1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/device.h> 10 #include <linux/kernel.h> 11 #include <linux/bug.h> 12 #include <linux/types.h> 13 #include <linux/init.h> 14 #include <linux/export.h> 15 #include <linux/slab.h> 16 #include <linux/errno.h> 17 #include <linux/iommu.h> 18 #include <linux/idr.h> 19 #include <linux/notifier.h> 20 #include <linux/err.h> 21 #include <linux/pci.h> 22 #include <linux/bitops.h> 23 #include <linux/property.h> 24 #include <linux/fsl/mc.h> 25 #include <linux/module.h> 26 #include <trace/events/iommu.h> 27 28 static struct kset *iommu_group_kset; 29 static DEFINE_IDA(iommu_group_ida); 30 31 static unsigned int iommu_def_domain_type __read_mostly; 32 static bool iommu_dma_strict __read_mostly = true; 33 static u32 iommu_cmd_line __read_mostly; 34 35 struct iommu_group { 36 struct kobject kobj; 37 struct kobject *devices_kobj; 38 struct list_head devices; 39 struct mutex mutex; 40 struct blocking_notifier_head notifier; 41 void *iommu_data; 42 void (*iommu_data_release)(void *iommu_data); 43 char *name; 44 int id; 45 struct iommu_domain *default_domain; 46 struct iommu_domain *domain; 47 }; 48 49 struct group_device { 50 struct list_head list; 51 struct device *dev; 52 char *name; 53 }; 54 55 struct iommu_group_attribute { 56 struct attribute attr; 57 ssize_t (*show)(struct iommu_group *group, char *buf); 58 ssize_t (*store)(struct iommu_group *group, 59 const char *buf, size_t count); 60 }; 61 62 static const char * const iommu_group_resv_type_string[] = { 63 [IOMMU_RESV_DIRECT] = "direct", 64 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 65 [IOMMU_RESV_RESERVED] = "reserved", 66 [IOMMU_RESV_MSI] = "msi", 67 [IOMMU_RESV_SW_MSI] = "msi", 68 }; 69 70 #define IOMMU_CMD_LINE_DMA_API BIT(0) 71 72 static void iommu_set_cmd_line_dma_api(void) 73 { 74 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 75 } 76 77 static bool iommu_cmd_line_dma_api(void) 78 { 79 return !!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API); 80 } 81 82 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 83 struct iommu_group_attribute iommu_group_attr_##_name = \ 84 __ATTR(_name, _mode, _show, _store) 85 86 #define to_iommu_group_attr(_attr) \ 87 container_of(_attr, struct iommu_group_attribute, attr) 88 #define to_iommu_group(_kobj) \ 89 container_of(_kobj, struct iommu_group, kobj) 90 91 static LIST_HEAD(iommu_device_list); 92 static DEFINE_SPINLOCK(iommu_device_lock); 93 94 /* 95 * Use a function instead of an array here because the domain-type is a 96 * bit-field, so an array would waste memory. 97 */ 98 static const char *iommu_domain_type_str(unsigned int t) 99 { 100 switch (t) { 101 case IOMMU_DOMAIN_BLOCKED: 102 return "Blocked"; 103 case IOMMU_DOMAIN_IDENTITY: 104 return "Passthrough"; 105 case IOMMU_DOMAIN_UNMANAGED: 106 return "Unmanaged"; 107 case IOMMU_DOMAIN_DMA: 108 return "Translated"; 109 default: 110 return "Unknown"; 111 } 112 } 113 114 static int __init iommu_subsys_init(void) 115 { 116 bool cmd_line = iommu_cmd_line_dma_api(); 117 118 if (!cmd_line) { 119 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 120 iommu_set_default_passthrough(false); 121 else 122 iommu_set_default_translated(false); 123 124 if (iommu_default_passthrough() && mem_encrypt_active()) { 125 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 126 iommu_set_default_translated(false); 127 } 128 } 129 130 pr_info("Default domain type: %s %s\n", 131 iommu_domain_type_str(iommu_def_domain_type), 132 cmd_line ? "(set via kernel command line)" : ""); 133 134 return 0; 135 } 136 subsys_initcall(iommu_subsys_init); 137 138 int iommu_device_register(struct iommu_device *iommu) 139 { 140 spin_lock(&iommu_device_lock); 141 list_add_tail(&iommu->list, &iommu_device_list); 142 spin_unlock(&iommu_device_lock); 143 return 0; 144 } 145 EXPORT_SYMBOL_GPL(iommu_device_register); 146 147 void iommu_device_unregister(struct iommu_device *iommu) 148 { 149 spin_lock(&iommu_device_lock); 150 list_del(&iommu->list); 151 spin_unlock(&iommu_device_lock); 152 } 153 EXPORT_SYMBOL_GPL(iommu_device_unregister); 154 155 static struct iommu_param *iommu_get_dev_param(struct device *dev) 156 { 157 struct iommu_param *param = dev->iommu_param; 158 159 if (param) 160 return param; 161 162 param = kzalloc(sizeof(*param), GFP_KERNEL); 163 if (!param) 164 return NULL; 165 166 mutex_init(¶m->lock); 167 dev->iommu_param = param; 168 return param; 169 } 170 171 static void iommu_free_dev_param(struct device *dev) 172 { 173 kfree(dev->iommu_param); 174 dev->iommu_param = NULL; 175 } 176 177 int iommu_probe_device(struct device *dev) 178 { 179 const struct iommu_ops *ops = dev->bus->iommu_ops; 180 int ret; 181 182 WARN_ON(dev->iommu_group); 183 if (!ops) 184 return -EINVAL; 185 186 if (!iommu_get_dev_param(dev)) 187 return -ENOMEM; 188 189 if (!try_module_get(ops->owner)) { 190 ret = -EINVAL; 191 goto err_free_dev_param; 192 } 193 194 ret = ops->add_device(dev); 195 if (ret) 196 goto err_module_put; 197 198 return 0; 199 200 err_module_put: 201 module_put(ops->owner); 202 err_free_dev_param: 203 iommu_free_dev_param(dev); 204 return ret; 205 } 206 207 void iommu_release_device(struct device *dev) 208 { 209 const struct iommu_ops *ops = dev->bus->iommu_ops; 210 211 if (dev->iommu_group) 212 ops->remove_device(dev); 213 214 if (dev->iommu_param) { 215 module_put(ops->owner); 216 iommu_free_dev_param(dev); 217 } 218 } 219 220 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 221 unsigned type); 222 static int __iommu_attach_device(struct iommu_domain *domain, 223 struct device *dev); 224 static int __iommu_attach_group(struct iommu_domain *domain, 225 struct iommu_group *group); 226 static void __iommu_detach_group(struct iommu_domain *domain, 227 struct iommu_group *group); 228 229 static int __init iommu_set_def_domain_type(char *str) 230 { 231 bool pt; 232 int ret; 233 234 ret = kstrtobool(str, &pt); 235 if (ret) 236 return ret; 237 238 if (pt) 239 iommu_set_default_passthrough(true); 240 else 241 iommu_set_default_translated(true); 242 243 return 0; 244 } 245 early_param("iommu.passthrough", iommu_set_def_domain_type); 246 247 static int __init iommu_dma_setup(char *str) 248 { 249 return kstrtobool(str, &iommu_dma_strict); 250 } 251 early_param("iommu.strict", iommu_dma_setup); 252 253 static ssize_t iommu_group_attr_show(struct kobject *kobj, 254 struct attribute *__attr, char *buf) 255 { 256 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 257 struct iommu_group *group = to_iommu_group(kobj); 258 ssize_t ret = -EIO; 259 260 if (attr->show) 261 ret = attr->show(group, buf); 262 return ret; 263 } 264 265 static ssize_t iommu_group_attr_store(struct kobject *kobj, 266 struct attribute *__attr, 267 const char *buf, size_t count) 268 { 269 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 270 struct iommu_group *group = to_iommu_group(kobj); 271 ssize_t ret = -EIO; 272 273 if (attr->store) 274 ret = attr->store(group, buf, count); 275 return ret; 276 } 277 278 static const struct sysfs_ops iommu_group_sysfs_ops = { 279 .show = iommu_group_attr_show, 280 .store = iommu_group_attr_store, 281 }; 282 283 static int iommu_group_create_file(struct iommu_group *group, 284 struct iommu_group_attribute *attr) 285 { 286 return sysfs_create_file(&group->kobj, &attr->attr); 287 } 288 289 static void iommu_group_remove_file(struct iommu_group *group, 290 struct iommu_group_attribute *attr) 291 { 292 sysfs_remove_file(&group->kobj, &attr->attr); 293 } 294 295 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 296 { 297 return sprintf(buf, "%s\n", group->name); 298 } 299 300 /** 301 * iommu_insert_resv_region - Insert a new region in the 302 * list of reserved regions. 