xref: /openbmc/linux/drivers/iommu/iommu.c (revision 6e1aa204)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/device.h>
10 #include <linux/kernel.h>
11 #include <linux/bug.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/export.h>
15 #include <linux/slab.h>
16 #include <linux/errno.h>
17 #include <linux/iommu.h>
18 #include <linux/idr.h>
19 #include <linux/notifier.h>
20 #include <linux/err.h>
21 #include <linux/pci.h>
22 #include <linux/bitops.h>
23 #include <linux/property.h>
24 #include <linux/fsl/mc.h>
25 #include <linux/module.h>
26 #include <trace/events/iommu.h>
27 
28 static struct kset *iommu_group_kset;
29 static DEFINE_IDA(iommu_group_ida);
30 
31 static unsigned int iommu_def_domain_type __read_mostly;
32 static bool iommu_dma_strict __read_mostly = true;
33 static u32 iommu_cmd_line __read_mostly;
34 
35 struct iommu_group {
36 	struct kobject kobj;
37 	struct kobject *devices_kobj;
38 	struct list_head devices;
39 	struct mutex mutex;
40 	struct blocking_notifier_head notifier;
41 	void *iommu_data;
42 	void (*iommu_data_release)(void *iommu_data);
43 	char *name;
44 	int id;
45 	struct iommu_domain *default_domain;
46 	struct iommu_domain *domain;
47 };
48 
49 struct group_device {
50 	struct list_head list;
51 	struct device *dev;
52 	char *name;
53 };
54 
55 struct iommu_group_attribute {
56 	struct attribute attr;
57 	ssize_t (*show)(struct iommu_group *group, char *buf);
58 	ssize_t (*store)(struct iommu_group *group,
59 			 const char *buf, size_t count);
60 };
61 
62 static const char * const iommu_group_resv_type_string[] = {
63 	[IOMMU_RESV_DIRECT]			= "direct",
64 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
65 	[IOMMU_RESV_RESERVED]			= "reserved",
66 	[IOMMU_RESV_MSI]			= "msi",
67 	[IOMMU_RESV_SW_MSI]			= "msi",
68 };
69 
70 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
71 
72 static void iommu_set_cmd_line_dma_api(void)
73 {
74 	iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
75 }
76 
77 static bool iommu_cmd_line_dma_api(void)
78 {
79 	return !!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API);
80 }
81 
82 static int iommu_alloc_default_domain(struct device *dev);
83 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
84 						 unsigned type);
85 static int __iommu_attach_device(struct iommu_domain *domain,
86 				 struct device *dev);
87 static int __iommu_attach_group(struct iommu_domain *domain,
88 				struct iommu_group *group);
89 static void __iommu_detach_group(struct iommu_domain *domain,
90 				 struct iommu_group *group);
91 
92 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
93 struct iommu_group_attribute iommu_group_attr_##_name =		\
94 	__ATTR(_name, _mode, _show, _store)
95 
96 #define to_iommu_group_attr(_attr)	\
97 	container_of(_attr, struct iommu_group_attribute, attr)
98 #define to_iommu_group(_kobj)		\
99 	container_of(_kobj, struct iommu_group, kobj)
100 
101 static LIST_HEAD(iommu_device_list);
102 static DEFINE_SPINLOCK(iommu_device_lock);
103 
104 /*
105  * Use a function instead of an array here because the domain-type is a
106  * bit-field, so an array would waste memory.
107  */
108 static const char *iommu_domain_type_str(unsigned int t)
109 {
110 	switch (t) {
111 	case IOMMU_DOMAIN_BLOCKED:
112 		return "Blocked";
113 	case IOMMU_DOMAIN_IDENTITY:
114 		return "Passthrough";
115 	case IOMMU_DOMAIN_UNMANAGED:
116 		return "Unmanaged";
117 	case IOMMU_DOMAIN_DMA:
118 		return "Translated";
119 	default:
120 		return "Unknown";
121 	}
122 }
123 
124 static int __init iommu_subsys_init(void)
125 {
126 	bool cmd_line = iommu_cmd_line_dma_api();
127 
128 	if (!cmd_line) {
129 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
130 			iommu_set_default_passthrough(false);
131 		else
132 			iommu_set_default_translated(false);
133 
134 		if (iommu_default_passthrough() && mem_encrypt_active()) {
135 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
136 			iommu_set_default_translated(false);
137 		}
138 	}
139 
140 	pr_info("Default domain type: %s %s\n",
141 		iommu_domain_type_str(iommu_def_domain_type),
142 		cmd_line ? "(set via kernel command line)" : "");
143 
144 	return 0;
145 }
146 subsys_initcall(iommu_subsys_init);
147 
148 int iommu_device_register(struct iommu_device *iommu)
149 {
150 	spin_lock(&iommu_device_lock);
151 	list_add_tail(&iommu->list, &iommu_device_list);
152 	spin_unlock(&iommu_device_lock);
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(iommu_device_register);
156 
157 void iommu_device_unregister(struct iommu_device *iommu)
158 {
159 	spin_lock(&iommu_device_lock);
160 	list_del(&iommu->list);
161 	spin_unlock(&iommu_device_lock);
162 }
163 EXPORT_SYMBOL_GPL(iommu_device_unregister);
164 
165 static struct dev_iommu *dev_iommu_get(struct device *dev)
166 {
167 	struct dev_iommu *param = dev->iommu;
168 
169 	if (param)
170 		return param;
171 
172 	param = kzalloc(sizeof(*param), GFP_KERNEL);
173 	if (!param)
174 		return NULL;
175 
176 	mutex_init(&param->lock);
177 	dev->iommu = param;
178 	return param;
179 }
180 
181 static void dev_iommu_free(struct device *dev)
182 {
183 	kfree(dev->iommu);
184 	dev->iommu = NULL;
185 }
186 
187 static int __iommu_probe_device(struct device *dev)
188 {
189 	const struct iommu_ops *ops = dev->bus->iommu_ops;
190 	struct iommu_device *iommu_dev;
191 	struct iommu_group *group;
192 	int ret;
193 
194 	iommu_dev = ops->probe_device(dev);
195 	if (IS_ERR(iommu_dev))
196 		return PTR_ERR(iommu_dev);
197 
198 	dev->iommu->iommu_dev = iommu_dev;
199 
200 	group = iommu_group_get_for_dev(dev);
201 	if (!IS_ERR(group)) {
202 		ret = PTR_ERR(group);
203 		goto out_release;
204 	}
205 	iommu_group_put(group);
206 
207 	iommu_device_link(iommu_dev, dev);
208 
209 	return 0;
210 
211 out_release:
212 	ops->release_device(dev);
213 
214 	return ret;
215 }
216 
217 int iommu_probe_device(struct device *dev)
218 {
219 	const struct iommu_ops *ops = dev->bus->iommu_ops;
220 	int ret;
221 
222 	WARN_ON(dev->iommu_group);
223 	if (!ops)
224 		return -EINVAL;
225 
226 	if (!dev_iommu_get(dev))
227 		return -ENOMEM;
228 
229 	if (!try_module_get(ops->owner)) {
230 		ret = -EINVAL;
231 		goto err_free_dev_param;
232 	}
233 
234 	if (ops->probe_device) {
235 		struct iommu_group *group;
236 
237 		ret = __iommu_probe_device(dev);
238 
239 		/*
240 		 * Try to allocate a default domain - needs support from the
241 		 * IOMMU driver. There are still some drivers which don't
242 		 * support default domains, so the return value is not yet
243 		 * checked.
244 		 */
245 		if (!ret)
246 			iommu_alloc_default_domain(dev);
247 
248 		group = iommu_group_get(dev);
249 		if (group && group->default_domain) {
250 			ret = __iommu_attach_device(group->default_domain, dev);
251 			iommu_group_put(group);
252 		}
253 
254 	} else {
255 		ret = ops->add_device(dev);
256 	}
257 
258 	if (ret)
259 		goto err_module_put;
260 
261 	if (ops->probe_finalize)
262 		ops->probe_finalize(dev);
263 
264 	return 0;
265 
266 err_module_put:
267 	module_put(ops->owner);
268 err_free_dev_param:
269 	dev_iommu_free(dev);
270 	return ret;
271 }
272 
273 static void __iommu_release_device(struct device *dev)
274 {
275 	const struct iommu_ops *ops = dev->bus->iommu_ops;
276 
277 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
278 
279 	iommu_group_remove_device(dev);
280 
281 	ops->release_device(dev);
282 }
283 
284 void iommu_release_device(struct device *dev)
285 {
286 	const struct iommu_ops *ops = dev->bus->iommu_ops;
287 
288 	if (!dev->iommu)
289 		return;
290 
291 	if (ops->release_device)
292 		__iommu_release_device(dev);
293 	else if (dev->iommu_group)
294 		ops->remove_device(dev);
295 
296 	module_put(ops->owner);
297 	dev_iommu_free(dev);
298 }
299 
300 static int __init iommu_set_def_domain_type(char *str)
301 {
302 	bool pt;
303 	int ret;
304 
305 	ret = kstrtobool(str, &pt);
306 	if (ret)
307 		return ret;
308 
309 	if (pt)
310 		iommu_set_default_passthrough(true);
311 	else
312 		iommu_set_default_translated(true);
313 
314 	return 0;
315 }
316 early_param("iommu.passthrough", iommu_set_def_domain_type);
317 
318 static int __init iommu_dma_setup(char *str)
319 {
320 	return kstrtobool(str, &iommu_dma_strict);
321 }
322 early_param("iommu.strict", iommu_dma_setup);
323 
324 static ssize_t iommu_group_attr_show(struct kobject *kobj,
325 				     struct attribute *__attr, char *buf)
326 {
327 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
328 	struct iommu_group *group = to_iommu_group(kobj);
329 	ssize_t ret = -EIO;
330 
331 	if (attr->show)
332 		ret = attr->show(group, buf);
333 	return ret;
334 }
335 
336 static ssize_t iommu_group_attr_store(struct kobject *kobj,
337 				      struct attribute *__attr,
338 				      const char *buf, size_t count)
339 {
340 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
341 	struct iommu_group *group = to_iommu_group(kobj);
342 	ssize_t ret = -EIO;
343 
344 	if (attr->store)
345 		ret = attr->store(group, buf, count);
346 	return ret;
347 }
348 
349 static const struct sysfs_ops iommu_group_sysfs_ops = {
350 	.show = iommu_group_attr_show,
351 	.store = iommu_group_attr_store,
352 };
353 
354 static int iommu_group_create_file(struct iommu_group *group,
355 				   struct iommu_group_attribute *attr)
356 {
357 	return sysfs_create_file(&group->kobj, &attr->attr);
358 }
359 
360 static void iommu_group_remove_file(struct iommu_group *group,
361 				    struct iommu_group_attribute *attr)
362 {
363 	sysfs_remove_file(&group->kobj, &attr->attr);
364 }
365 
366 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
367 {
368 	return sprintf(buf, "%s\n", group->name);
369 }
370 
371 /**
372  * iommu_insert_resv_region - Insert a new region in the
373  * list of reserved regions.
