xref: /openbmc/linux/drivers/iommu/iommu.c (revision 6db6b729)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <linux/cdx/cdx_bus.h>
32 #include <trace/events/iommu.h>
33 #include <linux/sched/mm.h>
34 #include <linux/msi.h>
35 
36 #include "dma-iommu.h"
37 #include "iommu-priv.h"
38 
39 #include "iommu-sva.h"
40 #include "iommu-priv.h"
41 
42 static struct kset *iommu_group_kset;
43 static DEFINE_IDA(iommu_group_ida);
44 static DEFINE_IDA(iommu_global_pasid_ida);
45 
46 static unsigned int iommu_def_domain_type __read_mostly;
47 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
48 static u32 iommu_cmd_line __read_mostly;
49 
50 struct iommu_group {
51 	struct kobject kobj;
52 	struct kobject *devices_kobj;
53 	struct list_head devices;
54 	struct xarray pasid_array;
55 	struct mutex mutex;
56 	void *iommu_data;
57 	void (*iommu_data_release)(void *iommu_data);
58 	char *name;
59 	int id;
60 	struct iommu_domain *default_domain;
61 	struct iommu_domain *blocking_domain;
62 	struct iommu_domain *domain;
63 	struct list_head entry;
64 	unsigned int owner_cnt;
65 	void *owner;
66 };
67 
68 struct group_device {
69 	struct list_head list;
70 	struct device *dev;
71 	char *name;
72 };
73 
74 /* Iterate over each struct group_device in a struct iommu_group */
75 #define for_each_group_device(group, pos) \
76 	list_for_each_entry(pos, &(group)->devices, list)
77 
78 struct iommu_group_attribute {
79 	struct attribute attr;
80 	ssize_t (*show)(struct iommu_group *group, char *buf);
81 	ssize_t (*store)(struct iommu_group *group,
82 			 const char *buf, size_t count);
83 };
84 
85 static const char * const iommu_group_resv_type_string[] = {
86 	[IOMMU_RESV_DIRECT]			= "direct",
87 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
88 	[IOMMU_RESV_RESERVED]			= "reserved",
89 	[IOMMU_RESV_MSI]			= "msi",
90 	[IOMMU_RESV_SW_MSI]			= "msi",
91 };
92 
93 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
94 #define IOMMU_CMD_LINE_STRICT		BIT(1)
95 
96 static int iommu_bus_notifier(struct notifier_block *nb,
97 			      unsigned long action, void *data);
98 static void iommu_release_device(struct device *dev);
99 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus,
100 						 unsigned type);
101 static int __iommu_attach_device(struct iommu_domain *domain,
102 				 struct device *dev);
103 static int __iommu_attach_group(struct iommu_domain *domain,
104 				struct iommu_group *group);
105 
106 enum {
107 	IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0,
108 };
109 
110 static int __iommu_device_set_domain(struct iommu_group *group,
111 				     struct device *dev,
112 				     struct iommu_domain *new_domain,
113 				     unsigned int flags);
114 static int __iommu_group_set_domain_internal(struct iommu_group *group,
115 					     struct iommu_domain *new_domain,
116 					     unsigned int flags);
117 static int __iommu_group_set_domain(struct iommu_group *group,
118 				    struct iommu_domain *new_domain)
119 {
120 	return __iommu_group_set_domain_internal(group, new_domain, 0);
121 }
122 static void __iommu_group_set_domain_nofail(struct iommu_group *group,
123 					    struct iommu_domain *new_domain)
124 {
125 	WARN_ON(__iommu_group_set_domain_internal(
126 		group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED));
127 }
128 
129 static int iommu_setup_default_domain(struct iommu_group *group,
130 				      int target_type);
131 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
132 					       struct device *dev);
133 static ssize_t iommu_group_store_type(struct iommu_group *group,
134 				      const char *buf, size_t count);
135 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
136 						     struct device *dev);
137 static void __iommu_group_free_device(struct iommu_group *group,
138 				      struct group_device *grp_dev);
139 
140 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
141 struct iommu_group_attribute iommu_group_attr_##_name =		\
142 	__ATTR(_name, _mode, _show, _store)
143 
144 #define to_iommu_group_attr(_attr)	\
145 	container_of(_attr, struct iommu_group_attribute, attr)
146 #define to_iommu_group(_kobj)		\
147 	container_of(_kobj, struct iommu_group, kobj)
148 
149 static LIST_HEAD(iommu_device_list);
150 static DEFINE_SPINLOCK(iommu_device_lock);
151 
152 static struct bus_type * const iommu_buses[] = {
153 	&platform_bus_type,
154 #ifdef CONFIG_PCI
155 	&pci_bus_type,
156 #endif
157 #ifdef CONFIG_ARM_AMBA
158 	&amba_bustype,
159 #endif
160 #ifdef CONFIG_FSL_MC_BUS
161 	&fsl_mc_bus_type,
162 #endif
163 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
164 	&host1x_context_device_bus_type,
165 #endif
166 #ifdef CONFIG_CDX_BUS
167 	&cdx_bus_type,
168 #endif
169 };
170 
171 /*
172  * Use a function instead of an array here because the domain-type is a
173  * bit-field, so an array would waste memory.
174  */
175 static const char *iommu_domain_type_str(unsigned int t)
176 {
177 	switch (t) {
178 	case IOMMU_DOMAIN_BLOCKED:
179 		return "Blocked";
180 	case IOMMU_DOMAIN_IDENTITY:
181 		return "Passthrough";
182 	case IOMMU_DOMAIN_UNMANAGED:
183 		return "Unmanaged";
184 	case IOMMU_DOMAIN_DMA:
185 	case IOMMU_DOMAIN_DMA_FQ:
186 		return "Translated";
187 	default:
188 		return "Unknown";
189 	}
190 }
191 
192 static int __init iommu_subsys_init(void)
193 {
194 	struct notifier_block *nb;
195 
196 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
197 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
198 			iommu_set_default_passthrough(false);
199 		else
200 			iommu_set_default_translated(false);
201 
202 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
203 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
204 			iommu_set_default_translated(false);
205 		}
206 	}
207 
208 	if (!iommu_default_passthrough() && !iommu_dma_strict)
209 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
210 
211 	pr_info("Default domain type: %s%s\n",
212 		iommu_domain_type_str(iommu_def_domain_type),
213 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
214 			" (set via kernel command line)" : "");
215 
216 	if (!iommu_default_passthrough())
217 		pr_info("DMA domain TLB invalidation policy: %s mode%s\n",
218 			iommu_dma_strict ? "strict" : "lazy",
219 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
220 				" (set via kernel command line)" : "");
221 
222 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
223 	if (!nb)
224 		return -ENOMEM;
225 
226 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
227 		nb[i].notifier_call = iommu_bus_notifier;
228 		bus_register_notifier(iommu_buses[i], &nb[i]);
229 	}
230 
231 	return 0;
232 }
233 subsys_initcall(iommu_subsys_init);
234 
235 static int remove_iommu_group(struct device *dev, void *data)
236 {
237 	if (dev->iommu && dev->iommu->iommu_dev == data)
238 		iommu_release_device(dev);
239 
240 	return 0;
241 }
242 
243 /**
244  * iommu_device_register() - Register an IOMMU hardware instance
245  * @iommu: IOMMU handle for the instance
246  * @ops:   IOMMU ops to associate with the instance
247  * @hwdev: (optional) actual instance device, used for fwnode lookup
248  *
249  * Return: 0 on success, or an error.
250  */
251 int iommu_device_register(struct iommu_device *iommu,
252 			  const struct iommu_ops *ops, struct device *hwdev)
253 {
254 	int err = 0;
255 
256 	/* We need to be able to take module references appropriately */
257 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
258 		return -EINVAL;
259 	/*
260 	 * Temporarily enforce global restriction to a single driver. This was
261 	 * already the de-facto behaviour, since any possible combination of
262 	 * existing drivers would compete for at least the PCI or platform bus.
263 	 */
264 	if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops)
265 		return -EBUSY;
266 
267 	iommu->ops = ops;
268 	if (hwdev)
269 		iommu->fwnode = dev_fwnode(hwdev);
270 
271 	spin_lock(&iommu_device_lock);
272 	list_add_tail(&iommu->list, &iommu_device_list);
273 	spin_unlock(&iommu_device_lock);
274 
275 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) {
276 		iommu_buses[i]->iommu_ops = ops;
277 		err = bus_iommu_probe(iommu_buses[i]);
278 	}
279 	if (err)
280 		iommu_device_unregister(iommu);
281 	return err;
282 }
283 EXPORT_SYMBOL_GPL(iommu_device_register);
284 
285 void iommu_device_unregister(struct iommu_device *iommu)
286 {
287 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
288 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
289 
290 	spin_lock(&iommu_device_lock);
291 	list_del(&iommu->list);
292 	spin_unlock(&iommu_device_lock);
293 }
294 EXPORT_SYMBOL_GPL(iommu_device_unregister);
295 
296 #if IS_ENABLED(CONFIG_IOMMUFD_TEST)
297 void iommu_device_unregister_bus(struct iommu_device *iommu,
298 				 struct bus_type *bus,
299 				 struct notifier_block *nb)
300 {
301 	bus_unregister_notifier(bus, nb);
302 	iommu_device_unregister(iommu);
303 }
304 EXPORT_SYMBOL_GPL(iommu_device_unregister_bus);
305 
306 /*
307  * Register an iommu driver against a single bus. This is only used by iommufd
308  * selftest to create a mock iommu driver. The caller must provide
309  * some memory to hold a notifier_block.
310  */
311 int iommu_device_register_bus(struct iommu_device *iommu,
312 			      const struct iommu_ops *ops, struct bus_type *bus,
313 			      struct notifier_block *nb)
314 {
315 	int err;
316 
317 	iommu->ops = ops;
318 	nb->notifier_call = iommu_bus_notifier;
319 	err = bus_register_notifier(bus, nb);
320 	if (err)
321 		return err;
322 
323 	spin_lock(&iommu_device_lock);
324 	list_add_tail(&iommu->list, &iommu_device_list);
325 	spin_unlock(&iommu_device_lock);
326 
327 	bus->iommu_ops = ops;
328 	err = bus_iommu_probe(bus);
329 	if (err) {
330 		iommu_device_unregister_bus(iommu, bus, nb);
331 		return err;
332 	}
333 	return 0;
334 }
335 EXPORT_SYMBOL_GPL(iommu_device_register_bus);
336 #endif
337 
338 static struct dev_iommu *dev_iommu_get(struct device *dev)
339 {
340 	struct dev_iommu *param = dev->iommu;
341 
342 	if (param)
343 		return param;
344 
345 	param = kzalloc(sizeof(*param), GFP_KERNEL);
346 	if (!param)
347 		return NULL;
348 
349 	mutex_init(&param->lock);
350 	dev->iommu = param;
351 	return param;
352 }
353 
354 static void dev_iommu_free(struct device *dev)
355 {
356 	struct dev_iommu *param = dev->iommu;
357 
358 	dev->iommu = NULL;
359 	if (param->fwspec) {
360 		fwnode_handle_put(param->fwspec->iommu_fwnode);
361 		kfree(param->fwspec);
362 	}
363 	kfree(param);
364 }
365 
366 static u32 dev_iommu_get_max_pasids(struct device *dev)
367 {
368 	u32 max_pasids = 0, bits = 0;
369 	int ret;
370 
371 	if (dev_is_pci(dev)) {
372 		ret = pci_max_pasids(to_pci_dev(dev));
373 		if (ret > 0)
374 			max_pasids = ret;
375 	} else {
376 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
377 		if (!ret)
378 			max_pasids = 1UL << bits;
379 	}
380 
381 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
382 }
383 
384 /*
385  * Init the dev->iommu and dev->iommu_group in the struct device and get the
386  * driver probed
387  */
388 static int iommu_init_device(struct device *dev, const struct iommu_ops *ops)
389 {
390 	struct iommu_device *iommu_dev;
391 	struct iommu_group *group;
392 	int ret;
393 
394 	if (!dev_iommu_get(dev))
395 		return -ENOMEM;
396 
397 	if (!try_module_get(ops->owner)) {
398 		ret = -EINVAL;
399 		goto err_free;
400 	}
401 
402 	iommu_dev = ops->probe_device(dev);
403 	if (IS_ERR(iommu_dev)) {
404 		ret = PTR_ERR(iommu_dev);
405 		goto err_module_put;
406 	}
407 
408 	ret = iommu_device_link(iommu_dev, dev);
409 	if (ret)
410 		goto err_release;
411 
412 	group = ops->device_group(dev);
413 	if (WARN_ON_ONCE(group == NULL))
414 		group = ERR_PTR(-EINVAL);
415 	if (IS_ERR(group)) {
416 		ret = PTR_ERR(group);
417 		goto err_unlink;
418 	}
419 	dev->iommu_group = group;
420 
421 	dev->iommu->iommu_dev = iommu_dev;
422 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
423 	if (ops->is_attach_deferred)
424 		dev->iommu->attach_deferred = ops->is_attach_deferred(dev);
425 	return 0;
426 
427 err_unlink:
428 	iommu_device_unlink(iommu_dev, dev);
429 err_release:
430 	if (ops->release_device)
431 		ops->release_device(dev);
432 err_module_put:
433 	module_put(ops->owner);
434 err_free:
435 	dev_iommu_free(dev);
436 	return ret;
437 }
438 
439 static void iommu_deinit_device(struct device *dev)
440 {
441 	struct iommu_group *group = dev->iommu_group;
442 	const struct iommu_ops *ops = dev_iommu_ops(dev);
443 
444 	lockdep_assert_held(&group->mutex);
445 
446 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
447 
448 	/*
449 	 * release_device() must stop using any attached domain on the device.