303 * @new: new region to insert 304 * @regions: list of regions 305 * 306 * Elements are sorted by start address and overlapping segments 307 * of the same type are merged. 308 */ 309 int iommu_insert_resv_region(struct iommu_resv_region *new, 310 struct list_head *regions) 311 { 312 struct iommu_resv_region *iter, *tmp, *nr, *top; 313 LIST_HEAD(stack); 314 315 nr = iommu_alloc_resv_region(new->start, new->length, 316 new->prot, new->type); 317 if (!nr) 318 return -ENOMEM; 319 320 /* First add the new element based on start address sorting */ 321 list_for_each_entry(iter, regions, list) { 322 if (nr->start < iter->start || 323 (nr->start == iter->start && nr->type <= iter->type)) 324 break; 325 } 326 list_add_tail(&nr->list, &iter->list); 327 328 /* Merge overlapping segments of type nr->type in @regions, if any */ 329 list_for_each_entry_safe(iter, tmp, regions, list) { 330 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 331 332 /* no merge needed on elements of different types than @new */ 333 if (iter->type != new->type) { 334 list_move_tail(&iter->list, &stack); 335 continue; 336 } 337 338 /* look for the last stack element of same type as @iter */ 339 list_for_each_entry_reverse(top, &stack, list) 340 if (top->type == iter->type) 341 goto check_overlap; 342 343 list_move_tail(&iter->list, &stack); 344 continue; 345 346 check_overlap: 347 top_end = top->start + top->length - 1; 348 349 if (iter->start > top_end + 1) { 350 list_move_tail(&iter->list, &stack); 351 } else { 352 top->length = max(top_end, iter_end) - top->start + 1; 353 list_del(&iter->list); 354 kfree(iter); 355 } 356 } 357 list_splice(&stack, regions); 358 return 0; 359 } 360 361 static int 362 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 363 struct list_head *group_resv_regions) 364 { 365 struct iommu_resv_region *entry; 366 int ret = 0; 367 368 list_for_each_entry(entry, dev_resv_regions, list) { 369 ret = iommu_insert_resv_region(entry, group_resv_regions); 370 if (ret) 371 break; 372 } 373 return ret; 374 } 375 376 int iommu_get_group_resv_regions(struct iommu_group *group, 377 struct list_head *head) 378 { 379 struct group_device *device; 380 int ret = 0; 381 382 mutex_lock(&group->mutex); 383 list_for_each_entry(device, &group->devices, list) { 384 struct list_head dev_resv_regions; 385 386 INIT_LIST_HEAD(&dev_resv_regions); 387 iommu_get_resv_regions(device->dev, &dev_resv_regions); 388 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 389 iommu_put_resv_regions(device->dev, &dev_resv_regions); 390 if (ret) 391 break; 392 } 393 mutex_unlock(&group->mutex); 394 return ret; 395 } 396 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 397 398 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 399 char *buf) 400 { 401 struct iommu_resv_region *region, *next; 402 struct list_head group_resv_regions; 403 char *str = buf; 404 405 INIT_LIST_HEAD(&group_resv_regions); 406 iommu_get_group_resv_regions(group, &group_resv_regions); 407 408 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 409 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 410 (long long int)region->start, 411 (long long int)(region->start + 412 region->length - 1), 413 iommu_group_resv_type_string[region->type]); 414 kfree(region); 415 } 416 417 return (str - buf); 418 } 419 420 static ssize_t iommu_group_show_type(struct iommu_group *group, 421 char *buf) 422 { 423 char *type = "unknown\n"; 424 425 if (group->default_domain) { 426 switch (group->default_domain->type) { 427 case IOMMU_DOMAIN_BLOCKED: 428 type = "blocked\n"; 429 break; 430 case IOMMU_DOMAIN_IDENTITY: 431 type = "identity\n"; 432 break; 433 case IOMMU_DOMAIN_UNMANAGED: 434 type = "unmanaged\n"; 435 break; 436 case IOMMU_DOMAIN_DMA: 437 type = "DMA\n"; 438 break; 439 } 440 } 441 strcpy(buf, type); 442 443 return strlen(type); 444 } 445 446 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 447 448 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 449 iommu_group_show_resv_regions, NULL); 450 451 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL); 452 453 static void iommu_group_release(struct kobject *kobj) 454 { 455 struct iommu_group *group = to_iommu_group(kobj); 456 457 pr_debug("Releasing group %d\n", group->id); 458 459 if (group->iommu_data_release) 460 group->iommu_data_release(group->iommu_data); 461 462 ida_simple_remove(&iommu_group_ida, group->id); 463 464 if (group->default_domain) 465 iommu_domain_free(group->default_domain); 466 467 kfree(group->name); 468 kfree(group); 469 } 470 471 static struct kobj_type iommu_group_ktype = { 472 .sysfs_ops = &iommu_group_sysfs_ops, 473 .release = iommu_group_release, 474 }; 475 476 /** 477 * iommu_group_alloc - Allocate a new group 478 * 479 * This function is called by an iommu driver to allocate a new iommu 480 * group. The iommu group represents the minimum granularity of the iommu. 481 * Upon successful return, the caller holds a reference to the supplied 482 * group in order to hold the group until devices are added. Use 483 * iommu_group_put() to release this extra reference count, allowing the 484 * group to be automatically reclaimed once it has no devices or external 485 * references. 486 */ 487 struct iommu_group *iommu_group_alloc(void) 488 { 489 struct iommu_group *group; 490 int ret; 491 492 group = kzalloc(sizeof(*group), GFP_KERNEL); 493 if (!group) 494 return ERR_PTR(-ENOMEM); 495 496 group->kobj.kset = iommu_group_kset; 497 mutex_init(&group->mutex); 498 INIT_LIST_HEAD(&group->devices); 499 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 500 501 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 502 if (ret < 0) { 503 kfree(group); 504 return ERR_PTR(ret); 505 } 506 group->id = ret; 507 508 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 509 NULL, "%d", group->id); 510 if (ret) { 511 ida_simple_remove(&iommu_group_ida, group->id); 512 kfree(group); 513 return ERR_PTR(ret); 514 } 515 516 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 517 if (!group->devices_kobj) { 518 kobject_put(&group->kobj); /* triggers .release & free */ 519 return ERR_PTR(-ENOMEM); 520 } 521 522 /* 523 * The devices_kobj holds a reference on the group kobject, so 524 * as long as that exists so will the group. We can therefore 525 * use the devices_kobj for reference counting. 