374  * @new: new region to insert
375  * @regions: list of regions
376  *
377  * Elements are sorted by start address and overlapping segments
378  * of the same type are merged.
379  */
380 int iommu_insert_resv_region(struct iommu_resv_region *new,
381 			     struct list_head *regions)
382 {
383 	struct iommu_resv_region *iter, *tmp, *nr, *top;
384 	LIST_HEAD(stack);
385 
386 	nr = iommu_alloc_resv_region(new->start, new->length,
387 				     new->prot, new->type);
388 	if (!nr)
389 		return -ENOMEM;
390 
391 	/* First add the new element based on start address sorting */
392 	list_for_each_entry(iter, regions, list) {
393 		if (nr->start < iter->start ||
394 		    (nr->start == iter->start && nr->type <= iter->type))
395 			break;
396 	}
397 	list_add_tail(&nr->list, &iter->list);
398 
399 	/* Merge overlapping segments of type nr->type in @regions, if any */
400 	list_for_each_entry_safe(iter, tmp, regions, list) {
401 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
402 
403 		/* no merge needed on elements of different types than @new */
404 		if (iter->type != new->type) {
405 			list_move_tail(&iter->list, &stack);
406 			continue;
407 		}
408 
409 		/* look for the last stack element of same type as @iter */
410 		list_for_each_entry_reverse(top, &stack, list)
411 			if (top->type == iter->type)
412 				goto check_overlap;
413 
414 		list_move_tail(&iter->list, &stack);
415 		continue;
416 
417 check_overlap:
418 		top_end = top->start + top->length - 1;
419 
420 		if (iter->start > top_end + 1) {
421 			list_move_tail(&iter->list, &stack);
422 		} else {
423 			top->length = max(top_end, iter_end) - top->start + 1;
424 			list_del(&iter->list);
425 			kfree(iter);
426 		}
427 	}
428 	list_splice(&stack, regions);
429 	return 0;
430 }
431 
432 static int
433 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
434 				 struct list_head *group_resv_regions)
435 {
436 	struct iommu_resv_region *entry;
437 	int ret = 0;
438 
439 	list_for_each_entry(entry, dev_resv_regions, list) {
440 		ret = iommu_insert_resv_region(entry, group_resv_regions);
441 		if (ret)
442 			break;
443 	}
444 	return ret;
445 }
446 
447 int iommu_get_group_resv_regions(struct iommu_group *group,
448 				 struct list_head *head)
449 {
450 	struct group_device *device;
451 	int ret = 0;
452 
453 	mutex_lock(&group->mutex);
454 	list_for_each_entry(device, &group->devices, list) {
455 		struct list_head dev_resv_regions;
456 
457 		INIT_LIST_HEAD(&dev_resv_regions);
458 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
459 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
460 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
461 		if (ret)
462 			break;
463 	}
464 	mutex_unlock(&group->mutex);
465 	return ret;
466 }
467 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
468 
469 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
470 					     char *buf)
471 {
472 	struct iommu_resv_region *region, *next;
473 	struct list_head group_resv_regions;
474 	char *str = buf;
475 
476 	INIT_LIST_HEAD(&group_resv_regions);
477 	iommu_get_group_resv_regions(group, &group_resv_regions);
478 
479 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
480 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
481 			       (long long int)region->start,
482 			       (long long int)(region->start +
483 						region->length - 1),
484 			       iommu_group_resv_type_string[region->type]);
485 		kfree(region);
486 	}
487 
488 	return (str - buf);
489 }
490 
491 static ssize_t iommu_group_show_type(struct iommu_group *group,
492 				     char *buf)
493 {
494 	char *type = "unknown\n";
495 
496 	if (group->default_domain) {
497 		switch (group->default_domain->type) {
498 		case IOMMU_DOMAIN_BLOCKED:
499 			type = "blocked\n";
500 			break;
501 		case IOMMU_DOMAIN_IDENTITY:
502 			type = "identity\n";
503 			break;
504 		case IOMMU_DOMAIN_UNMANAGED:
505 			type = "unmanaged\n";
506 			break;
507 		case IOMMU_DOMAIN_DMA:
508 			type = "DMA\n";
509 			break;
510 		}
511 	}
512 	strcpy(buf, type);
513 
514 	return strlen(type);
515 }
516 
517 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
518 
519 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
520 			iommu_group_show_resv_regions, NULL);
521 
522 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL);
523 
524 static void iommu_group_release(struct kobject *kobj)
525 {
526 	struct iommu_group *group = to_iommu_group(kobj);
527 
528 	pr_debug("Releasing group %d\n", group->id);
529 
530 	if (group->iommu_data_release)
531 		group->iommu_data_release(group->iommu_data);
532 
533 	ida_simple_remove(&iommu_group_ida, group->id);
534 
535 	if (group->default_domain)
536 		iommu_domain_free(group->default_domain);
537 
538 	kfree(group->name);
539 	kfree(group);
540 }
541 
542 static struct kobj_type iommu_group_ktype = {
543 	.sysfs_ops = &iommu_group_sysfs_ops,
544 	.release = iommu_group_release,
545 };
546 
547 /**
548  * iommu_group_alloc - Allocate a new group
549  *
550  * This function is called by an iommu driver to allocate a new iommu
551  * group.  The iommu group represents the minimum granularity of the iommu.
552  * Upon successful return, the caller holds a reference to the supplied
553  * group in order to hold the group until devices are added.  Use
554  * iommu_group_put() to release this extra reference count, allowing the
555  * group to be automatically reclaimed once it has no devices or external
556  * references.
557  */
558 struct iommu_group *iommu_group_alloc(void)
559 {
560 	struct iommu_group *group;
561 	int ret;
562 
563 	group = kzalloc(sizeof(*group), GFP_KERNEL);
564 	if (!group)
565 		return ERR_PTR(-ENOMEM);
566 
567 	group->kobj.kset = iommu_group_kset;
568 	mutex_init(&group->mutex);
569 	INIT_LIST_HEAD(&group->devices);
570 	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
571 
572 	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
573 	if (ret < 0) {
574 		kfree(group);
575 		return ERR_PTR(ret);
576 	}
577 	group->id = ret;
578 
579 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
580 				   NULL, "%d", group->id);
581 	if (ret) {
582 		ida_simple_remove(&iommu_group_ida, group->id);
583 		kfree(group);
584 		return ERR_PTR(ret);
585 	}
586 
587 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
588 	if (!group->devices_kobj) {
589 		kobject_put(&group->kobj); /* triggers .release & free */
590 		return ERR_PTR(-ENOMEM);
591 	}
592 
593 	/*
594 	 * The devices_kobj holds a reference on the group kobject, so
595 	 * as long as that exists so will the group.  We can therefore
596 	 * use the devices_kobj for reference counting.
597 	 */
598 	kobject_put(&group->kobj);
599 
600 	ret = iommu_group_create_file(group,
601 				      &iommu_group_attr_reserved_regions);
602 	if (ret)
603 		return ERR_PTR(ret);
604 
605 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
606 	if (ret)
607 		return ERR_PTR(ret);
608 
609 	pr_debug("Allocated group %d\n", group->id);
610 
611 	return group;
612 }
613 EXPORT_SYMBOL_GPL(iommu_group_alloc);
614 
615 struct iommu_group *iommu_group_get_by_id(int id)
616 {
617 	struct kobject *group_kobj;
618 	struct iommu_group *group;
619 	const char *name;
620 
621 	if (!iommu_group_kset)
622 		return NULL;
623 
624 	name = kasprintf(GFP_KERNEL, "%d", id);
625 	if (!name)
626 		return NULL;
627 
628 	group_kobj = kset_find_obj(iommu_group_kset, name);
629 	kfree(name);
630 
631 	if (!group_kobj)
632 		return NULL;
633 
634 	group = container_of(group_kobj, struct iommu_group, kobj);
635 	BUG_ON(group->id != id);
636 
637 	kobject_get(group->devices_kobj);
638 	kobject_put(&group->kobj);
639 
640 	return group;
641 }
642 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
643 
644 /**
645  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
646  * @group: the group
647  *
648  * iommu drivers can store data in the group for use when doing iommu
649  * operations.  This function provides a way to retrieve it.  Caller
650  * should hold a group reference.
651  */
652 void *iommu_group_get_iommudata(struct iommu_group *group)
653 {
654 	return group->iommu_data;
655 }
656 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
657 
658 /**
659  * iommu_group_set_iommudata - set iommu_data for a group
660  * @group: the group
661  * @iommu_data: new data
662  * @release: release function for iommu_data
663  *
664  * iommu drivers can store data in the group for use when doing iommu
665  * operations.  This function provides a way to set the data after
666  * the group has been allocated.  Caller should hold a group reference.
667  */
668 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
669 			       void (*release)(void *iommu_data))
670 {
671 	group->iommu_data = iommu_data;
672 	group->iommu_data_release = release;
673 }
674 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
675 
676 /**
677  * iommu_group_set_name - set name for a group
678  * @group: the group
679  * @name: name
680  *
681  * Allow iommu driver to set a name for a group.  When set it will
682  * appear in a name attribute file under the group in sysfs.