450 	 * If there are still other devices in the group they are not effected
451 	 * by this callback.
452 	 *
453 	 * The IOMMU driver must set the device to either an identity or
454 	 * blocking translation and stop using any domain pointer, as it is
455 	 * going to be freed.
456 	 */
457 	if (ops->release_device)
458 		ops->release_device(dev);
459 
460 	/*
461 	 * If this is the last driver to use the group then we must free the
462 	 * domains before we do the module_put().
463 	 */
464 	if (list_empty(&group->devices)) {
465 		if (group->default_domain) {
466 			iommu_domain_free(group->default_domain);
467 			group->default_domain = NULL;
468 		}
469 		if (group->blocking_domain) {
470 			iommu_domain_free(group->blocking_domain);
471 			group->blocking_domain = NULL;
472 		}
473 		group->domain = NULL;
474 	}
475 
476 	/* Caller must put iommu_group */
477 	dev->iommu_group = NULL;
478 	module_put(ops->owner);
479 	dev_iommu_free(dev);
480 }
481 
482 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
483 {
484 	const struct iommu_ops *ops = dev->bus->iommu_ops;
485 	struct iommu_group *group;
486 	static DEFINE_MUTEX(iommu_probe_device_lock);
487 	struct group_device *gdev;
488 	int ret;
489 
490 	if (!ops)
491 		return -ENODEV;
492 	/*
493 	 * Serialise to avoid races between IOMMU drivers registering in
494 	 * parallel and/or the "replay" calls from ACPI/OF code via client
495 	 * driver probe. Once the latter have been cleaned up we should
496 	 * probably be able to use device_lock() here to minimise the scope,
497 	 * but for now enforcing a simple global ordering is fine.
498 	 */
499 	mutex_lock(&iommu_probe_device_lock);
500 
501 	/* Device is probed already if in a group */
502 	if (dev->iommu_group) {
503 		ret = 0;
504 		goto out_unlock;
505 	}
506 
507 	ret = iommu_init_device(dev, ops);
508 	if (ret)
509 		goto out_unlock;
510 
511 	group = dev->iommu_group;
512 	gdev = iommu_group_alloc_device(group, dev);
513 	mutex_lock(&group->mutex);
514 	if (IS_ERR(gdev)) {
515 		ret = PTR_ERR(gdev);
516 		goto err_put_group;
517 	}
518 
519 	/*
520 	 * The gdev must be in the list before calling
521 	 * iommu_setup_default_domain()
522 	 */
523 	list_add_tail(&gdev->list, &group->devices);
524 	WARN_ON(group->default_domain && !group->domain);
525 	if (group->default_domain)
526 		iommu_create_device_direct_mappings(group->default_domain, dev);
527 	if (group->domain) {
528 		ret = __iommu_device_set_domain(group, dev, group->domain, 0);
529 		if (ret)
530 			goto err_remove_gdev;
531 	} else if (!group->default_domain && !group_list) {
532 		ret = iommu_setup_default_domain(group, 0);
533 		if (ret)
534 			goto err_remove_gdev;
535 	} else if (!group->default_domain) {
536 		/*
537 		 * With a group_list argument we defer the default_domain setup
538 		 * to the caller by providing a de-duplicated list of groups
539 		 * that need further setup.
540 		 */
541 		if (list_empty(&group->entry))
542 			list_add_tail(&group->entry, group_list);
543 	}
544 	mutex_unlock(&group->mutex);
545 	mutex_unlock(&iommu_probe_device_lock);
546 
547 	if (dev_is_pci(dev))
548 		iommu_dma_set_pci_32bit_workaround(dev);
549 
550 	return 0;
551 
552 err_remove_gdev:
553 	list_del(&gdev->list);
554 	__iommu_group_free_device(group, gdev);
555 err_put_group:
556 	iommu_deinit_device(dev);
557 	mutex_unlock(&group->mutex);
558 	iommu_group_put(group);
559 out_unlock:
560 	mutex_unlock(&iommu_probe_device_lock);
561 
562 	return ret;
563 }
564 
565 int iommu_probe_device(struct device *dev)
566 {
567 	const struct iommu_ops *ops;
568 	int ret;
569 
570 	ret = __iommu_probe_device(dev, NULL);
571 	if (ret)
572 		return ret;
573 
574 	ops = dev_iommu_ops(dev);
575 	if (ops->probe_finalize)
576 		ops->probe_finalize(dev);
577 
578 	return 0;
579 }
580 
581 static void __iommu_group_free_device(struct iommu_group *group,
582 				      struct group_device *grp_dev)
583 {
584 	struct device *dev = grp_dev->dev;
585 
586 	sysfs_remove_link(group->devices_kobj, grp_dev->name);
587 	sysfs_remove_link(&dev->kobj, "iommu_group");
588 
589 	trace_remove_device_from_group(group->id, dev);
590 
591 	/*
592 	 * If the group has become empty then ownership must have been
593 	 * released, and the current domain must be set back to NULL or
594 	 * the default domain.
595 	 */
596 	if (list_empty(&group->devices))
597 		WARN_ON(group->owner_cnt ||
598 			group->domain != group->default_domain);
599 
600 	kfree(grp_dev->name);
601 	kfree(grp_dev);
602 }
603 
604 /* Remove the iommu_group from the struct device. */
605 static void __iommu_group_remove_device(struct device *dev)
606 {
607 	struct iommu_group *group = dev->iommu_group;
608 	struct group_device *device;
609 
610 	mutex_lock(&group->mutex);
611 	for_each_group_device(group, device) {
612 		if (device->dev != dev)
613 			continue;
614 
615 		list_del(&device->list);
616 		__iommu_group_free_device(group, device);
617 		if (dev->iommu && dev->iommu->iommu_dev)
618 			iommu_deinit_device(dev);
619 		else
620 			dev->iommu_group = NULL;
621 		break;
622 	}
623 	mutex_unlock(&group->mutex);
624 
625 	/*
626 	 * Pairs with the get in iommu_init_device() or
627 	 * iommu_group_add_device()
628 	 */
629 	iommu_group_put(group);
630 }
631 
632 static void iommu_release_device(struct device *dev)
633 {
634 	struct iommu_group *group = dev->iommu_group;
635 
636 	if (group)
637 		__iommu_group_remove_device(dev);
638 
639 	/* Free any fwspec if no iommu_driver was ever attached */
640 	if (dev->iommu)
641 		dev_iommu_free(dev);
642 }
643 
644 static int __init iommu_set_def_domain_type(char *str)
645 {
646 	bool pt;
647 	int ret;
648 
649 	ret = kstrtobool(str, &pt);
650 	if (ret)
651 		return ret;
652 
653 	if (pt)
654 		iommu_set_default_passthrough(true);
655 	else
656 		iommu_set_default_translated(true);
657 
658 	return 0;
659 }
660 early_param("iommu.passthrough", iommu_set_def_domain_type);
661 
662 static int __init iommu_dma_setup(char *str)
663 {
664 	int ret = kstrtobool(str, &iommu_dma_strict);
665 
666 	if (!ret)
667 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
668 	return ret;
669 }
670 early_param("iommu.strict", iommu_dma_setup);
671 
672 void iommu_set_dma_strict(void)
673 {
674 	iommu_dma_strict = true;
675 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
676 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
677 }
678 
679 static ssize_t iommu_group_attr_show(struct kobject *kobj,
680 				     struct attribute *__attr, char *buf)
681 {
682 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
683 	struct iommu_group *group = to_iommu_group(kobj);
684 	ssize_t ret = -EIO;
685 
686 	if (attr->show)
687 		ret = attr->show(group, buf);
688 	return ret;
689 }
690 
691 static ssize_t iommu_group_attr_store(struct kobject *kobj,
692 				      struct attribute *__attr,
693 				      const char *buf, size_t count)
694 {
695 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
696 	struct iommu_group *group = to_iommu_group(kobj);
697 	ssize_t ret = -EIO;
698 
699 	if (attr->store)
700 		ret = attr->store(group, buf, count);
701 	return ret;
702 }
703 
704 static const struct sysfs_ops iommu_group_sysfs_ops = {
705 	.show = iommu_group_attr_show,
706 	.store = iommu_group_attr_store,
707 };
708 
709 static int iommu_group_create_file(struct iommu_group *group,
710 				   struct iommu_group_attribute *attr)
711 {
712 	return sysfs_create_file(&group->kobj, &attr->attr);
713 }
714 
715 static void iommu_group_remove_file(struct iommu_group *group,
716 				    struct iommu_group_attribute *attr)
717 {
718 	sysfs_remove_file(&group->kobj, &attr->attr);
719 }
720 
721 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
722 {
723 	return sysfs_emit(buf, "%s\n", group->name);
724 }
725 
726 /**
727  * iommu_insert_resv_region - Insert a new region in the
728  * list of reserved regions.
729  * @new: new region to insert
730  * @regions: list of regions
731  *
732  * Elements are sorted by start address and overlapping segments
733  * of the same type are merged.
734  */
735 static int iommu_insert_resv_region(struct iommu_resv_region *new,
736 				    struct list_head *regions)
737 {
738 	struct iommu_resv_region *iter, *tmp, *nr, *top;
739 	LIST_HEAD(stack);
740 
741 	nr = iommu_alloc_resv_region(new->start, new->length,
742 				     new->prot, new->type, GFP_KERNEL);
743 	if (!nr)
744 		return -ENOMEM;
745 
746 	/* First add the new element based on start address sorting */
747 	list_for_each_entry(iter, regions, list) {
748 		if (nr->start < iter->start ||
749 		    (nr->start == iter->start && nr->type <= iter->type))
750 			break;
751 	}
752 	list_add_tail(&nr->list, &iter->list);
753 
754 	/* Merge overlapping segments of type nr->type in @regions, if any */
755 	list_for_each_entry_safe(iter, tmp, regions, list) {
756 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
757 
758 		/* no merge needed on elements of different types than @new */
759 		if (iter->type != new->type) {
760 			list_move_tail(&iter->list, &stack);
761 			continue;
762 		}
763 
764 		/* look for the last stack element of same type as @iter */
765 		list_for_each_entry_reverse(top, &stack, list)
766 			if (top->type == iter->type)
767 				goto check_overlap;
768 
769 		list_move_tail(&iter->list, &stack);
770 		continue;
771 
772 check_overlap:
773 		top_end = top->start + top->length - 1;
774 
775 		if (iter->start > top_end + 1) {
776 			list_move_tail(&iter->list, &stack);
777 		} else {
778 			top->length = max(top_end, iter_end) - top->start + 1;
779 			list_del(&iter->list);
780 			kfree(iter);
781 		}
782 	}
783 	list_splice(&stack, regions);
784 	return 0;
785 }
786 
787 static int
788 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
789 				 struct list_head *group_resv_regions)
790 {
791 	struct iommu_resv_region *entry;
792 	int ret = 0;
793 
794 	list_for_each_entry(entry, dev_resv_regions, list) {
795 		ret = iommu_insert_resv_region(entry, group_resv_regions);
796 		if (ret)
797 			break;
798 	}
799 	return ret;
800 }
801 
802 int iommu_get_group_resv_regions(struct iommu_group *group,
803 				 struct list_head *head)
804 {
805 	struct group_device *device;
806 	int ret = 0;
807 
808 	mutex_lock(&group->mutex);
809 	for_each_group_device(group, device) {
810 		struct list_head dev_resv_regions;
811 
812 		/*
813 		 * Non-API groups still expose reserved_regions in sysfs,
814 		 * so filter out calls that get here that way.
815 		 */
816 		if (!device->dev->iommu)
817 			break;
818 
819 		INIT_LIST_HEAD(&dev_resv_regions);
820 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
821 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
822 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
823 		if (ret)
824 			break;
825 	}
826 	mutex_unlock(&group->mutex);
827 	return ret;
828 }
829 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
830 
831 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
832 					     char *buf)
833 {
834 	struct iommu_resv_region *region, *next;
835 	struct list_head group_resv_regions;
836 	int offset = 0;
837 
838 	INIT_LIST_HEAD(&group_resv_regions);
839 	iommu_get_group_resv_regions(group, &group_resv_regions);
840 
841 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
842 		offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n",
843 					(long long)region->start,
844 					(long long)(region->start +
845 						    region->length - 1),
846 					iommu_group_resv_type_string[region->type]);
847 		kfree(region);
848 	}
849 
850 	return offset;
851 }
852 
853 static ssize_t iommu_group_show_type(struct iommu_group *group,
854 				     char *buf)
855 {
856 	char *type = "unknown";
857 
858 	mutex_lock(&group->mutex);
859 	if (group->default_domain) {
860 		switch (group->default_domain->type) {
861 		case IOMMU_DOMAIN_BLOCKED:
862 			type = "blocked";
863 			break;
864 		case IOMMU_DOMAIN_IDENTITY:
865 			type = "identity";
866 			break;
867 		case IOMMU_DOMAIN_UNMANAGED:
868 			type = "unmanaged";
869 			break;
870 		case IOMMU_DOMAIN_DMA:
871 			type = "DMA";
872 			break;
873 		case IOMMU_DOMAIN_DMA_FQ:
874 			type = "DMA-FQ";
875 			break;
876 		}
877 	}
878 	mutex_unlock(&group->mutex);
879 
880 	return sysfs_emit(buf, "%s\n", type);
881 }
882 
883 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
884 
885 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
886 			iommu_group_show_resv_regions, NULL);
887 
888 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
889 			iommu_group_store_type);
890 
891 static void iommu_group_release(struct kobject *kobj)
892 {
893 	struct iommu_group *group = to_iommu_group(kobj);
894 
895 	pr_debug("Releasing group %d\n", group->id);
896 
897 	if (group->iommu_data_release)
898 		group->iommu_data_release(group->iommu_data);
899 
900 	ida_free(&iommu_group_ida, group->id);
901 
902 	/* Domains are free'd by iommu_deinit_device() */
903 	WARN_ON(group->default_domain);
904 	WARN_ON(group->blocking_domain);
905 
906 	kfree(group->name);
907 	kfree(group);
908 }
909 
910 static const struct kobj_type iommu_group_ktype = {
911 	.sysfs_ops = &iommu_group_sysfs_ops,
912 	.release = iommu_group_release,
913 };
914 
915 /**
916  * iommu_group_alloc - Allocate a new group
917  *
918  * This function is called by an iommu driver to allocate a new iommu
919  * group.  The iommu group represents the minimum granularity of the iommu.
