xref: /openbmc/linux/drivers/iommu/iommu.c (revision 6eb4da8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <linux/cdx/cdx_bus.h>
32 #include <trace/events/iommu.h>
33 #include <linux/sched/mm.h>
34 #include <linux/msi.h>
35 
36 #include "dma-iommu.h"
37 
38 #include "iommu-sva.h"
39 
40 static struct kset *iommu_group_kset;
41 static DEFINE_IDA(iommu_group_ida);
42 
43 static unsigned int iommu_def_domain_type __read_mostly;
44 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
45 static u32 iommu_cmd_line __read_mostly;
46 
47 struct iommu_group {
48 	struct kobject kobj;
49 	struct kobject *devices_kobj;
50 	struct list_head devices;
51 	struct xarray pasid_array;
52 	struct mutex mutex;
53 	void *iommu_data;
54 	void (*iommu_data_release)(void *iommu_data);
55 	char *name;
56 	int id;
57 	struct iommu_domain *default_domain;
58 	struct iommu_domain *blocking_domain;
59 	struct iommu_domain *domain;
60 	struct list_head entry;
61 	unsigned int owner_cnt;
62 	void *owner;
63 };
64 
65 struct group_device {
66 	struct list_head list;
67 	struct device *dev;
68 	char *name;
69 };
70 
71 /* Iterate over each struct group_device in a struct iommu_group */
72 #define for_each_group_device(group, pos) \
73 	list_for_each_entry(pos, &(group)->devices, list)
74 
75 struct iommu_group_attribute {
76 	struct attribute attr;
77 	ssize_t (*show)(struct iommu_group *group, char *buf);
78 	ssize_t (*store)(struct iommu_group *group,
79 			 const char *buf, size_t count);
80 };
81 
82 static const char * const iommu_group_resv_type_string[] = {
83 	[IOMMU_RESV_DIRECT]			= "direct",
84 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
85 	[IOMMU_RESV_RESERVED]			= "reserved",
86 	[IOMMU_RESV_MSI]			= "msi",
87 	[IOMMU_RESV_SW_MSI]			= "msi",
88 };
89 
90 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
91 #define IOMMU_CMD_LINE_STRICT		BIT(1)
92 
93 static int iommu_bus_notifier(struct notifier_block *nb,
94 			      unsigned long action, void *data);
95 static void iommu_release_device(struct device *dev);
96 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus,
97 						 unsigned type);
98 static int __iommu_attach_device(struct iommu_domain *domain,
99 				 struct device *dev);
100 static int __iommu_attach_group(struct iommu_domain *domain,
101 				struct iommu_group *group);
102 
103 enum {
104 	IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
105 };
106 
107 static int __iommu_device_set_domain(struct iommu_group *group,
108 				     struct device *dev,
109 				     struct iommu_domain *new_domain,
110 				     unsigned int flags);
111 static int __iommu_group_set_domain_internal(struct iommu_group *group,
112 					     struct iommu_domain *new_domain,
113 					     unsigned int flags);
114 static int __iommu_group_set_domain(struct iommu_group *group,
115 				    struct iommu_domain *new_domain)
116 {
117 	return __iommu_group_set_domain_internal(group, new_domain, 0);
118 }
119 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
120 					    struct iommu_domain *new_domain)
121 {
122 	WARN_ON(__iommu_group_set_domain_internal(
123 		group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
124 }
125 
126 static int iommu_setup_default_domain(struct iommu_group *group,
127 				      int target_type);
128 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
129 					       struct device *dev);
130 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
131 static ssize_t iommu_group_store_type(struct iommu_group *group,
132 				      const char *buf, size_t count);
133 
134 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
135 struct iommu_group_attribute iommu_group_attr_##_name =		\
136 	__ATTR(_name, _mode, _show, _store)
137 
138 #define to_iommu_group_attr(_attr)	\
139 	container_of(_attr, struct iommu_group_attribute, attr)
140 #define to_iommu_group(_kobj)		\
141 	container_of(_kobj, struct iommu_group, kobj)
142 
143 static LIST_HEAD(iommu_device_list);
144 static DEFINE_SPINLOCK(iommu_device_lock);
145 
146 static struct bus_type * const iommu_buses[] = {
147 	&platform_bus_type,
148 #ifdef CONFIG_PCI
149 	&pci_bus_type,
150 #endif
151 #ifdef CONFIG_ARM_AMBA
152 	&amba_bustype,
153 #endif
154 #ifdef CONFIG_FSL_MC_BUS
155 	&fsl_mc_bus_type,
156 #endif
157 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
158 	&host1x_context_device_bus_type,
159 #endif
160 #ifdef CONFIG_CDX_BUS
161 	&cdx_bus_type,
162 #endif
163 };
164 
165 /*
166  * Use a function instead of an array here because the domain-type is a
167  * bit-field, so an array would waste memory.
168  */
169 static const char *iommu_domain_type_str(unsigned int t)
170 {
171 	switch (t) {
172 	case IOMMU_DOMAIN_BLOCKED:
173 		return "Blocked";
174 	case IOMMU_DOMAIN_IDENTITY:
175 		return "Passthrough";
176 	case IOMMU_DOMAIN_UNMANAGED:
177 		return "Unmanaged";
178 	case IOMMU_DOMAIN_DMA:
179 	case IOMMU_DOMAIN_DMA_FQ:
180 		return "Translated";
181 	default:
182 		return "Unknown";
183 	}
184 }
185 
186 static int __init iommu_subsys_init(void)
187 {
188 	struct notifier_block *nb;
189 
190 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
191 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
192 			iommu_set_default_passthrough(false);
193 		else
194 			iommu_set_default_translated(false);
195 
196 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
197 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
198 			iommu_set_default_translated(false);
199 		}
200 	}
201 
202 	if (!iommu_default_passthrough() && !iommu_dma_strict)
203 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
204 
205 	pr_info("Default domain type: %s%s\n",
206 		iommu_domain_type_str(iommu_def_domain_type),
207 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
208 			" (set via kernel command line)" : "");
209 
210 	if (!iommu_default_passthrough())
211 		pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
212 			iommu_dma_strict ? "strict" : "lazy",
213 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
214 				" (set via kernel command line)" : "");
215 
216 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
217 	if (!nb)
218 		return -ENOMEM;
219 
220 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
221 		nb[i].notifier_call = iommu_bus_notifier;
222 		bus_register_notifier(iommu_buses[i], &nb[i]);
223 	}
224 
225 	return 0;
226 }
227 subsys_initcall(iommu_subsys_init);
228 
229 static int remove_iommu_group(struct device *dev, void *data)
230 {
231 	if (dev->iommu && dev->iommu->iommu_dev == data)
232 		iommu_release_device(dev);
233 
234 	return 0;
235 }
236 
237 /**
238  * iommu_device_register() - Register an IOMMU hardware instance
239  * @iommu: IOMMU handle for the instance
240  * @ops:   IOMMU ops to associate with the instance
241  * @hwdev: (optional) actual instance device, used for fwnode lookup
242  *
243  * Return: 0 on success, or an error.
244  */
245 int iommu_device_register(struct iommu_device *iommu,
246 			  const struct iommu_ops *ops, struct device *hwdev)
247 {
248 	int err = 0;
249 
250 	/* We need to be able to take module references appropriately */
251 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
252 		return -EINVAL;
253 	/*
254 	 * Temporarily enforce global restriction to a single driver. This was
255 	 * already the de-facto behaviour, since any possible combination of
256 	 * existing drivers would compete for at least the PCI or platform bus.
257 	 */
258 	if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops)
259 		return -EBUSY;
260 
261 	iommu->ops = ops;
262 	if (hwdev)
263 		iommu->fwnode = dev_fwnode(hwdev);
264 
265 	spin_lock(&iommu_device_lock);
266 	list_add_tail(&iommu->list, &iommu_device_list);
267 	spin_unlock(&iommu_device_lock);
268 
269 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) {
270 		iommu_buses[i]->iommu_ops = ops;
271 		err = bus_iommu_probe(iommu_buses[i]);
272 	}
273 	if (err)
274 		iommu_device_unregister(iommu);
275 	return err;
276 }
277 EXPORT_SYMBOL_GPL(iommu_device_register);
278 
279 void iommu_device_unregister(struct iommu_device *iommu)
280 {
281 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
282 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
283 
284 	spin_lock(&iommu_device_lock);
285 	list_del(&iommu->list);
286 	spin_unlock(&iommu_device_lock);
287 }
288 EXPORT_SYMBOL_GPL(iommu_device_unregister);
289 
290 static struct dev_iommu *dev_iommu_get(struct device *dev)
291 {
292 	struct dev_iommu *param = dev->iommu;
293 
294 	if (param)
295 		return param;
296 
297 	param = kzalloc(sizeof(*param), GFP_KERNEL);
298 	if (!param)
299 		return NULL;
300 
301 	mutex_init(&param->lock);
302 	dev->iommu = param;
303 	return param;
304 }
305 
306 static void dev_iommu_free(struct device *dev)
307 {
308 	struct dev_iommu *param = dev->iommu;
309 
310 	dev->iommu = NULL;
311 	if (param->fwspec) {
312 		fwnode_handle_put(param->fwspec->iommu_fwnode);
313 		kfree(param->fwspec);
314 	}
315 	kfree(param);
316 }
317 
318 static u32 dev_iommu_get_max_pasids(struct device *dev)
319 {
320 	u32 max_pasids = 0, bits = 0;
321 	int ret;
322 
323 	if (dev_is_pci(dev)) {
324 		ret = pci_max_pasids(to_pci_dev(dev));
325 		if (ret > 0)
326 			max_pasids = ret;
327 	} else {
328 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
329 		if (!ret)
330 			max_pasids = 1UL << bits;
331 	}
332 
333 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
334 }
335 
336 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
337 {
338 	const struct iommu_ops *ops = dev->bus->iommu_ops;
339 	struct iommu_device *iommu_dev;
340 	struct iommu_group *group;
341 	static DEFINE_MUTEX(iommu_probe_device_lock);
342 	int ret;
343 
344 	if (!ops)
345 		return -ENODEV;
346 	/*
347 	 * Serialise to avoid races between IOMMU drivers registering in
348 	 * parallel and/or the "replay" calls from ACPI/OF code via client
349 	 * driver probe. Once the latter have been cleaned up we should
350 	 * probably be able to use device_lock() here to minimise the scope,
351 	 * but for now enforcing a simple global ordering is fine.
352 	 */
353 	mutex_lock(&iommu_probe_device_lock);
354 
355 	/* Device is probed already if in a group */
356 	if (dev->iommu_group) {
357 		ret = 0;
358 		goto out_unlock;
359 	}
360 
361 	if (!dev_iommu_get(dev)) {
362 		ret = -ENOMEM;
363 		goto out_unlock;
364 	}
365 
366 	if (!try_module_get(ops->owner)) {
367 		ret = -EINVAL;
368 		goto err_free;
369 	}
370 
371 	iommu_dev = ops->probe_device(dev);
372 	if (IS_ERR(iommu_dev)) {
373 		ret = PTR_ERR(iommu_dev);
374 		goto out_module_put;
375 	}
376 
377 	dev->iommu->iommu_dev = iommu_dev;
378 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
379 	if (ops->is_attach_deferred)
380 		dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
381 
382 	group = iommu_group_get_for_dev(dev);
383 	if (IS_ERR(group)) {
384 		ret = PTR_ERR(group);
385 		goto out_release;
386 	}
387 
388 	mutex_lock(&group->mutex);
389 	if (group_list && !group->default_domain && list_empty(&group->entry))
390 		list_add_tail(&group->entry, group_list);
391 	mutex_unlock(&group->mutex);
392 	iommu_group_put(group);
393 
394 	mutex_unlock(&iommu_probe_device_lock);
395 	iommu_device_link(iommu_dev, dev);
396 
397 	return 0;
398 
399 out_release:
400 	if (ops->release_device)
401 		ops->release_device(dev);
402 
403 out_module_put:
404 	module_put(ops->owner);
405 
406 err_free:
407 	dev_iommu_free(dev);
408 
409 out_unlock:
410 	mutex_unlock(&iommu_probe_device_lock);
411 
412 	return ret;
413 }
414 
415 int iommu_probe_device(struct device *dev)
416 {
417 	const struct iommu_ops *ops;
418 	struct iommu_group *group;
419 	int ret;
420 
421 	ret = __iommu_probe_device(dev, NULL);
422 	if (ret)
423 		goto err_out;
424 
425 	group = iommu_group_get(dev);
426 	if (!group) {
427 		ret = -ENODEV;
428 		goto err_release;
429 	}
430 
431 	mutex_lock(&group->mutex);
432 
433 	if (group->default_domain)
434 		iommu_create_device_direct_mappings(group->default_domain, dev);
435 
436 	if (group->domain) {
437 		ret = __iommu_device_set_domain(group, dev, group->domain, 0);
438 		if (ret)
439 			goto err_unlock;
440 	} else if (!group->default_domain) {
441 		ret = iommu_setup_default_domain(group, 0);
442 		if (ret)
443 			goto err_unlock;
444 	}
445 
446 	mutex_unlock(&group->mutex);
447 	iommu_group_put(group);
448 
449 	ops = dev_iommu_ops(dev);
450 	if (ops->probe_finalize)
451 		ops->probe_finalize(dev);
452 
453 	return 0;
454 
455 err_unlock:
456 	mutex_unlock(&group->mutex);
457 	iommu_group_put(group);
458 err_release:
459 	iommu_release_device(dev);
460 
461 err_out:
462 	return ret;
463 
464 }
465 
466 /*
467  * Remove a device from a group's device list and return the group device
468  * if successful.