683  */
684 int iommu_group_set_name(struct iommu_group *group, const char *name)
685 {
686 	int ret;
687 
688 	if (group->name) {
689 		iommu_group_remove_file(group, &iommu_group_attr_name);
690 		kfree(group->name);
691 		group->name = NULL;
692 		if (!name)
693 			return 0;
694 	}
695 
696 	group->name = kstrdup(name, GFP_KERNEL);
697 	if (!group->name)
698 		return -ENOMEM;
699 
700 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
701 	if (ret) {
702 		kfree(group->name);
703 		group->name = NULL;
704 		return ret;
705 	}
706 
707 	return 0;
708 }
709 EXPORT_SYMBOL_GPL(iommu_group_set_name);
710 
711 static int iommu_group_create_direct_mappings(struct iommu_group *group,
712 					      struct device *dev)
713 {
714 	struct iommu_domain *domain = group->default_domain;
715 	struct iommu_resv_region *entry;
716 	struct list_head mappings;
717 	unsigned long pg_size;
718 	int ret = 0;
719 
720 	if (!domain || domain->type != IOMMU_DOMAIN_DMA)
721 		return 0;
722 
723 	BUG_ON(!domain->pgsize_bitmap);
724 
725 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
726 	INIT_LIST_HEAD(&mappings);
727 
728 	iommu_get_resv_regions(dev, &mappings);
729 
730 	/* We need to consider overlapping regions for different devices */
731 	list_for_each_entry(entry, &mappings, list) {
732 		dma_addr_t start, end, addr;
733 
734 		if (domain->ops->apply_resv_region)
735 			domain->ops->apply_resv_region(dev, domain, entry);
736 
737 		start = ALIGN(entry->start, pg_size);
738 		end   = ALIGN(entry->start + entry->length, pg_size);
739 
740 		if (entry->type != IOMMU_RESV_DIRECT &&
741 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
742 			continue;
743 
744 		for (addr = start; addr < end; addr += pg_size) {
745 			phys_addr_t phys_addr;
746 
747 			phys_addr = iommu_iova_to_phys(domain, addr);
748 			if (phys_addr)
749 				continue;
750 
751 			ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
752 			if (ret)
753 				goto out;
754 		}
755 
756 	}
757 
758 	iommu_flush_tlb_all(domain);
759 
760 out:
761 	iommu_put_resv_regions(dev, &mappings);
762 
763 	return ret;
764 }
765 
766 /**
767  * iommu_group_add_device - add a device to an iommu group
768  * @group: the group into which to add the device (reference should be held)
769  * @dev: the device
770  *
771  * This function is called by an iommu driver to add a device into a
772  * group.  Adding a device increments the group reference count.
773  */
774 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
775 {
776 	int ret, i = 0;
777 	struct group_device *device;
778 
779 	device = kzalloc(sizeof(*device), GFP_KERNEL);
780 	if (!device)
781 		return -ENOMEM;
782 
783 	device->dev = dev;
784 
785 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
786 	if (ret)
787 		goto err_free_device;
788 
789 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
790 rename:
791 	if (!device->name) {
792 		ret = -ENOMEM;
793 		goto err_remove_link;
794 	}
795 
796 	ret = sysfs_create_link_nowarn(group->devices_kobj,
797 				       &dev->kobj, device->name);
798 	if (ret) {
799 		if (ret == -EEXIST && i >= 0) {
800 			/*
801 			 * Account for the slim chance of collision
802 			 * and append an instance to the name.
803 			 */
804 			kfree(device->name);
805 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
806 						 kobject_name(&dev->kobj), i++);
807 			goto rename;
808 		}
809 		goto err_free_name;
810 	}
811 
812 	kobject_get(group->devices_kobj);
813 
814 	dev->iommu_group = group;
815 
816 	iommu_group_create_direct_mappings(group, dev);
817 
818 	mutex_lock(&group->mutex);
819 	list_add_tail(&device->list, &group->devices);
820 	if (group->domain)
821 		ret = __iommu_attach_device(group->domain, dev);
822 	mutex_unlock(&group->mutex);
823 	if (ret)
824 		goto err_put_group;
825 
826 	/* Notify any listeners about change to group. */
827 	blocking_notifier_call_chain(&group->notifier,
828 				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
829 
830 	trace_add_device_to_group(group->id, dev);
831 
832 	dev_info(dev, "Adding to iommu group %d\n", group->id);
833 
834 	return 0;
835 
836 err_put_group:
837 	mutex_lock(&group->mutex);
838 	list_del(&device->list);
839 	mutex_unlock(&group->mutex);
840 	dev->iommu_group = NULL;
841 	kobject_put(group->devices_kobj);
842 	sysfs_remove_link(group->devices_kobj, device->name);
843 err_free_name:
844 	kfree(device->name);
845 err_remove_link:
846 	sysfs_remove_link(&dev->kobj, "iommu_group");
847 err_free_device:
848 	kfree(device);
849 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
850 	return ret;
851 }
852 EXPORT_SYMBOL_GPL(iommu_group_add_device);
853 
854 /**
855  * iommu_group_remove_device - remove a device from it's current group
856  * @dev: device to be removed
857  *
858  * This function is called by an iommu driver to remove the device from
859  * it's current group.  This decrements the iommu group reference count.
860  */
861 void iommu_group_remove_device(struct device *dev)
862 {
863 	struct iommu_group *group = dev->iommu_group;
864 	struct group_device *tmp_device, *device = NULL;
865 
866 	dev_info(dev, "Removing from iommu group %d\n", group->id);
867 
868 	/* Pre-notify listeners that a device is being removed. */
869 	blocking_notifier_call_chain(&group->notifier,
870 				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
871 
872 	mutex_lock(&group->mutex);
873 	list_for_each_entry(tmp_device, &group->devices, list) {
874 		if (tmp_device->dev == dev) {
875 			device = tmp_device;
876 			list_del(&device->list);
877 			break;
878 		}
879 	}
880 	mutex_unlock(&group->mutex);
881 
882 	if (!device)
883 		return;
884 
885 	sysfs_remove_link(group->devices_kobj, device->name);
886 	sysfs_remove_link(&dev->kobj, "iommu_group");
887 
888 	trace_remove_device_from_group(group->id, dev);
889 
890 	kfree(device->name);
891 	kfree(device);
892 	dev->iommu_group = NULL;
893 	kobject_put(group->devices_kobj);
894 }
895 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
896 
897 static int iommu_group_device_count(struct iommu_group *group)
898 {
899 	struct group_device *entry;
900 	int ret = 0;
901 
902 	list_for_each_entry(entry, &group->devices, list)
903 		ret++;
904 
905 	return ret;
906 }
907 
908 /**
909  * iommu_group_for_each_dev - iterate over each device in the group
910  * @group: the group
911  * @data: caller opaque data to be passed to callback function
912  * @fn: caller supplied callback function
913  *
914  * This function is called by group users to iterate over group devices.
915  * Callers should hold a reference count to the group during callback.
916  * The group->mutex is held across callbacks, which will block calls to
917  * iommu_group_add/remove_device.
918  */
919 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
920 				      int (*fn)(struct device *, void *))
921 {
922 	struct group_device *device;
923 	int ret = 0;
924 
925 	list_for_each_entry(device, &group->devices, list) {
926 		ret = fn(device->dev, data);
927 		if (ret)
928 			break;
929 	}
930 	return ret;
931 }
932 
933 
934 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
935 			     int (*fn)(struct device *, void *))
936 {
937 	int ret;
938 
939 	mutex_lock(&group->mutex);
940 	ret = __iommu_group_for_each_dev(group, data, fn);
941 	mutex_unlock(&group->mutex);
942 
943 	return ret;
944 }
945 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
946 
947 /**
948  * iommu_group_get - Return the group for a device and increment reference
949  * @dev: get the group that this device belongs to
950  *
951  * This function is called by iommu drivers and users to get the group
952  * for the specified device.  If found, the group is returned and the group
953  * reference in incremented, else NULL.
954  */
955 struct iommu_group *iommu_group_get(struct device *dev)
956 {
957 	struct iommu_group *group = dev->iommu_group;
958 
959 	if (group)
960 		kobject_get(group->devices_kobj);
961 
962 	return group;
963 }
964 EXPORT_SYMBOL_GPL(iommu_group_get);
965 
966 /**
967  * iommu_group_ref_get - Increment reference on a group
968  * @group: the group to use, must not be NULL
969  *
970  * This function is called by iommu drivers to take additional references on an
971  * existing group.  Returns the given group for convenience.
972  */
973 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
974 {
975 	kobject_get(group->devices_kobj);
976 	return group;
977 }
978 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
979 
980 /**
981  * iommu_group_put - Decrement group reference
982  * @group: the group to use
983  *
984  * This function is called by iommu drivers and users to release the
985  * iommu group.  Once the reference count is zero, the group is released.
986  */
987 void iommu_group_put(struct iommu_group *group)
988 {
989 	if (group)
990 		kobject_put(group->devices_kobj);
991 }
992 EXPORT_SYMBOL_GPL(iommu_group_put);
993 
994 /**
995  * iommu_group_register_notifier - Register a notifier for group changes
996  * @group: the group to watch
997  * @nb: notifier block to signal
998  *
999  * This function allows iommu group users to track changes in a group.
1000  * See include/linux/iommu.h for actions sent via this notifier.  Caller
1001  * should hold a reference to the group throughout notifier registration.
1002  */
1003 int iommu_group_register_notifier(struct iommu_group *group,
1004 				  struct notifier_block *nb)
1005 {
1006 	return blocking_notifier_chain_register(&group->notifier, nb);
1007 }
1008 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
1009 
1010 /**
1011  * iommu_group_unregister_notifier - Unregister a notifier
1012  * @group: the group to watch
1013  * @nb: notifier block to signal
1014  *
1015  * Unregister a previously registered group notifier block.
1016  */
1017 int iommu_group_unregister_notifier(struct iommu_group *group,
1018 				    struct notifier_block *nb)
1019 {
1020 	return blocking_notifier_chain_unregister(&group->notifier, nb);
1021 }
1022 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
1023 
1024 /**
1025  * iommu_register_device_fault_handler() - Register a device fault handler
1026  * @dev: the device
1027  * @handler: the fault handler
1028  * @data: private data passed as argument to the handler
1029  *
1030  * When an IOMMU fault event is received, this handler gets called with the
1031  * fault event and data as argument. The handler should return 0 on success. If
1032  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1033  * complete the fault by calling iommu_page_response() with one of the following
1034  * response code:
1035  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1036  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1037  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1038  *   page faults if possible.
1039  *
1040  * Return 0 if the fault handler was installed successfully, or an error.