920  * Upon successful return, the caller holds a reference to the supplied
921  * group in order to hold the group until devices are added.  Use
922  * iommu_group_put() to release this extra reference count, allowing the
923  * group to be automatically reclaimed once it has no devices or external
924  * references.
925  */
926 struct iommu_group *iommu_group_alloc(void)
927 {
928 	struct iommu_group *group;
929 	int ret;
930 
931 	group = kzalloc(sizeof(*group), GFP_KERNEL);
932 	if (!group)
933 		return ERR_PTR(-ENOMEM);
934 
935 	group->kobj.kset = iommu_group_kset;
936 	mutex_init(&group->mutex);
937 	INIT_LIST_HEAD(&group->devices);
938 	INIT_LIST_HEAD(&group->entry);
939 	xa_init(&group->pasid_array);
940 
941 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
942 	if (ret < 0) {
943 		kfree(group);
944 		return ERR_PTR(ret);
945 	}
946 	group->id = ret;
947 
948 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
949 				   NULL, "%d", group->id);
950 	if (ret) {
951 		kobject_put(&group->kobj);
952 		return ERR_PTR(ret);
953 	}
954 
955 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
956 	if (!group->devices_kobj) {
957 		kobject_put(&group->kobj); /* triggers .release & free */
958 		return ERR_PTR(-ENOMEM);
959 	}
960 
961 	/*
962 	 * The devices_kobj holds a reference on the group kobject, so
963 	 * as long as that exists so will the group.  We can therefore
964 	 * use the devices_kobj for reference counting.
965 	 */
966 	kobject_put(&group->kobj);
967 
968 	ret = iommu_group_create_file(group,
969 				      &iommu_group_attr_reserved_regions);
970 	if (ret) {
971 		kobject_put(group->devices_kobj);
972 		return ERR_PTR(ret);
973 	}
974 
975 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
976 	if (ret) {
977 		kobject_put(group->devices_kobj);
978 		return ERR_PTR(ret);
979 	}
980 
981 	pr_debug("Allocated group %d\n", group->id);
982 
983 	return group;
984 }
985 EXPORT_SYMBOL_GPL(iommu_group_alloc);
986 
987 /**
988  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
989  * @group: the group
990  *
991  * iommu drivers can store data in the group for use when doing iommu
992  * operations.  This function provides a way to retrieve it.  Caller
993  * should hold a group reference.
994  */
995 void *iommu_group_get_iommudata(struct iommu_group *group)
996 {
997 	return group->iommu_data;
998 }
999 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
1000 
1001 /**
1002  * iommu_group_set_iommudata - set iommu_data for a group
1003  * @group: the group
1004  * @iommu_data: new data
1005  * @release: release function for iommu_data
1006  *
1007  * iommu drivers can store data in the group for use when doing iommu
1008  * operations.  This function provides a way to set the data after
1009  * the group has been allocated.  Caller should hold a group reference.
1010  */
1011 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
1012 			       void (*release)(void *iommu_data))
1013 {
1014 	group->iommu_data = iommu_data;
1015 	group->iommu_data_release = release;
1016 }
1017 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
1018 
1019 /**
1020  * iommu_group_set_name - set name for a group
1021  * @group: the group
1022  * @name: name
1023  *
1024  * Allow iommu driver to set a name for a group.  When set it will
1025  * appear in a name attribute file under the group in sysfs.
1026  */
1027 int iommu_group_set_name(struct iommu_group *group, const char *name)
1028 {
1029 	int ret;
1030 
1031 	if (group->name) {
1032 		iommu_group_remove_file(group, &iommu_group_attr_name);
1033 		kfree(group->name);
1034 		group->name = NULL;
1035 		if (!name)
1036 			return 0;
1037 	}
1038 
1039 	group->name = kstrdup(name, GFP_KERNEL);
1040 	if (!group->name)
1041 		return -ENOMEM;
1042 
1043 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
1044 	if (ret) {
1045 		kfree(group->name);
1046 		group->name = NULL;
1047 		return ret;
1048 	}
1049 
1050 	return 0;
1051 }
1052 EXPORT_SYMBOL_GPL(iommu_group_set_name);
1053 
1054 static int iommu_create_device_direct_mappings(struct iommu_domain *domain,
1055 					       struct device *dev)
1056 {
1057 	struct iommu_resv_region *entry;
1058 	struct list_head mappings;
1059 	unsigned long pg_size;
1060 	int ret = 0;
1061 
1062 	pg_size = domain->pgsize_bitmap ? 1UL << __ffs(domain->pgsize_bitmap) : 0;
1063 	INIT_LIST_HEAD(&mappings);
1064 
1065 	if (WARN_ON_ONCE(iommu_is_dma_domain(domain) && !pg_size))
1066 		return -EINVAL;
1067 
1068 	iommu_get_resv_regions(dev, &mappings);
1069 
1070 	/* We need to consider overlapping regions for different devices */
1071 	list_for_each_entry(entry, &mappings, list) {
1072 		dma_addr_t start, end, addr;
1073 		size_t map_size = 0;
1074 
1075 		if (entry->type == IOMMU_RESV_DIRECT)
1076 			dev->iommu->require_direct = 1;
1077 
1078 		if ((entry->type != IOMMU_RESV_DIRECT &&
1079 		     entry->type != IOMMU_RESV_DIRECT_RELAXABLE) ||
1080 		    !iommu_is_dma_domain(domain))
1081 			continue;
1082 
1083 		start = ALIGN(entry->start, pg_size);
1084 		end   = ALIGN(entry->start + entry->length, pg_size);
1085 
1086 		for (addr = start; addr <= end; addr += pg_size) {
1087 			phys_addr_t phys_addr;
1088 
1089 			if (addr == end)
1090 				goto map_end;
1091 
1092 			phys_addr = iommu_iova_to_phys(domain, addr);
1093 			if (!phys_addr) {
1094 				map_size += pg_size;
1095 				continue;
1096 			}
1097 
1098 map_end:
1099 			if (map_size) {
1100 				ret = iommu_map(domain, addr - map_size,
1101 						addr - map_size, map_size,
1102 						entry->prot, GFP_KERNEL);
1103 				if (ret)
1104 					goto out;
1105 				map_size = 0;
1106 			}
1107 		}
1108 
1109 	}
1110 
1111 	if (!list_empty(&mappings) && iommu_is_dma_domain(domain))
1112 		iommu_flush_iotlb_all(domain);
1113 
1114 out:
1115 	iommu_put_resv_regions(dev, &mappings);
1116 
1117 	return ret;
1118 }
1119 
1120 /* This is undone by __iommu_group_free_device() */
1121 static struct group_device *iommu_group_alloc_device(struct iommu_group *group,
1122 						     struct device *dev)
1123 {
1124 	int ret, i = 0;
1125 	struct group_device *device;
1126 
1127 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1128 	if (!device)
1129 		return ERR_PTR(-ENOMEM);
1130 
1131 	device->dev = dev;
1132 
1133 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1134 	if (ret)
1135 		goto err_free_device;
1136 
1137 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1138 rename:
1139 	if (!device->name) {
1140 		ret = -ENOMEM;
1141 		goto err_remove_link;
1142 	}
1143 
1144 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1145 				       &dev->kobj, device->name);
1146 	if (ret) {
1147 		if (ret == -EEXIST && i >= 0) {
1148 			/*
1149 			 * Account for the slim chance of collision
1150 			 * and append an instance to the name.
1151 			 */
1152 			kfree(device->name);
1153 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1154 						 kobject_name(&dev->kobj), i++);
1155 			goto rename;
1156 		}
1157 		goto err_free_name;
1158 	}
1159 
1160 	trace_add_device_to_group(group->id, dev);
1161 
1162 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1163 
1164 	return device;
1165 
1166 err_free_name:
1167 	kfree(device->name);
1168 err_remove_link:
1169 	sysfs_remove_link(&dev->kobj, "iommu_group");
1170 err_free_device:
1171 	kfree(device);
1172 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1173 	return ERR_PTR(ret);
1174 }
1175 
1176 /**
1177  * iommu_group_add_device - add a device to an iommu group
1178  * @group: the group into which to add the device (reference should be held)
1179  * @dev: the device
1180  *
1181  * This function is called by an iommu driver to add a device into a
1182  * group.  Adding a device increments the group reference count.
1183  */
1184 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1185 {
1186 	struct group_device *gdev;
1187 
1188 	gdev = iommu_group_alloc_device(group, dev);
1189 	if (IS_ERR(gdev))
1190 		return PTR_ERR(gdev);
1191 
1192 	iommu_group_ref_get(group);
1193 	dev->iommu_group = group;
1194 
1195 	mutex_lock(&group->mutex);
1196 	list_add_tail(&gdev->list, &group->devices);
1197 	mutex_unlock(&group->mutex);
1198 	return 0;
1199 }
1200 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1201 
1202 /**
1203  * iommu_group_remove_device - remove a device from it's current group
1204  * @dev: device to be removed
1205  *
1206  * This function is called by an iommu driver to remove the device from
1207  * it's current group.  This decrements the iommu group reference count.
1208  */
1209 void iommu_group_remove_device(struct device *dev)
1210 {
1211 	struct iommu_group *group = dev->iommu_group;
1212 
1213 	if (!group)
1214 		return;
1215 
1216 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1217 
1218 	__iommu_group_remove_device(dev);
1219 }
1220 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1221 
1222 /**
1223  * iommu_group_for_each_dev - iterate over each device in the group
1224  * @group: the group
1225  * @data: caller opaque data to be passed to callback function
1226  * @fn: caller supplied callback function
1227  *
1228  * This function is called by group users to iterate over group devices.
1229  * Callers should hold a reference count to the group during callback.
1230  * The group->mutex is held across callbacks, which will block calls to
1231  * iommu_group_add/remove_device.
1232  */
1233 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1234 			     int (*fn)(struct device *, void *))
1235 {
1236 	struct group_device *device;
1237 	int ret = 0;
1238 
1239 	mutex_lock(&group->mutex);
1240 	for_each_group_device(group, device) {
1241 		ret = fn(device->dev, data);
1242 		if (ret)
1243 			break;
1244 	}
1245 	mutex_unlock(&group->mutex);
1246 
1247 	return ret;
1248 }
1249 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1250 
1251 /**
1252  * iommu_group_get - Return the group for a device and increment reference
1253  * @dev: get the group that this device belongs to
1254  *
1255  * This function is called by iommu drivers and users to get the group
1256  * for the specified device.  If found, the group is returned and the group
1257  * reference in incremented, else NULL.
1258  */
1259 struct iommu_group *iommu_group_get(struct device *dev)
1260 {
1261 	struct iommu_group *group = dev->iommu_group;
1262 
1263 	if (group)
1264 		kobject_get(group->devices_kobj);
1265 
1266 	return group;
1267 }
1268 EXPORT_SYMBOL_GPL(iommu_group_get);
1269 
1270 /**
1271  * iommu_group_ref_get - Increment reference on a group
1272  * @group: the group to use, must not be NULL
1273  *
1274  * This function is called by iommu drivers to take additional references on an
1275  * existing group.  Returns the given group for convenience.
1276  */
1277 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1278 {
1279 	kobject_get(group->devices_kobj);
1280 	return group;
1281 }
1282 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1283 
1284 /**
1285  * iommu_group_put - Decrement group reference
1286  * @group: the group to use
1287  *
1288  * This function is called by iommu drivers and users to release the
1289  * iommu group.  Once the reference count is zero, the group is released.
1290  */
1291 void iommu_group_put(struct iommu_group *group)
1292 {
1293 	if (group)
1294 		kobject_put(group->devices_kobj);
1295 }
1296 EXPORT_SYMBOL_GPL(iommu_group_put);
1297 
1298 /**
1299  * iommu_register_device_fault_handler() - Register a device fault handler
1300  * @dev: the device
1301  * @handler: the fault handler
1302  * @data: private data passed as argument to the handler
1303  *
1304  * When an IOMMU fault event is received, this handler gets called with the
1305  * fault event and data as argument. The handler should return 0 on success. If
1306  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1307  * complete the fault by calling iommu_page_response() with one of the following
1308  * response code:
1309  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1310  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1311  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1312  *   page faults if possible.
1313  *
1314  * Return 0 if the fault handler was installed successfully, or an error.
1315  */
1316 int iommu_register_device_fault_handler(struct device *dev,
1317 					iommu_dev_fault_handler_t handler,
1318 					void *data)
1319 {
1320 	struct dev_iommu *param = dev->iommu;
1321 	int ret = 0;
1322 
1323 	if (!param)
1324 		return -EINVAL;
1325 
1326 	mutex_lock(&param->lock);
1327 	/* Only allow one fault handler registered for each device */
1328 	if (param->fault_param) {
1329 		ret = -EBUSY;
1330 		goto done_unlock;
1331 	}
1332 
1333 	get_device(dev);
1334 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1335 	if (!param->fault_param) {
1336 		put_device(dev);
1337 		ret = -ENOMEM;
1338 		goto done_unlock;
1339 	}
1340 	param->fault_param->handler = handler;
1341 	param->fault_param->data = data;
1342 	mutex_init(&param->fault_param->lock);
1343 	INIT_LIST_HEAD(&param->fault_param->faults);
1344 
1345 done_unlock:
1346 	mutex_unlock(&param->lock);
1347 
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1351 
1352 /**
1353  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1354  * @dev: the device
1355  *
1356  * Remove the device fault handler installed with
1357  * iommu_register_device_fault_handler().