469  */
470 static struct group_device *
471 __iommu_group_remove_device(struct iommu_group *group, struct device *dev)
472 {
473 	struct group_device *device;
474 
475 	lockdep_assert_held(&group->mutex);
476 	for_each_group_device(group, device) {
477 		if (device->dev == dev) {
478 			list_del(&device->list);
479 			return device;
480 		}
481 	}
482 
483 	return NULL;
484 }
485 
486 /*
487  * Release a device from its group and decrements the iommu group reference
488  * count.
489  */
490 static void __iommu_group_release_device(struct iommu_group *group,
491 					 struct group_device *grp_dev)
492 {
493 	struct device *dev = grp_dev->dev;
494 
495 	sysfs_remove_link(group->devices_kobj, grp_dev->name);
496 	sysfs_remove_link(&dev->kobj, "iommu_group");
497 
498 	trace_remove_device_from_group(group->id, dev);
499 
500 	kfree(grp_dev->name);
501 	kfree(grp_dev);
502 	dev->iommu_group = NULL;
503 	kobject_put(group->devices_kobj);
504 }
505 
506 static void iommu_release_device(struct device *dev)
507 {
508 	struct iommu_group *group = dev->iommu_group;
509 	struct group_device *device;
510 	const struct iommu_ops *ops;
511 
512 	if (!dev->iommu || !group)
513 		return;
514 
515 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
516 
517 	mutex_lock(&group->mutex);
518 	device = __iommu_group_remove_device(group, dev);
519 
520 	/*
521 	 * If the group has become empty then ownership must have been released,
522 	 * and the current domain must be set back to NULL or the default
523 	 * domain.
524 	 */
525 	if (list_empty(&group->devices))
526 		WARN_ON(group->owner_cnt ||
527 			group->domain != group->default_domain);
528 
529 	/*
530 	 * release_device() must stop using any attached domain on the device.
531 	 * If there are still other devices in the group they are not effected
532 	 * by this callback.
533 	 *
534 	 * The IOMMU driver must set the device to either an identity or
535 	 * blocking translation and stop using any domain pointer, as it is
536 	 * going to be freed.
537 	 */
538 	ops = dev_iommu_ops(dev);
539 	if (ops->release_device)
540 		ops->release_device(dev);
541 	mutex_unlock(&group->mutex);
542 
543 	if (device)
544 		__iommu_group_release_device(group, device);
545 
546 	module_put(ops->owner);
547 	dev_iommu_free(dev);
548 }
549 
550 static int __init iommu_set_def_domain_type(char *str)
551 {
552 	bool pt;
553 	int ret;
554 
555 	ret = kstrtobool(str, &pt);
556 	if (ret)
557 		return ret;
558 
559 	if (pt)
560 		iommu_set_default_passthrough(true);
561 	else
562 		iommu_set_default_translated(true);
563 
564 	return 0;
565 }
566 early_param("iommu.passthrough", iommu_set_def_domain_type);
567 
568 static int __init iommu_dma_setup(char *str)
569 {
570 	int ret = kstrtobool(str, &iommu_dma_strict);
571 
572 	if (!ret)
573 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
574 	return ret;
575 }
576 early_param("iommu.strict", iommu_dma_setup);
577 
578 void iommu_set_dma_strict(void)
579 {
580 	iommu_dma_strict = true;
581 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
582 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
583 }
584 
585 static ssize_t iommu_group_attr_show(struct kobject *kobj,
586 				     struct attribute *__attr, char *buf)
587 {
588 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
589 	struct iommu_group *group = to_iommu_group(kobj);
590 	ssize_t ret = -EIO;
591 
592 	if (attr->show)
593 		ret = attr->show(group, buf);
594 	return ret;
595 }
596 
597 static ssize_t iommu_group_attr_store(struct kobject *kobj,
598 				      struct attribute *__attr,
599 				      const char *buf, size_t count)
600 {
601 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
602 	struct iommu_group *group = to_iommu_group(kobj);
603 	ssize_t ret = -EIO;
604 
605 	if (attr->store)
606 		ret = attr->store(group, buf, count);
607 	return ret;
608 }
609 
610 static const struct sysfs_ops iommu_group_sysfs_ops = {
611 	.show = iommu_group_attr_show,
612 	.store = iommu_group_attr_store,
613 };
614 
615 static int iommu_group_create_file(struct iommu_group *group,
616 				   struct iommu_group_attribute *attr)
617 {
618 	return sysfs_create_file(&group->kobj, &attr->attr);
619 }
620 
621 static void iommu_group_remove_file(struct iommu_group *group,
622 				    struct iommu_group_attribute *attr)
623 {
624 	sysfs_remove_file(&group->kobj, &attr->attr);
625 }
626 
627 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
628 {
629 	return sysfs_emit(buf, "%s\n", group->name);
630 }
631 
632 /**
633  * iommu_insert_resv_region - Insert a new region in the
634  * list of reserved regions.
635  * @new: new region to insert
636  * @regions: list of regions
637  *
638  * Elements are sorted by start address and overlapping segments
639  * of the same type are merged.
640  */
641 static int iommu_insert_resv_region(struct iommu_resv_region *new,
642 				    struct list_head *regions)
643 {
644 	struct iommu_resv_region *iter, *tmp, *nr, *top;
645 	LIST_HEAD(stack);
646 
647 	nr = iommu_alloc_resv_region(new->start, new->length,
648 				     new->prot, new->type, GFP_KERNEL);
649 	if (!nr)
650 		return -ENOMEM;
651 
652 	/* First add the new element based on start address sorting */
653 	list_for_each_entry(iter, regions, list) {
654 		if (nr->start < iter->start ||
655 		    (nr->start == iter->start && nr->type <= iter->type))
656 			break;
657 	}
658 	list_add_tail(&nr->list, &iter->list);
659 
660 	/* Merge overlapping segments of type nr->type in @regions, if any */
661 	list_for_each_entry_safe(iter, tmp, regions, list) {
662 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
663 
664 		/* no merge needed on elements of different types than @new */
665 		if (iter->type != new->type) {
666 			list_move_tail(&iter->list, &stack);
667 			continue;
668 		}
669 
670 		/* look for the last stack element of same type as @iter */
671 		list_for_each_entry_reverse(top, &stack, list)
672 			if (top->type == iter->type)
673 				goto check_overlap;
674 
675 		list_move_tail(&iter->list, &stack);
676 		continue;
677 
678 check_overlap:
679 		top_end = top->start + top->length - 1;
680 
681 		if (iter->start > top_end + 1) {
682 			list_move_tail(&iter->list, &stack);
683 		} else {
684 			top->length = max(top_end, iter_end) - top->start + 1;
685 			list_del(&iter->list);
686 			kfree(iter);
687 		}
688 	}
689 	list_splice(&stack, regions);
690 	return 0;
691 }
692 
693 static int
694 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
695 				 struct list_head *group_resv_regions)
696 {
697 	struct iommu_resv_region *entry;
698 	int ret = 0;
699 
700 	list_for_each_entry(entry, dev_resv_regions, list) {
701 		ret = iommu_insert_resv_region(entry, group_resv_regions);
702 		if (ret)
703 			break;
704 	}
705 	return ret;
706 }
707 
708 int iommu_get_group_resv_regions(struct iommu_group *group,
709 				 struct list_head *head)
710 {
711 	struct group_device *device;
712 	int ret = 0;
713 
714 	mutex_lock(&group->mutex);
715 	for_each_group_device(group, device) {
716 		struct list_head dev_resv_regions;
717 
718 		/*
719 		 * Non-API groups still expose reserved_regions in sysfs,
720 		 * so filter out calls that get here that way.
721 		 */
722 		if (!device->dev->iommu)
723 			break;
724 
725 		INIT_LIST_HEAD(&dev_resv_regions);
726 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
727 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
728 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
729 		if (ret)
730 			break;
731 	}
732 	mutex_unlock(&group->mutex);
733 	return ret;
734 }
735 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
736 
737 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
738 					     char *buf)
739 {
740 	struct iommu_resv_region *region, *next;
741 	struct list_head group_resv_regions;
742 	int offset = 0;
743 
744 	INIT_LIST_HEAD(&group_resv_regions);
745 	iommu_get_group_resv_regions(group, &group_resv_regions);
746 
747 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
748 		offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
749 					(long long)region->start,
750 					(long long)(region->start +
751 						    region->length - 1),
752 					iommu_group_resv_type_string[region->type]);
753 		kfree(region);
754 	}
755 
756 	return offset;
757 }
758 
759 static ssize_t iommu_group_show_type(struct iommu_group *group,
760 				     char *buf)
761 {
762 	char *type = "unknown";
763 
764 	mutex_lock(&group->mutex);
765 	if (group->default_domain) {
766 		switch (group->default_domain->type) {
767 		case IOMMU_DOMAIN_BLOCKED:
768 			type = "blocked";
769 			break;
770 		case IOMMU_DOMAIN_IDENTITY:
771 			type = "identity";
772 			break;
773 		case IOMMU_DOMAIN_UNMANAGED:
774 			type = "unmanaged";
775 			break;
776 		case IOMMU_DOMAIN_DMA:
777 			type = "DMA";
778 			break;
779 		case IOMMU_DOMAIN_DMA_FQ:
780 			type = "DMA-FQ";
781 			break;
782 		}
783 	}
784 	mutex_unlock(&group->mutex);
785 
786 	return sysfs_emit(buf, "%s\n", type);
787 }
788 
789 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
790 
791 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
792 			iommu_group_show_resv_regions, NULL);
793 
794 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
795 			iommu_group_store_type);
796 
797 static void iommu_group_release(struct kobject *kobj)
798 {
799 	struct iommu_group *group = to_iommu_group(kobj);
800 
801 	pr_debug("Releasing group %d\n", group->id);
802 
803 	if (group->iommu_data_release)
804 		group->iommu_data_release(group->iommu_data);
805 
806 	ida_free(&iommu_group_ida, group->id);
807 
808 	if (group->default_domain)
809 		iommu_domain_free(group->default_domain);
810 	if (group->blocking_domain)
811 		iommu_domain_free(group->blocking_domain);
812 
813 	kfree(group->name);
814 	kfree(group);
815 }
816 
817 static const struct kobj_type iommu_group_ktype = {
818 	.sysfs_ops = &iommu_group_sysfs_ops,
819 	.release = iommu_group_release,
820 };
821 
822 /**
823  * iommu_group_alloc - Allocate a new group
824  *
825  * This function is called by an iommu driver to allocate a new iommu
826  * group.  The iommu group represents the minimum granularity of the iommu.
827  * Upon successful return, the caller holds a reference to the supplied
828  * group in order to hold the group until devices are added.  Use
829  * iommu_group_put() to release this extra reference count, allowing the
830  * group to be automatically reclaimed once it has no devices or external
831  * references.
832  */
833 struct iommu_group *iommu_group_alloc(void)
834 {
835 	struct iommu_group *group;
836 	int ret;
837 
838 	group = kzalloc(sizeof(*group), GFP_KERNEL);
839 	if (!group)
840 		return ERR_PTR(-ENOMEM);
841 
842 	group->kobj.kset = iommu_group_kset;
843 	mutex_init(&group->mutex);
844 	INIT_LIST_HEAD(&group->devices);
845 	INIT_LIST_HEAD(&group->entry);
846 	xa_init(&group->pasid_array);
847 
848 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
849 	if (ret < 0) {
850 		kfree(group);
851 		return ERR_PTR(ret);
852 	}
853 	group->id = ret;
854 
855 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
856 				   NULL, "%d", group->id);
857 	if (ret) {
858 		kobject_put(&group->kobj);
859 		return ERR_PTR(ret);
860 	}
861 
862 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
863 	if (!group->devices_kobj) {
864 		kobject_put(&group->kobj); /* triggers .release & free */
865 		return ERR_PTR(-ENOMEM);
866 	}
867 
868 	/*
869 	 * The devices_kobj holds a reference on the group kobject, so
870 	 * as long as that exists so will the group.  We can therefore
871 	 * use the devices_kobj for reference counting.
