommu_group_put - Decrement group reference
893  * @group: the group to use
894  *
895  * This function is called by iommu drivers and users to release the
896  * iommu group.  Once the reference count is zero, the group is released.
897  */
898 void iommu_group_put(struct iommu_group *group)
899 {
900 	if (group)
901 		kobject_put(group->devices_kobj);
902 }
903 EXPORT_SYMBOL_GPL(iommu_group_put);
904 
905 /**
906  * iommu_group_register_notifier - Register a notifier for group changes
907  * @group: the group to watch
908  * @nb: notifier block to signal
909  *
910  * This function allows iommu group users to track changes in a group.
911  * See include/linux/iommu.h for actions sent via this notifier.  Caller
912  * should hold a reference to the group throughout notifier registration.
913  */
914 int iommu_group_register_notifier(struct iommu_group *group,
915 				  struct notifier_block *nb)
916 {
917 	return blocking_notifier_chain_register(&group->notifier, nb);
918 }
919 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
920 
921 /**
922  * iommu_group_unregister_notifier - Unregister a notifier
923  * @group: the group to watch
924  * @nb: notifier block to signal
925  *
926  * Unregister a previously registered group notifier block.
927  */
928 int iommu_group_unregister_notifier(struct iommu_group *group,
929 				    struct notifier_block *nb)
930 {
931 	return blocking_notifier_chain_unregister(&group->notifier, nb);
932 }
933 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
934 
935 /**
936  * iommu_register_device_fault_handler() - Register a device fault handler
937  * @dev: the device
938  * @handler: the fault handler
939  * @data: private data passed as argument to the handler
940  *
941  * When an IOMMU fault event is received, this handler gets called with the
942  * fault event and data as argument. The handler should return 0 on success. If
943  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
944  * complete the fault by calling iommu_page_response() with one of the following
945  * response code:
946  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
947  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
948  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
949  *   page faults if possible.
950  *
951  * Return 0 if the fault handler was installed successfully, or an error.
952  */
953 int iommu_register_device_fault_handler(struct device *dev,
954 					iommu_dev_fault_handler_t handler,
955 					void *data)
956 {
957 	struct iommu_param *param = dev->iommu_param;
958 	int ret = 0;
959 
960 	if (!param)
961 		return -EINVAL;
962 
963 	mutex_lock(&param->lock);
964 	/* Only allow one fault handler registered for each device */
965 	if (param->fault_param) {
966 		ret = -EBUSY;
967 		goto done_unlock;
968 	}
969 
970 	get_device(dev);
971 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
972 	if (!param->fault_param) {
973 		put_device(dev);
974 		ret = -ENOMEM;
975 		goto done_unlock;
976 	}
977 	param->fault_param->handler = handler;
978 	param->fault_param->data = data;
979 	mutex_init(&param->fault_param->lock);
980 	INIT_LIST_HEAD(&param->fault_param->faults);
981 
982 done_unlock:
983 	mutex_unlock(&param->lock);
984 
985 	return ret;
986 }
987 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
988 
989 /**
990  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
991  * @dev: the device
992  *
993  * Remove the device fault handler installed with
994  * iommu_register_device_fault_handler().
995  *
996  * Return 0 on success, or an error.
997  */
998 int iommu_unregister_device_fault_handler(struct device *dev)
999 {
1000 	struct iommu_param *param = dev->iommu_param;
1001 	int ret = 0;
1002 
1003 	if (!param)
1004 		return -EINVAL;
1005 
1006 	mutex_lock(&param->lock);
1007 
1008 	if (!param->fault_param)
1009 		goto unlock;
1010 
1011 	/* we cannot unregister handler if there are pending faults */
1012 	if (!list_empty(&param->fault_param->faults)) {
1013 		ret = -EBUSY;
1014 		goto unlock;
1015 	}
1016 
1017 	kfree(param->fault_param);
1018 	param->fault_param = NULL;
1019 	put_device(dev);
1020 unlock:
1021 	mutex_unlock(&param->lock);
1022 
1023 	return ret;
1024 }
1025 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1026 
1027 /**
1028  * iommu_report_device_fault() - Report fault event to device driver
1029  * @dev: the device
1030  * @evt: fault event data
1031  *
1032  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1033  * handler. When this function fails and the fault is recoverable, it is the
1034  * caller's responsibility to complete the fault.
1035  *
1036  * Return 0 on success, or an error.
1037  */
1038 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1039 {
1040 	struct iommu_param *param = dev->iommu_param;
1041 	struct iommu_fault_event *evt_pending = NULL;
1042 	struct iommu_fault_param *fparam;
1043 	int ret = 0;
1044 
1045 	if (!param || !evt)
1046 		return -EINVAL;
1047 
1048 	/* we only report device fault if there is a handler registered */
1049 	mutex_lock(&param->lock);
1050 	fparam = param->fault_param;
1051 	if (!fparam || !fparam->handler) {
1052 		ret = -EINVAL;
1053 		goto done_unlock;
1054 	}
1055 
1056 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1057 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1058 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1059 				      GFP_KERNEL);
1060 		if (!evt_pending) {
1061 			ret = -ENOMEM;
1062 			goto done_unlock;
1063 		}
1064 		mutex_lock(&fparam->lock);
1065 		list_add_tail(&evt_pending->list, &fparam->faults);
1066 		mutex_unlock(&fparam->lock);
1067 	}
1068 
1069 	ret = fparam->handler(&evt->fault, fparam->data);
1070 	if (ret && evt_pending) {
1071 		mutex_lock(&fparam->lock);
1072 		list_del(&evt_pending->list);
1073 		mutex_unlock(&fparam->lock);
1074 		kfree(evt_pending);
1075 	}
1076 done_unlock:
1077 	mutex_unlock(&param->lock);
1078 	return ret;
1079 }
1080 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1081 
1082 int iommu_page_response(struct device *dev,
1083 			struct iommu_page_response *msg)
1084 {
1085 	bool pasid_valid;
1086 	int ret = -EINVAL;
1087 	struct iommu_fault_event *evt;
1088 	struct iommu_fault_page_request *prm;
1089 	struct iommu_param *param = dev->iommu_param;
1090 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1091 
1092 	if (!domain || !domain->ops->page_response)
1093 		return -ENODEV;
1094 
1095 	if (!param || !param->fault_param)
1096 		return -EINVAL;
1097 
1098 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1099 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1100 		return -EINVAL;
1101 
1102 	/* Only send response if there is a fault report pending */
1103 	mutex_lock(&param->fault_param->lock);
1104 	if (list_empty(&param->fault_param->faults)) {
1105 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1106 		goto done_unlock;
1107 	}
1108 	/*
1109 	 * Check if we have a matching page request pending to respond,
1110 	 * otherwise return -EINVAL
1111 	 */
1112 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1113 		prm = &evt->fault.prm;
1114 		pasid_valid = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
1115 
1116 		if ((pasid_valid && prm->pasid != msg->pasid) ||
1117 		    prm->grpid != msg->grpid)
1118 			continue;
1119 
1120 		/* Sanitize the reply */
1121 		msg->flags = pasid_valid ? IOMMU_PAGE_RESP_PASID_VALID : 0;
1122 
1123 		ret = domain->ops->page_response(dev, evt, msg);
1124 		list_del(&evt->list);
1125 		kfree(evt);
1126 		break;
1127 	}
1128 
1129 done_unlock:
1130 	mutex_unlock(&param->fault_param->lock);
1131 	return ret;
1132 }
1133 EXPORT_SYMBOL_GPL(iommu_page_response);
1134 
1135 /**
1136  * iommu_group_id - Return ID for a group
1137  * @group: the group to ID
1138  *
1139  * Return the unique ID for the group matching the sysfs group number.