526 */ 527 kobject_put(&group->kobj); 528 529 ret = iommu_group_create_file(group, 530 &iommu_group_attr_reserved_regions); 531 if (ret) 532 return ERR_PTR(ret); 533 534 ret = iommu_group_create_file(group, &iommu_group_attr_type); 535 if (ret) 536 return ERR_PTR(ret); 537 538 pr_debug("Allocated group %d\n", group->id); 539 540 return group; 541 } 542 EXPORT_SYMBOL_GPL(iommu_group_alloc); 543 544 struct iommu_group *iommu_group_get_by_id(int id) 545 { 546 struct kobject *group_kobj; 547 struct iommu_group *group; 548 const char *name; 549 550 if (!iommu_group_kset) 551 return NULL; 552 553 name = kasprintf(GFP_KERNEL, "%d", id); 554 if (!name) 555 return NULL; 556 557 group_kobj = kset_find_obj(iommu_group_kset, name); 558 kfree(name); 559 560 if (!group_kobj) 561 return NULL; 562 563 group = container_of(group_kobj, struct iommu_group, kobj); 564 BUG_ON(group->id != id); 565 566 kobject_get(group->devices_kobj); 567 kobject_put(&group->kobj); 568 569 return group; 570 } 571 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 572 573 /** 574 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 575 * @group: the group 576 * 577 * iommu drivers can store data in the group for use when doing iommu 578 * operations. This function provides a way to retrieve it. Caller 579 * should hold a group reference. 580 */ 581 void *iommu_group_get_iommudata(struct iommu_group *group) 582 { 583 return group->iommu_data; 584 } 585 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 586 587 /** 588 * iommu_group_set_iommudata - set iommu_data for a group 589 * @group: the group 590 * @iommu_data: new data 591 * @release: release function for iommu_data 592 * 593 * iommu drivers can store data in the group for use when doing iommu 594 * operations. This function provides a way to set the data after 595 * the group has been allocated. Caller should hold a group reference. 596 */ 597 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 598 void (*release)(void *iommu_data)) 599 { 600 group->iommu_data = iommu_data; 601 group->iommu_data_release = release; 602 } 603 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 604 605 /** 606 * iommu_group_set_name - set name for a group 607 * @group: the group 608 * @name: name 609 * 610 * Allow iommu driver to set a name for a group. When set it will 611 * appear in a name attribute file under the group in sysfs. 612 */ 613 int iommu_group_set_name(struct iommu_group *group, const char *name) 614 { 615 int ret; 616 617 if (group->name) { 618 iommu_group_remove_file(group, &iommu_group_attr_name); 619 kfree(group->name); 620 group->name = NULL; 621 if (!name) 622 return 0; 623 } 624 625 group->name = kstrdup(name, GFP_KERNEL); 626 if (!group->name) 627 return -ENOMEM; 628 629 ret = iommu_group_create_file(group, &iommu_group_attr_name); 630 if (ret) { 631 kfree(group->name); 632 group->name = NULL; 633 return ret; 634 } 635 636 return 0; 637 } 638 EXPORT_SYMBOL_GPL(iommu_group_set_name); 639 640 static int iommu_group_create_direct_mappings(struct iommu_group *group, 641 struct device *dev) 642 { 643 struct iommu_domain *domain = group->default_domain; 644 struct iommu_resv_region *entry; 645 struct list_head mappings; 646 unsigned long pg_size; 647 int ret = 0; 648 649 if (!domain || domain->type != IOMMU_DOMAIN_DMA) 650 return 0; 651 652 BUG_ON(!domain->pgsize_bitmap); 653 654 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 655 INIT_LIST_HEAD(&mappings); 656 657 iommu_get_resv_regions(dev, &mappings); 658 659 /* We need to consider overlapping regions for different devices */ 660 list_for_each_entry(entry, &mappings, list) { 661 dma_addr_t start, end, addr; 662 663 if (domain->ops->apply_resv_region) 664 domain->ops->apply_resv_region(dev, domain, entry); 665 666 start = ALIGN(entry->start, pg_size); 667 end = ALIGN(entry->start + entry->length, pg_size); 668 669 if (entry->type != IOMMU_RESV_DIRECT && 670 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 671 continue; 672 673 for (addr = start; addr < end; addr += pg_size) { 674 phys_addr_t phys_addr; 675 676 phys_addr = iommu_iova_to_phys(domain, addr); 677 if (phys_addr) 678 continue; 679 680 ret = iommu_map(domain, addr, addr, pg_size, entry->prot); 681 if (ret) 682 goto out; 683 } 684 685 } 686 687 iommu_flush_tlb_all(domain); 688 689 out: 690 iommu_put_resv_regions(dev, &mappings); 691 692 return ret; 693 } 694 695 /** 696 * iommu_group_add_device - add a device to an iommu group 697 * @group: the group into which to add the device (reference should be held) 698 * @dev: the device 699 * 700 * This function is called by an iommu driver to add a device into a 701 * group. Adding a device increments the group reference count. 702 */ 703 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 704 { 705 int ret, i = 0; 706 struct group_device *device; 707 708 device = kzalloc(sizeof(*device), GFP_KERNEL); 709 if (!device) 710 return -ENOMEM; 711 712 device->dev = dev; 713 714 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 715 if (ret) 716 goto err_free_device; 717 718 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 719 rename: 720 if (!device->name) { 721 ret = -ENOMEM; 722 goto err_remove_link; 723 } 724 725 ret = sysfs_create_link_nowarn(group->devices_kobj, 726 &dev->kobj, device->name); 727 if (ret) { 728 if (ret == -EEXIST && i >= 0) { 729 /* 730 * Account for the slim chance of collision 731 * and append an instance to the name. 732 */ 733 kfree(device->name); 734 device->name = kasprintf(GFP_KERNEL, "%s.%d", 735 kobject_name(&dev->kobj), i++); 736 goto rename; 737 } 738 goto err_free_name; 739 } 740 741 kobject_get(group->devices_kobj); 742 743 dev->iommu_group = group; 744 745 iommu_group_create_direct_mappings(group, dev); 746 747 mutex_lock(&group->mutex); 748 list_add_tail(&device->list, &group->devices); 749 if (group->domain) 750 ret = __iommu_attach_device(group->domain, dev); 751 mutex_unlock(&group->mutex); 752 if (ret) 753 goto err_put_group; 754 755 /* Notify any listeners about change to group. */ 756 blocking_notifier_call_chain(&group->notifier, 757 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 758 759 trace_add_device_to_group(group->id, dev); 760 761 dev_info(dev, "Adding to iommu group %d\n", group->id); 762 763 return 0; 764 765 err_put_group: 766 mutex_lock(&group->mutex); 767 list_del(&device->list); 768 mutex_unlock(&group->mutex); 769 dev->iommu_group = NULL; 770 kobject_put(group->devices_kobj); 771 sysfs_remove_link(group->devices_kobj, device->name); 772 err_free_name: 773 kfree(device->name); 774 err_remove_link: 775 sysfs_remove_link(&dev->kobj, "iommu_group"); 776 err_free_device: 777 kfree(device); 778 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 779 return ret; 780 } 781 EXPORT_SYMBOL_GPL(iommu_group_add_device); 782 783 /** 784 * iommu_group_remove_device - remove a device from it's current group 785 * @dev: device to be removed 786 * 787 * This function is called by an iommu driver to remove the device from 788 * it's current group. This decrements the iommu group reference count. 789 */ 790 void iommu_group_remove_device(struct device *dev) 791 { 792 struct iommu_group *group = dev->iommu_group; 793 struct group_device *tmp_device, *device = NULL; 794 795 dev_info(dev, "Removing from iommu group %d\n", group->id); 796 797 /* Pre-notify listeners that a device is being removed. */ 798 blocking_notifier_call_chain(&group->notifier, 799 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 800 801 mutex_lock(&group->mutex); 802 list_for_each_entry(tmp_device, &group->devices, list) { 803 if (tmp_device->dev == dev) { 804 device = tmp_device; 805 list_del(&device->list); 806 break; 807 } 808 } 809 mutex_unlock(&group->mutex); 810 811 if (!device) 812 return; 813 814 sysfs_remove_link(group->devices_kobj, device->name); 815 sysfs_remove_link(&dev->kobj, "iommu_group"); 816 817 trace_remove_device_from_group(group->id, dev); 818 819 kfree(device->name); 820 kfree(device); 821 dev->iommu_group = NULL; 822 kobject_put(group->devices_kobj); 823 } 824 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 825 826 static int iommu_group_device_count(struct iommu_group *group) 827 { 828 struct group_device *entry; 829 int ret = 0; 830 831 list_for_each_entry(entry, &group->devices, list) 832 ret++; 833 834 return ret; 835 } 836 837 /** 838 * iommu_group_for_each_dev - iterate over each device in the group 839 * @group: the group 840 * @data: caller opaque data to be passed to callback function 841 * @fn: caller supplied callback function 842 * 843 * This function is called by group users to iterate over group devices. 