872 	 */
873 	kobject_put(&group->kobj);
874 
875 	ret = iommu_group_create_file(group,
876 				      &iommu_group_attr_reserved_regions);
877 	if (ret) {
878 		kobject_put(group->devices_kobj);
879 		return ERR_PTR(ret);
880 	}
881 
882 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
883 	if (ret) {
884 		kobject_put(group->devices_kobj);
885 		return ERR_PTR(ret);
886 	}
887 
888 	pr_debug("Allocated group %d\n", group->id);
889 
890 	return group;
891 }
892 EXPORT_SYMBOL_GPL(iommu_group_alloc);
893 
894 /**
895  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
896  * @group: the group
897  *
898  * iommu drivers can store data in the group for use when doing iommu
899  * operations.  This function provides a way to retrieve it.  Caller
900  * should hold a group reference.
901  */
902 void *iommu_group_get_iommudata(struct iommu_group *group)
903 {
904 	return group->iommu_data;
905 }
906 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
907 
908 /**
909  * iommu_group_set_iommudata - set iommu_data for a group
910  * @group: the group
911  * @iommu_data: new data
912  * @release: release function for iommu_data
913  *
914  * iommu drivers can store data in the group for use when doing iommu
915  * operations.  This function provides a way to set the data after
916  * the group has been allocated.  Caller should hold a group reference.
917  */
918 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
919 			       void (*release)(void *iommu_data))
920 {
921 	group->iommu_data = iommu_data;
922 	group->iommu_data_release = release;
923 }
924 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
925 
926 /**
927  * iommu_group_set_name - set name for a group
928  * @group: the group
929  * @name: name
930  *
931  * Allow iommu driver to set a name for a group.  When set it will
932  * appear in a name attribute file under the group in sysfs.
933  */
934 int iommu_group_set_name(struct iommu_group *group, const char *name)
935 {
936 	int ret;
937 
938 	if (group->name) {
939 		iommu_group_remove_file(group, &iommu_group_attr_name);
940 		kfree(group->name);
941 		group->name = NULL;
942 		if (!name)
943 			return 0;
944 	}
945 
946 	group->name = kstrdup(name, GFP_KERNEL);
947 	if (!group->name)
948 		return -ENOMEM;
949 
950 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
951 	if (ret) {
952 		kfree(group->name);
953 		group->name = NULL;
954 		return ret;
955 	}
956 
957 	return 0;
958 }
959 EXPORT_SYMBOL_GPL(iommu_group_set_name);
960 
961 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
962 					       struct device *dev)
963 {
964 	struct iommu_resv_region *entry;
965 	struct list_head mappings;
966 	unsigned long pg_size;
967 	int ret = 0;
968 
969 	if (!iommu_is_dma_domain(domain))
970 		return 0;
971 
972 	BUG_ON(!domain->pgsize_bitmap);
973 
974 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
975 	INIT_LIST_HEAD(&mappings);
976 
977 	iommu_get_resv_regions(dev, &mappings);
978 
979 	/* We need to consider overlapping regions for different devices */
980 	list_for_each_entry(entry, &mappings, list) {
981 		dma_addr_t start, end, addr;
982 		size_t map_size = 0;
983 
984 		start = ALIGN(entry->start, pg_size);
985 		end   = ALIGN(entry->start + entry->length, pg_size);
986 
987 		if (entry->type != IOMMU_RESV_DIRECT &&
988 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
989 			continue;
990 
991 		for (addr = start; addr <= end; addr += pg_size) {
992 			phys_addr_t phys_addr;
993 
994 			if (addr == end)
995 				goto map_end;
996 
997 			phys_addr = iommu_iova_to_phys(domain, addr);
998 			if (!phys_addr) {
999 				map_size += pg_size;
1000 				continue;
1001 			}
1002 
1003 map_end:
1004 			if (map_size) {
1005 				ret = iommu_map(domain, addr - map_size,
1006 						addr - map_size, map_size,
1007 						entry->prot, GFP_KERNEL);
1008 				if (ret)
1009 					goto out;
1010 				map_size = 0;
1011 			}
1012 		}
1013 
1014 	}
1015 
1016 	iommu_flush_iotlb_all(domain);
1017 
1018 out:
1019 	iommu_put_resv_regions(dev, &mappings);
1020 
1021 	return ret;
1022 }
1023 
1024 /**
1025  * iommu_group_add_device - add a device to an iommu group
1026  * @group: the group into which to add the device (reference should be held)
1027  * @dev: the device
1028  *
1029  * This function is called by an iommu driver to add a device into a
1030  * group.  Adding a device increments the group reference count.
1031  */
1032 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1033 {
1034 	int ret, i = 0;
1035 	struct group_device *device;
1036 
1037 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1038 	if (!device)
1039 		return -ENOMEM;
1040 
1041 	device->dev = dev;
1042 
1043 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1044 	if (ret)
1045 		goto err_free_device;
1046 
1047 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1048 rename:
1049 	if (!device->name) {
1050 		ret = -ENOMEM;
1051 		goto err_remove_link;
1052 	}
1053 
1054 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1055 				       &dev->kobj, device->name);
1056 	if (ret) {
1057 		if (ret == -EEXIST && i >= 0) {
1058 			/*
1059 			 * Account for the slim chance of collision
1060 			 * and append an instance to the name.
1061 			 */
1062 			kfree(device->name);
1063 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1064 						 kobject_name(&dev->kobj), i++);
1065 			goto rename;
1066 		}
1067 		goto err_free_name;
1068 	}
1069 
1070 	kobject_get(group->devices_kobj);
1071 
1072 	dev->iommu_group = group;
1073 
1074 	mutex_lock(&group->mutex);
1075 	list_add_tail(&device->list, &group->devices);
1076 	mutex_unlock(&group->mutex);
1077 	trace_add_device_to_group(group->id, dev);
1078 
1079 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1080 
1081 	return 0;
1082 
1083 err_free_name:
1084 	kfree(device->name);
1085 err_remove_link:
1086 	sysfs_remove_link(&dev->kobj, "iommu_group");
1087 err_free_device:
1088 	kfree(device);
1089 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1090 	return ret;
1091 }
1092 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1093 
1094 /**
1095  * iommu_group_remove_device - remove a device from it's current group
1096  * @dev: device to be removed
1097  *
1098  * This function is called by an iommu driver to remove the device from
1099  * it's current group.  This decrements the iommu group reference count.
1100  */
1101 void iommu_group_remove_device(struct device *dev)
1102 {
1103 	struct iommu_group *group = dev->iommu_group;
1104 	struct group_device *device;
1105 
1106 	if (!group)
1107 		return;
1108 
1109 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1110 
1111 	mutex_lock(&group->mutex);
1112 	device = __iommu_group_remove_device(group, dev);
1113 	mutex_unlock(&group->mutex);
1114 
1115 	if (device)
1116 		__iommu_group_release_device(group, device);
1117 }
1118 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1119 
1120 /**
1121  * iommu_group_for_each_dev - iterate over each device in the group
1122  * @group: the group
1123  * @data: caller opaque data to be passed to callback function
1124  * @fn: caller supplied callback function
1125  *
1126  * This function is called by group users to iterate over group devices.
1127  * Callers should hold a reference count to the group during callback.
1128  * The group->mutex is held across callbacks, which will block calls to
1129  * iommu_group_add/remove_device.
1130  */
1131 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1132 			     int (*fn)(struct device *, void *))
1133 {
1134 	struct group_device *device;
1135 	int ret = 0;
1136 
1137 	mutex_lock(&group->mutex);
1138 	for_each_group_device(group, device) {
1139 		ret = fn(device->dev, data);
1140 		if (ret)
1141 			break;
1142 	}
1143 	mutex_unlock(&group->mutex);
1144 
1145 	return ret;
1146 }
1147 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1148 
1149 /**
1150  * iommu_group_get - Return the group for a device and increment reference
1151  * @dev: get the group that this device belongs to
1152  *
1153  * This function is called by iommu drivers and users to get the group
1154  * for the specified device.  If found, the group is returned and the group
1155  * reference in incremented, else NULL.
1156  */
1157 struct iommu_group *iommu_group_get(struct device *dev)
1158 {
1159 	struct iommu_group *group = dev->iommu_group;
1160 
1161 	if (group)
1162 		kobject_get(group->devices_kobj);
1163 
1164 	return group;
1165 }
1166 EXPORT_SYMBOL_GPL(iommu_group_get);
1167 
1168 /**
1169  * iommu_group_ref_get - Increment reference on a group
1170  * @group: the group to use, must not be NULL
1171  *
1172  * This function is called by iommu drivers to take additional references on an
1173  * existing group.  Returns the given group for convenience.
1174  */
1175 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1176 {
1177 	kobject_get(group->devices_kobj);
1178 	return group;
1179 }
1180 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1181 
1182 /**
1183  * iommu_group_put - Decrement group reference
1184  * @group: the group to use
1185  *
1186  * This function is called by iommu drivers and users to release the
1187  * iommu group.  Once the reference count is zero, the group is released.
1188  */
1189 void iommu_group_put(struct iommu_group *group)
1190 {
1191 	if (group)
1192 		kobject_put(group->devices_kobj);
1193 }
1194 EXPORT_SYMBOL_GPL(iommu_group_put);
1195 
1196 /**
1197  * iommu_register_device_fault_handler() - Register a device fault handler
1198  * @dev: the device
1199  * @handler: the fault handler
1200  * @data: private data passed as argument to the handler
1201  *
1202  * When an IOMMU fault event is received, this handler gets called with the
1203  * fault event and data as argument. The handler should return 0 on success. If
1204  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1205  * complete the fault by calling iommu_page_response() with one of the following
1206  * response code:
1207  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1208  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1209  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1210  *   page faults if possible.
1211  *
1212  * Return 0 if the fault handler was installed successfully, or an error.
1213  */
1214 int iommu_register_device_fault_handler(struct device *dev,
1215 					iommu_dev_fault_handler_t handler,
1216 					void *data)
1217 {
1218 	struct dev_iommu *param = dev->iommu;
1219 	int ret = 0;
1220 
1221 	if (!param)
1222 		return -EINVAL;
1223 
1224 	mutex_lock(&param->lock);
1225 	/* Only allow one fault handler registered for each device */
1226 	if (param->fault_param) {
1227 		ret = -EBUSY;
1228 		goto done_unlock;
1229 	}
1230 
1231 	get_device(dev);
1232 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1233 	if (!param->fault_param) {
1234 		put_device(dev);
1235 		ret = -ENOMEM;
1236 		goto done_unlock;
1237 	}
1238 	param->fault_param->handler = handler;
1239 	param->fault_param->data = data;
1240 	mutex_init(&param->fault_param->lock);
1241 	INIT_LIST_HEAD(&param->fault_param->faults);
1242 
1243 done_unlock:
1244 	mutex_unlock(&param->lock);
1245 
1246 	return ret;
1247 }
1248 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1249 
1250 /**
1251  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1252  * @dev: the device
1253  *
1254  * Remove the device fault handler installed with
1255  * iommu_register_device_fault_handler().
1256  *
1257  * Return 0 on success, or an error.
1258  */
1259 int iommu_unregister_device_fault_handler(struct device *dev)
1260 {
1261 	struct dev_iommu *param = dev->iommu;
1262 	int ret = 0;
1263 
1264 	if (!param)
1265 		return -EINVAL;
1266 
1267 	mutex_lock(&param->lock);
1268 
1269 	if (!param->fault_param)
1270 		goto unlock;
1271 
1272 	/* we cannot unregister handler if there are pending faults */
1273 	if (!list_empty(&param->fault_param->faults)) {
1274 		ret = -EBUSY;
1275 		goto unlock;
1276 	}
1277 
1278 	kfree(param->fault_param);
1279 	param->fault_param = NULL;
1280 	put_device(dev);
1281 unlock:
1282 	mutex_unlock(&param->lock);
1283 
1284 	return ret;
1285 }
1286 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1287 
1288 /**
1289  * iommu_report_device_fault() - Report fault event to device driver
1290  * @dev: the device
1291  * @evt: fault event data
1292  *
1293  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1294  * handler. When this function fails and the fault is recoverable, it is the
1295  * caller's responsibility to complete the fault.
1296  *
1297  * Return 0 on success, or an error.