1358  *
1359  * Return 0 on success, or an error.
1360  */
1361 int iommu_unregister_device_fault_handler(struct device *dev)
1362 {
1363 	struct dev_iommu *param = dev->iommu;
1364 	int ret = 0;
1365 
1366 	if (!param)
1367 		return -EINVAL;
1368 
1369 	mutex_lock(&param->lock);
1370 
1371 	if (!param->fault_param)
1372 		goto unlock;
1373 
1374 	/* we cannot unregister handler if there are pending faults */
1375 	if (!list_empty(&param->fault_param->faults)) {
1376 		ret = -EBUSY;
1377 		goto unlock;
1378 	}
1379 
1380 	kfree(param->fault_param);
1381 	param->fault_param = NULL;
1382 	put_device(dev);
1383 unlock:
1384 	mutex_unlock(&param->lock);
1385 
1386 	return ret;
1387 }
1388 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1389 
1390 /**
1391  * iommu_report_device_fault() - Report fault event to device driver
1392  * @dev: the device
1393  * @evt: fault event data
1394  *
1395  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1396  * handler. When this function fails and the fault is recoverable, it is the
1397  * caller's responsibility to complete the fault.
1398  *
1399  * Return 0 on success, or an error.
1400  */
1401 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1402 {
1403 	struct dev_iommu *param = dev->iommu;
1404 	struct iommu_fault_event *evt_pending = NULL;
1405 	struct iommu_fault_param *fparam;
1406 	int ret = 0;
1407 
1408 	if (!param || !evt)
1409 		return -EINVAL;
1410 
1411 	/* we only report device fault if there is a handler registered */
1412 	mutex_lock(&param->lock);
1413 	fparam = param->fault_param;
1414 	if (!fparam || !fparam->handler) {
1415 		ret = -EINVAL;
1416 		goto done_unlock;
1417 	}
1418 
1419 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1420 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1421 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1422 				      GFP_KERNEL);
1423 		if (!evt_pending) {
1424 			ret = -ENOMEM;
1425 			goto done_unlock;
1426 		}
1427 		mutex_lock(&fparam->lock);
1428 		list_add_tail(&evt_pending->list, &fparam->faults);
1429 		mutex_unlock(&fparam->lock);
1430 	}
1431 
1432 	ret = fparam->handler(&evt->fault, fparam->data);
1433 	if (ret && evt_pending) {
1434 		mutex_lock(&fparam->lock);
1435 		list_del(&evt_pending->list);
1436 		mutex_unlock(&fparam->lock);
1437 		kfree(evt_pending);
1438 	}
1439 done_unlock:
1440 	mutex_unlock(&param->lock);
1441 	return ret;
1442 }
1443 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1444 
1445 int iommu_page_response(struct device *dev,
1446 			struct iommu_page_response *msg)
1447 {
1448 	bool needs_pasid;
1449 	int ret = -EINVAL;
1450 	struct iommu_fault_event *evt;
1451 	struct iommu_fault_page_request *prm;
1452 	struct dev_iommu *param = dev->iommu;
1453 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1454 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1455 
1456 	if (!ops->page_response)
1457 		return -ENODEV;
1458 
1459 	if (!param || !param->fault_param)
1460 		return -EINVAL;
1461 
1462 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1463 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1464 		return -EINVAL;
1465 
1466 	/* Only send response if there is a fault report pending */
1467 	mutex_lock(&param->fault_param->lock);
1468 	if (list_empty(&param->fault_param->faults)) {
1469 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1470 		goto done_unlock;
1471 	}
1472 	/*
1473 	 * Check if we have a matching page request pending to respond,
1474 	 * otherwise return -EINVAL
1475 	 */
1476 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1477 		prm = &evt->fault.prm;
1478 		if (prm->grpid != msg->grpid)
1479 			continue;
1480 
1481 		/*
1482 		 * If the PASID is required, the corresponding request is
1483 		 * matched using the group ID, the PASID valid bit and the PASID
1484 		 * value. Otherwise only the group ID matches request and
1485 		 * response.
1486 		 */
1487 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1488 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1489 			continue;
1490 
1491 		if (!needs_pasid && has_pasid) {
1492 			/* No big deal, just clear it. */
1493 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1494 			msg->pasid = 0;
1495 		}
1496 
1497 		ret = ops->page_response(dev, evt, msg);
1498 		list_del(&evt->list);
1499 		kfree(evt);
1500 		break;
1501 	}
1502 
1503 done_unlock:
1504 	mutex_unlock(&param->fault_param->lock);
1505 	return ret;
1506 }
1507 EXPORT_SYMBOL_GPL(iommu_page_response);
1508 
1509 /**
1510  * iommu_group_id - Return ID for a group
1511  * @group: the group to ID
1512  *
1513  * Return the unique ID for the group matching the sysfs group number.
1514  */
1515 int iommu_group_id(struct iommu_group *group)
1516 {
1517 	return group->id;
1518 }
1519 EXPORT_SYMBOL_GPL(iommu_group_id);
1520 
1521 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1522 					       unsigned long *devfns);
1523 
1524 /*
1525  * To consider a PCI device isolated, we require ACS to support Source
1526  * Validation, Request Redirection, Completer Redirection, and Upstream
1527  * Forwarding.  This effectively means that devices cannot spoof their
1528  * requester ID, requests and completions cannot be redirected, and all
1529  * transactions are forwarded upstream, even as it passes through a
1530  * bridge where the target device is downstream.
1531  */
1532 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1533 
1534 /*
1535  * For multifunction devices which are not isolated from each other, find
1536  * all the other non-isolated functions and look for existing groups.  For
1537  * each function, we also need to look for aliases to or from other devices
1538  * that may already have a group.
1539  */
1540 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1541 							unsigned long *devfns)
1542 {
1543 	struct pci_dev *tmp = NULL;
1544 	struct iommu_group *group;
1545 
1546 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1547 		return NULL;
1548 
1549 	for_each_pci_dev(tmp) {
1550 		if (tmp == pdev || tmp->bus != pdev->bus ||
1551 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1552 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1553 			continue;
1554 
1555 		group = get_pci_alias_group(tmp, devfns);
1556 		if (group) {
1557 			pci_dev_put(tmp);
1558 			return group;
1559 		}
1560 	}
1561 
1562 	return NULL;
1563 }
1564 
1565 /*
1566  * Look for aliases to or from the given device for existing groups. DMA
1567  * aliases are only supported on the same bus, therefore the search
1568  * space is quite small (especially since we're really only looking at pcie
1569  * device, and therefore only expect multiple slots on the root complex or
1570  * downstream switch ports).  It's conceivable though that a pair of
1571  * multifunction devices could have aliases between them that would cause a
1572  * loop.  To prevent this, we use a bitmap to track where we've been.
1573  */
1574 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1575 					       unsigned long *devfns)
1576 {
1577 	struct pci_dev *tmp = NULL;
1578 	struct iommu_group *group;
1579 
1580 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1581 		return NULL;
1582 
1583 	group = iommu_group_get(&pdev->dev);
1584 	if (group)
1585 		return group;
1586 
1587 	for_each_pci_dev(tmp) {
1588 		if (tmp == pdev || tmp->bus != pdev->bus)
1589 			continue;
1590 
1591 		/* We alias them or they alias us */
1592 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1593 			group = get_pci_alias_group(tmp, devfns);
1594 			if (group) {
1595 				pci_dev_put(tmp);
1596 				return group;
1597 			}
1598 
1599 			group = get_pci_function_alias_group(tmp, devfns);
1600 			if (group) {
1601 				pci_dev_put(tmp);
1602 				return group;
1603 			}
1604 		}
1605 	}
1606 
1607 	return NULL;
1608 }
1609 
1610 struct group_for_pci_data {
1611 	struct pci_dev *pdev;
1612 	struct iommu_group *group;
1613 };
1614 
1615 /*
1616  * DMA alias iterator callback, return the last seen device.  Stop and return
1617  * the IOMMU group if we find one along the way.
1618  */
1619 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1620 {
1621 	struct group_for_pci_data *data = opaque;
1622 
1623 	data->pdev = pdev;
1624 	data->group = iommu_group_get(&pdev->dev);
1625 
1626 	return data->group != NULL;
1627 }
1628 
1629 /*
1630  * Generic device_group call-back function. It just allocates one
1631  * iommu-group per device.
1632  */
1633 struct iommu_group *generic_device_group(struct device *dev)
1634 {
1635 	return iommu_group_alloc();
1636 }
1637 EXPORT_SYMBOL_GPL(generic_device_group);
1638 
1639 /*
1640  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1641  * to find or create an IOMMU group for a device.
1642  */
1643 struct iommu_group *pci_device_group(struct device *dev)
1644 {
1645 	struct pci_dev *pdev = to_pci_dev(dev);
1646 	struct group_for_pci_data data;
1647 	struct pci_bus *bus;
1648 	struct iommu_group *group = NULL;
1649 	u64 devfns[4] = { 0 };
1650 
1651 	if (WARN_ON(!dev_is_pci(dev)))
1652 		return ERR_PTR(-EINVAL);
1653 
1654 	/*
1655 	 * Find the upstream DMA alias for the device.  A device must not
1656 	 * be aliased due to topology in order to have its own IOMMU group.
1657 	 * If we find an alias along the way that already belongs to a
1658 	 * group, use it.
1659 	 */
1660 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1661 		return data.group;
1662 
1663 	pdev = data.pdev;
1664 
1665 	/*
1666 	 * Continue upstream from the point of minimum IOMMU granularity
1667 	 * due to aliases to the point where devices are protected from
1668 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1669 	 * group, use it.
1670 	 */
1671 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1672 		if (!bus->self)
1673 			continue;
1674 
1675 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1676 			break;
1677 
1678 		pdev = bus->self;
1679 
1680 		group = iommu_group_get(&pdev->dev);
1681 		if (group)
1682 			return group;
1683 	}
1684 
1685 	/*
1686 	 * Look for existing groups on device aliases.  If we alias another
1687 	 * device or another device aliases us, use the same group.
1688 	 */
1689 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1690 	if (group)
1691 		return group;
1692 
1693 	/*
1694 	 * Look for existing groups on non-isolated functions on the same
1695 	 * slot and aliases of those funcions, if any.  No need to clear
1696 	 * the search bitmap, the tested devfns are still valid.
1697 	 */
1698 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1699 	if (group)
1700 		return group;
1701 
1702 	/* No shared group found, allocate new */
1703 	return iommu_group_alloc();
1704 }
1705 EXPORT_SYMBOL_GPL(pci_device_group);
1706 
1707 /* Get the IOMMU group for device on fsl-mc bus */
1708 struct iommu_group *fsl_mc_device_group(struct device *dev)
1709 {
1710 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1711 	struct iommu_group *group;
1712 
1713 	group = iommu_group_get(cont_dev);
1714 	if (!group)
1715 		group = iommu_group_alloc();
1716 	return group;
1717 }
1718 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1719 
1720 static int iommu_get_def_domain_type(struct device *dev)
1721 {
1722 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1723 
1724 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1725 		return IOMMU_DOMAIN_DMA;
1726 
1727 	if (ops->def_domain_type)
1728 		return ops->def_domain_type(dev);
1729 
1730 	return 0;
1731 }
1732 
1733 static struct iommu_domain *
1734 __iommu_group_alloc_default_domain(const struct bus_type *bus,
1735 				   struct iommu_group *group, int req_type)
1736 {
1737 	if (group->default_domain && group->default_domain->type == req_type)
1738 		return group->default_domain;
1739 	return __iommu_domain_alloc(bus, req_type);
1740 }
1741 
1742 /*
1743  * req_type of 0 means "auto" which means to select a domain based on
1744  * iommu_def_domain_type or what the driver actually supports.