1041  */
1042 int iommu_register_device_fault_handler(struct device *dev,
1043 					iommu_dev_fault_handler_t handler,
1044 					void *data)
1045 {
1046 	struct dev_iommu *param = dev->iommu;
1047 	int ret = 0;
1048 
1049 	if (!param)
1050 		return -EINVAL;
1051 
1052 	mutex_lock(&param->lock);
1053 	/* Only allow one fault handler registered for each device */
1054 	if (param->fault_param) {
1055 		ret = -EBUSY;
1056 		goto done_unlock;
1057 	}
1058 
1059 	get_device(dev);
1060 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1061 	if (!param->fault_param) {
1062 		put_device(dev);
1063 		ret = -ENOMEM;
1064 		goto done_unlock;
1065 	}
1066 	param->fault_param->handler = handler;
1067 	param->fault_param->data = data;
1068 	mutex_init(&param->fault_param->lock);
1069 	INIT_LIST_HEAD(&param->fault_param->faults);
1070 
1071 done_unlock:
1072 	mutex_unlock(&param->lock);
1073 
1074 	return ret;
1075 }
1076 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1077 
1078 /**
1079  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1080  * @dev: the device
1081  *
1082  * Remove the device fault handler installed with
1083  * iommu_register_device_fault_handler().
1084  *
1085  * Return 0 on success, or an error.
1086  */
1087 int iommu_unregister_device_fault_handler(struct device *dev)
1088 {
1089 	struct dev_iommu *param = dev->iommu;
1090 	int ret = 0;
1091 
1092 	if (!param)
1093 		return -EINVAL;
1094 
1095 	mutex_lock(&param->lock);
1096 
1097 	if (!param->fault_param)
1098 		goto unlock;
1099 
1100 	/* we cannot unregister handler if there are pending faults */
1101 	if (!list_empty(&param->fault_param->faults)) {
1102 		ret = -EBUSY;
1103 		goto unlock;
1104 	}
1105 
1106 	kfree(param->fault_param);
1107 	param->fault_param = NULL;
1108 	put_device(dev);
1109 unlock:
1110 	mutex_unlock(&param->lock);
1111 
1112 	return ret;
1113 }
1114 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1115 
1116 /**
1117  * iommu_report_device_fault() - Report fault event to device driver
1118  * @dev: the device
1119  * @evt: fault event data
1120  *
1121  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1122  * handler. When this function fails and the fault is recoverable, it is the
1123  * caller's responsibility to complete the fault.
1124  *
1125  * Return 0 on success, or an error.
1126  */
1127 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1128 {
1129 	struct dev_iommu *param = dev->iommu;
1130 	struct iommu_fault_event *evt_pending = NULL;
1131 	struct iommu_fault_param *fparam;
1132 	int ret = 0;
1133 
1134 	if (!param || !evt)
1135 		return -EINVAL;
1136 
1137 	/* we only report device fault if there is a handler registered */
1138 	mutex_lock(&param->lock);
1139 	fparam = param->fault_param;
1140 	if (!fparam || !fparam->handler) {
1141 		ret = -EINVAL;
1142 		goto done_unlock;
1143 	}
1144 
1145 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1146 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1147 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1148 				      GFP_KERNEL);
1149 		if (!evt_pending) {
1150 			ret = -ENOMEM;
1151 			goto done_unlock;
1152 		}
1153 		mutex_lock(&fparam->lock);
1154 		list_add_tail(&evt_pending->list, &fparam->faults);
1155 		mutex_unlock(&fparam->lock);
1156 	}
1157 
1158 	ret = fparam->handler(&evt->fault, fparam->data);
1159 	if (ret && evt_pending) {
1160 		mutex_lock(&fparam->lock);
1161 		list_del(&evt_pending->list);
1162 		mutex_unlock(&fparam->lock);
1163 		kfree(evt_pending);
1164 	}
1165 done_unlock:
1166 	mutex_unlock(&param->lock);
1167 	return ret;
1168 }
1169 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1170 
1171 int iommu_page_response(struct device *dev,
1172 			struct iommu_page_response *msg)
1173 {
1174 	bool pasid_valid;
1175 	int ret = -EINVAL;
1176 	struct iommu_fault_event *evt;
1177 	struct iommu_fault_page_request *prm;
1178 	struct dev_iommu *param = dev->iommu;
1179 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1180 
1181 	if (!domain || !domain->ops->page_response)
1182 		return -ENODEV;
1183 
1184 	if (!param || !param->fault_param)
1185 		return -EINVAL;
1186 
1187 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1188 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1189 		return -EINVAL;
1190 
1191 	/* Only send response if there is a fault report pending */
1192 	mutex_lock(&param->fault_param->lock);
1193 	if (list_empty(&param->fault_param->faults)) {
1194 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1195 		goto done_unlock;
1196 	}
1197 	/*
1198 	 * Check if we have a matching page request pending to respond,
1199 	 * otherwise return -EINVAL
1200 	 */
1201 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1202 		prm = &evt->fault.prm;
1203 		pasid_valid = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
1204 
1205 		if ((pasid_valid && prm->pasid != msg->pasid) ||
1206 		    prm->grpid != msg->grpid)
1207 			continue;
1208 
1209 		/* Sanitize the reply */
1210 		msg->flags = pasid_valid ? IOMMU_PAGE_RESP_PASID_VALID : 0;
1211 
1212 		ret = domain->ops->page_response(dev, evt, msg);
1213 		list_del(&evt->list);
1214 		kfree(evt);
1215 		break;
1216 	}
1217 
1218 done_unlock:
1219 	mutex_unlock(&param->fault_param->lock);
1220 	return ret;
1221 }
1222 EXPORT_SYMBOL_GPL(iommu_page_response);
1223 
1224 /**
1225  * iommu_group_id - Return ID for a group
1226  * @group: the group to ID
1227  *
1228  * Return the unique ID for the group matching the sysfs group number.
1229  */
1230 int iommu_group_id(struct iommu_group *group)
1231 {
1232 	return group->id;
1233 }
1234 EXPORT_SYMBOL_GPL(iommu_group_id);
1235 
1236 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1237 					       unsigned long *devfns);
1238 
1239 /*
1240  * To consider a PCI device isolated, we require ACS to support Source
1241  * Validation, Request Redirection, Completer Redirection, and Upstream
1242  * Forwarding.  This effectively means that devices cannot spoof their
1243  * requester ID, requests and completions cannot be redirected, and all
1244  * transactions are forwarded upstream, even as it passes through a
1245  * bridge where the target device is downstream.
1246  */
1247 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1248 
1249 /*
1250  * For multifunction devices which are not isolated from each other, find
1251  * all the other non-isolated functions and look for existing groups.  For
1252  * each function, we also need to look for aliases to or from other devices
1253  * that may already have a group.
1254  */
1255 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1256 							unsigned long *devfns)
1257 {
1258 	struct pci_dev *tmp = NULL;
1259 	struct iommu_group *group;
1260 
1261 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1262 		return NULL;
1263 
1264 	for_each_pci_dev(tmp) {
1265 		if (tmp == pdev || tmp->bus != pdev->bus ||
1266 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1267 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1268 			continue;
1269 
1270 		group = get_pci_alias_group(tmp, devfns);
1271 		if (group) {
1272 			pci_dev_put(tmp);
1273 			return group;
1274 		}
1275 	}
1276 
1277 	return NULL;
1278 }
1279 
1280 /*
1281  * Look for aliases to or from the given device for existing groups. DMA
1282  * aliases are only supported on the same bus, therefore the search
1283  * space is quite small (especially since we're really only looking at pcie
1284  * device, and therefore only expect multiple slots on the root complex or
1285  * downstream switch ports).  It's conceivable though that a pair of
1286  * multifunction devices could have aliases between them that would cause a
1287  * loop.  To prevent this, we use a bitmap to track where we've been.
1288  */
1289 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1290 					       unsigned long *devfns)
1291 {
1292 	struct pci_dev *tmp = NULL;
1293 	struct iommu_group *group;
1294 
1295 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1296 		return NULL;
1297 
1298 	group = iommu_group_get(&pdev->dev);
1299 	if (group)
1300 		return group;
1301 
1302 	for_each_pci_dev(tmp) {
1303 		if (tmp == pdev || tmp->bus != pdev->bus)
1304 			continue;
1305 
1306 		/* We alias them or they alias us */
1307 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1308 			group = get_pci_alias_group(tmp, devfns);
1309 			if (group) {
1310 				pci_dev_put(tmp);
1311 				return group;
1312 			}
1313 
1314 			group = get_pci_function_alias_group(tmp, devfns);
1315 			if (group) {
1316 				pci_dev_put(tmp);
1317 				return group;
1318 			}
1319 		}
1320 	}
1321 
1322 	return NULL;
1323 }
1324 
1325 struct group_for_pci_data {
1326 	struct pci_dev *pdev;
1327 	struct iommu_group *group;
1328 };
1329 
1330 /*
1331  * DMA alias iterator callback, return the last seen device.  Stop and return
1332  * the IOMMU group if we find one along the way.
1333  */
1334 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1335 {
1336 	struct group_for_pci_data *data = opaque;
1337 
1338 	data->pdev = pdev;
1339 	data->group = iommu_group_get(&pdev->dev);
1340 
1341 	return data->group != NULL;
1342 }
1343 
1344 /*
1345  * Generic device_group call-back function. It just allocates one
1346  * iommu-group per device.
1347  */
1348 struct iommu_group *generic_device_group(struct device *dev)
1349 {
1350 	return iommu_group_alloc();
1351 }
1352 EXPORT_SYMBOL_GPL(generic_device_group);
1353 
1354 /*
1355  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1356  * to find or create an IOMMU group for a device.
1357  */
1358 struct iommu_group *pci_device_group(struct device *dev)
1359 {
1360 	struct pci_dev *pdev = to_pci_dev(dev);
1361 	struct group_for_pci_data data;
1362 	struct pci_bus *bus;
1363 	struct iommu_group *group = NULL;
1364 	u64 devfns[4] = { 0 };
1365 
1366 	if (WARN_ON(!dev_is_pci(dev)))
1367 		return ERR_PTR(-EINVAL);
1368 
1369 	/*
1370 	 * Find the upstream DMA alias for the device.  A device must not
1371 	 * be aliased due to topology in order to have its own IOMMU group.
1372 	 * If we find an alias along the way that already belongs to a
1373 	 * group, use it.
1374 	 */
1375 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1376 		return data.group;
1377 
1378 	pdev = data.pdev;
1379 
1380 	/*
1381 	 * Continue upstream from the point of minimum IOMMU granularity
1382 	 * due to aliases to the point where devices are protected from
1383 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1384 	 * group, use it.
1385 	 */
1386 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1387 		if (!bus->self)
1388 			continue;
1389 
1390 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1391 			break;
1392 
1393 		pdev = bus->self;
1394 
1395 		group = iommu_group_get(&pdev->dev);
1396 		if (group)
1397 			return group;
1398 	}
1399 
1400 	/*
1401 	 * Look for existing groups on device aliases.  If we alias another
1402 	 * device or another device aliases us, use the same group.