1298  */
1299 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1300 {
1301 	struct dev_iommu *param = dev->iommu;
1302 	struct iommu_fault_event *evt_pending = NULL;
1303 	struct iommu_fault_param *fparam;
1304 	int ret = 0;
1305 
1306 	if (!param || !evt)
1307 		return -EINVAL;
1308 
1309 	/* we only report device fault if there is a handler registered */
1310 	mutex_lock(&param->lock);
1311 	fparam = param->fault_param;
1312 	if (!fparam || !fparam->handler) {
1313 		ret = -EINVAL;
1314 		goto done_unlock;
1315 	}
1316 
1317 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1318 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1319 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1320 				      GFP_KERNEL);
1321 		if (!evt_pending) {
1322 			ret = -ENOMEM;
1323 			goto done_unlock;
1324 		}
1325 		mutex_lock(&fparam->lock);
1326 		list_add_tail(&evt_pending->list, &fparam->faults);
1327 		mutex_unlock(&fparam->lock);
1328 	}
1329 
1330 	ret = fparam->handler(&evt->fault, fparam->data);
1331 	if (ret && evt_pending) {
1332 		mutex_lock(&fparam->lock);
1333 		list_del(&evt_pending->list);
1334 		mutex_unlock(&fparam->lock);
1335 		kfree(evt_pending);
1336 	}
1337 done_unlock:
1338 	mutex_unlock(&param->lock);
1339 	return ret;
1340 }
1341 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1342 
1343 int iommu_page_response(struct device *dev,
1344 			struct iommu_page_response *msg)
1345 {
1346 	bool needs_pasid;
1347 	int ret = -EINVAL;
1348 	struct iommu_fault_event *evt;
1349 	struct iommu_fault_page_request *prm;
1350 	struct dev_iommu *param = dev->iommu;
1351 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1352 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1353 
1354 	if (!ops->page_response)
1355 		return -ENODEV;
1356 
1357 	if (!param || !param->fault_param)
1358 		return -EINVAL;
1359 
1360 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1361 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1362 		return -EINVAL;
1363 
1364 	/* Only send response if there is a fault report pending */
1365 	mutex_lock(&param->fault_param->lock);
1366 	if (list_empty(&param->fault_param->faults)) {
1367 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1368 		goto done_unlock;
1369 	}
1370 	/*
1371 	 * Check if we have a matching page request pending to respond,
1372 	 * otherwise return -EINVAL
1373 	 */
1374 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1375 		prm = &evt->fault.prm;
1376 		if (prm->grpid != msg->grpid)
1377 			continue;
1378 
1379 		/*
1380 		 * If the PASID is required, the corresponding request is
1381 		 * matched using the group ID, the PASID valid bit and the PASID
1382 		 * value. Otherwise only the group ID matches request and
1383 		 * response.
1384 		 */
1385 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1386 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1387 			continue;
1388 
1389 		if (!needs_pasid && has_pasid) {
1390 			/* No big deal, just clear it. */
1391 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1392 			msg->pasid = 0;
1393 		}
1394 
1395 		ret = ops->page_response(dev, evt, msg);
1396 		list_del(&evt->list);
1397 		kfree(evt);
1398 		break;
1399 	}
1400 
1401 done_unlock:
1402 	mutex_unlock(&param->fault_param->lock);
1403 	return ret;
1404 }
1405 EXPORT_SYMBOL_GPL(iommu_page_response);
1406 
1407 /**
1408  * iommu_group_id - Return ID for a group
1409  * @group: the group to ID
1410  *
1411  * Return the unique ID for the group matching the sysfs group number.
1412  */
1413 int iommu_group_id(struct iommu_group *group)
1414 {
1415 	return group->id;
1416 }
1417 EXPORT_SYMBOL_GPL(iommu_group_id);
1418 
1419 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1420 					       unsigned long *devfns);
1421 
1422 /*
1423  * To consider a PCI device isolated, we require ACS to support Source
1424  * Validation, Request Redirection, Completer Redirection, and Upstream
1425  * Forwarding.  This effectively means that devices cannot spoof their
1426  * requester ID, requests and completions cannot be redirected, and all
1427  * transactions are forwarded upstream, even as it passes through a
1428  * bridge where the target device is downstream.
1429  */
1430 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1431 
1432 /*
1433  * For multifunction devices which are not isolated from each other, find
1434  * all the other non-isolated functions and look for existing groups.  For
1435  * each function, we also need to look for aliases to or from other devices
1436  * that may already have a group.
1437  */
1438 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1439 							unsigned long *devfns)
1440 {
1441 	struct pci_dev *tmp = NULL;
1442 	struct iommu_group *group;
1443 
1444 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1445 		return NULL;
1446 
1447 	for_each_pci_dev(tmp) {
1448 		if (tmp == pdev || tmp->bus != pdev->bus ||
1449 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1450 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1451 			continue;
1452 
1453 		group = get_pci_alias_group(tmp, devfns);
1454 		if (group) {
1455 			pci_dev_put(tmp);
1456 			return group;
1457 		}
1458 	}
1459 
1460 	return NULL;
1461 }
1462 
1463 /*
1464  * Look for aliases to or from the given device for existing groups. DMA
1465  * aliases are only supported on the same bus, therefore the search
1466  * space is quite small (especially since we're really only looking at pcie
1467  * device, and therefore only expect multiple slots on the root complex or
1468  * downstream switch ports).  It's conceivable though that a pair of
1469  * multifunction devices could have aliases between them that would cause a
1470  * loop.  To prevent this, we use a bitmap to track where we've been.
1471  */
1472 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1473 					       unsigned long *devfns)
1474 {
1475 	struct pci_dev *tmp = NULL;
1476 	struct iommu_group *group;
1477 
1478 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1479 		return NULL;
1480 
1481 	group = iommu_group_get(&pdev->dev);
1482 	if (group)
1483 		return group;
1484 
1485 	for_each_pci_dev(tmp) {
1486 		if (tmp == pdev || tmp->bus != pdev->bus)
1487 			continue;
1488 
1489 		/* We alias them or they alias us */
1490 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1491 			group = get_pci_alias_group(tmp, devfns);
1492 			if (group) {
1493 				pci_dev_put(tmp);
1494 				return group;
1495 			}
1496 
1497 			group = get_pci_function_alias_group(tmp, devfns);
1498 			if (group) {
1499 				pci_dev_put(tmp);
1500 				return group;
1501 			}
1502 		}
1503 	}
1504 
1505 	return NULL;
1506 }
1507 
1508 struct group_for_pci_data {
1509 	struct pci_dev *pdev;
1510 	struct iommu_group *group;
1511 };
1512 
1513 /*
1514  * DMA alias iterator callback, return the last seen device.  Stop and return
1515  * the IOMMU group if we find one along the way.
1516  */
1517 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1518 {
1519 	struct group_for_pci_data *data = opaque;
1520 
1521 	data->pdev = pdev;
1522 	data->group = iommu_group_get(&pdev->dev);
1523 
1524 	return data->group != NULL;
1525 }
1526 
1527 /*
1528  * Generic device_group call-back function. It just allocates one
1529  * iommu-group per device.
1530  */
1531 struct iommu_group *generic_device_group(struct device *dev)
1532 {
1533 	return iommu_group_alloc();
1534 }
1535 EXPORT_SYMBOL_GPL(generic_device_group);
1536 
1537 /*
1538  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1539  * to find or create an IOMMU group for a device.
1540  */
1541 struct iommu_group *pci_device_group(struct device *dev)
1542 {
1543 	struct pci_dev *pdev = to_pci_dev(dev);
1544 	struct group_for_pci_data data;
1545 	struct pci_bus *bus;
1546 	struct iommu_group *group = NULL;
1547 	u64 devfns[4] = { 0 };
1548 
1549 	if (WARN_ON(!dev_is_pci(dev)))
1550 		return ERR_PTR(-EINVAL);
1551 
1552 	/*
1553 	 * Find the upstream DMA alias for the device.  A device must not
1554 	 * be aliased due to topology in order to have its own IOMMU group.
1555 	 * If we find an alias along the way that already belongs to a
1556 	 * group, use it.
1557 	 */
1558 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1559 		return data.group;
1560 
1561 	pdev = data.pdev;
1562 
1563 	/*
1564 	 * Continue upstream from the point of minimum IOMMU granularity
1565 	 * due to aliases to the point where devices are protected from
1566 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1567 	 * group, use it.
1568 	 */
1569 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1570 		if (!bus->self)
1571 			continue;
1572 
1573 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1574 			break;
1575 
1576 		pdev = bus->self;
1577 
1578 		group = iommu_group_get(&pdev->dev);
1579 		if (group)
1580 			return group;
1581 	}
1582 
1583 	/*
1584 	 * Look for existing groups on device aliases.  If we alias another
1585 	 * device or another device aliases us, use the same group.
1586 	 */
1587 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1588 	if (group)
1589 		return group;
1590 
1591 	/*
1592 	 * Look for existing groups on non-isolated functions on the same
1593 	 * slot and aliases of those funcions, if any.  No need to clear
1594 	 * the search bitmap, the tested devfns are still valid.
1595 	 */
1596 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1597 	if (group)
1598 		return group;
1599 
1600 	/* No shared group found, allocate new */
1601 	return iommu_group_alloc();
1602 }
1603 EXPORT_SYMBOL_GPL(pci_device_group);
1604 
1605 /* Get the IOMMU group for device on fsl-mc bus */
1606 struct iommu_group *fsl_mc_device_group(struct device *dev)
1607 {
1608 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1609 	struct iommu_group *group;
1610 
1611 	group = iommu_group_get(cont_dev);
1612 	if (!group)
1613 		group = iommu_group_alloc();
1614 	return group;
1615 }
1616 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1617 
1618 static int iommu_get_def_domain_type(struct device *dev)
1619 {
1620 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1621 
1622 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1623 		return IOMMU_DOMAIN_DMA;
1624 
1625 	if (ops->def_domain_type)
1626 		return ops->def_domain_type(dev);
1627 
1628 	return 0;
1629 }
1630 
1631 static struct iommu_domain *
1632 __iommu_group_alloc_default_domain(const struct bus_type *bus,
1633 				   struct iommu_group *group, int req_type)
1634 {
1635 	if (group->default_domain && group->default_domain->type == req_type)
1636 		return group->default_domain;
1637 	return __iommu_domain_alloc(bus, req_type);
1638 }
1639 
1640 /*
1641  * req_type of 0 means "auto" which means to select a domain based on
1642  * iommu_def_domain_type or what the driver actually supports.
1643  */
1644 static struct iommu_domain *
1645 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1646 {
1647 	const struct bus_type *bus =
1648 		list_first_entry(&group->devices, struct group_device, list)
1649 			->dev->bus;
1650 	struct iommu_domain *dom;
1651 
1652 	lockdep_assert_held(&group->mutex);
1653 
1654 	if (req_type)
1655 		return __iommu_group_alloc_default_domain(bus, group, req_type);
1656 
1657 	/* The driver gave no guidance on what type to use, try the default */
1658 	dom = __iommu_group_alloc_default_domain(bus, group, iommu_def_domain_type);
1659 	if (dom)
1660 		return dom;
1661 
1662 	/* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1663 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1664 		return NULL;
1665 	dom = __iommu_group_alloc_default_domain(bus, group, IOMMU_DOMAIN_DMA);
1666 	if (!dom)
1667 		return NULL;
1668 
1669 	pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1670 		iommu_def_domain_type, group->name);
1671 	return dom;
1672 }
1673 
1674 /**
1675  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1676  * @dev: target device
1677  *
1678  * This function is intended to be called by IOMMU drivers and extended to
1679  * support common, bus-defined algorithms when determining or creating the
1680  * IOMMU group for a device.  On success, the caller will hold a reference
1681  * to the returned IOMMU group, which will already include the provided
1682  * device.  The reference should be released with iommu_group_put().