844 * Callers should hold a reference count to the group during callback. 845 * The group->mutex is held across callbacks, which will block calls to 846 * iommu_group_add/remove_device. 847 */ 848 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 849 int (*fn)(struct device *, void *)) 850 { 851 struct group_device *device; 852 int ret = 0; 853 854 list_for_each_entry(device, &group->devices, list) { 855 ret = fn(device->dev, data); 856 if (ret) 857 break; 858 } 859 return ret; 860 } 861 862 863 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 864 int (*fn)(struct device *, void *)) 865 { 866 int ret; 867 868 mutex_lock(&group->mutex); 869 ret = __iommu_group_for_each_dev(group, data, fn); 870 mutex_unlock(&group->mutex); 871 872 return ret; 873 } 874 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 875 876 /** 877 * iommu_group_get - Return the group for a device and increment reference 878 * @dev: get the group that this device belongs to 879 * 880 * This function is called by iommu drivers and users to get the group 881 * for the specified device. If found, the group is returned and the group 882 * reference in incremented, else NULL. 883 */ 884 struct iommu_group *iommu_group_get(struct device *dev) 885 { 886 struct iommu_group *group = dev->iommu_group; 887 888 if (group) 889 kobject_get(group->devices_kobj); 890 891 return group; 892 } 893 EXPORT_SYMBOL_GPL(iommu_group_get); 894 895 /** 896 * iommu_group_ref_get - Increment reference on a group 897 * @group: the group to use, must not be NULL 898 * 899 * This function is called by iommu drivers to take additional references on an 900 * existing group. Returns the given group for convenience. 901 */ 902 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 903 { 904 kobject_get(group->devices_kobj); 905 return group; 906 } 907 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 908 909 /** 910 * iommu_group_put - Decrement group reference 911 * @group: the group to use 912 * 913 * This function is called by iommu drivers and users to release the 914 * iommu group. Once the reference count is zero, the group is released. 915 */ 916 void iommu_group_put(struct iommu_group *group) 917 { 918 if (group) 919 kobject_put(group->devices_kobj); 920 } 921 EXPORT_SYMBOL_GPL(iommu_group_put); 922 923 /** 924 * iommu_group_register_notifier - Register a notifier for group changes 925 * @group: the group to watch 926 * @nb: notifier block to signal 927 * 928 * This function allows iommu group users to track changes in a group. 929 * See include/linux/iommu.h for actions sent via this notifier. Caller 930 * should hold a reference to the group throughout notifier registration. 931 */ 932 int iommu_group_register_notifier(struct iommu_group *group, 933 struct notifier_block *nb) 934 { 935 return blocking_notifier_chain_register(&group->notifier, nb); 936 } 937 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 938 939 /** 940 * iommu_group_unregister_notifier - Unregister a notifier 941 * @group: the group to watch 942 * @nb: notifier block to signal 943 * 944 * Unregister a previously registered group notifier block. 945 */ 946 int iommu_group_unregister_notifier(struct iommu_group *group, 947 struct notifier_block *nb) 948 { 949 return blocking_notifier_chain_unregister(&group->notifier, nb); 950 } 951 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 952 953 /** 954 * iommu_register_device_fault_handler() - Register a device fault handler 955 * @dev: the device 956 * @handler: the fault handler 957 * @data: private data passed as argument to the handler 958 * 959 * When an IOMMU fault event is received, this handler gets called with the 960 * fault event and data as argument. The handler should return 0 on success. If 961 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 962 * complete the fault by calling iommu_page_response() with one of the following 963 * response code: 964 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 965 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 966 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 967 * page faults if possible. 968 * 969 * Return 0 if the fault handler was installed successfully, or an error. 970 */ 971 int iommu_register_device_fault_handler(struct device *dev, 972 iommu_dev_fault_handler_t handler, 973 void *data) 974 { 975 struct iommu_param *param = dev->iommu_param; 976 int ret = 0; 977 978 if (!param) 979 return -EINVAL; 980 981 mutex_lock(¶m->lock); 982 /* Only allow one fault handler registered for each device */ 983 if (param->fault_param) { 984 ret = -EBUSY; 985 goto done_unlock; 986 } 987 988 get_device(dev); 989 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 990 if (!param->fault_param) { 991 put_device(dev); 992 ret = -ENOMEM; 993 goto done_unlock; 994 } 995 param->fault_param->handler = handler; 996 param->fault_param->data = data; 997 mutex_init(¶m->fault_param->lock); 998 INIT_LIST_HEAD(¶m->fault_param->faults); 999 1000 done_unlock: 1001 mutex_unlock(¶m->lock); 1002 1003 return ret; 1004 } 1005 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1006 1007 /** 1008 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1009 * @dev: the device 1010 * 1011 * Remove the device fault handler installed with 1012 * iommu_register_device_fault_handler(). 1013 * 1014 * Return 0 on success, or an error. 1015 */ 1016 int iommu_unregister_device_fault_handler(struct device *dev) 1017 { 1018 struct iommu_param *param = dev->iommu_param; 1019 int ret = 0; 1020 1021 if (!param) 1022 return -EINVAL; 1023 1024 mutex_lock(¶m->lock); 1025 1026 if (!param->fault_param) 1027 goto unlock; 1028 1029 /* we cannot unregister handler if there are pending faults */ 1030 if (!list_empty(¶m->fault_param->faults)) { 1031 ret = -EBUSY; 1032 goto unlock; 1033 } 1034 1035 kfree(param->fault_param); 1036 param->fault_param = NULL; 1037 put_device(dev); 1038 unlock: 1039 mutex_unlock(¶m->lock); 1040 1041 return ret; 1042 } 1043 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1044 1045 /** 1046 * iommu_report_device_fault() - Report fault event to device driver 1047 * @dev: the device 1048 * @evt: fault event data 1049 * 1050 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1051 * handler. When this function fails and the fault is recoverable, it is the 1052 * caller's responsibility to complete the fault. 1053 * 1054 * Return 0 on success, or an error. 