1745  */
1746 static struct iommu_domain *
1747 iommu_group_alloc_default_domain(struct iommu_group *group, int req_type)
1748 {
1749 	const struct bus_type *bus =
1750 		list_first_entry(&group->devices, struct group_device, list)
1751 			->dev->bus;
1752 	struct iommu_domain *dom;
1753 
1754 	lockdep_assert_held(&group->mutex);
1755 
1756 	if (req_type)
1757 		return __iommu_group_alloc_default_domain(bus, group, req_type);
1758 
1759 	/* The driver gave no guidance on what type to use, try the default */
1760 	dom = __iommu_group_alloc_default_domain(bus, group, iommu_def_domain_type);
1761 	if (dom)
1762 		return dom;
1763 
1764 	/* Otherwise IDENTITY and DMA_FQ defaults will try DMA */
1765 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA)
1766 		return NULL;
1767 	dom = __iommu_group_alloc_default_domain(bus, group, IOMMU_DOMAIN_DMA);
1768 	if (!dom)
1769 		return NULL;
1770 
1771 	pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1772 		iommu_def_domain_type, group->name);
1773 	return dom;
1774 }
1775 
1776 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1777 {
1778 	return group->default_domain;
1779 }
1780 
1781 static int probe_iommu_group(struct device *dev, void *data)
1782 {
1783 	struct list_head *group_list = data;
1784 	int ret;
1785 
1786 	ret = __iommu_probe_device(dev, group_list);
1787 	if (ret == -ENODEV)
1788 		ret = 0;
1789 
1790 	return ret;
1791 }
1792 
1793 static int iommu_bus_notifier(struct notifier_block *nb,
1794 			      unsigned long action, void *data)
1795 {
1796 	struct device *dev = data;
1797 
1798 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1799 		int ret;
1800 
1801 		ret = iommu_probe_device(dev);
1802 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1803 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1804 		iommu_release_device(dev);
1805 		return NOTIFY_OK;
1806 	}
1807 
1808 	return 0;
1809 }
1810 
1811 /* A target_type of 0 will select the best domain type and cannot fail */
1812 static int iommu_get_default_domain_type(struct iommu_group *group,
1813 					 int target_type)
1814 {
1815 	int best_type = target_type;
1816 	struct group_device *gdev;
1817 	struct device *last_dev;
1818 
1819 	lockdep_assert_held(&group->mutex);
1820 
1821 	for_each_group_device(group, gdev) {
1822 		unsigned int type = iommu_get_def_domain_type(gdev->dev);
1823 
1824 		if (best_type && type && best_type != type) {
1825 			if (target_type) {
1826 				dev_err_ratelimited(
1827 					gdev->dev,
1828 					"Device cannot be in %s domain\n",
1829 					iommu_domain_type_str(target_type));
1830 				return -1;
1831 			}
1832 
1833 			dev_warn(
1834 				gdev->dev,
1835 				"Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1836 				iommu_domain_type_str(type), dev_name(last_dev),
1837 				iommu_domain_type_str(best_type));
1838 			return 0;
1839 		}
1840 		if (!best_type)
1841 			best_type = type;
1842 		last_dev = gdev->dev;
1843 	}
1844 	return best_type;
1845 }
1846 
1847 static void iommu_group_do_probe_finalize(struct device *dev)
1848 {
1849 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1850 
1851 	if (ops->probe_finalize)
1852 		ops->probe_finalize(dev);
1853 }
1854 
1855 int bus_iommu_probe(const struct bus_type *bus)
1856 {
1857 	struct iommu_group *group, *next;
1858 	LIST_HEAD(group_list);
1859 	int ret;
1860 
1861 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1862 	if (ret)
1863 		return ret;
1864 
1865 	list_for_each_entry_safe(group, next, &group_list, entry) {
1866 		struct group_device *gdev;
1867 
1868 		mutex_lock(&group->mutex);
1869 
1870 		/* Remove item from the list */
1871 		list_del_init(&group->entry);
1872 
1873 		/*
1874 		 * We go to the trouble of deferred default domain creation so
1875 		 * that the cross-group default domain type and the setup of the
1876 		 * IOMMU_RESV_DIRECT will work correctly in non-hotpug scenarios.
1877 		 */
1878 		ret = iommu_setup_default_domain(group, 0);
1879 		if (ret) {
1880 			mutex_unlock(&group->mutex);
1881 			return ret;
1882 		}
1883 		mutex_unlock(&group->mutex);
1884 
1885 		/*
1886 		 * FIXME: Mis-locked because the ops->probe_finalize() call-back
1887 		 * of some IOMMU drivers calls arm_iommu_attach_device() which
1888 		 * in-turn might call back into IOMMU core code, where it tries
1889 		 * to take group->mutex, resulting in a deadlock.
1890 		 */
1891 		for_each_group_device(group, gdev)
1892 			iommu_group_do_probe_finalize(gdev->dev);
1893 	}
1894 
1895 	return 0;
1896 }
1897 
1898 bool iommu_present(const struct bus_type *bus)
1899 {
1900 	return bus->iommu_ops != NULL;
1901 }
1902 EXPORT_SYMBOL_GPL(iommu_present);
1903 
1904 /**
1905  * device_iommu_capable() - check for a general IOMMU capability
1906  * @dev: device to which the capability would be relevant, if available
1907  * @cap: IOMMU capability
1908  *
1909  * Return: true if an IOMMU is present and supports the given capability
1910  * for the given device, otherwise false.
1911  */
1912 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1913 {
1914 	const struct iommu_ops *ops;
1915 
1916 	if (!dev->iommu || !dev->iommu->iommu_dev)
1917 		return false;
1918 
1919 	ops = dev_iommu_ops(dev);
1920 	if (!ops->capable)
1921 		return false;
1922 
1923 	return ops->capable(dev, cap);
1924 }
1925 EXPORT_SYMBOL_GPL(device_iommu_capable);
1926 
1927 /**
1928  * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1929  *       for a group
1930  * @group: Group to query
1931  *
1932  * IOMMU groups should not have differing values of
1933  * msi_device_has_isolated_msi() for devices in a group. However nothing
1934  * directly prevents this, so ensure mistakes don't result in isolation failures
1935  * by checking that all the devices are the same.
1936  */
1937 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1938 {
1939 	struct group_device *group_dev;
1940 	bool ret = true;
1941 
1942 	mutex_lock(&group->mutex);
1943 	for_each_group_device(group, group_dev)
1944 		ret &= msi_device_has_isolated_msi(group_dev->dev);
1945 	mutex_unlock(&group->mutex);
1946 	return ret;
1947 }
1948 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1949 
1950 /**
1951  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1952  * @domain: iommu domain
1953  * @handler: fault handler
1954  * @token: user data, will be passed back to the fault handler
1955  *
1956  * This function should be used by IOMMU users which want to be notified
1957  * whenever an IOMMU fault happens.
1958  *
1959  * The fault handler itself should return 0 on success, and an appropriate
1960  * error code otherwise.
1961  */
1962 void iommu_set_fault_handler(struct iommu_domain *domain,
1963 					iommu_fault_handler_t handler,
1964 					void *token)
1965 {
1966 	BUG_ON(!domain);
1967 
1968 	domain->handler = handler;
1969 	domain->handler_token = token;
1970 }
1971 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1972 
1973 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus,
1974 						 unsigned type)
1975 {
1976 	struct iommu_domain *domain;
1977 	unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS;
1978 
1979 	if (bus == NULL || bus->iommu_ops == NULL)
1980 		return NULL;
1981 
1982 	domain = bus->iommu_ops->domain_alloc(alloc_type);
1983 	if (!domain)
1984 		return NULL;
1985 
1986 	domain->type = type;
1987 	/*
1988 	 * If not already set, assume all sizes by default; the driver
1989 	 * may override this later
1990 	 */
1991 	if (!domain->pgsize_bitmap)
1992 		domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1993 
1994 	if (!domain->ops)
1995 		domain->ops = bus->iommu_ops->default_domain_ops;
1996 
1997 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1998 		iommu_domain_free(domain);
1999 		domain = NULL;
2000 	}
2001 	return domain;
2002 }
2003 
2004 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus)
2005 {
2006 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
2007 }
2008 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
2009 
2010 void iommu_domain_free(struct iommu_domain *domain)
2011 {
2012 	if (domain->type == IOMMU_DOMAIN_SVA)
2013 		mmdrop(domain->mm);
2014 	iommu_put_dma_cookie(domain);
2015 	domain->ops->free(domain);
2016 }
2017 EXPORT_SYMBOL_GPL(iommu_domain_free);
2018 
2019 /*
2020  * Put the group's domain back to the appropriate core-owned domain - either the
2021  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2022  */
2023 static void __iommu_group_set_core_domain(struct iommu_group *group)
2024 {
2025 	struct iommu_domain *new_domain;
2026 
2027 	if (group->owner)
2028 		new_domain = group->blocking_domain;
2029 	else
2030 		new_domain = group->default_domain;
2031 
2032 	__iommu_group_set_domain_nofail(group, new_domain);
2033 }
2034 
2035 static int __iommu_attach_device(struct iommu_domain *domain,
2036 				 struct device *dev)
2037 {
2038 	int ret;
2039 
2040 	if (unlikely(domain->ops->attach_dev == NULL))
2041 		return -ENODEV;
2042 
2043 	ret = domain->ops->attach_dev(domain, dev);
2044 	if (ret)
2045 		return ret;
2046 	dev->iommu->attach_deferred = 0;
2047 	trace_attach_device_to_domain(dev);
2048 	return 0;
2049 }
2050 
2051 /**
2052  * iommu_attach_device - Attach an IOMMU domain to a device
2053  * @domain: IOMMU domain to attach
2054  * @dev: Device that will be attached
2055  *
2056  * Returns 0 on success and error code on failure
2057  *
2058  * Note that EINVAL can be treated as a soft failure, indicating
2059  * that certain configuration of the domain is incompatible with
2060  * the device. In this case attaching a different domain to the
2061  * device may succeed.
2062  */
2063 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2064 {
2065 	struct iommu_group *group;
2066 	int ret;
2067 
2068 	group = iommu_group_get(dev);
2069 	if (!group)
2070 		return -ENODEV;
2071 
2072 	/*
2073 	 * Lock the group to make sure the device-count doesn't
2074 	 * change while we are attaching
2075 	 */
2076 	mutex_lock(&group->mutex);
2077 	ret = -EINVAL;
2078 	if (list_count_nodes(&group->devices) != 1)
2079 		goto out_unlock;
2080 
2081 	ret = __iommu_attach_group(domain, group);
2082 
2083 out_unlock:
2084 	mutex_unlock(&group->mutex);
2085 	iommu_group_put(group);
2086 
2087 	return ret;
2088 }
2089 EXPORT_SYMBOL_GPL(iommu_attach_device);
2090 
2091 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2092 {
2093 	if (dev->iommu && dev->iommu->attach_deferred)
2094 		return __iommu_attach_device(domain, dev);
2095 
2096 	return 0;
2097 }
2098 
2099 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2100 {
2101 	struct iommu_group *group;
2102 
2103 	group = iommu_group_get(dev);
2104 	if (!group)
2105 		return;
2106 
2107 	mutex_lock(&group->mutex);
2108 	if (WARN_ON(domain != group->domain) ||
2109 	    WARN_ON(list_count_nodes(&group->devices) != 1))
2110 		goto out_unlock;
2111 	__iommu_group_set_core_domain(group);
2112 
2113 out_unlock:
2114 	mutex_unlock(&group->mutex);
2115 	iommu_group_put(group);
2116 }
2117 EXPORT_SYMBOL_GPL(iommu_detach_device);
2118 
2119 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2120 {
2121 	struct iommu_domain *domain;
2122 	struct iommu_group *group;
2123 
2124 	group = iommu_group_get(dev);
2125 	if (!group)
2126 		return NULL;
2127 
2128 	domain = group->domain;
2129 
2130 	iommu_group_put(group);
2131 
2132 	return domain;
2133 }
2134 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2135 
2136 /*
2137  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2138  * guarantees that the group and its default domain are valid and correct.
2139  */
2140 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2141 {
2142 	return dev->iommu_group->default_domain;
2143 }
2144 
2145 static int __iommu_attach_group(struct iommu_domain *domain,
2146 				struct iommu_group *group)
2147 {
2148 	if (group->domain && group->domain != group->default_domain &&
2149 	    group->domain != group->blocking_domain)
2150 		return -EBUSY;
2151 
2152 	return __iommu_group_set_domain(group, domain);
2153 }
2154 
2155 /**
2156  * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2157  * @domain: IOMMU domain to attach
2158  * @group: IOMMU group that will be attached
2159  *
2160  * Returns 0 on success and error code on failure
2161  *
2162  * Note that EINVAL can be treated as a soft failure, indicating
2163  * that certain configuration of the domain is incompatible with
2164  * the group. In this case attaching a different domain to the
2165  * group may succeed.
2166  */
2167 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2168 {
2169 	int ret;
2170 
2171 	mutex_lock(&group->mutex);
2172 	ret = __iommu_attach_group(domain, group);
2173 	mutex_unlock(&group->mutex);
2174 
2175 	return ret;
2176 }
2177 EXPORT_SYMBOL_GPL(iommu_attach_group);
2178 
2179 /**
2180  * iommu_group_replace_domain - replace the domain that a group is attached to
2181  * @new_domain: new IOMMU domain to replace with
2182  * @group: IOMMU group that will be attached to the new domain
2183  *
2184  * This API allows the group to switch domains without being forced to go to
2185  * the blocking domain in-between.
2186  *
2187  * If the currently attached domain is a core domain (e.g. a default_domain),
2188  * it will act just like the iommu_attach_group().
2189  */
2190 int iommu_group_replace_domain(struct iommu_group *group,
2191 			       struct iommu_domain *new_domain)
2192 {
2193 	int ret;
2194 
2195 	if (!new_domain)
2196 		return -EINVAL;
2197 
2198 	mutex_lock(&group->mutex);
2199 	ret = __iommu_group_set_domain(group, new_domain);
2200 	mutex_unlock(&group->mutex);
2201 	return ret;
2202 }
2203 EXPORT_SYMBOL_NS_GPL(iommu_group_replace_domain, IOMMUFD_INTERNAL);
2204 
2205 static int __iommu_device_set_domain(struct iommu_group *group,
2206 				     struct device *dev,
2207 				     struct iommu_domain *new_domain,
2208 				     unsigned int flags)
2209 {
2210 	int ret;
2211 
2212 	/*
2213 	 * If the device requires IOMMU_RESV_DIRECT then we cannot allow
2214 	 * the blocking domain to be attached as it does not contain the
2215 	 * required 1:1 mapping. This test effectively excludes the device
2216 	 * being used with iommu_group_claim_dma_owner() which will block
2217 	 * vfio and iommufd as well.
2218 	 */
2219 	if (dev->iommu->require_direct &&
2220 	    (new_domain->type == IOMMU_DOMAIN_BLOCKED ||
2221 	     new_domain == group->blocking_domain)) {
2222 		dev_warn(dev,
2223 			 "Firmware has requested this device have a 1:1 IOMMU mapping, rejecting configuring the device without a 1:1 mapping. Contact your platform vendor.\n");
2224 		return -EINVAL;
2225 	}
2226 
2227 	if (dev->iommu->attach_deferred) {
2228 		if (new_domain == group->default_domain)
2229 			return 0;
2230 		dev->iommu->attach_deferred = 0;
2231 	}
2232 
2233 	ret = __iommu_attach_device(new_domain, dev);
2234 	if (ret) {
2235 		/*
2236 		 * If we have a blocking domain then try to attach that in hopes
2237 		 * of avoiding a UAF. Modern drivers should implement blocking
2238 		 * domains as global statics that cannot fail.