1683  */
1684 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1685 {
1686 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1687 	struct iommu_group *group;
1688 	int ret;
1689 
1690 	group = iommu_group_get(dev);
1691 	if (group)
1692 		return group;
1693 
1694 	group = ops->device_group(dev);
1695 	if (WARN_ON_ONCE(group == NULL))
1696 		return ERR_PTR(-EINVAL);
1697 
1698 	if (IS_ERR(group))
1699 		return group;
1700 
1701 	ret = iommu_group_add_device(group, dev);
1702 	if (ret)
1703 		goto out_put_group;
1704 
1705 	return group;
1706 
1707 out_put_group:
1708 	iommu_group_put(group);
1709 
1710 	return ERR_PTR(ret);
1711 }
1712 
1713 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1714 {
1715 	return group->default_domain;
1716 }
1717 
1718 static int probe_iommu_group(struct device *dev, void *data)
1719 {
1720 	struct list_head *group_list = data;
1721 	int ret;
1722 
1723 	ret = __iommu_probe_device(dev, group_list);
1724 	if (ret == -ENODEV)
1725 		ret = 0;
1726 
1727 	return ret;
1728 }
1729 
1730 static int iommu_bus_notifier(struct notifier_block *nb,
1731 			      unsigned long action, void *data)
1732 {
1733 	struct device *dev = data;
1734 
1735 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1736 		int ret;
1737 
1738 		ret = iommu_probe_device(dev);
1739 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1740 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1741 		iommu_release_device(dev);
1742 		return NOTIFY_OK;
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 /* A target_type of 0 will select the best domain type and cannot fail */
1749 static int iommu_get_default_domain_type(struct iommu_group *group,
1750 					 int target_type)
1751 {
1752 	int best_type = target_type;
1753 	struct group_device *gdev;
1754 	struct device *last_dev;
1755 
1756 	lockdep_assert_held(&group->mutex);
1757 
1758 	for_each_group_device(group, gdev) {
1759 		unsigned int type = iommu_get_def_domain_type(gdev->dev);
1760 
1761 		if (best_type && type && best_type != type) {
1762 			if (target_type) {
1763 				dev_err_ratelimited(
1764 					gdev->dev,
1765 					"Device cannot be in %s domain\n",
1766 					iommu_domain_type_str(target_type));
1767 				return -1;
1768 			}
1769 
1770 			dev_warn(
1771 				gdev->dev,
1772 				"Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1773 				iommu_domain_type_str(type), dev_name(last_dev),
1774 				iommu_domain_type_str(best_type));
1775 			return 0;
1776 		}
1777 		if (!best_type)
1778 			best_type = type;
1779 		last_dev = gdev->dev;
1780 	}
1781 	return best_type;
1782 }
1783 
1784 static void iommu_group_do_probe_finalize(struct device *dev)
1785 {
1786 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1787 
1788 	if (ops->probe_finalize)
1789 		ops->probe_finalize(dev);
1790 }
1791 
1792 int bus_iommu_probe(const struct bus_type *bus)
1793 {
1794 	struct iommu_group *group, *next;
1795 	LIST_HEAD(group_list);
1796 	int ret;
1797 
1798 	/*
1799 	 * This code-path does not allocate the default domain when
1800 	 * creating the iommu group, so do it after the groups are
1801 	 * created.
1802 	 */
1803 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1804 	if (ret)
1805 		return ret;
1806 
1807 	list_for_each_entry_safe(group, next, &group_list, entry) {
1808 		struct group_device *gdev;
1809 
1810 		mutex_lock(&group->mutex);
1811 
1812 		/* Remove item from the list */
1813 		list_del_init(&group->entry);
1814 
1815 		ret = iommu_setup_default_domain(group, 0);
1816 		if (ret) {
1817 			mutex_unlock(&group->mutex);
1818 			return ret;
1819 		}
1820 		mutex_unlock(&group->mutex);
1821 
1822 		/*
1823 		 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1824 		 * of some IOMMU drivers calls arm_iommu_attach_device() which
1825 		 * in-turn might call back into IOMMU core code, where it tries
1826 		 * to take group->mutex, resulting in a deadlock.
1827 		 */
1828 		for_each_group_device(group, gdev)
1829 			iommu_group_do_probe_finalize(gdev->dev);
1830 	}
1831 
1832 	return 0;
1833 }
1834 
1835 bool iommu_present(const struct bus_type *bus)
1836 {
1837 	return bus->iommu_ops != NULL;
1838 }
1839 EXPORT_SYMBOL_GPL(iommu_present);
1840 
1841 /**
1842  * device_iommu_capable() - check for a general IOMMU capability
1843  * @dev: device to which the capability would be relevant, if available
1844  * @cap: IOMMU capability
1845  *
1846  * Return: true if an IOMMU is present and supports the given capability
1847  * for the given device, otherwise false.
1848  */
1849 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1850 {
1851 	const struct iommu_ops *ops;
1852 
1853 	if (!dev->iommu || !dev->iommu->iommu_dev)
1854 		return false;
1855 
1856 	ops = dev_iommu_ops(dev);
1857 	if (!ops->capable)
1858 		return false;
1859 
1860 	return ops->capable(dev, cap);
1861 }
1862 EXPORT_SYMBOL_GPL(device_iommu_capable);
1863 
1864 /**
1865  * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1866  *       for a group
1867  * @group: Group to query
1868  *
1869  * IOMMU groups should not have differing values of
1870  * msi_device_has_isolated_msi() for devices in a group. However nothing
1871  * directly prevents this, so ensure mistakes don't result in isolation failures
1872  * by checking that all the devices are the same.
1873  */
1874 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1875 {
1876 	struct group_device *group_dev;
1877 	bool ret = true;
1878 
1879 	mutex_lock(&group->mutex);
1880 	for_each_group_device(group, group_dev)
1881 		ret &= msi_device_has_isolated_msi(group_dev->dev);
1882 	mutex_unlock(&group->mutex);
1883 	return ret;
1884 }
1885 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1886 
1887 /**
1888  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1889  * @domain: iommu domain
1890  * @handler: fault handler
1891  * @token: user data, will be passed back to the fault handler
1892  *
1893  * This function should be used by IOMMU users which want to be notified
1894  * whenever an IOMMU fault happens.
1895  *
1896  * The fault handler itself should return 0 on success, and an appropriate
1897  * error code otherwise.
1898  */
1899 void iommu_set_fault_handler(struct iommu_domain *domain,
1900 					iommu_fault_handler_t handler,
1901 					void *token)
1902 {
1903 	BUG_ON(!domain);
1904 
1905 	domain->handler = handler;
1906 	domain->handler_token = token;
1907 }
1908 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1909 
1910 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus,
1911 						 unsigned type)
1912 {
1913 	struct iommu_domain *domain;
1914 	unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS;
1915 
1916 	if (bus == NULL || bus->iommu_ops == NULL)
1917 		return NULL;
1918 
1919 	domain = bus->iommu_ops->domain_alloc(alloc_type);
1920 	if (!domain)
1921 		return NULL;
1922 
1923 	domain->type = type;
1924 	/*
1925 	 * If not already set, assume all sizes by default; the driver
1926 	 * may override this later
1927 	 */
1928 	if (!domain->pgsize_bitmap)
1929 		domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1930 
1931 	if (!domain->ops)
1932 		domain->ops = bus->iommu_ops->default_domain_ops;
1933 
1934 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1935 		iommu_domain_free(domain);
1936 		domain = NULL;
1937 	}
1938 	return domain;
1939 }
1940 
1941 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus)
1942 {
1943 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1944 }
1945 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1946 
1947 void iommu_domain_free(struct iommu_domain *domain)
1948 {
1949 	if (domain->type == IOMMU_DOMAIN_SVA)
1950 		mmdrop(domain->mm);
1951 	iommu_put_dma_cookie(domain);
1952 	domain->ops->free(domain);
1953 }
1954 EXPORT_SYMBOL_GPL(iommu_domain_free);
1955 
1956 /*
1957  * Put the group's domain back to the appropriate core-owned domain - either the
1958  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
1959  */
1960 static void __iommu_group_set_core_domain(struct iommu_group *group)
1961 {
1962 	struct iommu_domain *new_domain;
1963 
1964 	if (group->owner)
1965 		new_domain = group->blocking_domain;
1966 	else
1967 		new_domain = group->default_domain;
1968 
1969 	__iommu_group_set_domain_nofail(group, new_domain);
1970 }
1971 
1972 static int __iommu_attach_device(struct iommu_domain *domain,
1973 				 struct device *dev)
1974 {
1975 	int ret;
1976 
1977 	if (unlikely(domain->ops->attach_dev == NULL))
1978 		return -ENODEV;
1979 
1980 	ret = domain->ops->attach_dev(domain, dev);
1981 	if (ret)
1982 		return ret;
1983 	dev->iommu->attach_deferred = 0;
1984 	trace_attach_device_to_domain(dev);
1985 	return 0;
1986 }
1987 
1988 /**
1989  * iommu_attach_device - Attach an IOMMU domain to a device
1990  * @domain: IOMMU domain to attach
1991  * @dev: Device that will be attached
1992  *
1993  * Returns 0 on success and error code on failure
1994  *
1995  * Note that EINVAL can be treated as a soft failure, indicating
1996  * that certain configuration of the domain is incompatible with
1997  * the device. In this case attaching a different domain to the
1998  * device may succeed.
1999  */
2000 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2001 {
2002 	struct iommu_group *group;
2003 	int ret;
2004 
2005 	group = iommu_group_get(dev);
2006 	if (!group)
2007 		return -ENODEV;
2008 
2009 	/*
2010 	 * Lock the group to make sure the device-count doesn't
2011 	 * change while we are attaching
2012 	 */
2013 	mutex_lock(&group->mutex);
2014 	ret = -EINVAL;
2015 	if (list_count_nodes(&group->devices) != 1)
2016 		goto out_unlock;
2017 
2018 	ret = __iommu_attach_group(domain, group);
2019 
2020 out_unlock:
2021 	mutex_unlock(&group->mutex);
2022 	iommu_group_put(group);
2023 
2024 	return ret;
2025 }
2026 EXPORT_SYMBOL_GPL(iommu_attach_device);
2027 
2028 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2029 {
2030 	if (dev->iommu && dev->iommu->attach_deferred)
2031 		return __iommu_attach_device(domain, dev);
2032 
2033 	return 0;
2034 }
2035 
2036 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2037 {
2038 	struct iommu_group *group;
2039 
2040 	group = iommu_group_get(dev);
2041 	if (!group)
2042 		return;
2043 
2044 	mutex_lock(&group->mutex);
2045 	if (WARN_ON(domain != group->domain) ||
2046 	    WARN_ON(list_count_nodes(&group->devices) != 1))
2047 		goto out_unlock;
2048 	__iommu_group_set_core_domain(group);
2049 
2050 out_unlock:
2051 	mutex_unlock(&group->mutex);
2052 	iommu_group_put(group);
2053 }
2054 EXPORT_SYMBOL_GPL(iommu_detach_device);
2055 
2056 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2057 {
2058 	struct iommu_domain *domain;
2059 	struct iommu_group *group;
2060 
2061 	group = iommu_group_get(dev);
2062 	if (!group)
2063 		return NULL;
2064 
2065 	domain = group->domain;
2066 
2067 	iommu_group_put(group);
2068 
2069 	return domain;
2070 }
2071 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2072 
2073 /*
2074  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2075  * guarantees that the group and its default domain are valid and correct.
2076  */
2077 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2078 {
2079 	return dev->iommu_group->default_domain;
2080 }
2081 
2082 static int __iommu_attach_group(struct iommu_domain *domain,
2083 				struct iommu_group *group)
2084 {
2085 	if (group->domain && group->domain != group->default_domain &&
2086 	    group->domain != group->blocking_domain)
2087 		return -EBUSY;
2088 
2089 	return __iommu_group_set_domain(group, domain);
2090 }
2091 
2092 /**
2093  * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2094  * @domain: IOMMU domain to attach
2095  * @group: IOMMU group that will be attached
2096  *
2097  * Returns 0 on success and error code on failure
2098  *
2099  * Note that EINVAL can be treated as a soft failure, indicating
2100  * that certain configuration of the domain is incompatible with
2101  * the group. In this case attaching a different domain to the
2102  * group may succeed.
2103  */
2104 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2105 {
2106 	int ret;
2107 
2108 	mutex_lock(&group->mutex);
2109 	ret = __iommu_attach_group(domain, group);
2110 	mutex_unlock(&group->mutex);
2111 
2112 	return ret;
2113 }
2114 EXPORT_SYMBOL_GPL(iommu_attach_group);
2115 
2116 static int __iommu_device_set_domain(struct iommu_group *group,
2117 				     struct device *dev,
2118 				     struct iommu_domain *new_domain,
2119 				     unsigned int flags)
2120 {
2121 	int ret;
2122 
2123 	if (dev->iommu->attach_deferred) {
2124 		if (new_domain == group->default_domain)
2125 			return 0;
2126 		dev->iommu->attach_deferred = 0;
2127 	}
2128 
2129 	ret = __iommu_attach_device(new_domain, dev);
2130 	if (ret) {
2131 		/*
2132 		 * If we have a blocking domain then try to attach that in hopes
2133 		 * of avoiding a UAF. Modern drivers should implement blocking
2134 		 * domains as global statics that cannot fail.
2135 		 */
2136 		if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2137 		    group->blocking_domain &&
2138 		    group->blocking_domain != new_domain)
2139 			__iommu_attach_device(group->blocking_domain, dev);
2140 		return ret;
2141 	}
2142 	return 0;
2143 }
2144 
2145 /*
2146  * If 0 is returned the group's domain is new_domain. If an error is returned
2147  * then the group's domain will be set back to the existing domain unless
2148  * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2149  * domains is left inconsistent. This is a driver bug to fail attach with a
2150  * previously good domain. We try to avoid a kernel UAF because of this.