1055 */ 1056 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1057 { 1058 struct iommu_param *param = dev->iommu_param; 1059 struct iommu_fault_event *evt_pending = NULL; 1060 struct iommu_fault_param *fparam; 1061 int ret = 0; 1062 1063 if (!param || !evt) 1064 return -EINVAL; 1065 1066 /* we only report device fault if there is a handler registered */ 1067 mutex_lock(¶m->lock); 1068 fparam = param->fault_param; 1069 if (!fparam || !fparam->handler) { 1070 ret = -EINVAL; 1071 goto done_unlock; 1072 } 1073 1074 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1075 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1076 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1077 GFP_KERNEL); 1078 if (!evt_pending) { 1079 ret = -ENOMEM; 1080 goto done_unlock; 1081 } 1082 mutex_lock(&fparam->lock); 1083 list_add_tail(&evt_pending->list, &fparam->faults); 1084 mutex_unlock(&fparam->lock); 1085 } 1086 1087 ret = fparam->handler(&evt->fault, fparam->data); 1088 if (ret && evt_pending) { 1089 mutex_lock(&fparam->lock); 1090 list_del(&evt_pending->list); 1091 mutex_unlock(&fparam->lock); 1092 kfree(evt_pending); 1093 } 1094 done_unlock: 1095 mutex_unlock(¶m->lock); 1096 return ret; 1097 } 1098 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1099 1100 int iommu_page_response(struct device *dev, 1101 struct iommu_page_response *msg) 1102 { 1103 bool pasid_valid; 1104 int ret = -EINVAL; 1105 struct iommu_fault_event *evt; 1106 struct iommu_fault_page_request *prm; 1107 struct iommu_param *param = dev->iommu_param; 1108 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1109 1110 if (!domain || !domain->ops->page_response) 1111 return -ENODEV; 1112 1113 if (!param || !param->fault_param) 1114 return -EINVAL; 1115 1116 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1117 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1118 return -EINVAL; 1119 1120 /* Only send response if there is a fault report pending */ 1121 mutex_lock(¶m->fault_param->lock); 1122 if (list_empty(¶m->fault_param->faults)) { 1123 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1124 goto done_unlock; 1125 } 1126 /* 1127 * Check if we have a matching page request pending to respond, 1128 * otherwise return -EINVAL 1129 */ 1130 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1131 prm = &evt->fault.prm; 1132 pasid_valid = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; 1133 1134 if ((pasid_valid && prm->pasid != msg->pasid) || 1135 prm->grpid != msg->grpid) 1136 continue; 1137 1138 /* Sanitize the reply */ 1139 msg->flags = pasid_valid ? IOMMU_PAGE_RESP_PASID_VALID : 0; 1140 1141 ret = domain->ops->page_response(dev, evt, msg); 1142 list_del(&evt->list); 1143 kfree(evt); 1144 break; 1145 } 1146 1147 done_unlock: 1148 mutex_unlock(¶m->fault_param->lock); 1149 return ret; 1150 } 1151 EXPORT_SYMBOL_GPL(iommu_page_response); 1152 1153 /** 1154 * iommu_group_id - Return ID for a group 1155 * @group: the group to ID 1156 * 1157 * Return the unique ID for the group matching the sysfs group number. 1158 */ 1159 int iommu_group_id(struct iommu_group *group) 1160 { 1161 return group->id; 1162 } 1163 EXPORT_SYMBOL_GPL(iommu_group_id); 1164 1165 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1166 unsigned long *devfns); 1167 1168 /* 1169 * To consider a PCI device isolated, we require ACS to support Source 1170 * Validation, Request Redirection, Completer Redirection, and Upstream 1171 * Forwarding. This effectively means that devices cannot spoof their 1172 * requester ID, requests and completions cannot be redirected, and all 1173 * transactions are forwarded upstream, even as it passes through a 1174 * bridge where the target device is downstream. 1175 */ 1176 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1177 1178 /* 1179 * For multifunction devices which are not isolated from each other, find 1180 * all the other non-isolated functions and look for existing groups. For 1181 * each function, we also need to look for aliases to or from other devices 1182 * that may already have a group. 1183 */ 1184 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1185 unsigned long *devfns) 1186 { 1187 struct pci_dev *tmp = NULL; 1188 struct iommu_group *group; 1189 1190 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1191 return NULL; 1192 1193 for_each_pci_dev(tmp) { 1194 if (tmp == pdev || tmp->bus != pdev->bus || 1195 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1196 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1197 continue; 1198 1199 group = get_pci_alias_group(tmp, devfns); 1200 if (group) { 1201 pci_dev_put(tmp); 1202 return group; 1203 } 1204 } 1205 1206 return NULL; 1207 } 1208 1209 /* 1210 * Look for aliases to or from the given device for existing groups. DMA 1211 * aliases are only supported on the same bus, therefore the search 1212 * space is quite small (especially since we're really only looking at pcie 1213 * device, and therefore only expect multiple slots on the root complex or 1214 * downstream switch ports). It's conceivable though that a pair of 1215 * multifunction devices could have aliases between them that would cause a 1216 * loop. To prevent this, we use a bitmap to track where we've been. 1217 */ 1218 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1219 unsigned long *devfns) 1220 { 1221 struct pci_dev *tmp = NULL; 1222 struct iommu_group *group; 1223 1224 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1225 return NULL; 1226 1227 group = iommu_group_get(&pdev->dev); 1228 if (group) 1229 return group; 1230 1231 for_each_pci_dev(tmp) { 1232 if (tmp == pdev || tmp->bus != pdev->bus) 1233 continue; 1234 1235 /* We alias them or they alias us */ 1236 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1237 group = get_pci_alias_group(tmp, devfns); 1238 if (group) { 1239 pci_dev_put(tmp); 1240 return group; 1241 } 1242 1243 group = get_pci_function_alias_group(tmp, devfns); 1244 if (group) { 1245 pci_dev_put(tmp); 1246 return group; 1247 } 1248 } 1249 } 1250 1251 return NULL; 1252 } 1253 1254 struct group_for_pci_data { 1255 struct pci_dev *pdev; 1256 struct iommu_group *group; 1257 }; 1258 1259 /* 1260 * DMA alias iterator callback, return the last seen device. Stop and return 1261 * the IOMMU group if we find one along the way. 1262 */ 1263 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1264 { 1265 struct group_for_pci_data *data = opaque; 1266 1267 data->pdev = pdev; 1268 data->group = iommu_group_get(&pdev->dev); 1269 1270 return data->group != NULL; 1271 } 1272 1273 /* 1274 * Generic device_group call-back function. It just allocates one 1275 * iommu-group per device. 1276 */ 1277 struct iommu_group *generic_device_group(struct device *dev) 1278 { 1279 return iommu_group_alloc(); 1280 } 1281 EXPORT_SYMBOL_GPL(generic_device_group); 1282 1283 /* 1284 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1285 * to find or create an IOMMU group for a device. 1286 */ 1287 struct iommu_group *pci_device_group(struct device *dev) 1288 { 1289 struct pci_dev *pdev = to_pci_dev(dev); 1290 struct group_for_pci_data data; 1291 struct pci_bus *bus; 1292 struct iommu_group *group = NULL; 1293 u64 devfns[4] = { 0 }; 1294 1295 if (WARN_ON(!dev_is_pci(dev))) 1296 return ERR_PTR(-EINVAL); 1297 1298 /* 1299 * Find the upstream DMA alias for the device. A device must not 1300 * be aliased due to topology in order to have its own IOMMU group. 