1140  */
1141 int iommu_group_id(struct iommu_group *group)
1142 {
1143 	return group->id;
1144 }
1145 EXPORT_SYMBOL_GPL(iommu_group_id);
1146 
1147 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1148 					       unsigned long *devfns);
1149 
1150 /*
1151  * To consider a PCI device isolated, we require ACS to support Source
1152  * Validation, Request Redirection, Completer Redirection, and Upstream
1153  * Forwarding.  This effectively means that devices cannot spoof their
1154  * requester ID, requests and completions cannot be redirected, and all
1155  * transactions are forwarded upstream, even as it passes through a
1156  * bridge where the target device is downstream.
1157  */
1158 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1159 
1160 /*
1161  * For multifunction devices which are not isolated from each other, find
1162  * all the other non-isolated functions and look for existing groups.  For
1163  * each function, we also need to look for aliases to or from other devices
1164  * that may already have a group.
1165  */
1166 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1167 							unsigned long *devfns)
1168 {
1169 	struct pci_dev *tmp = NULL;
1170 	struct iommu_group *group;
1171 
1172 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1173 		return NULL;
1174 
1175 	for_each_pci_dev(tmp) {
1176 		if (tmp == pdev || tmp->bus != pdev->bus ||
1177 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1178 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1179 			continue;
1180 
1181 		group = get_pci_alias_group(tmp, devfns);
1182 		if (group) {
1183 			pci_dev_put(tmp);
1184 			return group;
1185 		}
1186 	}
1187 
1188 	return NULL;
1189 }
1190 
1191 /*
1192  * Look for aliases to or from the given device for existing groups. DMA
1193  * aliases are only supported on the same bus, therefore the search
1194  * space is quite small (especially since we're really only looking at pcie
1195  * device, and therefore only expect multiple slots on the root complex or
1196  * downstream switch ports).  It's conceivable though that a pair of
1197  * multifunction devices could have aliases between them that would cause a
1198  * loop.  To prevent this, we use a bitmap to track where we've been.
1199  */
1200 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1201 					       unsigned long *devfns)
1202 {
1203 	struct pci_dev *tmp = NULL;
1204 	struct iommu_group *group;
1205 
1206 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1207 		return NULL;
1208 
1209 	group = iommu_group_get(&pdev->dev);
1210 	if (group)
1211 		return group;
1212 
1213 	for_each_pci_dev(tmp) {
1214 		if (tmp == pdev || tmp->bus != pdev->bus)
1215 			continue;
1216 
1217 		/* We alias them or they alias us */
1218 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1219 			group = get_pci_alias_group(tmp, devfns);
1220 			if (group) {
1221 				pci_dev_put(tmp);
1222 				return group;
1223 			}
1224 
1225 			group = get_pci_function_alias_group(tmp, devfns);
1226 			if (group) {
1227 				pci_dev_put(tmp);
1228 				return group;
1229 			}
1230 		}
1231 	}
1232 
1233 	return NULL;
1234 }
1235 
1236 struct group_for_pci_data {
1237 	struct pci_dev *pdev;
1238 	struct iommu_group *group;
1239 };
1240 
1241 /*
1242  * DMA alias iterator callback, return the last seen device.  Stop and return
1243  * the IOMMU group if we find one along the way.
1244  */
1245 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1246 {
1247 	struct group_for_pci_data *data = opaque;
1248 
1249 	data->pdev = pdev;
1250 	data->group = iommu_group_get(&pdev->dev);
1251 
1252 	return data->group != NULL;
1253 }
1254 
1255 /*
1256  * Generic device_group call-back function. It just allocates one
1257  * iommu-group per device.
1258  */
1259 struct iommu_group *generic_device_group(struct device *dev)
1260 {
1261 	return iommu_group_alloc();
1262 }
1263 
1264 /*
1265  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1266  * to find or create an IOMMU group for a device.
1267  */
1268 struct iommu_group *pci_device_group(struct device *dev)
1269 {
1270 	struct pci_dev *pdev = to_pci_dev(dev);
1271 	struct group_for_pci_data data;
1272 	struct pci_bus *bus;
1273 	struct iommu_group *group = NULL;
1274 	u64 devfns[4] = { 0 };
1275 
1276 	if (WARN_ON(!dev_is_pci(dev)))
1277 		return ERR_PTR(-EINVAL);
1278 
1279 	/*
1280 	 * Find the upstream DMA alias for the device.  A device must not
1281 	 * be aliased due to topology in order to have its own IOMMU group.
1282 	 * If we find an alias along the way that already belongs to a
1283 	 * group, use it.
1284 	 */
1285 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1286 		return data.group;
1287 
1288 	pdev = data.pdev;
1289 
1290 	/*
1291 	 * Continue upstream from the point of minimum IOMMU granularity
1292 	 * due to aliases to the point where devices are protected from
1293 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1294 	 * group, use it.
1295 	 */
1296 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1297 		if (!bus->self)
1298 			continue;
1299 
1300 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1301 			break;
1302 
1303 		pdev = bus->self;
1304 
1305 		group = iommu_group_get(&pdev->dev);
1306 		if (group)
1307 			return group;
1308 	}
1309 
1310 	/*
1311 	 * Look for existing groups on device aliases.  If we alias another
1312 	 * device or another device aliases us, use the same group.
1313 	 */
1314 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1315 	if (group)
1316 		return group;
1317 
1318 	/*
1319 	 * Look for existing groups on non-isolated functions on the same
1320 	 * slot and aliases of those funcions, if any.  No need to clear
1321 	 * the search bitmap, the tested devfns are still valid.