2151  *
2152  * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2153  * API works on domains and devices.  Bridge that gap by iterating over the
2154  * devices in a group.  Ideally we'd have a single device which represents the
2155  * requestor ID of the group, but we also allow IOMMU drivers to create policy
2156  * defined minimum sets, where the physical hardware may be able to distiguish
2157  * members, but we wish to group them at a higher level (ex. untrusted
2158  * multi-function PCI devices).  Thus we attach each device.
2159  */
2160 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2161 					     struct iommu_domain *new_domain,
2162 					     unsigned int flags)
2163 {
2164 	struct group_device *last_gdev;
2165 	struct group_device *gdev;
2166 	int result;
2167 	int ret;
2168 
2169 	lockdep_assert_held(&group->mutex);
2170 
2171 	if (group->domain == new_domain)
2172 		return 0;
2173 
2174 	/*
2175 	 * New drivers should support default domains, so set_platform_dma()
2176 	 * op will never be called. Otherwise the NULL domain represents some
2177 	 * platform specific behavior.
2178 	 */
2179 	if (!new_domain) {
2180 		for_each_group_device(group, gdev) {
2181 			const struct iommu_ops *ops = dev_iommu_ops(gdev->dev);
2182 
2183 			if (!WARN_ON(!ops->set_platform_dma_ops))
2184 				ops->set_platform_dma_ops(gdev->dev);
2185 		}
2186 		group->domain = NULL;
2187 		return 0;
2188 	}
2189 
2190 	/*
2191 	 * Changing the domain is done by calling attach_dev() on the new
2192 	 * domain. This switch does not have to be atomic and DMA can be
2193 	 * discarded during the transition. DMA must only be able to access
2194 	 * either new_domain or group->domain, never something else.
2195 	 */
2196 	result = 0;
2197 	for_each_group_device(group, gdev) {
2198 		ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2199 						flags);
2200 		if (ret) {
2201 			result = ret;
2202 			/*
2203 			 * Keep trying the other devices in the group. If a
2204 			 * driver fails attach to an otherwise good domain, and
2205 			 * does not support blocking domains, it should at least
2206 			 * drop its reference on the current domain so we don't
2207 			 * UAF.
2208 			 */
2209 			if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2210 				continue;
2211 			goto err_revert;
2212 		}
2213 	}
2214 	group->domain = new_domain;
2215 	return result;
2216 
2217 err_revert:
2218 	/*
2219 	 * This is called in error unwind paths. A well behaved driver should
2220 	 * always allow us to attach to a domain that was already attached.
2221 	 */
2222 	last_gdev = gdev;
2223 	for_each_group_device(group, gdev) {
2224 		const struct iommu_ops *ops = dev_iommu_ops(gdev->dev);
2225 
2226 		/*
2227 		 * If set_platform_dma_ops is not present a NULL domain can
2228 		 * happen only for first probe, in which case we leave
2229 		 * group->domain as NULL and let release clean everything up.
2230 		 */
2231 		if (group->domain)
2232 			WARN_ON(__iommu_device_set_domain(
2233 				group, gdev->dev, group->domain,
2234 				IOMMU_SET_DOMAIN_MUST_SUCCEED));
2235 		else if (ops->set_platform_dma_ops)
2236 			ops->set_platform_dma_ops(gdev->dev);
2237 		if (gdev == last_gdev)
2238 			break;
2239 	}
2240 	return ret;
2241 }
2242 
2243 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2244 {
2245 	mutex_lock(&group->mutex);
2246 	__iommu_group_set_core_domain(group);
2247 	mutex_unlock(&group->mutex);
2248 }
2249 EXPORT_SYMBOL_GPL(iommu_detach_group);
2250 
2251 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2252 {
2253 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2254 		return iova;
2255 
2256 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2257 		return 0;
2258 
2259 	return domain->ops->iova_to_phys(domain, iova);
2260 }
2261 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2262 
2263 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2264 			   phys_addr_t paddr, size_t size, size_t *count)
2265 {
2266 	unsigned int pgsize_idx, pgsize_idx_next;
2267 	unsigned long pgsizes;
2268 	size_t offset, pgsize, pgsize_next;
2269 	unsigned long addr_merge = paddr | iova;
2270 
2271 	/* Page sizes supported by the hardware and small enough for @size */
2272 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2273 
2274 	/* Constrain the page sizes further based on the maximum alignment */
2275 	if (likely(addr_merge))
2276 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2277 
2278 	/* Make sure we have at least one suitable page size */
2279 	BUG_ON(!pgsizes);
2280 
2281 	/* Pick the biggest page size remaining */
2282 	pgsize_idx = __fls(pgsizes);
2283 	pgsize = BIT(pgsize_idx);
2284 	if (!count)
2285 		return pgsize;
2286 
2287 	/* Find the next biggest support page size, if it exists */
2288 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2289 	if (!pgsizes)
2290 		goto out_set_count;
2291 
2292 	pgsize_idx_next = __ffs(pgsizes);
2293 	pgsize_next = BIT(pgsize_idx_next);
2294 
2295 	/*
2296 	 * There's no point trying a bigger page size unless the virtual
2297 	 * and physical addresses are similarly offset within the larger page.
2298 	 */
2299 	if ((iova ^ paddr) & (pgsize_next - 1))
2300 		goto out_set_count;
2301 
2302 	/* Calculate the offset to the next page size alignment boundary */
2303 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2304 
2305 	/*
2306 	 * If size is big enough to accommodate the larger page, reduce
2307 	 * the number of smaller pages.
2308 	 */
2309 	if (offset + pgsize_next <= size)
2310 		size = offset;
2311 
2312 out_set_count:
2313 	*count = size >> pgsize_idx;
2314 	return pgsize;
2315 }
2316 
2317 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2318 			     phys_addr_t paddr, size_t size, int prot,
2319 			     gfp_t gfp, size_t *mapped)
2320 {
2321 	const struct iommu_domain_ops *ops = domain->ops;
2322 	size_t pgsize, count;
2323 	int ret;
2324 
2325 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2326 
2327 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2328 		 iova, &paddr, pgsize, count);
2329 
2330 	if (ops->map_pages) {
2331 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2332 				     gfp, mapped);
2333 	} else {
2334 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2335 		*mapped = ret ? 0 : pgsize;
2336 	}
2337 
2338 	return ret;
2339 }
2340 
2341 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2342 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2343 {
2344 	const struct iommu_domain_ops *ops = domain->ops;
2345 	unsigned long orig_iova = iova;
2346 	unsigned int min_pagesz;
2347 	size_t orig_size = size;
2348 	phys_addr_t orig_paddr = paddr;
2349 	int ret = 0;
2350 
2351 	if (unlikely(!(ops->map || ops->map_pages) ||
2352 		     domain->pgsize_bitmap == 0UL))
2353 		return -ENODEV;
2354 
2355 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2356 		return -EINVAL;
2357 
2358 	/* find out the minimum page size supported */
2359 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2360 
2361 	/*
2362 	 * both the virtual address and the physical one, as well as
2363 	 * the size of the mapping, must be aligned (at least) to the
2364 	 * size of the smallest page supported by the hardware
2365 	 */
2366 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2367 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2368 		       iova, &paddr, size, min_pagesz);
2369 		return -EINVAL;
2370 	}
2371 
2372 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2373 
2374 	while (size) {
2375 		size_t mapped = 0;
2376 
2377 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2378 					&mapped);
2379 		/*
2380 		 * Some pages may have been mapped, even if an error occurred,
2381 		 * so we should account for those so they can be unmapped.
2382 		 */
2383 		size -= mapped;
2384 
2385 		if (ret)
2386 			break;
2387 
2388 		iova += mapped;
2389 		paddr += mapped;
2390 	}
2391 
2392 	/* unroll mapping in case something went wrong */
2393 	if (ret)
2394 		iommu_unmap(domain, orig_iova, orig_size - size);
2395 	else
2396 		trace_map(orig_iova, orig_paddr, orig_size);
2397 
2398 	return ret;
2399 }
2400 
2401 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2402 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2403 {
2404 	const struct iommu_domain_ops *ops = domain->ops;
2405 	int ret;
2406 
2407 	might_sleep_if(gfpflags_allow_blocking(gfp));
2408 
2409 	/* Discourage passing strange GFP flags */
2410 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2411 				__GFP_HIGHMEM)))
2412 		return -EINVAL;
2413 
2414 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2415 	if (ret == 0 && ops->iotlb_sync_map)
2416 		ops->iotlb_sync_map(domain, iova, size);
2417 
2418 	return ret;
2419 }
2420 EXPORT_SYMBOL_GPL(iommu_map);
2421 
2422 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2423 				  unsigned long iova, size_t size,
2424 				  struct iommu_iotlb_gather *iotlb_gather)
2425 {
2426 	const struct iommu_domain_ops *ops = domain->ops;
2427 	size_t pgsize, count;
2428 
2429 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2430 	return ops->unmap_pages ?
2431 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2432 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2433 }
2434 
2435 static size_t __iommu_unmap(struct iommu_domain *domain,
2436 			    unsigned long iova, size_t size,
2437 			    struct iommu_iotlb_gather *iotlb_gather)
2438 {
2439 	const struct iommu_domain_ops *ops = domain->ops;
2440 	size_t unmapped_page, unmapped = 0;
2441 	unsigned long orig_iova = iova;
2442 	unsigned int min_pagesz;
2443 
2444 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2445 		     domain->pgsize_bitmap == 0UL))
2446 		return 0;
2447 
2448 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2449 		return 0;
2450 
2451 	/* find out the minimum page size supported */
2452 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2453 
2454 	/*
2455 	 * The virtual address, as well as the size of the mapping, must be
2456 	 * aligned (at least) to the size of the smallest page supported
2457 	 * by the hardware
2458 	 */
2459 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2460 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2461 		       iova, size, min_pagesz);
2462 		return 0;
2463 	}
2464 
2465 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2466 
2467 	/*
2468 	 * Keep iterating until we either unmap 'size' bytes (or more)
2469 	 * or we hit an area that isn't mapped.
2470 	 */
2471 	while (unmapped < size) {
2472 		unmapped_page = __iommu_unmap_pages(domain, iova,
2473 						    size - unmapped,
2474 						    iotlb_gather);
2475 		if (!unmapped_page)
2476 			break;
2477 
2478 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2479 			 iova, unmapped_page);
2480 
2481 		iova += unmapped_page;
2482 		unmapped += unmapped_page;
2483 	}
2484 
2485 	trace_unmap(orig_iova, size, unmapped);
2486 	return unmapped;
2487 }
2488 
2489 size_t iommu_unmap(struct iommu_domain *domain,
2490 		   unsigned long iova, size_t size)
2491 {
2492 	struct iommu_iotlb_gather iotlb_gather;
2493 	size_t ret;
2494 
2495 	iommu_iotlb_gather_init(&iotlb_gather);
2496 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2497 	iommu_iotlb_sync(domain, &iotlb_gather);
2498 
2499 	return ret;
2500 }
2501 EXPORT_SYMBOL_GPL(iommu_unmap);
2502 
2503 size_t iommu_unmap_fast(struct iommu_domain *domain,
2504 			unsigned long iova, size_t size,
2505 			struct iommu_iotlb_gather *iotlb_gather)
2506 {
2507 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2508 }
2509 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2510 
2511 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2512 		     struct scatterlist *sg, unsigned int nents, int prot,
2513 		     gfp_t gfp)
2514 {
2515 	const struct iommu_domain_ops *ops = domain->ops;
2516 	size_t len = 0, mapped = 0;
2517 	phys_addr_t start;
2518 	unsigned int i = 0;
2519 	int ret;
2520 
2521 	might_sleep_if(gfpflags_allow_blocking(gfp));
2522 
2523 	/* Discourage passing strange GFP flags */
2524 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2525 				__GFP_HIGHMEM)))
2526 		return -EINVAL;
2527 
2528 	while (i <= nents) {
2529 		phys_addr_t s_phys = sg_phys(sg);
2530 
2531 		if (len && s_phys != start + len) {
2532 			ret = __iommu_map(domain, iova + mapped, start,
2533 					len, prot, gfp);
2534 
2535 			if (ret)
2536 				goto out_err;
2537 
2538 			mapped += len;
2539 			len = 0;
2540 		}
2541 
2542 		if (sg_dma_is_bus_address(sg))
2543 			goto next;
2544 
2545 		if (len) {
2546 			len += sg->length;
2547 		} else {
2548 			len = sg->length;
2549 			start = s_phys;
2550 		}
2551 
2552 next:
2553 		if (++i < nents)
2554 			sg = sg_next(sg);
2555 	}
2556 
2557 	if (ops->iotlb_sync_map)
2558 		ops->iotlb_sync_map(domain, iova, mapped);
2559 	return mapped;
2560 
2561 out_err:
2562 	/* undo mappings already done */
2563 	iommu_unmap(domain, iova, mapped);
2564 
2565 	return ret;
2566 }
2567 EXPORT_SYMBOL_GPL(iommu_map_sg);
2568 
2569 /**
2570  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2571  * @domain: the iommu domain where the fault has happened
2572  * @dev: the device where the fault has happened
2573  * @iova: the faulting address
2574  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2575  *
2576  * This function should be called by the low-level IOMMU implementations
2577  * whenever IOMMU faults happen, to allow high-level users, that are
2578  * interested in such events, to know about them.