1301 * If we find an alias along the way that already belongs to a 1302 * group, use it. 1303 */ 1304 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1305 return data.group; 1306 1307 pdev = data.pdev; 1308 1309 /* 1310 * Continue upstream from the point of minimum IOMMU granularity 1311 * due to aliases to the point where devices are protected from 1312 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1313 * group, use it. 1314 */ 1315 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1316 if (!bus->self) 1317 continue; 1318 1319 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1320 break; 1321 1322 pdev = bus->self; 1323 1324 group = iommu_group_get(&pdev->dev); 1325 if (group) 1326 return group; 1327 } 1328 1329 /* 1330 * Look for existing groups on device aliases. If we alias another 1331 * device or another device aliases us, use the same group. 1332 */ 1333 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1334 if (group) 1335 return group; 1336 1337 /* 1338 * Look for existing groups on non-isolated functions on the same 1339 * slot and aliases of those funcions, if any. No need to clear 1340 * the search bitmap, the tested devfns are still valid. 1341 */ 1342 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1343 if (group) 1344 return group; 1345 1346 /* No shared group found, allocate new */ 1347 return iommu_group_alloc(); 1348 } 1349 EXPORT_SYMBOL_GPL(pci_device_group); 1350 1351 /* Get the IOMMU group for device on fsl-mc bus */ 1352 struct iommu_group *fsl_mc_device_group(struct device *dev) 1353 { 1354 struct device *cont_dev = fsl_mc_cont_dev(dev); 1355 struct iommu_group *group; 1356 1357 group = iommu_group_get(cont_dev); 1358 if (!group) 1359 group = iommu_group_alloc(); 1360 return group; 1361 } 1362 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1363 1364 /** 1365 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1366 * @dev: target device 1367 * 1368 * This function is intended to be called by IOMMU drivers and extended to 1369 * support common, bus-defined algorithms when determining or creating the 1370 * IOMMU group for a device. On success, the caller will hold a reference 1371 * to the returned IOMMU group, which will already include the provided 1372 * device. The reference should be released with iommu_group_put(). 1373 */ 1374 struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1375 { 1376 const struct iommu_ops *ops = dev->bus->iommu_ops; 1377 struct iommu_group *group; 1378 int ret; 1379 1380 group = iommu_group_get(dev); 1381 if (group) 1382 return group; 1383 1384 if (!ops) 1385 return ERR_PTR(-EINVAL); 1386 1387 group = ops->device_group(dev); 1388 if (WARN_ON_ONCE(group == NULL)) 1389 return ERR_PTR(-EINVAL); 1390 1391 if (IS_ERR(group)) 1392 return group; 1393 1394 /* 1395 * Try to allocate a default domain - needs support from the 1396 * IOMMU driver. 1397 */ 1398 if (!group->default_domain) { 1399 struct iommu_domain *dom; 1400 1401 dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type); 1402 if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) { 1403 dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA); 1404 if (dom) { 1405 dev_warn(dev, 1406 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA", 1407 iommu_def_domain_type); 1408 } 1409 } 1410 1411 group->default_domain = dom; 1412 if (!group->domain) 1413 group->domain = dom; 1414 1415 if (dom && !iommu_dma_strict) { 1416 int attr = 1; 1417 iommu_domain_set_attr(dom, 1418 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, 1419 &attr); 1420 } 1421 } 1422 1423 ret = iommu_group_add_device(group, dev); 1424 if (ret) { 1425 iommu_group_put(group); 1426 return ERR_PTR(ret); 1427 } 1428 1429 return group; 1430 } 1431 EXPORT_SYMBOL(iommu_group_get_for_dev); 1432 1433 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1434 { 1435 return group->default_domain; 1436 } 1437 1438 static int add_iommu_group(struct device *dev, void *data) 1439 { 1440 int ret = iommu_probe_device(dev); 1441 1442 /* 1443 * We ignore -ENODEV errors for now, as they just mean that the 1444 * device is not translated by an IOMMU. We still care about 1445 * other errors and fail to initialize when they happen. 1446 */ 1447 if (ret == -ENODEV) 1448 ret = 0; 1449 1450 return ret; 1451 } 1452 1453 static int remove_iommu_group(struct device *dev, void *data) 1454 { 1455 iommu_release_device(dev); 1456 1457 return 0; 1458 } 1459 1460 static int iommu_bus_notifier(struct notifier_block *nb, 1461 unsigned long action, void *data) 1462 { 1463 unsigned long group_action = 0; 1464 struct device *dev = data; 1465 struct iommu_group *group; 1466 1467 /* 1468 * ADD/DEL call into iommu driver ops if provided, which may 1469 * result in ADD/DEL notifiers to group->notifier 1470 */ 1471 if (action == BUS_NOTIFY_ADD_DEVICE) { 1472 int ret; 1473 1474 ret = iommu_probe_device(dev); 1475 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1476 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1477 iommu_release_device(dev); 1478 return NOTIFY_OK; 1479 } 1480 1481 /* 1482 * Remaining BUS_NOTIFYs get filtered and republished to the 1483 * group, if anyone is listening 1484 */ 1485 group = iommu_group_get(dev); 1486 if (!group) 1487 return 0; 1488 1489 switch (action) { 1490 case BUS_NOTIFY_BIND_DRIVER: 1491 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1492 break; 1493 case BUS_NOTIFY_BOUND_DRIVER: 1494 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1495 break; 1496 case BUS_NOTIFY_UNBIND_DRIVER: 1497 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1498 break; 1499 case BUS_NOTIFY_UNBOUND_DRIVER: 1500 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1501 break; 1502 } 1503 1504 if (group_action) 1505 blocking_notifier_call_chain(&group->notifier, 1506 group_action, dev); 1507 1508 iommu_group_put(group); 1509 return 0; 1510 } 1511 1512 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1513 { 1514 int err; 1515 struct notifier_block *nb; 1516 1517 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1518 if (!nb) 1519 return -ENOMEM; 1520 1521 nb->notifier_call = iommu_bus_notifier; 1522 1523 err = bus_register_notifier(bus, nb); 1524 if (err) 1525 goto out_free; 1526 1527 err = bus_for_each_dev(bus, NULL, NULL, add_iommu_group); 1528 if (err) 1529 goto out_err; 1530 1531 1532 return 0; 1533 1534 out_err: 1535 /* Clean up */ 1536 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group); 1537 bus_unregister_notifier(bus, nb); 1538 1539 out_free: 1540 kfree(nb); 1541 1542 return err; 1543 } 1544 1545 /** 1546 * bus_set_iommu - set iommu-callbacks for the bus 1547 * @bus: bus. 1548 * @ops: the callbacks provided by the iommu-driver 1549 * 1550 * This function is called by an iommu driver to set the iommu methods 1551 * used for a particular bus. Drivers for devices on that bus can use 1552 * the iommu-api after these ops are registered. 1553 * This special function is needed because IOMMUs are usually devices on 1554 * the bus itself, so the iommu drivers are not initialized when the bus 1555 * is set up. With this function the iommu-driver can set the iommu-ops 1556 * afterwards. 