1322 	 */
1323 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1324 	if (group)
1325 		return group;
1326 
1327 	/* No shared group found, allocate new */
1328 	return iommu_group_alloc();
1329 }
1330 
1331 /* Get the IOMMU group for device on fsl-mc bus */
1332 struct iommu_group *fsl_mc_device_group(struct device *dev)
1333 {
1334 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1335 	struct iommu_group *group;
1336 
1337 	group = iommu_group_get(cont_dev);
1338 	if (!group)
1339 		group = iommu_group_alloc();
1340 	return group;
1341 }
1342 
1343 /**
1344  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1345  * @dev: target device
1346  *
1347  * This function is intended to be called by IOMMU drivers and extended to
1348  * support common, bus-defined algorithms when determining or creating the
1349  * IOMMU group for a device.  On success, the caller will hold a reference
1350  * to the returned IOMMU group, which will already include the provided
1351  * device.  The reference should be released with iommu_group_put().
1352  */
1353 struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1354 {
1355 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1356 	struct iommu_group *group;
1357 	int ret;
1358 
1359 	group = iommu_group_get(dev);
1360 	if (group)
1361 		return group;
1362 
1363 	if (!ops)
1364 		return ERR_PTR(-EINVAL);
1365 
1366 	group = ops->device_group(dev);
1367 	if (WARN_ON_ONCE(group == NULL))
1368 		return ERR_PTR(-EINVAL);
1369 
1370 	if (IS_ERR(group))
1371 		return group;
1372 
1373 	/*
1374 	 * Try to allocate a default domain - needs support from the
1375 	 * IOMMU driver.
1376 	 */
1377 	if (!group->default_domain) {
1378 		struct iommu_domain *dom;
1379 
1380 		dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type);
1381 		if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) {
1382 			dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA);
1383 			if (dom) {
1384 				dev_warn(dev,
1385 					 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA",
1386 					 iommu_def_domain_type);
1387 			}
1388 		}
1389 
1390 		group->default_domain = dom;
1391 		if (!group->domain)
1392 			group->domain = dom;
1393 
1394 		if (dom && !iommu_dma_strict) {
1395 			int attr = 1;
1396 			iommu_domain_set_attr(dom,
1397 					      DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE,
1398 					      &attr);
1399 		}
1400 	}
1401 
1402 	ret = iommu_group_add_device(group, dev);
1403 	if (ret) {
1404 		iommu_group_put(group);
1405 		return ERR_PTR(ret);
1406 	}
1407 
1408 	return group;
1409 }
1410 
1411 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1412 {
1413 	return group->default_domain;
1414 }
1415 
1416 static int add_iommu_group(struct device *dev, void *data)
1417 {
1418 	int ret = iommu_probe_device(dev);
1419 
1420 	/*
1421 	 * We ignore -ENODEV errors for now, as they just mean that the
1422 	 * device is not translated by an IOMMU. We still care about
1423 	 * other errors and fail to initialize when they happen.
1424 	 */
1425 	if (ret == -ENODEV)
1426 		ret = 0;
1427 
1428 	return ret;
1429 }
1430 
1431 static int remove_iommu_group(struct device *dev, void *data)
1432 {
1433 	iommu_release_device(dev);
1434 
1435 	return 0;
1436 }
1437 
1438 static int iommu_bus_notifier(struct notifier_block *nb,
1439 			      unsigned long action, void *data)
1440 {
1441 	unsigned long group_action = 0;
1442 	struct device *dev = data;
1443 	struct iommu_group *group;
1444 
1445 	/*
1446 	 * ADD/DEL call into iommu driver ops if provided, which may
1447 	 * result in ADD/DEL notifiers to group->notifier
1448 	 */
1449 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1450 		int ret;
1451 
1452 		ret = iommu_probe_device(dev);
1453 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1454 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1455 		iommu_release_device(dev);
1456 		return NOTIFY_OK;
1457 	}
1458 
1459 	/*
1460 	 * Remaining BUS_NOTIFYs get filtered and republished to the
1461 	 * group, if anyone is listening
1462 	 */
1463 	group = iommu_group_get(dev);
1464 	if (!group)
1465 		return 0;
1466 
1467 	switch (action) {
1468 	case BUS_NOTIFY_BIND_DRIVER:
1469 		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1470 		break;
1471 	case BUS_NOTIFY_BOUND_DRIVER:
1472 		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1473 		break;
1474 	case BUS_NOTIFY_UNBIND_DRIVER:
1475 		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1476 		break;
1477 	case BUS_NOTIFY_UNBOUND_DRIVER:
1478 		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1479 		break;
1480 	}
1481 
1482 	if (group_action)
1483 		blocking_notifier_call_chain(&group->notifier,
1484 					     group_action, dev);
1485 
1486 	iommu_group_put(group);
1487 	return 0;
1488 }
1489 
1490 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1491 {
1492 	int err;
1493 	struct notifier_block *nb;
1494 
1495 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1496 	if (!nb)
1497 		return -ENOMEM;
1498 
1499 	nb->notifier_call = iommu_bus_notifier;
1500 
1501 	err = bus_register_notifier(bus, nb);
1502 	if (err)
1503 		goto out_free;
1504 
1505 	err = bus_for_each_dev(bus, NULL, NULL, add_iommu_group);
1506 	if (err)
1507 		goto out_err;
1508 
1509 
1510 	return 0;
1511 
1512 out_err:
1513 	/* Clean up */
1514 	bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1515 	bus_unregister_notifier(bus, nb);
1516 
1517 out_free:
1518 	kfree(nb);
1519 
1520 	return err;
1521 }
1522 
1523 /**
1524  * bus_set_iommu - set iommu-callbacks for the bus
1525  * @bus: bus.
1526  * @ops: the callbacks provided by the iommu-driver
1527  *
1528  * This function is called by an iommu driver to set the iommu methods
1529  * used for a particular bus. Drivers for devices on that bus can use
1530  * the iommu-api after these ops are registered.
1531  * This special function is needed because IOMMUs are usually devices on
1532  * the bus itself, so the iommu drivers are not initialized when the bus
1533  * is set up. With this function the iommu-driver can set the iommu-ops
1534  * afterwards.