2239 		 */
2240 		if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) &&
2241 		    group->blocking_domain &&
2242 		    group->blocking_domain != new_domain)
2243 			__iommu_attach_device(group->blocking_domain, dev);
2244 		return ret;
2245 	}
2246 	return 0;
2247 }
2248 
2249 /*
2250  * If 0 is returned the group's domain is new_domain. If an error is returned
2251  * then the group's domain will be set back to the existing domain unless
2252  * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's
2253  * domains is left inconsistent. This is a driver bug to fail attach with a
2254  * previously good domain. We try to avoid a kernel UAF because of this.
2255  *
2256  * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU
2257  * API works on domains and devices.  Bridge that gap by iterating over the
2258  * devices in a group.  Ideally we'd have a single device which represents the
2259  * requestor ID of the group, but we also allow IOMMU drivers to create policy
2260  * defined minimum sets, where the physical hardware may be able to distiguish
2261  * members, but we wish to group them at a higher level (ex. untrusted
2262  * multi-function PCI devices).  Thus we attach each device.
2263  */
2264 static int __iommu_group_set_domain_internal(struct iommu_group *group,
2265 					     struct iommu_domain *new_domain,
2266 					     unsigned int flags)
2267 {
2268 	struct group_device *last_gdev;
2269 	struct group_device *gdev;
2270 	int result;
2271 	int ret;
2272 
2273 	lockdep_assert_held(&group->mutex);
2274 
2275 	if (group->domain == new_domain)
2276 		return 0;
2277 
2278 	/*
2279 	 * New drivers should support default domains, so set_platform_dma()
2280 	 * op will never be called. Otherwise the NULL domain represents some
2281 	 * platform specific behavior.
2282 	 */
2283 	if (!new_domain) {
2284 		for_each_group_device(group, gdev) {
2285 			const struct iommu_ops *ops = dev_iommu_ops(gdev->dev);
2286 
2287 			if (!WARN_ON(!ops->set_platform_dma_ops))
2288 				ops->set_platform_dma_ops(gdev->dev);
2289 		}
2290 		group->domain = NULL;
2291 		return 0;
2292 	}
2293 
2294 	/*
2295 	 * Changing the domain is done by calling attach_dev() on the new
2296 	 * domain. This switch does not have to be atomic and DMA can be
2297 	 * discarded during the transition. DMA must only be able to access
2298 	 * either new_domain or group->domain, never something else.
2299 	 */
2300 	result = 0;
2301 	for_each_group_device(group, gdev) {
2302 		ret = __iommu_device_set_domain(group, gdev->dev, new_domain,
2303 						flags);
2304 		if (ret) {
2305 			result = ret;
2306 			/*
2307 			 * Keep trying the other devices in the group. If a
2308 			 * driver fails attach to an otherwise good domain, and
2309 			 * does not support blocking domains, it should at least
2310 			 * drop its reference on the current domain so we don't
2311 			 * UAF.
2312 			 */
2313 			if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED)
2314 				continue;
2315 			goto err_revert;
2316 		}
2317 	}
2318 	group->domain = new_domain;
2319 	return result;
2320 
2321 err_revert:
2322 	/*
2323 	 * This is called in error unwind paths. A well behaved driver should
2324 	 * always allow us to attach to a domain that was already attached.
2325 	 */
2326 	last_gdev = gdev;
2327 	for_each_group_device(group, gdev) {
2328 		const struct iommu_ops *ops = dev_iommu_ops(gdev->dev);
2329 
2330 		/*
2331 		 * If set_platform_dma_ops is not present a NULL domain can
2332 		 * happen only for first probe, in which case we leave
2333 		 * group->domain as NULL and let release clean everything up.
2334 		 */
2335 		if (group->domain)
2336 			WARN_ON(__iommu_device_set_domain(
2337 				group, gdev->dev, group->domain,
2338 				IOMMU_SET_DOMAIN_MUST_SUCCEED));
2339 		else if (ops->set_platform_dma_ops)
2340 			ops->set_platform_dma_ops(gdev->dev);
2341 		if (gdev == last_gdev)
2342 			break;
2343 	}
2344 	return ret;
2345 }
2346 
2347 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2348 {
2349 	mutex_lock(&group->mutex);
2350 	__iommu_group_set_core_domain(group);
2351 	mutex_unlock(&group->mutex);
2352 }
2353 EXPORT_SYMBOL_GPL(iommu_detach_group);
2354 
2355 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2356 {
2357 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2358 		return iova;
2359 
2360 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2361 		return 0;
2362 
2363 	return domain->ops->iova_to_phys(domain, iova);
2364 }
2365 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2366 
2367 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2368 			   phys_addr_t paddr, size_t size, size_t *count)
2369 {
2370 	unsigned int pgsize_idx, pgsize_idx_next;
2371 	unsigned long pgsizes;
2372 	size_t offset, pgsize, pgsize_next;
2373 	unsigned long addr_merge = paddr | iova;
2374 
2375 	/* Page sizes supported by the hardware and small enough for @size */
2376 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2377 
2378 	/* Constrain the page sizes further based on the maximum alignment */
2379 	if (likely(addr_merge))
2380 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2381 
2382 	/* Make sure we have at least one suitable page size */
2383 	BUG_ON(!pgsizes);
2384 
2385 	/* Pick the biggest page size remaining */
2386 	pgsize_idx = __fls(pgsizes);
2387 	pgsize = BIT(pgsize_idx);
2388 	if (!count)
2389 		return pgsize;
2390 
2391 	/* Find the next biggest support page size, if it exists */
2392 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2393 	if (!pgsizes)
2394 		goto out_set_count;
2395 
2396 	pgsize_idx_next = __ffs(pgsizes);
2397 	pgsize_next = BIT(pgsize_idx_next);
2398 
2399 	/*
2400 	 * There's no point trying a bigger page size unless the virtual
2401 	 * and physical addresses are similarly offset within the larger page.
2402 	 */
2403 	if ((iova ^ paddr) & (pgsize_next - 1))
2404 		goto out_set_count;
2405 
2406 	/* Calculate the offset to the next page size alignment boundary */
2407 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2408 
2409 	/*
2410 	 * If size is big enough to accommodate the larger page, reduce
2411 	 * the number of smaller pages.
2412 	 */
2413 	if (offset + pgsize_next <= size)
2414 		size = offset;
2415 
2416 out_set_count:
2417 	*count = size >> pgsize_idx;
2418 	return pgsize;
2419 }
2420 
2421 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2422 			     phys_addr_t paddr, size_t size, int prot,
2423 			     gfp_t gfp, size_t *mapped)
2424 {
2425 	const struct iommu_domain_ops *ops = domain->ops;
2426 	size_t pgsize, count;
2427 	int ret;
2428 
2429 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2430 
2431 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2432 		 iova, &paddr, pgsize, count);
2433 
2434 	if (ops->map_pages) {
2435 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2436 				     gfp, mapped);
2437 	} else {
2438 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2439 		*mapped = ret ? 0 : pgsize;
2440 	}
2441 
2442 	return ret;
2443 }
2444 
2445 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2446 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2447 {
2448 	const struct iommu_domain_ops *ops = domain->ops;
2449 	unsigned long orig_iova = iova;
2450 	unsigned int min_pagesz;
2451 	size_t orig_size = size;
2452 	phys_addr_t orig_paddr = paddr;
2453 	int ret = 0;
2454 
2455 	if (unlikely(!(ops->map || ops->map_pages) ||
2456 		     domain->pgsize_bitmap == 0UL))
2457 		return -ENODEV;
2458 
2459 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2460 		return -EINVAL;
2461 
2462 	/* find out the minimum page size supported */
2463 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2464 
2465 	/*
2466 	 * both the virtual address and the physical one, as well as
2467 	 * the size of the mapping, must be aligned (at least) to the
2468 	 * size of the smallest page supported by the hardware
2469 	 */
2470 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2471 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2472 		       iova, &paddr, size, min_pagesz);
2473 		return -EINVAL;
2474 	}
2475 
2476 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2477 
2478 	while (size) {
2479 		size_t mapped = 0;
2480 
2481 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2482 					&mapped);
2483 		/*
2484 		 * Some pages may have been mapped, even if an error occurred,
2485 		 * so we should account for those so they can be unmapped.
2486 		 */
2487 		size -= mapped;
2488 
2489 		if (ret)
2490 			break;
2491 
2492 		iova += mapped;
2493 		paddr += mapped;
2494 	}
2495 
2496 	/* unroll mapping in case something went wrong */
2497 	if (ret)
2498 		iommu_unmap(domain, orig_iova, orig_size - size);
2499 	else
2500 		trace_map(orig_iova, orig_paddr, orig_size);
2501 
2502 	return ret;
2503 }
2504 
2505 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2506 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2507 {
2508 	const struct iommu_domain_ops *ops = domain->ops;
2509 	int ret;
2510 
2511 	might_sleep_if(gfpflags_allow_blocking(gfp));
2512 
2513 	/* Discourage passing strange GFP flags */
2514 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2515 				__GFP_HIGHMEM)))
2516 		return -EINVAL;
2517 
2518 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2519 	if (ret == 0 && ops->iotlb_sync_map)
2520 		ops->iotlb_sync_map(domain, iova, size);
2521 
2522 	return ret;
2523 }
2524 EXPORT_SYMBOL_GPL(iommu_map);
2525 
2526 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2527 				  unsigned long iova, size_t size,
2528 				  struct iommu_iotlb_gather *iotlb_gather)
2529 {
2530 	const struct iommu_domain_ops *ops = domain->ops;
2531 	size_t pgsize, count;
2532 
2533 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2534 	return ops->unmap_pages ?
2535 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2536 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2537 }
2538 
2539 static size_t __iommu_unmap(struct iommu_domain *domain,
2540 			    unsigned long iova, size_t size,
2541 			    struct iommu_iotlb_gather *iotlb_gather)
2542 {
2543 	const struct iommu_domain_ops *ops = domain->ops;
2544 	size_t unmapped_page, unmapped = 0;
2545 	unsigned long orig_iova = iova;
2546 	unsigned int min_pagesz;
2547 
2548 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2549 		     domain->pgsize_bitmap == 0UL))
2550 		return 0;
2551 
2552 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2553 		return 0;
2554 
2555 	/* find out the minimum page size supported */
2556 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2557 
2558 	/*
2559 	 * The virtual address, as well as the size of the mapping, must be
2560 	 * aligned (at least) to the size of the smallest page supported
2561 	 * by the hardware
2562 	 */
2563 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2564 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2565 		       iova, size, min_pagesz);
2566 		return 0;
2567 	}
2568 
2569 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2570 
2571 	/*
2572 	 * Keep iterating until we either unmap 'size' bytes (or more)
2573 	 * or we hit an area that isn't mapped.
2574 	 */
2575 	while (unmapped < size) {
2576 		unmapped_page = __iommu_unmap_pages(domain, iova,
2577 						    size - unmapped,
2578 						    iotlb_gather);
2579 		if (!unmapped_page)
2580 			break;
2581 
2582 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2583 			 iova, unmapped_page);
2584 
2585 		iova += unmapped_page;
2586 		unmapped += unmapped_page;
2587 	}
2588 
2589 	trace_unmap(orig_iova, size, unmapped);
2590 	return unmapped;
2591 }
2592 
2593 size_t iommu_unmap(struct iommu_domain *domain,
2594 		   unsigned long iova, size_t size)
2595 {
2596 	struct iommu_iotlb_gather iotlb_gather;
2597 	size_t ret;
2598 
2599 	iommu_iotlb_gather_init(&iotlb_gather);
2600 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2601 	iommu_iotlb_sync(domain, &iotlb_gather);
2602 
2603 	return ret;
2604 }
2605 EXPORT_SYMBOL_GPL(iommu_unmap);
2606 
2607 size_t iommu_unmap_fast(struct iommu_domain *domain,
2608 			unsigned long iova, size_t size,
2609 			struct iommu_iotlb_gather *iotlb_gather)
2610 {
2611 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2612 }
2613 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2614 
2615 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2616 		     struct scatterlist *sg, unsigned int nents, int prot,
2617 		     gfp_t gfp)
2618 {
2619 	const struct iommu_domain_ops *ops = domain->ops;
2620 	size_t len = 0, mapped = 0;
2621 	phys_addr_t start;
2622 	unsigned int i = 0;
2623 	int ret;
2624 
2625 	might_sleep_if(gfpflags_allow_blocking(gfp));
2626 
2627 	/* Discourage passing strange GFP flags */
2628 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2629 				__GFP_HIGHMEM)))
2630 		return -EINVAL;
2631 
2632 	while (i <= nents) {
2633 		phys_addr_t s_phys = sg_phys(sg);
2634 
2635 		if (len && s_phys != start + len) {
2636 			ret = __iommu_map(domain, iova + mapped, start,
2637 					len, prot, gfp);
2638 
2639 			if (ret)
2640 				goto out_err;
2641 
2642 			mapped += len;
2643 			len = 0;
2644 		}
2645 
2646 		if (sg_dma_is_bus_address(sg))
2647 			goto next;
2648 
2649 		if (len) {
2650 			len += sg->length;
2651 		} else {
2652 			len = sg->length;
2653 			start = s_phys;
2654 		}
2655 
2656 next:
2657 		if (++i < nents)
2658 			sg = sg_next(sg);
2659 	}
2660 
2661 	if (ops->iotlb_sync_map)
2662 		ops->iotlb_sync_map(domain, iova, mapped);
2663 	return mapped;
2664 
2665 out_err:
2666 	/* undo mappings already done */
2667 	iommu_unmap(domain, iova, mapped);
2668 
2669 	return ret;
2670 }
2671 EXPORT_SYMBOL_GPL(iommu_map_sg);
2672 
2673 /**
2674  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2675  * @domain: the iommu domain where the fault has happened
2676  * @dev: the device where the fault has happened
2677  * @iova: the faulting address
2678  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2679  *
2680  * This function should be called by the low-level IOMMU implementations
2681  * whenever IOMMU faults happen, to allow high-level users, that are
2682  * interested in such events, to know about them.