1557 */ 1558 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1559 { 1560 int err; 1561 1562 if (ops == NULL) { 1563 bus->iommu_ops = NULL; 1564 return 0; 1565 } 1566 1567 if (bus->iommu_ops != NULL) 1568 return -EBUSY; 1569 1570 bus->iommu_ops = ops; 1571 1572 /* Do IOMMU specific setup for this bus-type */ 1573 err = iommu_bus_init(bus, ops); 1574 if (err) 1575 bus->iommu_ops = NULL; 1576 1577 return err; 1578 } 1579 EXPORT_SYMBOL_GPL(bus_set_iommu); 1580 1581 bool iommu_present(struct bus_type *bus) 1582 { 1583 return bus->iommu_ops != NULL; 1584 } 1585 EXPORT_SYMBOL_GPL(iommu_present); 1586 1587 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1588 { 1589 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1590 return false; 1591 1592 return bus->iommu_ops->capable(cap); 1593 } 1594 EXPORT_SYMBOL_GPL(iommu_capable); 1595 1596 /** 1597 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1598 * @domain: iommu domain 1599 * @handler: fault handler 1600 * @token: user data, will be passed back to the fault handler 1601 * 1602 * This function should be used by IOMMU users which want to be notified 1603 * whenever an IOMMU fault happens. 1604 * 1605 * The fault handler itself should return 0 on success, and an appropriate 1606 * error code otherwise. 1607 */ 1608 void iommu_set_fault_handler(struct iommu_domain *domain, 1609 iommu_fault_handler_t handler, 1610 void *token) 1611 { 1612 BUG_ON(!domain); 1613 1614 domain->handler = handler; 1615 domain->handler_token = token; 1616 } 1617 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1618 1619 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1620 unsigned type) 1621 { 1622 struct iommu_domain *domain; 1623 1624 if (bus == NULL || bus->iommu_ops == NULL) 1625 return NULL; 1626 1627 domain = bus->iommu_ops->domain_alloc(type); 1628 if (!domain) 1629 return NULL; 1630 1631 domain->ops = bus->iommu_ops; 1632 domain->type = type; 1633 /* Assume all sizes by default; the driver may override this later */ 1634 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1635 1636 return domain; 1637 } 1638 1639 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1640 { 1641 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1642 } 1643 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1644 1645 void iommu_domain_free(struct iommu_domain *domain) 1646 { 1647 domain->ops->domain_free(domain); 1648 } 1649 EXPORT_SYMBOL_GPL(iommu_domain_free); 1650 1651 static int __iommu_attach_device(struct iommu_domain *domain, 1652 struct device *dev) 1653 { 1654 int ret; 1655 if ((domain->ops->is_attach_deferred != NULL) && 1656 domain->ops->is_attach_deferred(domain, dev)) 1657 return 0; 1658 1659 if (unlikely(domain->ops->attach_dev == NULL)) 1660 return -ENODEV; 1661 1662 ret = domain->ops->attach_dev(domain, dev); 1663 if (!ret) 1664 trace_attach_device_to_domain(dev); 1665 return ret; 1666 } 1667 1668 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1669 { 1670 struct iommu_group *group; 1671 int ret; 1672 1673 group = iommu_group_get(dev); 1674 if (!group) 1675 return -ENODEV; 1676 1677 /* 1678 * Lock the group to make sure the device-count doesn't 1679 * change while we are attaching 1680 */ 1681 mutex_lock(&group->mutex); 1682 ret = -EINVAL; 1683 if (iommu_group_device_count(group) != 1) 1684 goto out_unlock; 1685 1686 ret = __iommu_attach_group(domain, group); 1687 1688 out_unlock: 1689 mutex_unlock(&group->mutex); 1690 iommu_group_put(group); 1691 1692 return ret; 1693 } 1694 EXPORT_SYMBOL_GPL(iommu_attach_device); 1695 1696 int iommu_cache_invalidate(struct iommu_domain *domain, struct device *dev, 1697 struct iommu_cache_invalidate_info *inv_info) 1698 { 1699 if (unlikely(!domain->ops->cache_invalidate)) 1700 return -ENODEV; 1701 1702 return domain->ops->cache_invalidate(domain, dev, inv_info); 1703 } 1704 EXPORT_SYMBOL_GPL(iommu_cache_invalidate); 1705 1706 int iommu_sva_bind_gpasid(struct iommu_domain *domain, 1707 struct device *dev, struct iommu_gpasid_bind_data *data) 1708 { 1709 if (unlikely(!domain->ops->sva_bind_gpasid)) 1710 return -ENODEV; 1711 1712 return domain->ops->sva_bind_gpasid(domain, dev, data); 1713 } 1714 EXPORT_SYMBOL_GPL(iommu_sva_bind_gpasid); 1715 1716 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev, 1717 ioasid_t pasid) 1718 { 1719 if (unlikely(!domain->ops->sva_unbind_gpasid)) 1720 return -ENODEV; 1721 1722 return domain->ops->sva_unbind_gpasid(dev, pasid); 1723 } 1724 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid); 1725 1726 static void __iommu_detach_device(struct iommu_domain *domain, 1727 struct device *dev) 1728 { 1729 if ((domain->ops->is_attach_deferred != NULL) && 1730 domain->ops->is_attach_deferred(domain, dev)) 1731 return; 1732 1733 if (unlikely(domain->ops->detach_dev == NULL)) 1734 return; 1735 1736 domain->ops->detach_dev(domain, dev); 1737 trace_detach_device_from_domain(dev); 1738 } 1739 1740 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 1741 { 1742 struct iommu_group *group; 1743 1744 group = iommu_group_get(dev); 1745 if (!group) 1746 return; 1747 1748 mutex_lock(&group->mutex); 1749 if (iommu_group_device_count(group) != 1) { 1750 WARN_ON(1); 1751 goto out_unlock; 1752 } 1753 1754 __iommu_detach_group(domain, group); 1755 1756 out_unlock: 1757 mutex_unlock(&group->mutex); 1758 iommu_group_put(group); 1759 } 1760 EXPORT_SYMBOL_GPL(iommu_detach_device); 1761 1762 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 1763 { 1764 struct iommu_domain *domain; 1765 struct iommu_group *group; 1766 1767 group = iommu_group_get(dev); 1768 if (!group) 1769 return NULL; 1770 1771 domain = group->domain; 1772 1773 iommu_group_put(group); 1774 1775 return domain; 1776 } 1777 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 1778 1779 /* 1780 * For IOMMU_DOMAIN_DMA implementations which already provide their own 1781 * guarantees that the group and its default domain are valid and correct. 1782 */ 1783 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 1784 { 1785 return dev->iommu_group->default_domain; 1786 } 1787 1788 /* 1789 * IOMMU groups are really the natural working unit of the IOMMU, but 1790 * the IOMMU API works on domains and devices. Bridge that gap by 1791 * iterating over the devices in a group. Ideally we'd have a single 1792 * device which represents the requestor ID of the group, but we also 1793 * allow IOMMU drivers to create policy defined minimum sets, where 1794 * the physical hardware may be able to distiguish members, but we 1795 * wish to group them at a higher level (ex. untrusted multi-function 1796 * PCI devices). Thus we attach each device. 