1535  */
1536 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1537 {
1538 	int err;
1539 
1540 	if (bus->iommu_ops != NULL)
1541 		return -EBUSY;
1542 
1543 	bus->iommu_ops = ops;
1544 
1545 	/* Do IOMMU specific setup for this bus-type */
1546 	err = iommu_bus_init(bus, ops);
1547 	if (err)
1548 		bus->iommu_ops = NULL;
1549 
1550 	return err;
1551 }
1552 EXPORT_SYMBOL_GPL(bus_set_iommu);
1553 
1554 bool iommu_present(struct bus_type *bus)
1555 {
1556 	return bus->iommu_ops != NULL;
1557 }
1558 EXPORT_SYMBOL_GPL(iommu_present);
1559 
1560 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1561 {
1562 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1563 		return false;
1564 
1565 	return bus->iommu_ops->capable(cap);
1566 }
1567 EXPORT_SYMBOL_GPL(iommu_capable);
1568 
1569 /**
1570  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1571  * @domain: iommu domain
1572  * @handler: fault handler
1573  * @token: user data, will be passed back to the fault handler
1574  *
1575  * This function should be used by IOMMU users which want to be notified
1576  * whenever an IOMMU fault happens.
1577  *
1578  * The fault handler itself should return 0 on success, and an appropriate
1579  * error code otherwise.
1580  */
1581 void iommu_set_fault_handler(struct iommu_domain *domain,
1582 					iommu_fault_handler_t handler,
1583 					void *token)
1584 {
1585 	BUG_ON(!domain);
1586 
1587 	domain->handler = handler;
1588 	domain->handler_token = token;
1589 }
1590 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1591 
1592 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1593 						 unsigned type)
1594 {
1595 	struct iommu_domain *domain;
1596 
1597 	if (bus == NULL || bus->iommu_ops == NULL)
1598 		return NULL;
1599 
1600 	domain = bus->iommu_ops->domain_alloc(type);
1601 	if (!domain)
1602 		return NULL;
1603 
1604 	domain->ops  = bus->iommu_ops;
1605 	domain->type = type;
1606 	/* Assume all sizes by default; the driver may override this later */
1607 	domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
1608 
1609 	return domain;
1610 }
1611 
1612 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1613 {
1614 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1615 }
1616 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1617 
1618 void iommu_domain_free(struct iommu_domain *domain)
1619 {
1620 	domain->ops->domain_free(domain);
1621 }
1622 EXPORT_SYMBOL_GPL(iommu_domain_free);
1623 
1624 static int __iommu_attach_device(struct iommu_domain *domain,
1625 				 struct device *dev)
1626 {
1627 	int ret;
1628 	if ((domain->ops->is_attach_deferred != NULL) &&
1629 	    domain->ops->is_attach_deferred(domain, dev))
1630 		return 0;
1631 
1632 	if (unlikely(domain->ops->attach_dev == NULL))
1633 		return -ENODEV;
1634 
1635 	ret = domain->ops->attach_dev(domain, dev);
1636 	if (!ret)
1637 		trace_attach_device_to_domain(dev);
1638 	return ret;
1639 }
1640 
1641 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1642 {
1643 	struct iommu_group *group;
1644 	int ret;
1645 
1646 	group = iommu_group_get(dev);
1647 	if (!group)
1648 		return -ENODEV;
1649 
1650 	/*
1651 	 * Lock the group to make sure the device-count doesn't
1652 	 * change while we are attaching
1653 	 */
1654 	mutex_lock(&group->mutex);
1655 	ret = -EINVAL;
1656 	if (iommu_group_device_count(group) != 1)
1657 		goto out_unlock;
1658 
1659 	ret = __iommu_attach_group(domain, group);
1660 
1661 out_unlock:
1662 	mutex_unlock(&group->mutex);
1663 	iommu_group_put(group);
1664 
1665 	return ret;
1666 }
1667 EXPORT_SYMBOL_GPL(iommu_attach_device);
1668 
1669 int iommu_cache_invalidate(struct iommu_domain *domain, struct device *dev,
1670 			   struct iommu_cache_invalidate_info *inv_info)
1671 {
1672 	if (unlikely(!domain->ops->cache_invalidate))
1673 		return -ENODEV;
1674 
1675 	return domain->ops->cache_invalidate(domain, dev, inv_info);
1676 }
1677 EXPORT_SYMBOL_GPL(iommu_cache_invalidate);
1678 
1679 int iommu_sva_bind_gpasid(struct iommu_domain *domain,
1680 			   struct device *dev, struct iommu_gpasid_bind_data *data)
1681 {
1682 	if (unlikely(!domain->ops->sva_bind_gpasid))
1683 		return -ENODEV;
1684 
1685 	return domain->ops->sva_bind_gpasid(domain, dev, data);
1686 }
1687 EXPORT_SYMBOL_GPL(iommu_sva_bind_gpasid);
1688 
1689 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
1690 			     ioasid_t pasid)
1691 {
1692 	if (unlikely(!domain->ops->sva_unbind_gpasid))
1693 		return -ENODEV;
1694 
1695 	return domain->ops->sva_unbind_gpasid(dev, pasid);
1696 }
1697 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid);
1698 
1699 static void __iommu_detach_device(struct iommu_domain *domain,
1700 				  struct device *dev)
1701 {
1702 	if ((domain->ops->is_attach_deferred != NULL) &&
1703 	    domain->ops->is_attach_deferred(domain, dev))
1704 		return;
1705 
1706 	if (unlikely(domain->ops->detach_dev == NULL))
1707 		return;
1708 
1709 	domain->ops->detach_dev(domain, dev);
1710 	trace_detach_device_from_domain(dev);
1711 }
1712 
1713 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
1714 {
1715 	struct iommu_group *group;
1716 
1717 	group = iommu_group_get(dev);
1718 	if (!group)
1719 		return;
1720 
1721 	mutex_lock(&group->mutex);
1722 	if (iommu_group_device_count(group) != 1) {
1723 		WARN_ON(1);
1724 		goto out_unlock;
1725 	}
1726 
1727 	__iommu_detach_group(domain, group);
1728 
1729 out_unlock:
1730 	mutex_unlock(&group->mutex);
1731 	iommu_group_put(group);
1732 }
1733 EXPORT_SYMBOL_GPL(iommu_detach_device);
1734 
1735 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
1736 {
1737 	struct iommu_domain *domain;
1738 	struct iommu_group *group;
1739 
1740 	group = iommu_group_get(dev);
1741 	if (!group)
1742 		return NULL;
1743 
1744 	domain = group->domain;
1745 
1746 	iommu_group_put(group);
1747 
1748 	return domain;
1749 }
1750 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
1751 
1752 /*
1753  * For IOMMU_DOMAIN_DMA implementations which already provide their own
1754  * guarantees that the group and its default domain are valid and correct.