2579  *
2580  * This event may be useful for several possible use cases:
2581  * - mere logging of the event
2582  * - dynamic TLB/PTE loading
2583  * - if restarting of the faulting device is required
2584  *
2585  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2586  * PTE/TLB loading will one day be supported, implementations will be able
2587  * to tell whether it succeeded or not according to this return value).
2588  *
2589  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2590  * (though fault handlers can also return -ENOSYS, in case they want to
2591  * elicit the default behavior of the IOMMU drivers).
2592  */
2593 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2594 		       unsigned long iova, int flags)
2595 {
2596 	int ret = -ENOSYS;
2597 
2598 	/*
2599 	 * if upper layers showed interest and installed a fault handler,
2600 	 * invoke it.
2601 	 */
2602 	if (domain->handler)
2603 		ret = domain->handler(domain, dev, iova, flags,
2604 						domain->handler_token);
2605 
2606 	trace_io_page_fault(dev, iova, flags);
2607 	return ret;
2608 }
2609 EXPORT_SYMBOL_GPL(report_iommu_fault);
2610 
2611 static int __init iommu_init(void)
2612 {
2613 	iommu_group_kset = kset_create_and_add("iommu_groups",
2614 					       NULL, kernel_kobj);
2615 	BUG_ON(!iommu_group_kset);
2616 
2617 	iommu_debugfs_setup();
2618 
2619 	return 0;
2620 }
2621 core_initcall(iommu_init);
2622 
2623 int iommu_enable_nesting(struct iommu_domain *domain)
2624 {
2625 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2626 		return -EINVAL;
2627 	if (!domain->ops->enable_nesting)
2628 		return -EINVAL;
2629 	return domain->ops->enable_nesting(domain);
2630 }
2631 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2632 
2633 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2634 		unsigned long quirk)
2635 {
2636 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2637 		return -EINVAL;
2638 	if (!domain->ops->set_pgtable_quirks)
2639 		return -EINVAL;
2640 	return domain->ops->set_pgtable_quirks(domain, quirk);
2641 }
2642 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2643 
2644 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2645 {
2646 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2647 
2648 	if (ops->get_resv_regions)
2649 		ops->get_resv_regions(dev, list);
2650 }
2651 
2652 /**
2653  * iommu_put_resv_regions - release resered regions
2654  * @dev: device for which to free reserved regions
2655  * @list: reserved region list for device
2656  *
2657  * This releases a reserved region list acquired by iommu_get_resv_regions().
2658  */
2659 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2660 {
2661 	struct iommu_resv_region *entry, *next;
2662 
2663 	list_for_each_entry_safe(entry, next, list, list) {
2664 		if (entry->free)
2665 			entry->free(dev, entry);
2666 		else
2667 			kfree(entry);
2668 	}
2669 }
2670 EXPORT_SYMBOL(iommu_put_resv_regions);
2671 
2672 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2673 						  size_t length, int prot,
2674 						  enum iommu_resv_type type,
2675 						  gfp_t gfp)
2676 {
2677 	struct iommu_resv_region *region;
2678 
2679 	region = kzalloc(sizeof(*region), gfp);
2680 	if (!region)
2681 		return NULL;
2682 
2683 	INIT_LIST_HEAD(&region->list);
2684 	region->start = start;
2685 	region->length = length;
2686 	region->prot = prot;
2687 	region->type = type;
2688 	return region;
2689 }
2690 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2691 
2692 void iommu_set_default_passthrough(bool cmd_line)
2693 {
2694 	if (cmd_line)
2695 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2696 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2697 }
2698 
2699 void iommu_set_default_translated(bool cmd_line)
2700 {
2701 	if (cmd_line)
2702 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2703 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2704 }
2705 
2706 bool iommu_default_passthrough(void)
2707 {
2708 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2709 }
2710 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2711 
2712 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2713 {
2714 	const struct iommu_ops *ops = NULL;
2715 	struct iommu_device *iommu;
2716 
2717 	spin_lock(&iommu_device_lock);
2718 	list_for_each_entry(iommu, &iommu_device_list, list)
2719 		if (iommu->fwnode == fwnode) {
2720 			ops = iommu->ops;
2721 			break;
2722 		}
2723 	spin_unlock(&iommu_device_lock);
2724 	return ops;
2725 }
2726 
2727 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2728 		      const struct iommu_ops *ops)
2729 {
2730 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2731 
2732 	if (fwspec)
2733 		return ops == fwspec->ops ? 0 : -EINVAL;
2734 
2735 	if (!dev_iommu_get(dev))
2736 		return -ENOMEM;
2737 
2738 	/* Preallocate for the overwhelmingly common case of 1 ID */
2739 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2740 	if (!fwspec)
2741 		return -ENOMEM;
2742 
2743 	of_node_get(to_of_node(iommu_fwnode));
2744 	fwspec->iommu_fwnode = iommu_fwnode;
2745 	fwspec->ops = ops;
2746 	dev_iommu_fwspec_set(dev, fwspec);
2747 	return 0;
2748 }
2749 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2750 
2751 void iommu_fwspec_free(struct device *dev)
2752 {
2753 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2754 
2755 	if (fwspec) {
2756 		fwnode_handle_put(fwspec->iommu_fwnode);
2757 		kfree(fwspec);
2758 		dev_iommu_fwspec_set(dev, NULL);
2759 	}
2760 }
2761 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2762 
2763 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2764 {
2765 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2766 	int i, new_num;
2767 
2768 	if (!fwspec)
2769 		return -EINVAL;
2770 
2771 	new_num = fwspec->num_ids + num_ids;
2772 	if (new_num > 1) {
2773 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2774 				  GFP_KERNEL);
2775 		if (!fwspec)
2776 			return -ENOMEM;
2777 
2778 		dev_iommu_fwspec_set(dev, fwspec);
2779 	}
2780 
2781 	for (i = 0; i < num_ids; i++)
2782 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2783 
2784 	fwspec->num_ids = new_num;
2785 	return 0;
2786 }
2787 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2788 
2789 /*
2790  * Per device IOMMU features.
2791  */
2792 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2793 {
2794 	if (dev->iommu && dev->iommu->iommu_dev) {
2795 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2796 
2797 		if (ops->dev_enable_feat)
2798 			return ops->dev_enable_feat(dev, feat);
2799 	}
2800 
2801 	return -ENODEV;
2802 }
2803 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2804 
2805 /*
2806  * The device drivers should do the necessary cleanups before calling this.
2807  */
2808 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2809 {
2810 	if (dev->iommu && dev->iommu->iommu_dev) {
2811 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2812 
2813 		if (ops->dev_disable_feat)
2814 			return ops->dev_disable_feat(dev, feat);
2815 	}
2816 
2817 	return -EBUSY;
2818 }
2819 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2820 
2821 /**
2822  * iommu_setup_default_domain - Set the default_domain for the group
2823  * @group: Group to change
2824  * @target_type: Domain type to set as the default_domain
2825  *
2826  * Allocate a default domain and set it as the current domain on the group. If
2827  * the group already has a default domain it will be changed to the target_type.
2828  * When target_type is 0 the default domain is selected based on driver and
2829  * system preferences.
2830  */
2831 static int iommu_setup_default_domain(struct iommu_group *group,
2832 				      int target_type)
2833 {
2834 	struct iommu_domain *old_dom = group->default_domain;
2835 	struct group_device *gdev;
2836 	struct iommu_domain *dom;
2837 	bool direct_failed;
2838 	int req_type;
2839 	int ret;
2840 
2841 	lockdep_assert_held(&group->mutex);
2842 
2843 	req_type = iommu_get_default_domain_type(group, target_type);
2844 	if (req_type < 0)
2845 		return -EINVAL;
2846 
2847 	/*
2848 	 * There are still some drivers which don't support default domains, so
2849 	 * we ignore the failure and leave group->default_domain NULL.
2850 	 *
2851 	 * We assume that the iommu driver starts up the device in
2852 	 * 'set_platform_dma_ops' mode if it does not support default domains.
2853 	 */
2854 	dom = iommu_group_alloc_default_domain(group, req_type);
2855 	if (!dom) {
2856 		/* Once in default_domain mode we never leave */
2857 		if (group->default_domain)
2858 			return -ENODEV;
2859 		group->default_domain = NULL;
2860 		return 0;
2861 	}
2862 
2863 	if (group->default_domain == dom)
2864 		return 0;
2865 
2866 	/*
2867 	 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
2868 	 * mapped before their device is attached, in order to guarantee
2869 	 * continuity with any FW activity
2870 	 */
2871 	direct_failed = false;
2872 	for_each_group_device(group, gdev) {
2873 		if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
2874 			direct_failed = true;
2875 			dev_warn_once(
2876 				gdev->dev->iommu->iommu_dev->dev,
2877 				"IOMMU driver was not able to establish FW requested direct mapping.");
2878 		}
2879 	}
2880 
2881 	/* We must set default_domain early for __iommu_device_set_domain */
2882 	group->default_domain = dom;
2883 	if (!group->domain) {
2884 		/*
2885 		 * Drivers are not allowed to fail the first domain attach.
2886 		 * The only way to recover from this is to fail attaching the
2887 		 * iommu driver and call ops->release_device. Put the domain
2888 		 * in group->default_domain so it is freed after.
2889 		 */
2890 		ret = __iommu_group_set_domain_internal(
2891 			group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
2892 		if (WARN_ON(ret))
2893 			goto out_free;
2894 	} else {
2895 		ret = __iommu_group_set_domain(group, dom);
2896 		if (ret) {
2897 			iommu_domain_free(dom);
2898 			group->default_domain = old_dom;
2899 			return ret;
2900 		}
2901 	}
2902 
2903 	/*
2904 	 * Drivers are supposed to allow mappings to be installed in a domain
2905 	 * before device attachment, but some don't. Hack around this defect by
2906 	 * trying again after attaching. If this happens it means the device
2907 	 * will not continuously have the IOMMU_RESV_DIRECT map.
2908 	 */
2909 	if (direct_failed) {
2910 		for_each_group_device(group, gdev) {
2911 			ret = iommu_create_device_direct_mappings(dom, gdev->dev);
2912 			if (ret)
2913 				goto err_restore;
2914 		}
2915 	}
2916 
2917 err_restore:
2918 	if (old_dom) {
2919 		__iommu_group_set_domain_internal(
2920 			group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
2921 		iommu_domain_free(dom);
2922 		old_dom = NULL;
2923 	}
2924 out_free:
2925 	if (old_dom)
2926 		iommu_domain_free(old_dom);
2927 	return ret;
2928 }
2929 
2930 /*
2931  * Changing the default domain through sysfs requires the users to unbind the
2932  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
2933  * transition. Return failure if this isn't met.
2934  *
2935  * We need to consider the race between this and the device release path.
2936  * group->mutex is used here to guarantee that the device release path
2937  * will not be entered at the same time.
2938  */
2939 static ssize_t iommu_group_store_type(struct iommu_group *group,
2940 				      const char *buf, size_t count)
2941 {
2942 	struct group_device *gdev;
2943 	int ret, req_type;
2944 
2945 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
2946 		return -EACCES;
2947 
2948 	if (WARN_ON(!group) || !group->default_domain)
2949 		return -EINVAL;
2950 
2951 	if (sysfs_streq(buf, "identity"))
2952 		req_type = IOMMU_DOMAIN_IDENTITY;
2953 	else if (sysfs_streq(buf, "DMA"))
2954 		req_type = IOMMU_DOMAIN_DMA;
2955 	else if (sysfs_streq(buf, "DMA-FQ"))
2956 		req_type = IOMMU_DOMAIN_DMA_FQ;
2957 	else if (sysfs_streq(buf, "auto"))
2958 		req_type = 0;
2959 	else
2960 		return -EINVAL;
2961 
2962 	mutex_lock(&group->mutex);
2963 	/* We can bring up a flush queue without tearing down the domain. */
2964 	if (req_type == IOMMU_DOMAIN_DMA_FQ &&
2965 	    group->default_domain->type == IOMMU_DOMAIN_DMA) {
2966 		ret = iommu_dma_init_fq(group->default_domain);
2967 		if (ret)
2968 			goto out_unlock;
2969 
2970 		group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
2971 		ret = count;
2972 		goto out_unlock;
2973 	}
2974 
2975 	/* Otherwise, ensure that device exists and no driver is bound. */
2976 	if (list_empty(&group->devices) || group->owner_cnt) {
2977 		ret = -EPERM;
2978 		goto out_unlock;
2979 	}
2980 
2981 	ret = iommu_setup_default_domain(group, req_type);
2982 	if (ret)
2983 		goto out_unlock;
2984 
2985 	/*
2986 	 * Release the mutex here because ops->probe_finalize() call-back of
2987 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
2988 	 * in-turn might call back into IOMMU core code, where it tries to take
2989 	 * group->mutex, resulting in a deadlock.