2683  *
2684  * This event may be useful for several possible use cases:
2685  * - mere logging of the event
2686  * - dynamic TLB/PTE loading
2687  * - if restarting of the faulting device is required
2688  *
2689  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2690  * PTE/TLB loading will one day be supported, implementations will be able
2691  * to tell whether it succeeded or not according to this return value).
2692  *
2693  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2694  * (though fault handlers can also return -ENOSYS, in case they want to
2695  * elicit the default behavior of the IOMMU drivers).
2696  */
2697 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2698 		       unsigned long iova, int flags)
2699 {
2700 	int ret = -ENOSYS;
2701 
2702 	/*
2703 	 * if upper layers showed interest and installed a fault handler,
2704 	 * invoke it.
2705 	 */
2706 	if (domain->handler)
2707 		ret = domain->handler(domain, dev, iova, flags,
2708 						domain->handler_token);
2709 
2710 	trace_io_page_fault(dev, iova, flags);
2711 	return ret;
2712 }
2713 EXPORT_SYMBOL_GPL(report_iommu_fault);
2714 
2715 static int __init iommu_init(void)
2716 {
2717 	iommu_group_kset = kset_create_and_add("iommu_groups",
2718 					       NULL, kernel_kobj);
2719 	BUG_ON(!iommu_group_kset);
2720 
2721 	iommu_debugfs_setup();
2722 
2723 	return 0;
2724 }
2725 core_initcall(iommu_init);
2726 
2727 int iommu_enable_nesting(struct iommu_domain *domain)
2728 {
2729 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2730 		return -EINVAL;
2731 	if (!domain->ops->enable_nesting)
2732 		return -EINVAL;
2733 	return domain->ops->enable_nesting(domain);
2734 }
2735 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2736 
2737 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2738 		unsigned long quirk)
2739 {
2740 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2741 		return -EINVAL;
2742 	if (!domain->ops->set_pgtable_quirks)
2743 		return -EINVAL;
2744 	return domain->ops->set_pgtable_quirks(domain, quirk);
2745 }
2746 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2747 
2748 /**
2749  * iommu_get_resv_regions - get reserved regions
2750  * @dev: device for which to get reserved regions
2751  * @list: reserved region list for device
2752  *
2753  * This returns a list of reserved IOVA regions specific to this device.
2754  * A domain user should not map IOVA in these ranges.
2755  */
2756 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2757 {
2758 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2759 
2760 	if (ops->get_resv_regions)
2761 		ops->get_resv_regions(dev, list);
2762 }
2763 EXPORT_SYMBOL_GPL(iommu_get_resv_regions);
2764 
2765 /**
2766  * iommu_put_resv_regions - release reserved regions
2767  * @dev: device for which to free reserved regions
2768  * @list: reserved region list for device
2769  *
2770  * This releases a reserved region list acquired by iommu_get_resv_regions().
2771  */
2772 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2773 {
2774 	struct iommu_resv_region *entry, *next;
2775 
2776 	list_for_each_entry_safe(entry, next, list, list) {
2777 		if (entry->free)
2778 			entry->free(dev, entry);
2779 		else
2780 			kfree(entry);
2781 	}
2782 }
2783 EXPORT_SYMBOL(iommu_put_resv_regions);
2784 
2785 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2786 						  size_t length, int prot,
2787 						  enum iommu_resv_type type,
2788 						  gfp_t gfp)
2789 {
2790 	struct iommu_resv_region *region;
2791 
2792 	region = kzalloc(sizeof(*region), gfp);
2793 	if (!region)
2794 		return NULL;
2795 
2796 	INIT_LIST_HEAD(&region->list);
2797 	region->start = start;
2798 	region->length = length;
2799 	region->prot = prot;
2800 	region->type = type;
2801 	return region;
2802 }
2803 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2804 
2805 void iommu_set_default_passthrough(bool cmd_line)
2806 {
2807 	if (cmd_line)
2808 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2809 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2810 }
2811 
2812 void iommu_set_default_translated(bool cmd_line)
2813 {
2814 	if (cmd_line)
2815 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2816 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2817 }
2818 
2819 bool iommu_default_passthrough(void)
2820 {
2821 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2822 }
2823 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2824 
2825 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2826 {
2827 	const struct iommu_ops *ops = NULL;
2828 	struct iommu_device *iommu;
2829 
2830 	spin_lock(&iommu_device_lock);
2831 	list_for_each_entry(iommu, &iommu_device_list, list)
2832 		if (iommu->fwnode == fwnode) {
2833 			ops = iommu->ops;
2834 			break;
2835 		}
2836 	spin_unlock(&iommu_device_lock);
2837 	return ops;
2838 }
2839 
2840 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2841 		      const struct iommu_ops *ops)
2842 {
2843 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2844 
2845 	if (fwspec)
2846 		return ops == fwspec->ops ? 0 : -EINVAL;
2847 
2848 	if (!dev_iommu_get(dev))
2849 		return -ENOMEM;
2850 
2851 	/* Preallocate for the overwhelmingly common case of 1 ID */
2852 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2853 	if (!fwspec)
2854 		return -ENOMEM;
2855 
2856 	of_node_get(to_of_node(iommu_fwnode));
2857 	fwspec->iommu_fwnode = iommu_fwnode;
2858 	fwspec->ops = ops;
2859 	dev_iommu_fwspec_set(dev, fwspec);
2860 	return 0;
2861 }
2862 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2863 
2864 void iommu_fwspec_free(struct device *dev)
2865 {
2866 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2867 
2868 	if (fwspec) {
2869 		fwnode_handle_put(fwspec->iommu_fwnode);
2870 		kfree(fwspec);
2871 		dev_iommu_fwspec_set(dev, NULL);
2872 	}
2873 }
2874 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2875 
2876 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2877 {
2878 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2879 	int i, new_num;
2880 
2881 	if (!fwspec)
2882 		return -EINVAL;
2883 
2884 	new_num = fwspec->num_ids + num_ids;
2885 	if (new_num > 1) {
2886 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2887 				  GFP_KERNEL);
2888 		if (!fwspec)
2889 			return -ENOMEM;
2890 
2891 		dev_iommu_fwspec_set(dev, fwspec);
2892 	}
2893 
2894 	for (i = 0; i < num_ids; i++)
2895 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2896 
2897 	fwspec->num_ids = new_num;
2898 	return 0;
2899 }
2900 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2901 
2902 /*
2903  * Per device IOMMU features.
2904  */
2905 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2906 {
2907 	if (dev->iommu && dev->iommu->iommu_dev) {
2908 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2909 
2910 		if (ops->dev_enable_feat)
2911 			return ops->dev_enable_feat(dev, feat);
2912 	}
2913 
2914 	return -ENODEV;
2915 }
2916 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2917 
2918 /*
2919  * The device drivers should do the necessary cleanups before calling this.
2920  */
2921 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2922 {
2923 	if (dev->iommu && dev->iommu->iommu_dev) {
2924 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2925 
2926 		if (ops->dev_disable_feat)
2927 			return ops->dev_disable_feat(dev, feat);
2928 	}
2929 
2930 	return -EBUSY;
2931 }
2932 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2933 
2934 /**
2935  * iommu_setup_default_domain - Set the default_domain for the group
2936  * @group: Group to change
2937  * @target_type: Domain type to set as the default_domain
2938  *
2939  * Allocate a default domain and set it as the current domain on the group. If
2940  * the group already has a default domain it will be changed to the target_type.
2941  * When target_type is 0 the default domain is selected based on driver and
2942  * system preferences.
2943  */
2944 static int iommu_setup_default_domain(struct iommu_group *group,
2945 				      int target_type)
2946 {
2947 	struct iommu_domain *old_dom = group->default_domain;
2948 	struct group_device *gdev;
2949 	struct iommu_domain *dom;
2950 	bool direct_failed;
2951 	int req_type;
2952 	int ret;
2953 
2954 	lockdep_assert_held(&group->mutex);
2955 
2956 	req_type = iommu_get_default_domain_type(group, target_type);
2957 	if (req_type < 0)
2958 		return -EINVAL;
2959 
2960 	/*
2961 	 * There are still some drivers which don't support default domains, so
2962 	 * we ignore the failure and leave group->default_domain NULL.
2963 	 *
2964 	 * We assume that the iommu driver starts up the device in
2965 	 * 'set_platform_dma_ops' mode if it does not support default domains.
2966 	 */
2967 	dom = iommu_group_alloc_default_domain(group, req_type);
2968 	if (!dom) {
2969 		/* Once in default_domain mode we never leave */
2970 		if (group->default_domain)
2971 			return -ENODEV;
2972 		group->default_domain = NULL;
2973 		return 0;
2974 	}
2975 
2976 	if (group->default_domain == dom)
2977 		return 0;
2978 
2979 	/*
2980 	 * IOMMU_RESV_DIRECT and IOMMU_RESV_DIRECT_RELAXABLE regions must be
2981 	 * mapped before their device is attached, in order to guarantee
2982 	 * continuity with any FW activity
2983 	 */
2984 	direct_failed = false;
2985 	for_each_group_device(group, gdev) {
2986 		if (iommu_create_device_direct_mappings(dom, gdev->dev)) {
2987 			direct_failed = true;
2988 			dev_warn_once(
2989 				gdev->dev->iommu->iommu_dev->dev,
2990 				"IOMMU driver was not able to establish FW requested direct mapping.");
2991 		}
2992 	}
2993 
2994 	/* We must set default_domain early for __iommu_device_set_domain */
2995 	group->default_domain = dom;
2996 	if (!group->domain) {
2997 		/*
2998 		 * Drivers are not allowed to fail the first domain attach.
2999 		 * The only way to recover from this is to fail attaching the
3000 		 * iommu driver and call ops->release_device. Put the domain
3001 		 * in group->default_domain so it is freed after.
3002 		 */
3003 		ret = __iommu_group_set_domain_internal(
3004 			group, dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3005 		if (WARN_ON(ret))
3006 			goto out_free_old;
3007 	} else {
3008 		ret = __iommu_group_set_domain(group, dom);
3009 		if (ret)
3010 			goto err_restore_def_domain;
3011 	}
3012 
3013 	/*
3014 	 * Drivers are supposed to allow mappings to be installed in a domain
3015 	 * before device attachment, but some don't. Hack around this defect by
3016 	 * trying again after attaching. If this happens it means the device
3017 	 * will not continuously have the IOMMU_RESV_DIRECT map.
3018 	 */
3019 	if (direct_failed) {
3020 		for_each_group_device(group, gdev) {
3021 			ret = iommu_create_device_direct_mappings(dom, gdev->dev);
3022 			if (ret)
3023 				goto err_restore_domain;
3024 		}
3025 	}
3026 
3027 out_free_old:
3028 	if (old_dom)
3029 		iommu_domain_free(old_dom);
3030 	return ret;
3031 
3032 err_restore_domain:
3033 	if (old_dom)
3034 		__iommu_group_set_domain_internal(
3035 			group, old_dom, IOMMU_SET_DOMAIN_MUST_SUCCEED);
3036 err_restore_def_domain:
3037 	if (old_dom) {
3038 		iommu_domain_free(dom);
3039 		group->default_domain = old_dom;
3040 	}
3041 	return ret;
3042 }
3043 
3044 /*
3045  * Changing the default domain through sysfs requires the users to unbind the
3046  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3047  * transition. Return failure if this isn't met.
3048  *
3049  * We need to consider the race between this and the device release path.
3050  * group->mutex is used here to guarantee that the device release path
3051  * will not be entered at the same time.
3052  */
3053 static ssize_t iommu_group_store_type(struct iommu_group *group,
3054 				      const char *buf, size_t count)
3055 {
3056 	struct group_device *gdev;
3057 	int ret, req_type;
3058 
3059 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3060 		return -EACCES;
3061 
3062 	if (WARN_ON(!group) || !group->default_domain)
3063 		return -EINVAL;
3064 
3065 	if (sysfs_streq(buf, "identity"))
3066 		req_type = IOMMU_DOMAIN_IDENTITY;
3067 	else if (sysfs_streq(buf, "DMA"))
3068 		req_type = IOMMU_DOMAIN_DMA;
3069 	else if (sysfs_streq(buf, "DMA-FQ"))
3070 		req_type = IOMMU_DOMAIN_DMA_FQ;
3071 	else if (sysfs_streq(buf, "auto"))
3072 		req_type = 0;
3073 	else
3074 		return -EINVAL;
3075 
3076 	mutex_lock(&group->mutex);
3077 	/* We can bring up a flush queue without tearing down the domain. */
3078 	if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3079 	    group->default_domain->type == IOMMU_DOMAIN_DMA) {
3080 		ret = iommu_dma_init_fq(group->default_domain);
3081 		if (ret)
3082 			goto out_unlock;
3083 
3084 		group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3085 		ret = count;
3086 		goto out_unlock;
3087 	}
3088 
3089 	/* Otherwise, ensure that device exists and no driver is bound. */
3090 	if (list_empty(&group->devices) || group->owner_cnt) {
3091 		ret = -EPERM;
3092 		goto out_unlock;
3093 	}
3094 
3095 	ret = iommu_setup_default_domain(group, req_type);
3096 	if (ret)
3097 		goto out_unlock;
3098 
3099 	/*
3100 	 * Release the mutex here because ops->probe_finalize() call-back of
3101 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
3102 	 * in-turn might call back into IOMMU core code, where it tries to take
3103 	 * group->mutex, resulting in a deadlock.