1755  */
1756 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
1757 {
1758 	return dev->iommu_group->default_domain;
1759 }
1760 
1761 /*
1762  * IOMMU groups are really the natural working unit of the IOMMU, but
1763  * the IOMMU API works on domains and devices.  Bridge that gap by
1764  * iterating over the devices in a group.  Ideally we'd have a single
1765  * device which represents the requestor ID of the group, but we also
1766  * allow IOMMU drivers to create policy defined minimum sets, where
1767  * the physical hardware may be able to distiguish members, but we
1768  * wish to group them at a higher level (ex. untrusted multi-function
1769  * PCI devices).  Thus we attach each device.
1770  */
1771 static int iommu_group_do_attach_device(struct device *dev, void *data)
1772 {
1773 	struct iommu_domain *domain = data;
1774 
1775 	return __iommu_attach_device(domain, dev);
1776 }
1777 
1778 static int __iommu_attach_group(struct iommu_domain *domain,
1779 				struct iommu_group *group)
1780 {
1781 	int ret;
1782 
1783 	if (group->default_domain && group->domain != group->default_domain)
1784 		return -EBUSY;
1785 
1786 	ret = __iommu_group_for_each_dev(group, domain,
1787 					 iommu_group_do_attach_device);
1788 	if (ret == 0)
1789 		group->domain = domain;
1790 
1791 	return ret;
1792 }
1793 
1794 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
1795 {
1796 	int ret;
1797 
1798 	mutex_lock(&group->mutex);
1799 	ret = __iommu_attach_group(domain, group);
1800 	mutex_unlock(&group->mutex);
1801 
1802 	return ret;
1803 }
1804 EXPORT_SYMBOL_GPL(iommu_attach_group);
1805 
1806 static int iommu_group_do_detach_device(struct device *dev, void *data)
1807 {
1808 	struct iommu_domain *domain = data;
1809 
1810 	__iommu_detach_device(domain, dev);
1811 
1812 	return 0;
1813 }
1814 
1815 static void __iommu_detach_group(struct iommu_domain *domain,
1816 				 struct iommu_group *group)
1817 {
1818 	int ret;
1819 
1820 	if (!group->default_domain) {
1821 		__iommu_group_for_each_dev(group, domain,
1822 					   iommu_group_do_detach_device);
1823 		group->domain = NULL;
1824 		return;
1825 	}
1826 
1827 	if (group->domain == group->default_domain)
1828 		return;
1829 
1830 	/* Detach by re-attaching to the default domain */
1831 	ret = __iommu_group_for_each_dev(group, group->default_domain,
1832 					 iommu_group_do_attach_device);
1833 	if (ret != 0)
1834 		WARN_ON(1);
1835 	else
1836 		group->domain = group->default_domain;
1837 }
1838 
1839 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
1840 {
1841 	mutex_lock(&group->mutex);
1842 	__iommu_detach_group(domain, group);
1843 	mutex_unlock(&group->mutex);
1844 }
1845 EXPORT_SYMBOL_GPL(iommu_detach_group);
1846 
1847 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1848 {
1849 	if (unlikely(domain->ops->iova_to_phys == NULL))
1850 		return 0;
1851 
1852 	return domain->ops->iova_to_phys(domain, iova);
1853 }
1854 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
1855 
1856 static size_t iommu_pgsize(struct iommu_domain *domain,
1857 			   unsigned long addr_merge, size_t size)
1858 {
1859 	unsigned int pgsize_idx;
1860 	size_t pgsize;
1861 
1862 	/* Max page size that still fits into 'size' */
1863 	pgsize_idx = __fls(size);
1864 
1865 	/* need to consider alignment requirements ? */
1866 	if (likely(addr_merge)) {
1867 		/* Max page size allowed by address */
1868 		unsigned int align_pgsize_idx = __ffs(addr_merge);
1869 		pgsize_idx = min(pgsize_idx, align_pgsize_idx);
1870 	}
1871 
1872 	/* build a mask of acceptable page sizes */
1873 	pgsize = (1UL << (pgsize_idx + 1)) - 1;
1874 
1875 	/* throw away page sizes not supported by the hardware */
1876 	pgsize &= domain->pgsize_bitmap;
1877 
1878 	/* make sure we're still sane */
1879 	BUG_ON(!pgsize);
1880 
1881 	/* pick the biggest page */
1882 	pgsize_idx = __fls(pgsize);
1883 	pgsize = 1UL << pgsize_idx;
1884 
1885 	return pgsize;
1886 }
1887 
1888 int __iommu_map(struct iommu_domain *domain, unsigned long iova,
1889 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
1890 {
1891 	const struct iommu_ops *ops = domain->ops;
1892 	unsigned long orig_iova = iova;
1893 	unsigned int min_pagesz;
1894 	size_t orig_size = size;
1895 	phys_addr_t orig_paddr = paddr;
1896 	int ret = 0;
1897 
1898 	if (unlikely(ops->map == NULL ||
1899 		     domain->pgsize_bitmap == 0UL))
1900 		return -ENODEV;
1901 
1902 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1903 		return -EINVAL;
1904 
1905 	/* find out the minimum page size supported */
1906 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1907 
1908 	/*
1909 	 * both the virtual address and the physical one, as well as
1910 	 * the size of the mapping, must be aligned (at least) to the
1911 	 * size of the smallest page supported by the hardware
1912 	 */
1913 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
1914 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
1915 		       iova, &paddr, size, min_pagesz);
1916 		return -EINVAL;
1917 	}
1918 
1919 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
1920 
1921 	while (size) {
1922 		size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
1923 
1924 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
1925 			 iova, &paddr, pgsize);
1926 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
1927 
1928 		if (ret)
1929 			break;
1930 
1931 		iova += pgsize;
1932 		paddr += pgsize;
1933 		size -= pgsize;
1934 	}
1935 
1936 	if (ops->iotlb_sync_map)
1937 		ops->iotlb_sync_map(domain);
1938 
1939 	/* unroll mapping in case something went wrong */
1940 	if (ret)
1941 		iommu_unmap(domain, orig_iova, orig_size - size);
1942 	else
1943 		trace_map(orig_iova, orig_paddr, orig_size);
1944 
1945 	return ret;
1946 }
1947 
1948 int iommu_map(struct iommu_domain *domain, unsigned long iova,
1949 	      phys_addr_t paddr, size_t size, int prot)
1950 {
1951 	might_sleep();
1952 	return __iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
1953 }
1954 EXPORT_SYMBOL_GPL(iommu_map);
1955 
1956 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
1957 	      phys_addr_t paddr, size_t size, int prot)
1958 {
1959 	return __iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
1960 }
1961 EXPORT_SYMBOL_GPL(iommu_map_atomic);
1962 
1963 static size_t __iommu_unmap(struct iommu_domain *domain,
1964 			    unsigned long iova, size_t size,
1965 			    struct iommu_iotlb_gather *iotlb_gather)
1966 {
1967 	const struct iommu_ops *ops = domain->ops;
1968 	size_t unmapped_page, unmapped = 0;
1969 	unsigned long orig_iova = iova;
1970 	unsigned int min_pagesz;
1971 
1972 	if (unlikely(ops->unmap == NULL ||
1973 		     domain->pgsize_bitmap == 0UL))
1974 		return 0;
1975 
1976 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1977 		return 0;
1978 
1979 	/* find out the minimum page size supported */
1980 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1981 
1982 	/*
1983 	 * The virtual address, as well as the size of the mapping, must be
1984 	 * aligned (at least) to the size of the smallest page supported
1985 	 * by the hardware
1986 	 */
1987 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
1988 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
1989 		       iova, size, min_pagesz);
1990 		return 0;
1991 	}
1992 
1993 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
1994 
1995 	/*
1996 	 * Keep iterating until we either unmap 'size' bytes (or more)
1997 	 * or we hit an area that isn't mapped.