2990 	 */
2991 	mutex_unlock(&group->mutex);
2992 
2993 	/* Make sure dma_ops is appropriatley set */
2994 	for_each_group_device(group, gdev)
2995 		iommu_group_do_probe_finalize(gdev->dev);
2996 	return count;
2997 
2998 out_unlock:
2999 	mutex_unlock(&group->mutex);
3000 	return ret ?: count;
3001 }
3002 
3003 static bool iommu_is_default_domain(struct iommu_group *group)
3004 {
3005 	if (group->domain == group->default_domain)
3006 		return true;
3007 
3008 	/*
3009 	 * If the default domain was set to identity and it is still an identity
3010 	 * domain then we consider this a pass. This happens because of
3011 	 * amd_iommu_init_device() replacing the default idenytity domain with an
3012 	 * identity domain that has a different configuration for AMDGPU.
3013 	 */
3014 	if (group->default_domain &&
3015 	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY &&
3016 	    group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY)
3017 		return true;
3018 	return false;
3019 }
3020 
3021 /**
3022  * iommu_device_use_default_domain() - Device driver wants to handle device
3023  *                                     DMA through the kernel DMA API.
3024  * @dev: The device.
3025  *
3026  * The device driver about to bind @dev wants to do DMA through the kernel
3027  * DMA API. Return 0 if it is allowed, otherwise an error.
3028  */
3029 int iommu_device_use_default_domain(struct device *dev)
3030 {
3031 	struct iommu_group *group = iommu_group_get(dev);
3032 	int ret = 0;
3033 
3034 	if (!group)
3035 		return 0;
3036 
3037 	mutex_lock(&group->mutex);
3038 	if (group->owner_cnt) {
3039 		if (group->owner || !iommu_is_default_domain(group) ||
3040 		    !xa_empty(&group->pasid_array)) {
3041 			ret = -EBUSY;
3042 			goto unlock_out;
3043 		}
3044 	}
3045 
3046 	group->owner_cnt++;
3047 
3048 unlock_out:
3049 	mutex_unlock(&group->mutex);
3050 	iommu_group_put(group);
3051 
3052 	return ret;
3053 }
3054 
3055 /**
3056  * iommu_device_unuse_default_domain() - Device driver stops handling device
3057  *                                       DMA through the kernel DMA API.
3058  * @dev: The device.
3059  *
3060  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3061  * It must be called after iommu_device_use_default_domain().
3062  */
3063 void iommu_device_unuse_default_domain(struct device *dev)
3064 {
3065 	struct iommu_group *group = iommu_group_get(dev);
3066 
3067 	if (!group)
3068 		return;
3069 
3070 	mutex_lock(&group->mutex);
3071 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3072 		group->owner_cnt--;
3073 
3074 	mutex_unlock(&group->mutex);
3075 	iommu_group_put(group);
3076 }
3077 
3078 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3079 {
3080 	struct group_device *dev =
3081 		list_first_entry(&group->devices, struct group_device, list);
3082 
3083 	if (group->blocking_domain)
3084 		return 0;
3085 
3086 	group->blocking_domain =
3087 		__iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3088 	if (!group->blocking_domain) {
3089 		/*
3090 		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3091 		 * create an empty domain instead.
3092 		 */
3093 		group->blocking_domain = __iommu_domain_alloc(
3094 			dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3095 		if (!group->blocking_domain)
3096 			return -EINVAL;
3097 	}
3098 	return 0;
3099 }
3100 
3101 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3102 {
3103 	int ret;
3104 
3105 	if ((group->domain && group->domain != group->default_domain) ||
3106 	    !xa_empty(&group->pasid_array))
3107 		return -EBUSY;
3108 
3109 	ret = __iommu_group_alloc_blocking_domain(group);
3110 	if (ret)
3111 		return ret;
3112 	ret = __iommu_group_set_domain(group, group->blocking_domain);
3113 	if (ret)
3114 		return ret;
3115 
3116 	group->owner = owner;
3117 	group->owner_cnt++;
3118 	return 0;
3119 }
3120 
3121 /**
3122  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3123  * @group: The group.
3124  * @owner: Caller specified pointer. Used for exclusive ownership.
3125  *
3126  * This is to support backward compatibility for vfio which manages the dma
3127  * ownership in iommu_group level. New invocations on this interface should be
3128  * prohibited. Only a single owner may exist for a group.
3129  */
3130 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3131 {
3132 	int ret = 0;
3133 
3134 	if (WARN_ON(!owner))
3135 		return -EINVAL;
3136 
3137 	mutex_lock(&group->mutex);
3138 	if (group->owner_cnt) {
3139 		ret = -EPERM;
3140 		goto unlock_out;
3141 	}
3142 
3143 	ret = __iommu_take_dma_ownership(group, owner);
3144 unlock_out:
3145 	mutex_unlock(&group->mutex);
3146 
3147 	return ret;
3148 }
3149 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3150 
3151 /**
3152  * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3153  * @dev: The device.
3154  * @owner: Caller specified pointer. Used for exclusive ownership.
3155  *
3156  * Claim the DMA ownership of a device. Multiple devices in the same group may
3157  * concurrently claim ownership if they present the same owner value. Returns 0
3158  * on success and error code on failure
3159  */
3160 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3161 {
3162 	struct iommu_group *group;
3163 	int ret = 0;
3164 
3165 	if (WARN_ON(!owner))
3166 		return -EINVAL;
3167 
3168 	group = iommu_group_get(dev);
3169 	if (!group)
3170 		return -ENODEV;
3171 
3172 	mutex_lock(&group->mutex);
3173 	if (group->owner_cnt) {
3174 		if (group->owner != owner) {
3175 			ret = -EPERM;
3176 			goto unlock_out;
3177 		}
3178 		group->owner_cnt++;
3179 		goto unlock_out;
3180 	}
3181 
3182 	ret = __iommu_take_dma_ownership(group, owner);
3183 unlock_out:
3184 	mutex_unlock(&group->mutex);
3185 	iommu_group_put(group);
3186 
3187 	return ret;
3188 }
3189 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3190 
3191 static void __iommu_release_dma_ownership(struct iommu_group *group)
3192 {
3193 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3194 		    !xa_empty(&group->pasid_array)))
3195 		return;
3196 
3197 	group->owner_cnt = 0;
3198 	group->owner = NULL;
3199 	__iommu_group_set_domain_nofail(group, group->default_domain);
3200 }
3201 
3202 /**
3203  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3204  * @dev: The device
3205  *
3206  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3207  */
3208 void iommu_group_release_dma_owner(struct iommu_group *group)
3209 {
3210 	mutex_lock(&group->mutex);
3211 	__iommu_release_dma_ownership(group);
3212 	mutex_unlock(&group->mutex);
3213 }
3214 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3215 
3216 /**
3217  * iommu_device_release_dma_owner() - Release DMA ownership of a device
3218  * @group: The device.
3219  *
3220  * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3221  */
3222 void iommu_device_release_dma_owner(struct device *dev)
3223 {
3224 	struct iommu_group *group = iommu_group_get(dev);
3225 
3226 	mutex_lock(&group->mutex);
3227 	if (group->owner_cnt > 1)
3228 		group->owner_cnt--;
3229 	else
3230 		__iommu_release_dma_ownership(group);
3231 	mutex_unlock(&group->mutex);
3232 	iommu_group_put(group);
3233 }
3234 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3235 
3236 /**
3237  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3238  * @group: The group.
3239  *
3240  * This provides status query on a given group. It is racy and only for
3241  * non-binding status reporting.
3242  */
3243 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3244 {
3245 	unsigned int user;
3246 
3247 	mutex_lock(&group->mutex);
3248 	user = group->owner_cnt;
3249 	mutex_unlock(&group->mutex);
3250 
3251 	return user;
3252 }
3253 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3254 
3255 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3256 				   struct iommu_group *group, ioasid_t pasid)
3257 {
3258 	struct group_device *device;
3259 	int ret = 0;
3260 
3261 	for_each_group_device(group, device) {
3262 		ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3263 		if (ret)
3264 			break;
3265 	}
3266 
3267 	return ret;
3268 }
3269 
3270 static void __iommu_remove_group_pasid(struct iommu_group *group,
3271 				       ioasid_t pasid)
3272 {
3273 	struct group_device *device;
3274 	const struct iommu_ops *ops;
3275 
3276 	for_each_group_device(group, device) {
3277 		ops = dev_iommu_ops(device->dev);
3278 		ops->remove_dev_pasid(device->dev, pasid);
3279 	}
3280 }
3281 
3282 /*
3283  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3284  * @domain: the iommu domain.
3285  * @dev: the attached device.
3286  * @pasid: the pasid of the device.
3287  *
3288  * Return: 0 on success, or an error.
3289  */
3290 int iommu_attach_device_pasid(struct iommu_domain *domain,
3291 			      struct device *dev, ioasid_t pasid)
3292 {
3293 	struct iommu_group *group;
3294 	void *curr;
3295 	int ret;
3296 
3297 	if (!domain->ops->set_dev_pasid)
3298 		return -EOPNOTSUPP;
3299 
3300 	group = iommu_group_get(dev);
3301 	if (!group)
3302 		return -ENODEV;
3303 
3304 	mutex_lock(&group->mutex);
3305 	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL);
3306 	if (curr) {
3307 		ret = xa_err(curr) ? : -EBUSY;
3308 		goto out_unlock;
3309 	}
3310 
3311 	ret = __iommu_set_group_pasid(domain, group, pasid);
3312 	if (ret) {
3313 		__iommu_remove_group_pasid(group, pasid);
3314 		xa_erase(&group->pasid_array, pasid);
3315 	}
3316 out_unlock:
3317 	mutex_unlock(&group->mutex);
3318 	iommu_group_put(group);
3319 
3320 	return ret;
3321 }
3322 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3323 
3324 /*
3325  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3326  * @domain: the iommu domain.
3327  * @dev: the attached device.
3328  * @pasid: the pasid of the device.
3329  *
3330  * The @domain must have been attached to @pasid of the @dev with
3331  * iommu_attach_device_pasid().
3332  */
3333 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3334 			       ioasid_t pasid)
3335 {
3336 	struct iommu_group *group = iommu_group_get(dev);
3337 
3338 	mutex_lock(&group->mutex);
3339 	__iommu_remove_group_pasid(group, pasid);
3340 	WARN_ON(xa_erase(&group->pasid_array, pasid) != domain);
3341 	mutex_unlock(&group->mutex);
3342 
3343 	iommu_group_put(group);
3344 }
3345 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3346 
3347 /*
3348  * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev
3349  * @dev: the queried device
3350  * @pasid: the pasid of the device
3351  * @type: matched domain type, 0 for any match
3352  *
3353  * This is a variant of iommu_get_domain_for_dev(). It returns the existing
3354  * domain attached to pasid of a device. Callers must hold a lock around this
3355  * function, and both iommu_attach/detach_dev_pasid() whenever a domain of
3356  * type is being manipulated. This API does not internally resolve races with
3357  * attach/detach.
3358  *
3359  * Return: attached domain on success, NULL otherwise.
3360  */
3361 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev,
3362 						    ioasid_t pasid,
3363 						    unsigned int type)
3364 {
3365 	struct iommu_domain *domain;
3366 	struct iommu_group *group;
3367 
3368 	group = iommu_group_get(dev);
3369 	if (!group)
3370 		return NULL;
3371 
3372 	xa_lock(&group->pasid_array);
3373 	domain = xa_load(&group->pasid_array, pasid);
3374 	if (type && domain && domain->type != type)
3375 		domain = ERR_PTR(-EBUSY);
3376 	xa_unlock(&group->pasid_array);
3377 	iommu_group_put(group);
3378 
3379 	return domain;
3380 }
3381 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid);
3382 
3383 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev,
3384 					    struct mm_struct *mm)
3385 {
3386 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3387 	struct iommu_domain *domain;
3388 
3389 	domain = ops->domain_alloc(IOMMU_DOMAIN_SVA);
3390 	if (!domain)
3391 		return NULL;
3392 
3393 	domain->type = IOMMU_DOMAIN_SVA;
3394 	mmgrab(mm);
3395 	domain->mm = mm;
3396 	domain->iopf_handler = iommu_sva_handle_iopf;
3397 	domain->fault_data = mm;
3398 
3399 	return domain;
3400 }
3401