1403 	 */
1404 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1405 	if (group)
1406 		return group;
1407 
1408 	/*
1409 	 * Look for existing groups on non-isolated functions on the same
1410 	 * slot and aliases of those funcions, if any.  No need to clear
1411 	 * the search bitmap, the tested devfns are still valid.
1412 	 */
1413 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1414 	if (group)
1415 		return group;
1416 
1417 	/* No shared group found, allocate new */
1418 	return iommu_group_alloc();
1419 }
1420 EXPORT_SYMBOL_GPL(pci_device_group);
1421 
1422 /* Get the IOMMU group for device on fsl-mc bus */
1423 struct iommu_group *fsl_mc_device_group(struct device *dev)
1424 {
1425 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1426 	struct iommu_group *group;
1427 
1428 	group = iommu_group_get(cont_dev);
1429 	if (!group)
1430 		group = iommu_group_alloc();
1431 	return group;
1432 }
1433 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1434 
1435 static int iommu_get_def_domain_type(struct device *dev)
1436 {
1437 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1438 	unsigned int type = 0;
1439 
1440 	if (ops->def_domain_type)
1441 		type = ops->def_domain_type(dev);
1442 
1443 	return (type == 0) ? iommu_def_domain_type : type;
1444 }
1445 
1446 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1447 					    struct iommu_group *group,
1448 					    unsigned int type)
1449 {
1450 	struct iommu_domain *dom;
1451 
1452 	dom = __iommu_domain_alloc(bus, type);
1453 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1454 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1455 		if (dom)
1456 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1457 				type, group->name);
1458 	}
1459 
1460 	if (!dom)
1461 		return -ENOMEM;
1462 
1463 	group->default_domain = dom;
1464 	if (!group->domain)
1465 		group->domain = dom;
1466 
1467 	if (!iommu_dma_strict) {
1468 		int attr = 1;
1469 		iommu_domain_set_attr(dom,
1470 				      DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE,
1471 				      &attr);
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 static int iommu_alloc_default_domain(struct device *dev)
1478 {
1479 	struct iommu_group *group;
1480 	unsigned int type;
1481 
1482 	group = iommu_group_get(dev);
1483 	if (!group)
1484 		return -ENODEV;
1485 
1486 	if (group->default_domain)
1487 		return 0;
1488 
1489 	type = iommu_get_def_domain_type(dev);
1490 
1491 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1492 }
1493 
1494 /**
1495  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1496  * @dev: target device
1497  *
1498  * This function is intended to be called by IOMMU drivers and extended to
1499  * support common, bus-defined algorithms when determining or creating the
1500  * IOMMU group for a device.  On success, the caller will hold a reference
1501  * to the returned IOMMU group, which will already include the provided
1502  * device.  The reference should be released with iommu_group_put().
1503  */
1504 struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1505 {
1506 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1507 	struct iommu_group *group;
1508 	int ret;
1509 
1510 	group = iommu_group_get(dev);
1511 	if (group)
1512 		return group;
1513 
1514 	if (!ops)
1515 		return ERR_PTR(-EINVAL);
1516 
1517 	group = ops->device_group(dev);
1518 	if (WARN_ON_ONCE(group == NULL))
1519 		return ERR_PTR(-EINVAL);
1520 
1521 	if (IS_ERR(group))
1522 		return group;
1523 
1524 	ret = iommu_group_add_device(group, dev);
1525 	if (ret)
1526 		goto out_put_group;
1527 
1528 	/*
1529 	 * Try to allocate a default domain - needs support from the
1530 	 * IOMMU driver. There are still some drivers which don't support
1531 	 * default domains, so the return value is not yet checked. Only
1532 	 * allocate the domain here when the driver still has the
1533 	 * add_device/remove_device call-backs implemented.
1534 	 */
1535 	if (!ops->probe_device) {
1536 		iommu_alloc_default_domain(dev);
1537 
1538 		if (group->default_domain)
1539 			ret = __iommu_attach_device(group->default_domain, dev);
1540 
1541 		if (ret)
1542 			goto out_put_group;
1543 	}
1544 
1545 	return group;
1546 
1547 out_put_group:
1548 	iommu_group_put(group);
1549 
1550 	return ERR_PTR(ret);
1551 }
1552 EXPORT_SYMBOL(iommu_group_get_for_dev);
1553 
1554 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1555 {
1556 	return group->default_domain;
1557 }
1558 
1559 static int add_iommu_group(struct device *dev, void *data)
1560 {
1561 	int ret = iommu_probe_device(dev);
1562 
1563 	/*
1564 	 * We ignore -ENODEV errors for now, as they just mean that the
1565 	 * device is not translated by an IOMMU. We still care about
1566 	 * other errors and fail to initialize when they happen.
1567 	 */
1568 	if (ret == -ENODEV)
1569 		ret = 0;
1570 
1571 	return ret;
1572 }
1573 
1574 static int remove_iommu_group(struct device *dev, void *data)
1575 {
1576 	iommu_release_device(dev);
1577 
1578 	return 0;
1579 }
1580 
1581 static int iommu_bus_notifier(struct notifier_block *nb,
1582 			      unsigned long action, void *data)
1583 {
1584 	unsigned long group_action = 0;
1585 	struct device *dev = data;
1586 	struct iommu_group *group;
1587 
1588 	/*
1589 	 * ADD/DEL call into iommu driver ops if provided, which may
1590 	 * result in ADD/DEL notifiers to group->notifier
1591 	 */
1592 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1593 		int ret;
1594 
1595 		ret = iommu_probe_device(dev);
1596 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1597 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1598 		iommu_release_device(dev);
1599 		return NOTIFY_OK;
1600 	}
1601 
1602 	/*
1603 	 * Remaining BUS_NOTIFYs get filtered and republished to the
1604 	 * group, if anyone is listening
1605 	 */
1606 	group = iommu_group_get(dev);
1607 	if (!group)
1608 		return 0;
1609 
1610 	switch (action) {
1611 	case BUS_NOTIFY_BIND_DRIVER:
1612 		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1613 		break;
1614 	case BUS_NOTIFY_BOUND_DRIVER:
1615 		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1616 		break;
1617 	case BUS_NOTIFY_UNBIND_DRIVER:
1618 		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1619 		break;
1620 	case BUS_NOTIFY_UNBOUND_DRIVER:
1621 		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1622 		break;
1623 	}
1624 
1625 	if (group_action)
1626 		blocking_notifier_call_chain(&group->notifier,
1627 					     group_action, dev);
1628 
1629 	iommu_group_put(group);
1630 	return 0;
1631 }
1632 
1633 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1634 {
1635 	int err;
1636 	struct notifier_block *nb;
1637 
1638 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1639 	if (!nb)
1640 		return -ENOMEM;
1641 
1642 	nb->notifier_call = iommu_bus_notifier;
1643 
1644 	err = bus_register_notifier(bus, nb);
1645 	if (err)
1646 		goto out_free;
1647 
1648 	err = bus_for_each_dev(bus, NULL, NULL, add_iommu_group);
1649 	if (err)
1650 		goto out_err;
1651 
1652 
1653 	return 0;
1654 
1655 out_err:
1656 	/* Clean up */
1657 	bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1658 	bus_unregister_notifier(bus, nb);
1659 
1660 out_free:
1661 	kfree(nb);
1662 
1663 	return err;
1664 }
1665 
1666 /**
1667  * bus_set_iommu - set iommu-callbacks for the bus
1668  * @bus: bus.
1669  * @ops: the callbacks provided by the iommu-driver
1670  *
1671  * This function is called by an iommu driver to set the iommu methods
1672  * used for a particular bus. Drivers for devices on that bus can use
1673  * the iommu-api after these ops are registered.
1674  * This special function is needed because IOMMUs are usually devices on
1675  * the bus itself, so the iommu drivers are not initialized when the bus
1676  * is set up. With this function the iommu-driver can set the iommu-ops
1677  * afterwards.
1678  */
1679 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1680 {
1681 	int err;
1682 
1683 	if (ops == NULL) {
1684 		bus->iommu_ops = NULL;
1685 		return 0;
1686 	}
1687 
1688 	if (bus->iommu_ops != NULL)
1689 		return -EBUSY;
1690 
1691 	bus->iommu_ops = ops;
1692 
1693 	/* Do IOMMU specific setup for this bus-type */
1694 	err = iommu_bus_init(bus, ops);
1695 	if (err)
1696 		bus->iommu_ops = NULL;
1697 
1698 	return err;
1699 }
1700 EXPORT_SYMBOL_GPL(bus_set_iommu);
1701 
1702 bool iommu_present(struct bus_type *bus)
1703 {
1704 	return bus->iommu_ops != NULL;
1705 }
1706 EXPORT_SYMBOL_GPL(iommu_present);
1707 
1708 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1709 {
1710 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1711 		return false;
1712 
1713 	return bus->iommu_ops->capable(cap);
1714 }
1715 EXPORT_SYMBOL_GPL(iommu_capable);
1716 
1717 /**
1718  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1719  * @domain: iommu domain
1720  * @handler: fault handler
1721  * @token: user data, will be passed back to the fault handler
1722  *
1723  * This function should be used by IOMMU users which want to be notified
1724  * whenever an IOMMU fault happens.
1725  *
1726  * The fault handler itself should return 0 on success, and an appropriate
1727  * error code otherwise.