1998 	 */
1999 	while (unmapped < size) {
2000 		size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
2001 
2002 		unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather);
2003 		if (!unmapped_page)
2004 			break;
2005 
2006 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2007 			 iova, unmapped_page);
2008 
2009 		iova += unmapped_page;
2010 		unmapped += unmapped_page;
2011 	}
2012 
2013 	trace_unmap(orig_iova, size, unmapped);
2014 	return unmapped;
2015 }
2016 
2017 size_t iommu_unmap(struct iommu_domain *domain,
2018 		   unsigned long iova, size_t size)
2019 {
2020 	struct iommu_iotlb_gather iotlb_gather;
2021 	size_t ret;
2022 
2023 	iommu_iotlb_gather_init(&iotlb_gather);
2024 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2025 	iommu_tlb_sync(domain, &iotlb_gather);
2026 
2027 	return ret;
2028 }
2029 EXPORT_SYMBOL_GPL(iommu_unmap);
2030 
2031 size_t iommu_unmap_fast(struct iommu_domain *domain,
2032 			unsigned long iova, size_t size,
2033 			struct iommu_iotlb_gather *iotlb_gather)
2034 {
2035 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2036 }
2037 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2038 
2039 size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2040 		    struct scatterlist *sg, unsigned int nents, int prot,
2041 		    gfp_t gfp)
2042 {
2043 	size_t len = 0, mapped = 0;
2044 	phys_addr_t start;
2045 	unsigned int i = 0;
2046 	int ret;
2047 
2048 	while (i <= nents) {
2049 		phys_addr_t s_phys = sg_phys(sg);
2050 
2051 		if (len && s_phys != start + len) {
2052 			ret = __iommu_map(domain, iova + mapped, start,
2053 					len, prot, gfp);
2054 
2055 			if (ret)
2056 				goto out_err;
2057 
2058 			mapped += len;
2059 			len = 0;
2060 		}
2061 
2062 		if (len) {
2063 			len += sg->length;
2064 		} else {
2065 			len = sg->length;
2066 			start = s_phys;
2067 		}
2068 
2069 		if (++i < nents)
2070 			sg = sg_next(sg);
2071 	}
2072 
2073 	return mapped;
2074 
2075 out_err:
2076 	/* undo mappings already done */
2077 	iommu_unmap(domain, iova, mapped);
2078 
2079 	return 0;
2080 
2081 }
2082 
2083 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2084 		    struct scatterlist *sg, unsigned int nents, int prot)
2085 {
2086 	might_sleep();
2087 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2088 }
2089 EXPORT_SYMBOL_GPL(iommu_map_sg);
2090 
2091 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2092 		    struct scatterlist *sg, unsigned int nents, int prot)
2093 {
2094 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2095 }
2096 EXPORT_SYMBOL_GPL(iommu_map_sg_atomic);
2097 
2098 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
2099 			       phys_addr_t paddr, u64 size, int prot)
2100 {
2101 	if (unlikely(domain->ops->domain_window_enable == NULL))
2102 		return -ENODEV;
2103 
2104 	return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
2105 						 prot);
2106 }
2107 EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
2108 
2109 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
2110 {
2111 	if (unlikely(domain->ops->domain_window_disable == NULL))
2112 		return;
2113 
2114 	return domain->ops->domain_window_disable(domain, wnd_nr);
2115 }
2116 EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
2117 
2118 /**
2119  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2120  * @domain: the iommu domain where the fault has happened
2121  * @dev: the device where the fault has happened
2122  * @iova: the faulting address
2123  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2124  *
2125  * This function should be called by the low-level IOMMU implementations
2126  * whenever IOMMU faults happen, to allow high-level users, that are
2127  * interested in such events, to know about them.
2128  *
2129  * This event may be useful for several possible use cases:
2130  * - mere logging of the event
2131  * - dynamic TLB/PTE loading
2132  * - if restarting of the faulting device is required
2133  *
2134  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2135  * PTE/TLB loading will one day be supported, implementations will be able
2136  * to tell whether it succeeded or not according to this return value).
2137  *
2138  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2139  * (though fault handlers can also return -ENOSYS, in case they want to
2140  * elicit the default behavior of the IOMMU drivers).
2141  */
2142 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2143 		       unsigned long iova, int flags)
2144 {
2145 	int ret = -ENOSYS;
2146 
2147 	/*
2148 	 * if upper layers showed interest and installed a fault handler,
2149 	 * invoke it.