3104 	 */
3105 	mutex_unlock(&group->mutex);
3106 
3107 	/* Make sure dma_ops is appropriatley set */
3108 	for_each_group_device(group, gdev)
3109 		iommu_group_do_probe_finalize(gdev->dev);
3110 	return count;
3111 
3112 out_unlock:
3113 	mutex_unlock(&group->mutex);
3114 	return ret ?: count;
3115 }
3116 
3117 static bool iommu_is_default_domain(struct iommu_group *group)
3118 {
3119 	if (group->domain == group->default_domain)
3120 		return true;
3121 
3122 	/*
3123 	 * If the default domain was set to identity and it is still an identity
3124 	 * domain then we consider this a pass. This happens because of
3125 	 * amd_iommu_init_device() replacing the default idenytity domain with an
3126 	 * identity domain that has a different configuration for AMDGPU.
3127 	 */
3128 	if (group->default_domain &&
3129 	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY &&
3130 	    group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY)
3131 		return true;
3132 	return false;
3133 }
3134 
3135 /**
3136  * iommu_device_use_default_domain() - Device driver wants to handle device
3137  *                                     DMA through the kernel DMA API.
3138  * @dev: The device.
3139  *
3140  * The device driver about to bind @dev wants to do DMA through the kernel
3141  * DMA API. Return 0 if it is allowed, otherwise an error.
3142  */
3143 int iommu_device_use_default_domain(struct device *dev)
3144 {
3145 	struct iommu_group *group = iommu_group_get(dev);
3146 	int ret = 0;
3147 
3148 	if (!group)
3149 		return 0;
3150 
3151 	mutex_lock(&group->mutex);
3152 	if (group->owner_cnt) {
3153 		if (group->owner || !iommu_is_default_domain(group) ||
3154 		    !xa_empty(&group->pasid_array)) {
3155 			ret = -EBUSY;
3156 			goto unlock_out;
3157 		}
3158 	}
3159 
3160 	group->owner_cnt++;
3161 
3162 unlock_out:
3163 	mutex_unlock(&group->mutex);
3164 	iommu_group_put(group);
3165 
3166 	return ret;
3167 }
3168 
3169 /**
3170  * iommu_device_unuse_default_domain() - Device driver stops handling device
3171  *                                       DMA through the kernel DMA API.
3172  * @dev: The device.
3173  *
3174  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3175  * It must be called after iommu_device_use_default_domain().
3176  */
3177 void iommu_device_unuse_default_domain(struct device *dev)
3178 {
3179 	struct iommu_group *group = iommu_group_get(dev);
3180 
3181 	if (!group)
3182 		return;
3183 
3184 	mutex_lock(&group->mutex);
3185 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3186 		group->owner_cnt--;
3187 
3188 	mutex_unlock(&group->mutex);
3189 	iommu_group_put(group);
3190 }
3191 
3192 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3193 {
3194 	struct group_device *dev =
3195 		list_first_entry(&group->devices, struct group_device, list);
3196 
3197 	if (group->blocking_domain)
3198 		return 0;
3199 
3200 	group->blocking_domain =
3201 		__iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3202 	if (!group->blocking_domain) {
3203 		/*
3204 		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3205 		 * create an empty domain instead.
3206 		 */
3207 		group->blocking_domain = __iommu_domain_alloc(
3208 			dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3209 		if (!group->blocking_domain)
3210 			return -EINVAL;
3211 	}
3212 	return 0;
3213 }
3214 
3215 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3216 {
3217 	int ret;
3218 
3219 	if ((group->domain && group->domain != group->default_domain) ||
3220 	    !xa_empty(&group->pasid_array))
3221 		return -EBUSY;
3222 
3223 	ret = __iommu_group_alloc_blocking_domain(group);
3224 	if (ret)
3225 		return ret;
3226 	ret = __iommu_group_set_domain(group, group->blocking_domain);
3227 	if (ret)
3228 		return ret;
3229 
3230 	group->owner = owner;
3231 	group->owner_cnt++;
3232 	return 0;
3233 }
3234 
3235 /**
3236  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3237  * @group: The group.
3238  * @owner: Caller specified pointer. Used for exclusive ownership.
3239  *
3240  * This is to support backward compatibility for vfio which manages the dma
3241  * ownership in iommu_group level. New invocations on this interface should be
3242  * prohibited. Only a single owner may exist for a group.
3243  */
3244 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3245 {
3246 	int ret = 0;
3247 
3248 	if (WARN_ON(!owner))
3249 		return -EINVAL;
3250 
3251 	mutex_lock(&group->mutex);
3252 	if (group->owner_cnt) {
3253 		ret = -EPERM;
3254 		goto unlock_out;
3255 	}
3256 
3257 	ret = __iommu_take_dma_ownership(group, owner);
3258 unlock_out:
3259 	mutex_unlock(&group->mutex);
3260 
3261 	return ret;
3262 }
3263 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3264 
3265 /**
3266  * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3267  * @dev: The device.
3268  * @owner: Caller specified pointer. Used for exclusive ownership.
3269  *
3270  * Claim the DMA ownership of a device. Multiple devices in the same group may
3271  * concurrently claim ownership if they present the same owner value. Returns 0
3272  * on success and error code on failure
3273  */
3274 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3275 {
3276 	struct iommu_group *group;
3277 	int ret = 0;
3278 
3279 	if (WARN_ON(!owner))
3280 		return -EINVAL;
3281 
3282 	group = iommu_group_get(dev);
3283 	if (!group)
3284 		return -ENODEV;
3285 
3286 	mutex_lock(&group->mutex);
3287 	if (group->owner_cnt) {
3288 		if (group->owner != owner) {
3289 			ret = -EPERM;
3290 			goto unlock_out;
3291 		}
3292 		group->owner_cnt++;
3293 		goto unlock_out;
3294 	}
3295 
3296 	ret = __iommu_take_dma_ownership(group, owner);
3297 unlock_out:
3298 	mutex_unlock(&group->mutex);
3299 	iommu_group_put(group);
3300 
3301 	return ret;
3302 }
3303 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3304 
3305 static void __iommu_release_dma_ownership(struct iommu_group *group)
3306 {
3307 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3308 		    !xa_empty(&group->pasid_array)))
3309 		return;
3310 
3311 	group->owner_cnt = 0;
3312 	group->owner = NULL;
3313 	__iommu_group_set_domain_nofail(group, group->default_domain);
3314 }
3315 
3316 /**
3317  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3318  * @group: The group
3319  *
3320  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3321  */
3322 void iommu_group_release_dma_owner(struct iommu_group *group)
3323 {
3324 	mutex_lock(&group->mutex);
3325 	__iommu_release_dma_ownership(group);
3326 	mutex_unlock(&group->mutex);
3327 }
3328 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3329 
3330 /**
3331  * iommu_device_release_dma_owner() - Release DMA ownership of a device
3332  * @dev: The device.
3333  *
3334  * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3335  */
3336 void iommu_device_release_dma_owner(struct device *dev)
3337 {
3338 	struct iommu_group *group = iommu_group_get(dev);
3339 
3340 	mutex_lock(&group->mutex);
3341 	if (group->owner_cnt > 1)
3342 		group->owner_cnt--;
3343 	else
3344 		__iommu_release_dma_ownership(group);
3345 	mutex_unlock(&group->mutex);
3346 	iommu_group_put(group);
3347 }
3348 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3349 
3350 /**
3351  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3352  * @group: The group.
3353  *
3354  * This provides status query on a given group. It is racy and only for
3355  * non-binding status reporting.
3356  */
3357 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3358 {
3359 	unsigned int user;
3360 
3361 	mutex_lock(&group->mutex);
3362 	user = group->owner_cnt;
3363 	mutex_unlock(&group->mutex);
3364 
3365 	return user;
3366 }
3367 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3368 
3369 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3370 				   struct iommu_group *group, ioasid_t pasid)
3371 {
3372 	struct group_device *device;
3373 	int ret = 0;
3374 
3375 	for_each_group_device(group, device) {
3376 		ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3377 		if (ret)
3378 			break;
3379 	}
3380 
3381 	return ret;
3382 }
3383 
3384 static void __iommu_remove_group_pasid(struct iommu_group *group,
3385 				       ioasid_t pasid)
3386 {
3387 	struct group_device *device;
3388 	const struct iommu_ops *ops;
3389 
3390 	for_each_group_device(group, device) {
3391 		ops = dev_iommu_ops(device->dev);
3392 		ops->remove_dev_pasid(device->dev, pasid);
3393 	}
3394 }
3395 
3396 /*
3397  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3398  * @domain: the iommu domain.
3399  * @dev: the attached device.
3400  * @pasid: the pasid of the device.
3401  *
3402  * Return: 0 on success, or an error.
3403  */
3404 int iommu_attach_device_pasid(struct iommu_domain *domain,
3405 			      struct device *dev, ioasid_t pasid)
3406 {
3407 	struct iommu_group *group;
3408 	void *curr;
3409 	int ret;
3410 
3411 	if (!domain->ops->set_dev_pasid)
3412 		return -EOPNOTSUPP;
3413 
3414 	group = iommu_group_get(dev);
3415 	if (!group)
3416 		return -ENODEV;
3417 
3418 	mutex_lock(&group->mutex);
3419 	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL);
3420 	if (curr) {
3421 		ret = xa_err(curr) ? : -EBUSY;
3422 		goto out_unlock;
3423 	}
3424 
3425 	ret = __iommu_set_group_pasid(domain, group, pasid);
3426 	if (ret) {
3427 		__iommu_remove_group_pasid(group, pasid);
3428 		xa_erase(&group->pasid_array, pasid);
3429 	}
3430 out_unlock:
3431 	mutex_unlock(&group->mutex);
3432 	iommu_group_put(group);
3433 
3434 	return ret;
3435 }
3436 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3437 
3438 /*
3439  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3440  * @domain: the iommu domain.
3441  * @dev: the attached device.
3442  * @pasid: the pasid of the device.
3443  *
3444  * The @domain must have been attached to @pasid of the @dev with
3445  * iommu_attach_device_pasid().
3446  */
3447 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3448 			       ioasid_t pasid)
3449 {
3450 	struct iommu_group *group = iommu_group_get(dev);
3451 
3452 	mutex_lock(&group->mutex);
3453 	__iommu_remove_group_pasid(group, pasid);
3454 	WARN_ON(xa_erase(&group->pasid_array, pasid) != domain);
3455 	mutex_unlock(&group->mutex);
3456 
3457 	iommu_group_put(group);
3458 }
3459 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3460 
3461 /*
3462  * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev
3463  * @dev: the queried device
3464  * @pasid: the pasid of the device
3465  * @type: matched domain type, 0 for any match
3466  *
3467  * This is a variant of iommu_get_domain_for_dev(). It returns the existing
3468  * domain attached to pasid of a device. Callers must hold a lock around this
3469  * function, and both iommu_attach/detach_dev_pasid() whenever a domain of
3470  * type is being manipulated. This API does not internally resolve races with
3471  * attach/detach.
3472  *
3473  * Return: attached domain on success, NULL otherwise.
3474  */
3475 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev,
3476 						    ioasid_t pasid,
3477 						    unsigned int type)
3478 {
3479 	struct iommu_domain *domain;
3480 	struct iommu_group *group;
3481 
3482 	group = iommu_group_get(dev);
3483 	if (!group)
3484 		return NULL;
3485 
3486 	xa_lock(&group->pasid_array);
3487 	domain = xa_load(&group->pasid_array, pasid);
3488 	if (type && domain && domain->type != type)
3489 		domain = ERR_PTR(-EBUSY);
3490 	xa_unlock(&group->pasid_array);
3491 	iommu_group_put(group);
3492 
3493 	return domain;
3494 }
3495 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid);
3496 
3497 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev,
3498 					    struct mm_struct *mm)
3499 {
3500 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3501 	struct iommu_domain *domain;
3502 
3503 	domain = ops->domain_alloc(IOMMU_DOMAIN_SVA);
3504 	if (!domain)
3505 		return NULL;
3506 
3507 	domain->type = IOMMU_DOMAIN_SVA;
3508 	mmgrab(mm);
3509 	domain->mm = mm;
3510 	domain->iopf_handler = iommu_sva_handle_iopf;
3511 	domain->fault_data = mm;
3512 
3513 	return domain;
3514 }
3515 
3516 ioasid_t iommu_alloc_global_pasid(struct device *dev)
3517 {
3518 	int ret;
3519 
3520 	/* max_pasids == 0 means that the device does not support PASID */
3521 	if (!dev->iommu->max_pasids)
3522 		return IOMMU_PASID_INVALID;
3523 
3524 	/*
3525 	 * max_pasids is set up by vendor driver based on number of PASID bits
3526 	 * supported but the IDA allocation is inclusive.
3527 	 */
3528 	ret = ida_alloc_range(&iommu_global_pasid_ida, IOMMU_FIRST_GLOBAL_PASID,
3529 			      dev->iommu->max_pasids - 1, GFP_KERNEL);
3530 	return ret < 0 ? IOMMU_PASID_INVALID : ret;
3531 }
3532 EXPORT_SYMBOL_GPL(iommu_alloc_global_pasid);
3533 
3534 void iommu_free_global_pasid(ioasid_t pasid)
3535 {
3536 	if (WARN_ON(pasid == IOMMU_PASID_INVALID))
3537 		return;
3538 
3539 	ida_free(&iommu_global_pasid_ida, pasid);
3540 }
3541 EXPORT_SYMBOL_GPL(iommu_free_global_pasid);
3542