1728  */
1729 void iommu_set_fault_handler(struct iommu_domain *domain,
1730 					iommu_fault_handler_t handler,
1731 					void *token)
1732 {
1733 	BUG_ON(!domain);
1734 
1735 	domain->handler = handler;
1736 	domain->handler_token = token;
1737 }
1738 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1739 
1740 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1741 						 unsigned type)
1742 {
1743 	struct iommu_domain *domain;
1744 
1745 	if (bus == NULL || bus->iommu_ops == NULL)
1746 		return NULL;
1747 
1748 	domain = bus->iommu_ops->domain_alloc(type);
1749 	if (!domain)
1750 		return NULL;
1751 
1752 	domain->ops  = bus->iommu_ops;
1753 	domain->type = type;
1754 	/* Assume all sizes by default; the driver may override this later */
1755 	domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
1756 
1757 	return domain;
1758 }
1759 
1760 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1761 {
1762 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1763 }
1764 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1765 
1766 void iommu_domain_free(struct iommu_domain *domain)
1767 {
1768 	domain->ops->domain_free(domain);
1769 }
1770 EXPORT_SYMBOL_GPL(iommu_domain_free);
1771 
1772 static int __iommu_attach_device(struct iommu_domain *domain,
1773 				 struct device *dev)
1774 {
1775 	int ret;
1776 	if ((domain->ops->is_attach_deferred != NULL) &&
1777 	    domain->ops->is_attach_deferred(domain, dev))
1778 		return 0;
1779 
1780 	if (unlikely(domain->ops->attach_dev == NULL))
1781 		return -ENODEV;
1782 
1783 	ret = domain->ops->attach_dev(domain, dev);
1784 	if (!ret)
1785 		trace_attach_device_to_domain(dev);
1786 	return ret;
1787 }
1788 
1789 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1790 {
1791 	struct iommu_group *group;
1792 	int ret;
1793 
1794 	group = iommu_group_get(dev);
1795 	if (!group)
1796 		return -ENODEV;
1797 
1798 	/*
1799 	 * Lock the group to make sure the device-count doesn't
1800 	 * change while we are attaching
1801 	 */
1802 	mutex_lock(&group->mutex);
1803 	ret = -EINVAL;
1804 	if (iommu_group_device_count(group) != 1)
1805 		goto out_unlock;
1806 
1807 	ret = __iommu_attach_group(domain, group);
1808 
1809 out_unlock:
1810 	mutex_unlock(&group->mutex);
1811 	iommu_group_put(group);
1812 
1813 	return ret;
1814 }
1815 EXPORT_SYMBOL_GPL(iommu_attach_device);
1816 
1817 int iommu_cache_invalidate(struct iommu_domain *domain, struct device *dev,
1818 			   struct iommu_cache_invalidate_info *inv_info)
1819 {
1820 	if (unlikely(!domain->ops->cache_invalidate))
1821 		return -ENODEV;
1822 
1823 	return domain->ops->cache_invalidate(domain, dev, inv_info);
1824 }
1825 EXPORT_SYMBOL_GPL(iommu_cache_invalidate);
1826 
1827 int iommu_sva_bind_gpasid(struct iommu_domain *domain,
1828 			   struct device *dev, struct iommu_gpasid_bind_data *data)
1829 {
1830 	if (unlikely(!domain->ops->sva_bind_gpasid))
1831 		return -ENODEV;
1832 
1833 	return domain->ops->sva_bind_gpasid(domain, dev, data);
1834 }
1835 EXPORT_SYMBOL_GPL(iommu_sva_bind_gpasid);
1836 
1837 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
1838 			     ioasid_t pasid)
1839 {
1840 	if (unlikely(!domain->ops->sva_unbind_gpasid))
1841 		return -ENODEV;
1842 
1843 	return domain->ops->sva_unbind_gpasid(dev, pasid);
1844 }
1845 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid);
1846 
1847 static void __iommu_detach_device(struct iommu_domain *domain,
1848 				  struct device *dev)
1849 {
1850 	if ((domain->ops->is_attach_deferred != NULL) &&
1851 	    domain->ops->is_attach_deferred(domain, dev))
1852 		return;
1853 
1854 	if (unlikely(domain->ops->detach_dev == NULL))
1855 		return;
1856 
1857 	domain->ops->detach_dev(domain, dev);
1858 	trace_detach_device_from_domain(dev);
1859 }
1860 
1861 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
1862 {
1863 	struct iommu_group *group;
1864 
1865 	group = iommu_group_get(dev);
1866 	if (!group)
1867 		return;
1868 
1869 	mutex_lock(&group->mutex);
1870 	if (iommu_group_device_count(group) != 1) {
1871 		WARN_ON(1);
1872 		goto out_unlock;
1873 	}
1874 
1875 	__iommu_detach_group(domain, group);
1876 
1877 out_unlock:
1878 	mutex_unlock(&group->mutex);
1879 	iommu_group_put(group);
1880 }
1881 EXPORT_SYMBOL_GPL(iommu_detach_device);
1882 
1883 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
1884 {
1885 	struct iommu_domain *domain;
1886 	struct iommu_group *group;
1887 
1888 	group = iommu_group_get(dev);
1889 	if (!group)
1890 		return NULL;
1891 
1892 	domain = group->domain;
1893 
1894 	iommu_group_put(group);
1895 
1896 	return domain;
1897 }
1898 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
1899 
1900 /*
1901  * For IOMMU_DOMAIN_DMA implementations which already provide their own
1902  * guarantees that the group and its default domain are valid and correct.
1903  */
1904 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
1905 {
1906 	return dev->iommu_group->default_domain;
1907 }
1908 
1909 /*
1910  * IOMMU groups are really the natural working unit of the IOMMU, but
1911  * the IOMMU API works on domains and devices.  Bridge that gap by
1912  * iterating over the devices in a group.  Ideally we'd have a single
1913  * device which represents the requestor ID of the group, but we also
1914  * allow IOMMU drivers to create policy defined minimum sets, where
1915  * the physical hardware may be able to distiguish members, but we
1916  * wish to group them at a higher level (ex. untrusted multi-function
1917  * PCI devices).  Thus we attach each device.
1918  */
1919 static int iommu_group_do_attach_device(struct device *dev, void *data)
1920 {
1921 	struct iommu_domain *domain = data;
1922 
1923 	return __iommu_attach_device(domain, dev);
1924 }
1925 
1926 static int __iommu_attach_group(struct iommu_domain *domain,
1927 				struct iommu_group *group)
1928 {
1929 	int ret;
1930 
1931 	if (group->default_domain && group->domain != group->default_domain)
1932 		return -EBUSY;
1933 
1934 	ret = __iommu_group_for_each_dev(group, domain,
1935 					 iommu_group_do_attach_device);
1936 	if (ret == 0)
1937 		group->domain = domain;
1938 
1939 	return ret;
1940 }
1941 
1942 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
1943 {
1944 	int ret;
1945 
1946 	mutex_lock(&group->mutex);
1947 	ret = __iommu_attach_group(domain, group);
1948 	mutex_unlock(&group->mutex);
1949 
1950 	return ret;
1951 }
1952 EXPORT_SYMBOL_GPL(iommu_attach_group);
1953 
1954 static int iommu_group_do_detach_device(struct device *dev, void *data)
1955 {
1956 	struct iommu_domain *domain = data;
1957 
1958 	__iommu_detach_device(domain, dev);
1959 
1960 	return 0;
1961 }
1962 
1963 static void __iommu_detach_group(struct iommu_domain *domain,
1964 				 struct iommu_group *group)
1965 {
1966 	int ret;
1967 
1968 	if (!group->default_domain) {
1969 		__iommu_group_for_each_dev(group, domain,
1970 					   iommu_group_do_detach_device);
1971 		group->domain = NULL;
1972 		return;
1973 	}
1974 
1975 	if (group->domain == group->default_domain)
1976 		return;
1977 
1978 	/* Detach by re-attaching to the default domain */
1979 	ret = __iommu_group_for_each_dev(group, group->default_domain,
1980 					 iommu_group_do_attach_device);
1981 	if (ret != 0)
1982 		WARN_ON(1);
1983 	else
1984 		group->domain = group->default_domain;
1985 }
1986 
1987 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
1988 {
1989 	mutex_lock(&group->mutex);
1990 	__iommu_detach_group(domain, group);
1991 	mutex_unlock(&group->mutex);
1992 }
1993 EXPORT_SYMBOL_GPL(iommu_detach_group);
1994 
1995 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1996 {
1997 	if (unlikely(domain->ops->iova_to_phys == NULL))
1998 		return 0;
1999 
2000 	return domain->ops->iova_to_phys(domain, iova);
2001 }
2002 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2003 
2004 static size_t iommu_pgsize(struct iommu_domain *domain,
2005 			   unsigned long addr_merge, size_t size)
2006 {
2007 	unsigned int pgsize_idx;
2008 	size_t pgsize;
2009 
2010 	/* Max page size that still fits into 'size' */
2011 	pgsize_idx = __fls(size);
2012 
2013 	/* need to consider alignment requirements ? */
2014 	if (likely(addr_merge)) {
2015 		/* Max page size allowed by address */
2016 		unsigned int align_pgsize_idx = __ffs(addr_merge);
2017 		pgsize_idx = min(pgsize_idx, align_pgsize_idx);
2018 	}
2019 
2020 	/* build a mask of acceptable page sizes */
2021 	pgsize = (1UL << (pgsize_idx + 1)) - 1;
2022 
2023 	/* throw away page sizes not supported by the hardware */
2024 	pgsize &= domain->pgsize_bitmap;
2025 
2026 	/* make sure we're still sane */
2027 	BUG_ON(!pgsize);
2028 
2029 	/* pick the biggest page */
2030 	pgsize_idx = __fls(pgsize);
2031 	pgsize = 1UL << pgsize_idx;
2032 
2033 	return pgsize;
2034 }
2035 
2036 int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2037 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2038 {
2039 	const struct iommu_ops *ops = domain->ops;
2040 	unsigned long orig_iova = iova;
2041 	unsigned int min_pagesz;
2042 	size_t orig_size = size;
2043 	phys_addr_t orig_paddr = paddr;
2044 	int ret = 0;
2045 
2046 	if (unlikely(ops->map == NULL ||
2047 		     domain->pgsize_bitmap == 0UL))
2048 		return -ENODEV;
2049 
2050 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2051 		return -EINVAL;
2052 
2053 	/* find out the minimum page size supported */
2054 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2055 
2056 	/*
2057 	 * both the virtual address and the physical one, as well as
2058 	 * the size of the mapping, must be aligned (at least) to the
2059 	 * size of the smallest page supported by the hardware
2060 	 */
2061 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2062 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2063 		       iova, &paddr, size, min_pagesz);
2064 		return -EINVAL;
2065 	}
2066 
2067 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2068 
2069 	while (size) {
2070 		size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
2071 
2072 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
2073 			 iova, &paddr, pgsize);
2074 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2075 
2076 		if (ret)
2077 			break;
2078 
2079 		iova += pgsize;
2080 		paddr += pgsize;
2081 		size -= pgsize;
2082 	}
2083 
2084 	if (ops->iotlb_sync_map)
2085 		ops->iotlb_sync_map(domain);
2086 
2087 	/* unroll mapping in case something went wrong */
2088 	if (ret)
2089 		iommu_unmap(domain, orig_iova, orig_size - size);
2090 	else
2091 		trace_map(orig_iova, orig_paddr, orig_size);
2092 
2093 	return ret;
2094 }
2095 
2096 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2097 	      phys_addr_t paddr, size_t size, int prot)
2098 {
2099 	might_sleep();
2100 	return __iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2101 }
2102 EXPORT_SYMBOL_GPL(iommu_map);
2103 
2104 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2105 	      phys_addr_t paddr, size_t size, int prot)
2106 {
2107 	return __iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2108 }
2109 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2110 
2111 static size_t __iommu_unmap(struct iommu_domain *domain,
2112 			    unsigned long iova, size_t size,
2113 			    struct iommu_iotlb_gather *iotlb_gather)
2114 {
2115 	const struct iommu_ops *ops = domain->ops;
2116 	size_t unmapped_page, unmapped = 0;
2117 	unsigned long orig_iova = iova;
2118 	unsigned int min_pagesz;
2119 
2120 	if (unlikely(ops->unmap == NULL ||
2121 		     domain->pgsize_bitmap == 0UL))
2122 		return 0;
2123 
2124 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2125 		return 0;
2126 
2127 	/* find out the minimum page size supported */
2128 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2129 
2130 	/*
2131 	 * The virtual address, as well as the size of the mapping, must be
2132 	 * aligned (at least) to the size of the smallest page supported
2133 	 * by the hardware
2134 	 */
2135 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2136 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2137 		       iova, size, min_pagesz);
2138 		return 0;
2139 	}
2140 
2141 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2142 
2143 	/*
2144 	 * Keep iterating until we either unmap 'size' bytes (or more)
2145 	 * or we hit an area that isn't mapped.