2150 	 */
2151 	if (domain->handler)
2152 		ret = domain->handler(domain, dev, iova, flags,
2153 						domain->handler_token);
2154 
2155 	trace_io_page_fault(dev, iova, flags);
2156 	return ret;
2157 }
2158 EXPORT_SYMBOL_GPL(report_iommu_fault);
2159 
2160 static int __init iommu_init(void)
2161 {
2162 	iommu_group_kset = kset_create_and_add("iommu_groups",
2163 					       NULL, kernel_kobj);
2164 	BUG_ON(!iommu_group_kset);
2165 
2166 	iommu_debugfs_setup();
2167 
2168 	return 0;
2169 }
2170 core_initcall(iommu_init);
2171 
2172 int iommu_domain_get_attr(struct iommu_domain *domain,
2173 			  enum iommu_attr attr, void *data)
2174 {
2175 	struct iommu_domain_geometry *geometry;
2176 	bool *paging;
2177 	int ret = 0;
2178 
2179 	switch (attr) {
2180 	case DOMAIN_ATTR_GEOMETRY:
2181 		geometry  = data;
2182 		*geometry = domain->geometry;
2183 
2184 		break;
2185 	case DOMAIN_ATTR_PAGING:
2186 		paging  = data;
2187 		*paging = (domain->pgsize_bitmap != 0UL);
2188 		break;
2189 	default:
2190 		if (!domain->ops->domain_get_attr)
2191 			return -EINVAL;
2192 
2193 		ret = domain->ops->domain_get_attr(domain, attr, data);
2194 	}
2195 
2196 	return ret;
2197 }
2198 EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
2199 
2200 int iommu_domain_set_attr(struct iommu_domain *domain,
2201 			  enum iommu_attr attr, void *data)
2202 {
2203 	int ret = 0;
2204 
2205 	switch (attr) {
2206 	default:
2207 		if (domain->ops->domain_set_attr == NULL)
2208 			return -EINVAL;
2209 
2210 		ret = domain->ops->domain_set_attr(domain, attr, data);
2211 	}
2212 
2213 	return ret;
2214 }
2215 EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
2216 
2217 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2218 {
2219 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2220 
2221 	if (ops && ops->get_resv_regions)
2222 		ops->get_resv_regions(dev, list);
2223 }
2224 
2225 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2226 {
2227 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2228 
2229 	if (ops && ops->put_resv_regions)
2230 		ops->put_resv_regions(dev, list);
2231 }
2232 
2233 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2234 						  size_t length, int prot,
2235 						  enum iommu_resv_type type)
2236 {
2237 	struct iommu_resv_region *region;
2238 
2239 	region = kzalloc(sizeof(*region), GFP_KERNEL);
2240 	if (!region)
2241 		return NULL;
2242 
2243 	INIT_LIST_HEAD(&region->list);
2244 	region->start = start;
2245 	region->length = length;
2246 	region->prot = prot;
2247 	region->type = type;
2248 	return region;
2249 }
2250 
2251 static int
2252 request_default_domain_for_dev(struct device *dev, unsigned long type)
2253 {
2254 	struct iommu_domain *domain;
2255 	struct iommu_group *group;
2256 	int ret;
2257 
2258 	/* Device must already be in a group before calling this function */
2259 	group = iommu_group_get(dev);
2260 	if (!group)
2261 		return -EINVAL;
2262 
2263 	mutex_lock(&group->mutex);
2264 
2265 	ret = 0;
2266 	if (group->default_domain && group->default_domain->type == type)
2267 		goto out;
2268 
2269 	/* Don't change mappings of existing devices */
2270 	ret = -EBUSY;
2271 	if (iommu_group_device_count(group) != 1)
2272 		goto out;
2273 
2274 	ret = -ENOMEM;
2275 	domain = __iommu_domain_alloc(dev->bus, type);
2276 	if (!domain)
2277 		goto out;
2278 
2279 	/* Attach the device to the domain */
2280 	ret = __iommu_attach_group(domain, group);
2281 	if (ret) {
2282 		iommu_domain_free(domain);
2283 		goto out;
2284 	}
2285 
2286 	/* Make the domain the default for this group */
2287 	if (group->default_domain)
2288 		iommu_domain_free(group->default_domain);
2289 	group->default_domain = domain;
2290 
2291 	iommu_group_create_direct_mappings(group, dev);
2292 
2293 	dev_info(dev, "Using iommu %s mapping\n",
2294 		 type == IOMMU_DOMAIN_DMA ? "dma" : "direct");
2295 
2296 	ret = 0;
2297 out:
2298 	mutex_unlock(&group->mutex);
2299 	iommu_group_put(group);
2300 
2301 	return ret;
2302 }
2303 
2304 /* Request that a device is direct mapped by the IOMMU */
2305 int iommu_request_dm_for_dev(struct device *dev)
2306 {
2307 	return request_default_domain_for_dev(dev, IOMMU_DOMAIN_IDENTITY);
2308 }
2309 
2310 /* Request that a device can't be direct mapped by the IOMMU */
2311 int iommu_request_dma_domain_for_dev(struct device *dev)
2312 {
2313 	return request_default_domain_for_dev(dev, IOMMU_DOMAIN_DMA);
2314 }
2315 
2316 void iommu_set_default_passthrough(bool cmd_line)
2317 {
2318 	if (cmd_line)
2319 		iommu_set_cmd_line_dma_api();
2320 
2321 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2322 }
2323 
2324 void iommu_set_default_translated(bool cmd_line)
2325 {
2326 	if (cmd_line)
2327 		iommu_set_cmd_line_dma_api();
2328 
2329 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2330 }
2331 
2332 bool iommu_default_passthrough(void)
2333 {
2334 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2335 }
2336 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2337 
2338 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2339 {
2340 	const struct iommu_ops *ops = NULL;
2341 	struct iommu_device *iommu;
2342 
2343 	spin_lock(&iommu_device_lock);
2344 	list_for_each_entry(iommu, &iommu_device_list, list)
2345 		if (iommu->fwnode == fwnode) {
2346 			ops = iommu->ops;
2347 			break;
2348 		}
2349 	spin_unlock(&iommu_device_lock);
2350 	return ops;
2351 }
2352 
2353 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2354 		      const struct iommu_ops *ops)
2355 {
2356 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2357 
2358 	if (fwspec)
2359 		return ops == fwspec->ops ? 0 : -EINVAL;
2360 
2361 	fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL);
2362 	if (!fwspec)
2363 		return -ENOMEM;
2364 
2365 	of_node_get(to_of_node(iommu_fwnode));
2366 	fwspec->iommu_fwnode = iommu_fwnode;
2367 	fwspec->ops = ops;
2368 	dev_iommu_fwspec_set(dev, fwspec);
2369 	return 0;
2370 }
2371 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2372 
2373 void iommu_fwspec_free(struct device *dev)
2374 {
2375 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2376 
2377 	if (fwspec) {
2378 		fwnode_handle_put(fwspec->iommu_fwnode);
2379 		kfree(fwspec);
2380 		dev_iommu_fwspec_set(dev, NULL);
2381 	}
2382 }
2383 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2384 
2385 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2386 {
2387 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2388 	size_t size;
2389 	int i;
2390 
2391 	if (!fwspec)
2392 		return -EINVAL;
2393 
2394 	size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]);
2395 	if (size > sizeof(*fwspec)) {
2396 		fwspec = krealloc(fwspec, size, GFP_KERNEL);
2397 		if (!fwspec)
2398 			return -ENOMEM;
2399 
2400 		dev_iommu_fwspec_set(dev, fwspec);
2401 	}
2402 
2403 	for (i = 0; i < num_ids; i++)
2404 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2405 
2406 	fwspec->num_ids += num_ids;
2407 	return 0;
2408 }
2409 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2410 
2411 /*
2412  * Per device IOMMU features.