2146 	 */
2147 	while (unmapped < size) {
2148 		size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
2149 
2150 		unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather);
2151 		if (!unmapped_page)
2152 			break;
2153 
2154 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2155 			 iova, unmapped_page);
2156 
2157 		iova += unmapped_page;
2158 		unmapped += unmapped_page;
2159 	}
2160 
2161 	trace_unmap(orig_iova, size, unmapped);
2162 	return unmapped;
2163 }
2164 
2165 size_t iommu_unmap(struct iommu_domain *domain,
2166 		   unsigned long iova, size_t size)
2167 {
2168 	struct iommu_iotlb_gather iotlb_gather;
2169 	size_t ret;
2170 
2171 	iommu_iotlb_gather_init(&iotlb_gather);
2172 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2173 	iommu_tlb_sync(domain, &iotlb_gather);
2174 
2175 	return ret;
2176 }
2177 EXPORT_SYMBOL_GPL(iommu_unmap);
2178 
2179 size_t iommu_unmap_fast(struct iommu_domain *domain,
2180 			unsigned long iova, size_t size,
2181 			struct iommu_iotlb_gather *iotlb_gather)
2182 {
2183 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2184 }
2185 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2186 
2187 size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2188 		    struct scatterlist *sg, unsigned int nents, int prot,
2189 		    gfp_t gfp)
2190 {
2191 	size_t len = 0, mapped = 0;
2192 	phys_addr_t start;
2193 	unsigned int i = 0;
2194 	int ret;
2195 
2196 	while (i <= nents) {
2197 		phys_addr_t s_phys = sg_phys(sg);
2198 
2199 		if (len && s_phys != start + len) {
2200 			ret = __iommu_map(domain, iova + mapped, start,
2201 					len, prot, gfp);
2202 
2203 			if (ret)
2204 				goto out_err;
2205 
2206 			mapped += len;
2207 			len = 0;
2208 		}
2209 
2210 		if (len) {
2211 			len += sg->length;
2212 		} else {
2213 			len = sg->length;
2214 			start = s_phys;
2215 		}
2216 
2217 		if (++i < nents)
2218 			sg = sg_next(sg);
2219 	}
2220 
2221 	return mapped;
2222 
2223 out_err:
2224 	/* undo mappings already done */
2225 	iommu_unmap(domain, iova, mapped);
2226 
2227 	return 0;
2228 
2229 }
2230 
2231 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2232 		    struct scatterlist *sg, unsigned int nents, int prot)
2233 {
2234 	might_sleep();
2235 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2236 }
2237 EXPORT_SYMBOL_GPL(iommu_map_sg);
2238 
2239 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2240 		    struct scatterlist *sg, unsigned int nents, int prot)
2241 {
2242 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2243 }
2244 EXPORT_SYMBOL_GPL(iommu_map_sg_atomic);
2245 
2246 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
2247 			       phys_addr_t paddr, u64 size, int prot)
2248 {
2249 	if (unlikely(domain->ops->domain_window_enable == NULL))
2250 		return -ENODEV;
2251 
2252 	return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
2253 						 prot);
2254 }
2255 EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
2256 
2257 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
2258 {
2259 	if (unlikely(domain->ops->domain_window_disable == NULL))
2260 		return;
2261 
2262 	return domain->ops->domain_window_disable(domain, wnd_nr);
2263 }
2264 EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
2265 
2266 /**
2267  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2268  * @domain: the iommu domain where the fault has happened
2269  * @dev: the device where the fault has happened
2270  * @iova: the faulting address
2271  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2272  *
2273  * This function should be called by the low-level IOMMU implementations
2274  * whenever IOMMU faults happen, to allow high-level users, that are
2275  * interested in such events, to know about them.
2276  *
2277  * This event may be useful for several possible use cases:
2278  * - mere logging of the event
2279  * - dynamic TLB/PTE loading
2280  * - if restarting of the faulting device is required
2281  *
2282  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2283  * PTE/TLB loading will one day be supported, implementations will be able
2284  * to tell whether it succeeded or not according to this return value).
2285  *
2286  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2287  * (though fault handlers can also return -ENOSYS, in case they want to
2288  * elicit the default behavior of the IOMMU drivers).
2289  */
2290 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2291 		       unsigned long iova, int flags)
2292 {
2293 	int ret = -ENOSYS;
2294 
2295 	/*
2296 	 * if upper layers showed interest and installed a fault handler,
2297 	 * invoke it.
2298 	 */
2299 	if (domain->handler)
2300 		ret = domain->handler(domain, dev, iova, flags,
2301 						domain->handler_token);
2302 
2303 	trace_io_page_fault(dev, iova, flags);
2304 	return ret;
2305 }
2306 EXPORT_SYMBOL_GPL(report_iommu_fault);
2307 
2308 static int __init iommu_init(void)
2309 {
2310 	iommu_group_kset = kset_create_and_add("iommu_groups",
2311 					       NULL, kernel_kobj);
2312 	BUG_ON(!iommu_group_kset);
2313 
2314 	iommu_debugfs_setup();
2315 
2316 	return 0;
2317 }
2318 core_initcall(iommu_init);
2319 
2320 int iommu_domain_get_attr(struct iommu_domain *domain,
2321 			  enum iommu_attr attr, void *data)
2322 {
2323 	struct iommu_domain_geometry *geometry;
2324 	bool *paging;
2325 	int ret = 0;
2326 
2327 	switch (attr) {
2328 	case DOMAIN_ATTR_GEOMETRY:
2329 		geometry  = data;
2330 		*geometry = domain->geometry;
2331 
2332 		break;
2333 	case DOMAIN_ATTR_PAGING:
2334 		paging  = data;
2335 		*paging = (domain->pgsize_bitmap != 0UL);
2336 		break;
2337 	default:
2338 		if (!domain->ops->domain_get_attr)
2339 			return -EINVAL;
2340 
2341 		ret = domain->ops->domain_get_attr(domain, attr, data);
2342 	}
2343 
2344 	return ret;
2345 }
2346 EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
2347 
2348 int iommu_domain_set_attr(struct iommu_domain *domain,
2349 			  enum iommu_attr attr, void *data)
2350 {
2351 	int ret = 0;
2352 
2353 	switch (attr) {
2354 	default:
2355 		if (domain->ops->domain_set_attr == NULL)
2356 			return -EINVAL;
2357 
2358 		ret = domain->ops->domain_set_attr(domain, attr, data);
2359 	}
2360 
2361 	return ret;
2362 }
2363 EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
2364 
2365 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2366 {
2367 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2368 
2369 	if (ops && ops->get_resv_regions)
2370 		ops->get_resv_regions(dev, list);
2371 }
2372 
2373 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2374 {
2375 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2376 
2377 	if (ops && ops->put_resv_regions)
2378 		ops->put_resv_regions(dev, list);
2379 }
2380 
2381 /**
2382  * generic_iommu_put_resv_regions - Reserved region driver helper
2383  * @dev: device for which to free reserved regions
2384  * @list: reserved region list for device
2385  *
2386  * IOMMU drivers can use this to implement their .put_resv_regions() callback
2387  * for simple reservations. Memory allocated for each reserved region will be
2388  * freed. If an IOMMU driver allocates additional resources per region, it is
2389  * going to have to implement a custom callback.