2413  */
2414 bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat)
2415 {
2416 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2417 
2418 	if (ops && ops->dev_has_feat)
2419 		return ops->dev_has_feat(dev, feat);
2420 
2421 	return false;
2422 }
2423 EXPORT_SYMBOL_GPL(iommu_dev_has_feature);
2424 
2425 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2426 {
2427 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2428 
2429 	if (ops && ops->dev_enable_feat)
2430 		return ops->dev_enable_feat(dev, feat);
2431 
2432 	return -ENODEV;
2433 }
2434 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2435 
2436 /*
2437  * The device drivers should do the necessary cleanups before calling this.
2438  * For example, before disabling the aux-domain feature, the device driver
2439  * should detach all aux-domains. Otherwise, this will return -EBUSY.
2440  */
2441 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2442 {
2443 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2444 
2445 	if (ops && ops->dev_disable_feat)
2446 		return ops->dev_disable_feat(dev, feat);
2447 
2448 	return -EBUSY;
2449 }
2450 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2451 
2452 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2453 {
2454 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2455 
2456 	if (ops && ops->dev_feat_enabled)
2457 		return ops->dev_feat_enabled(dev, feat);
2458 
2459 	return false;
2460 }
2461 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2462 
2463 /*
2464  * Aux-domain specific attach/detach.
2465  *
2466  * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns
2467  * true. Also, as long as domains are attached to a device through this
2468  * interface, any tries to call iommu_attach_device() should fail
2469  * (iommu_detach_device() can't fail, so we fail when trying to re-attach).
2470  * This should make us safe against a device being attached to a guest as a
2471  * whole while there are still pasid users on it (aux and sva).
2472  */
2473 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev)
2474 {
2475 	int ret = -ENODEV;
2476 
2477 	if (domain->ops->aux_attach_dev)
2478 		ret = domain->ops->aux_attach_dev(domain, dev);
2479 
2480 	if (!ret)
2481 		trace_attach_device_to_domain(dev);
2482 
2483 	return ret;
2484 }
2485 EXPORT_SYMBOL_GPL(iommu_aux_attach_device);
2486 
2487 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev)
2488 {
2489 	if (domain->ops->aux_detach_dev) {
2490 		domain->ops->aux_detach_dev(domain, dev);
2491 		trace_detach_device_from_domain(dev);
2492 	}
2493 }
2494 EXPORT_SYMBOL_GPL(iommu_aux_detach_device);
2495 
2496 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
2497 {
2498 	int ret = -ENODEV;
2499 
2500 	if (domain->ops->aux_get_pasid)
2501 		ret = domain->ops->aux_get_pasid(domain, dev);
2502 
2503 	return ret;
2504 }
2505 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid);
2506 
2507 /**
2508  * iommu_sva_bind_device() - Bind a process address space to a device
2509  * @dev: the device
2510  * @mm: the mm to bind, caller must hold a reference to it
2511  *
2512  * Create a bond between device and address space, allowing the device to access
2513  * the mm using the returned PASID. If a bond already exists between @device and
2514  * @mm, it is returned and an additional reference is taken. Caller must call
2515  * iommu_sva_unbind_device() to release each reference.
2516  *
2517  * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
2518  * initialize the required SVA features.
2519  *
2520  * On error, returns an ERR_PTR value.
2521  */
2522 struct iommu_sva *
2523 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
2524 {
2525 	struct iommu_group *group;
2526 	struct iommu_sva *handle = ERR_PTR(-EINVAL);
2527 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2528 
2529 	if (!ops || !ops->sva_bind)
2530 		return ERR_PTR(-ENODEV);
2531 
2532 	group = iommu_group_get(dev);
2533 	if (!group)
2534 		return ERR_PTR(-ENODEV);
2535 
2536 	/* Ensure device count and domain don't change while we're binding */
2537 	mutex_lock(&group->mutex);
2538 
2539 	/*
2540 	 * To keep things simple, SVA currently doesn't support IOMMU groups
2541 	 * with more than one device. Existing SVA-capable systems are not
2542 	 * affected by the problems that required IOMMU groups (lack of ACS
2543 	 * isolation, device ID aliasing and other hardware issues).
2544 	 */
2545 	if (iommu_group_device_count(group) != 1)
2546 		goto out_unlock;
2547 
2548 	handle = ops->sva_bind(dev, mm, drvdata);
2549 
2550 out_unlock:
2551 	mutex_unlock(&group->mutex);
2552 	iommu_group_put(group);
2553 
2554 	return handle;
2555 }
2556 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
2557 
2558 /**
2559  * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
2560  * @handle: the handle returned by iommu_sva_bind_device()
2561  *
2562  * Put reference to a bond between device and address space. The device should
2563  * not be issuing any more transaction for this PASID. All outstanding page
2564  * requests for this PASID must have been flushed to the IOMMU.
2565  *
2566  * Returns 0 on success, or an error value
2567  */
2568 void iommu_sva_unbind_device(struct iommu_sva *handle)
2569 {
2570 	struct iommu_group *group;
2571 	struct device *dev = handle->dev;
2572 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2573 
2574 	if (!ops || !ops->sva_unbind)
2575 		return;
2576 
2577 	group = iommu_group_get(dev);
2578 	if (!group)
2579 		return;
2580 
2581 	mutex_lock(&group->mutex);
2582 	ops->sva_unbind(handle);
2583 	mutex_unlock(&group->mutex);
2584 
2585 	iommu_group_put(group);
2586 }
2587 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
2588 
2589 int iommu_sva_set_ops(struct iommu_sva *handle,
2590 		      const struct iommu_sva_ops *sva_ops)
2591 {
2592 	if (handle->ops && handle->ops != sva_ops)
2593 		return -EEXIST;
2594 
2595 	handle->ops = sva_ops;
2596 	return 0;
2597 }
2598 EXPORT_SYMBOL_GPL(iommu_sva_set_ops);
2599 
2600 int iommu_sva_get_pasid(struct iommu_sva *handle)
2601 {
2602 	const struct iommu_ops *ops = handle->dev->bus->iommu_ops;
2603 
2604 	if (!ops || !ops->sva_get_pasid)
2605 		return IOMMU_PASID_INVALID;
2606 
2607 	return ops->sva_get_pasid(handle);
2608 }
2609 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
2610