2390  */
2391 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list)
2392 {
2393 	struct iommu_resv_region *entry, *next;
2394 
2395 	list_for_each_entry_safe(entry, next, list, list)
2396 		kfree(entry);
2397 }
2398 EXPORT_SYMBOL(generic_iommu_put_resv_regions);
2399 
2400 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2401 						  size_t length, int prot,
2402 						  enum iommu_resv_type type)
2403 {
2404 	struct iommu_resv_region *region;
2405 
2406 	region = kzalloc(sizeof(*region), GFP_KERNEL);
2407 	if (!region)
2408 		return NULL;
2409 
2410 	INIT_LIST_HEAD(&region->list);
2411 	region->start = start;
2412 	region->length = length;
2413 	region->prot = prot;
2414 	region->type = type;
2415 	return region;
2416 }
2417 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2418 
2419 static int
2420 request_default_domain_for_dev(struct device *dev, unsigned long type)
2421 {
2422 	struct iommu_domain *domain;
2423 	struct iommu_group *group;
2424 	int ret;
2425 
2426 	/* Device must already be in a group before calling this function */
2427 	group = iommu_group_get(dev);
2428 	if (!group)
2429 		return -EINVAL;
2430 
2431 	mutex_lock(&group->mutex);
2432 
2433 	ret = 0;
2434 	if (group->default_domain && group->default_domain->type == type)
2435 		goto out;
2436 
2437 	/* Don't change mappings of existing devices */
2438 	ret = -EBUSY;
2439 	if (iommu_group_device_count(group) != 1)
2440 		goto out;
2441 
2442 	ret = -ENOMEM;
2443 	domain = __iommu_domain_alloc(dev->bus, type);
2444 	if (!domain)
2445 		goto out;
2446 
2447 	/* Attach the device to the domain */
2448 	ret = __iommu_attach_group(domain, group);
2449 	if (ret) {
2450 		iommu_domain_free(domain);
2451 		goto out;
2452 	}
2453 
2454 	/* Make the domain the default for this group */
2455 	if (group->default_domain)
2456 		iommu_domain_free(group->default_domain);
2457 	group->default_domain = domain;
2458 
2459 	iommu_group_create_direct_mappings(group, dev);
2460 
2461 	dev_info(dev, "Using iommu %s mapping\n",
2462 		 type == IOMMU_DOMAIN_DMA ? "dma" : "direct");
2463 
2464 	ret = 0;
2465 out:
2466 	mutex_unlock(&group->mutex);
2467 	iommu_group_put(group);
2468 
2469 	return ret;
2470 }
2471 
2472 /* Request that a device is direct mapped by the IOMMU */
2473 int iommu_request_dm_for_dev(struct device *dev)
2474 {
2475 	return request_default_domain_for_dev(dev, IOMMU_DOMAIN_IDENTITY);
2476 }
2477 
2478 /* Request that a device can't be direct mapped by the IOMMU */
2479 int iommu_request_dma_domain_for_dev(struct device *dev)
2480 {
2481 	return request_default_domain_for_dev(dev, IOMMU_DOMAIN_DMA);
2482 }
2483 
2484 void iommu_set_default_passthrough(bool cmd_line)
2485 {
2486 	if (cmd_line)
2487 		iommu_set_cmd_line_dma_api();
2488 
2489 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2490 }
2491 
2492 void iommu_set_default_translated(bool cmd_line)
2493 {
2494 	if (cmd_line)
2495 		iommu_set_cmd_line_dma_api();
2496 
2497 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2498 }
2499 
2500 bool iommu_default_passthrough(void)
2501 {
2502 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2503 }
2504 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2505 
2506 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2507 {
2508 	const struct iommu_ops *ops = NULL;
2509 	struct iommu_device *iommu;
2510 
2511 	spin_lock(&iommu_device_lock);
2512 	list_for_each_entry(iommu, &iommu_device_list, list)
2513 		if (iommu->fwnode == fwnode) {
2514 			ops = iommu->ops;
2515 			break;
2516 		}
2517 	spin_unlock(&iommu_device_lock);
2518 	return ops;
2519 }
2520 
2521 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2522 		      const struct iommu_ops *ops)
2523 {
2524 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2525 
2526 	if (fwspec)
2527 		return ops == fwspec->ops ? 0 : -EINVAL;
2528 
2529 	if (!dev_iommu_get(dev))
2530 		return -ENOMEM;
2531 
2532 	/* Preallocate for the overwhelmingly common case of 1 ID */
2533 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2534 	if (!fwspec)
2535 		return -ENOMEM;
2536 
2537 	of_node_get(to_of_node(iommu_fwnode));
2538 	fwspec->iommu_fwnode = iommu_fwnode;
2539 	fwspec->ops = ops;
2540 	dev_iommu_fwspec_set(dev, fwspec);
2541 	return 0;
2542 }
2543 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2544 
2545 void iommu_fwspec_free(struct device *dev)
2546 {
2547 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2548 
2549 	if (fwspec) {
2550 		fwnode_handle_put(fwspec->iommu_fwnode);
2551 		kfree(fwspec);
2552 		dev_iommu_fwspec_set(dev, NULL);
2553 	}
2554 }
2555 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2556 
2557 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2558 {
2559 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2560 	int i, new_num;
2561 
2562 	if (!fwspec)
2563 		return -EINVAL;
2564 
2565 	new_num = fwspec->num_ids + num_ids;
2566 	if (new_num > 1) {
2567 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2568 				  GFP_KERNEL);
2569 		if (!fwspec)
2570 			return -ENOMEM;
2571 
2572 		dev_iommu_fwspec_set(dev, fwspec);
2573 	}
2574 
2575 	for (i = 0; i < num_ids; i++)
2576 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2577 
2578 	fwspec->num_ids = new_num;
2579 	return 0;
2580 }
2581 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2582 
2583 /*
2584  * Per device IOMMU features.
2585  */
2586 bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat)
2587 {
2588 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2589 
2590 	if (ops && ops->dev_has_feat)
2591 		return ops->dev_has_feat(dev, feat);
2592 
2593 	return false;
2594 }
2595 EXPORT_SYMBOL_GPL(iommu_dev_has_feature);
2596 
2597 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2598 {
2599 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2600 
2601 	if (ops && ops->dev_enable_feat)
2602 		return ops->dev_enable_feat(dev, feat);
2603 
2604 	return -ENODEV;
2605 }
2606 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2607 
2608 /*
2609  * The device drivers should do the necessary cleanups before calling this.
2610  * For example, before disabling the aux-domain feature, the device driver
2611  * should detach all aux-domains. Otherwise, this will return -EBUSY.
2612  */
2613 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2614 {
2615 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2616 
2617 	if (ops && ops->dev_disable_feat)
2618 		return ops->dev_disable_feat(dev, feat);
2619 
2620 	return -EBUSY;
2621 }
2622 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2623 
2624 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2625 {
2626 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2627 
2628 	if (ops && ops->dev_feat_enabled)
2629 		return ops->dev_feat_enabled(dev, feat);
2630 
2631 	return false;
2632 }
2633 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2634 
2635 /*
2636  * Aux-domain specific attach/detach.
2637  *
2638  * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns
2639  * true. Also, as long as domains are attached to a device through this
2640  * interface, any tries to call iommu_attach_device() should fail
2641  * (iommu_detach_device() can't fail, so we fail when trying to re-attach).
2642  * This should make us safe against a device being attached to a guest as a
2643  * whole while there are still pasid users on it (aux and sva).
2644  */
2645 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev)
2646 {
2647 	int ret = -ENODEV;
2648 
2649 	if (domain->ops->aux_attach_dev)
2650 		ret = domain->ops->aux_attach_dev(domain, dev);
2651 
2652 	if (!ret)
2653 		trace_attach_device_to_domain(dev);
2654 
2655 	return ret;
2656 }
2657 EXPORT_SYMBOL_GPL(iommu_aux_attach_device);
2658 
2659 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev)
2660 {
2661 	if (domain->ops->aux_detach_dev) {
2662 		domain->ops->aux_detach_dev(domain, dev);
2663 		trace_detach_device_from_domain(dev);
2664 	}
2665 }
2666 EXPORT_SYMBOL_GPL(iommu_aux_detach_device);
2667 
2668 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
2669 {
2670 	int ret = -ENODEV;
2671 
2672 	if (domain->ops->aux_get_pasid)
2673 		ret = domain->ops->aux_get_pasid(domain, dev);
2674 
2675 	return ret;
2676 }
2677 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid);
2678 
2679 /**
2680  * iommu_sva_bind_device() - Bind a process address space to a device
2681  * @dev: the device
2682  * @mm: the mm to bind, caller must hold a reference to it
2683  *
2684  * Create a bond between device and address space, allowing the device to access
2685  * the mm using the returned PASID. If a bond already exists between @device and
2686  * @mm, it is returned and an additional reference is taken. Caller must call
2687  * iommu_sva_unbind_device() to release each reference.
2688  *
2689  * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
2690  * initialize the required SVA features.
2691  *
2692  * On error, returns an ERR_PTR value.
2693  */
2694 struct iommu_sva *
2695 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
2696 {
2697 	struct iommu_group *group;
2698 	struct iommu_sva *handle = ERR_PTR(-EINVAL);
2699 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2700 
2701 	if (!ops || !ops->sva_bind)
2702 		return ERR_PTR(-ENODEV);
2703 
2704 	group = iommu_group_get(dev);
2705 	if (!group)
2706 		return ERR_PTR(-ENODEV);
2707 
2708 	/* Ensure device count and domain don't change while we're binding */
2709 	mutex_lock(&group->mutex);
2710 
2711 	/*
2712 	 * To keep things simple, SVA currently doesn't support IOMMU groups
2713 	 * with more than one device. Existing SVA-capable systems are not
2714 	 * affected by the problems that required IOMMU groups (lack of ACS
2715 	 * isolation, device ID aliasing and other hardware issues).
2716 	 */
2717 	if (iommu_group_device_count(group) != 1)
2718 		goto out_unlock;
2719 
2720 	handle = ops->sva_bind(dev, mm, drvdata);
2721 
2722 out_unlock:
2723 	mutex_unlock(&group->mutex);
2724 	iommu_group_put(group);
2725 
2726 	return handle;
2727 }
2728 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
2729 
2730 /**
2731  * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
2732  * @handle: the handle returned by iommu_sva_bind_device()
2733  *
2734  * Put reference to a bond between device and address space. The device should
2735  * not be issuing any more transaction for this PASID. All outstanding page
2736  * requests for this PASID must have been flushed to the IOMMU.
2737  *
2738  * Returns 0 on success, or an error value
2739  */
2740 void iommu_sva_unbind_device(struct iommu_sva *handle)
2741 {
2742 	struct iommu_group *group;
2743 	struct device *dev = handle->dev;
2744 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2745 
2746 	if (!ops || !ops->sva_unbind)
2747 		return;
2748 
2749 	group = iommu_group_get(dev);
2750 	if (!group)
2751 		return;
2752 
2753 	mutex_lock(&group->mutex);
2754 	ops->sva_unbind(handle);
2755 	mutex_unlock(&group->mutex);
2756 
2757 	iommu_group_put(group);
2758 }
2759 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
2760 
2761 int iommu_sva_set_ops(struct iommu_sva *handle,
2762 		      const struct iommu_sva_ops *sva_ops)
2763 {
2764 	if (handle->ops && handle->ops != sva_ops)
2765 		return -EEXIST;
2766 
2767 	handle->ops = sva_ops;
2768 	return 0;
2769 }
2770 EXPORT_SYMBOL_GPL(iommu_sva_set_ops);
2771 
2772 int iommu_sva_get_pasid(struct iommu_sva *handle)
2773 {
2774 	const struct iommu_ops *ops = handle->dev->bus->iommu_ops;
2775 
2776 	if (!ops || !ops->sva_get_pasid)
2777 		return IOMMU_PASID_INVALID;
2778 
2779 	return ops->sva_get_pasid(handle);
2780 }
2781 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
2782