1797 */ 1798 static int iommu_group_do_attach_device(struct device *dev, void *data) 1799 { 1800 struct iommu_domain *domain = data; 1801 1802 return __iommu_attach_device(domain, dev); 1803 } 1804 1805 static int __iommu_attach_group(struct iommu_domain *domain, 1806 struct iommu_group *group) 1807 { 1808 int ret; 1809 1810 if (group->default_domain && group->domain != group->default_domain) 1811 return -EBUSY; 1812 1813 ret = __iommu_group_for_each_dev(group, domain, 1814 iommu_group_do_attach_device); 1815 if (ret == 0) 1816 group->domain = domain; 1817 1818 return ret; 1819 } 1820 1821 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 1822 { 1823 int ret; 1824 1825 mutex_lock(&group->mutex); 1826 ret = __iommu_attach_group(domain, group); 1827 mutex_unlock(&group->mutex); 1828 1829 return ret; 1830 } 1831 EXPORT_SYMBOL_GPL(iommu_attach_group); 1832 1833 static int iommu_group_do_detach_device(struct device *dev, void *data) 1834 { 1835 struct iommu_domain *domain = data; 1836 1837 __iommu_detach_device(domain, dev); 1838 1839 return 0; 1840 } 1841 1842 static void __iommu_detach_group(struct iommu_domain *domain, 1843 struct iommu_group *group) 1844 { 1845 int ret; 1846 1847 if (!group->default_domain) { 1848 __iommu_group_for_each_dev(group, domain, 1849 iommu_group_do_detach_device); 1850 group->domain = NULL; 1851 return; 1852 } 1853 1854 if (group->domain == group->default_domain) 1855 return; 1856 1857 /* Detach by re-attaching to the default domain */ 1858 ret = __iommu_group_for_each_dev(group, group->default_domain, 1859 iommu_group_do_attach_device); 1860 if (ret != 0) 1861 WARN_ON(1); 1862 else 1863 group->domain = group->default_domain; 1864 } 1865 1866 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 1867 { 1868 mutex_lock(&group->mutex); 1869 __iommu_detach_group(domain, group); 1870 mutex_unlock(&group->mutex); 1871 } 1872 EXPORT_SYMBOL_GPL(iommu_detach_group); 1873 1874 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 1875 { 1876 if (unlikely(domain->ops->iova_to_phys == NULL)) 1877 return 0; 1878 1879 return domain->ops->iova_to_phys(domain, iova); 1880 } 1881 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 1882 1883 static size_t iommu_pgsize(struct iommu_domain *domain, 1884 unsigned long addr_merge, size_t size) 1885 { 1886 unsigned int pgsize_idx; 1887 size_t pgsize; 1888 1889 /* Max page size that still fits into 'size' */ 1890 pgsize_idx = __fls(size); 1891 1892 /* need to consider alignment requirements ? */ 1893 if (likely(addr_merge)) { 1894 /* Max page size allowed by address */ 1895 unsigned int align_pgsize_idx = __ffs(addr_merge); 1896 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 1897 } 1898 1899 /* build a mask of acceptable page sizes */ 1900 pgsize = (1UL << (pgsize_idx + 1)) - 1; 1901 1902 /* throw away page sizes not supported by the hardware */ 1903 pgsize &= domain->pgsize_bitmap; 1904 1905 /* make sure we're still sane */ 1906 BUG_ON(!pgsize); 1907 1908 /* pick the biggest page */ 1909 pgsize_idx = __fls(pgsize); 1910 pgsize = 1UL << pgsize_idx; 1911 1912 return pgsize; 1913 } 1914 1915 int __iommu_map(struct iommu_domain *domain, unsigned long iova, 1916 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 1917 { 1918 const struct iommu_ops *ops = domain->ops; 1919 unsigned long orig_iova = iova; 1920 unsigned int min_pagesz; 1921 size_t orig_size = size; 1922 phys_addr_t orig_paddr = paddr; 1923 int ret = 0; 1924 1925 if (unlikely(ops->map == NULL || 1926 domain->pgsize_bitmap == 0UL)) 1927 return -ENODEV; 1928 1929 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1930 return -EINVAL; 1931 1932 /* find out the minimum page size supported */ 1933 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1934 1935 /* 1936 * both the virtual address and the physical one, as well as 1937 * the size of the mapping, must be aligned (at least) to the 1938 * size of the smallest page supported by the hardware 1939 */ 1940 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 1941 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 1942 iova, &paddr, size, min_pagesz); 1943 return -EINVAL; 1944 } 1945 1946 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 1947 1948 while (size) { 1949 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 1950 1951 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 1952 iova, &paddr, pgsize); 1953 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 1954 1955 if (ret) 1956 break; 1957 1958 iova += pgsize; 1959 paddr += pgsize; 1960 size -= pgsize; 1961 } 1962 1963 if (ops->iotlb_sync_map) 1964 ops->iotlb_sync_map(domain); 1965 1966 /* unroll mapping in case something went wrong */ 1967 if (ret) 1968 iommu_unmap(domain, orig_iova, orig_size - size); 1969 else 1970 trace_map(orig_iova, orig_paddr, orig_size); 1971 1972 return ret; 1973 } 1974 1975 int iommu_map(struct iommu_domain *domain, unsigned long iova, 1976 phys_addr_t paddr, size_t size, int prot) 1977 { 1978 might_sleep(); 1979 return __iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL); 1980 } 1981 EXPORT_SYMBOL_GPL(iommu_map); 1982 1983 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova, 1984 phys_addr_t paddr, size_t size, int prot) 1985 { 1986 return __iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC); 1987 } 1988 EXPORT_SYMBOL_GPL(iommu_map_atomic); 1989 1990 static size_t __iommu_unmap(struct iommu_domain *domain, 1991 unsigned long iova, size_t size, 1992 struct iommu_iotlb_gather *iotlb_gather) 1993 { 1994 const struct iommu_ops *ops = domain->ops; 1995 size_t unmapped_page, unmapped = 0; 1996 unsigned long orig_iova = iova; 1997 unsigned int min_pagesz; 1998 1999 if (unlikely(ops->unmap == NULL || 2000 domain->pgsize_bitmap == 0UL)) 2001 return 0; 2002 2003 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2004 return 0; 2005 2006 /* find out the minimum page size supported */ 2007 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2008 2009 /* 2010 * The virtual address, as well as the size of the mapping, must be 2011 * aligned (at least) to the size of the smallest page supported 2012 * by the hardware 2013 */ 2014 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2015 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2016 iova, size, min_pagesz); 2017 return 0; 2018 } 2019 2020 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2021 2022 /* 2023 * Keep iterating until we either unmap 'size' bytes (or more) 2024 * or we hit an area that isn't mapped. 2025 */ 2026 while (unmapped < size) { 2027 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 2028 2029 unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather); 2030 if (!unmapped_page) 2031 break; 2032 2033 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2034 iova, unmapped_page); 2035 2036 iova += unmapped_page; 2037 unmapped += unmapped_page; 2038 } 2039 2040 trace_unmap(orig_iova, size, unmapped); 2041 return unmapped; 2042 } 2043 2044 size_t iommu_unmap(struct iommu_domain *domain, 2045 unsigned long iova, size_t size) 2046 { 2047 struct iommu_iotlb_gather iotlb_gather; 2048 size_t ret; 2049 2050 iommu_iotlb_gather_init(&iotlb_gather); 2051 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2052 iommu_tlb_sync(domain, &iotlb_gather); 2053 2054 return ret; 2055 } 2056 EXPORT_SYMBOL_GPL(iommu_unmap); 2057 2058 size_t iommu_unmap_fast(struct iommu_domain *domain, 2059 unsigned long iova, size_t size, 2060 struct iommu_iotlb_gather *iotlb_gather) 2061 { 2062 return __iommu_unmap(domain, iova, size, iotlb_gather); 2063 } 2064 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2065 2066 size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2067 struct scatterlist *sg, unsigned int nents, int prot, 2068 gfp_t gfp) 2069 { 2070 size_t len = 0, mapped = 0; 2071 phys_addr_t start; 2072 unsigned int i = 0; 2073 int ret; 2074 2075 while (i <= nents) { 2076 phys_addr_t s_phys = sg_phys(sg); 2077 2078 if (len && s_phys != start + len) { 2079 ret = __iommu_map(domain, iova + mapped, start, 2080 len, prot, gfp); 2081 2082 if (ret) 2083 goto out_err; 2084 2085 mapped += len; 2086 len = 0; 2087 } 2088 2089 if (len) { 2090 len += sg->length; 2091 } else { 2092 len = sg->length; 2093 start = s_phys; 2094 } 2095 2096 if (++i < nents) 2097 sg = sg_next(sg); 2098 } 2099 2100 return mapped; 2101 2102 out_err: 2103 /* undo mappings already done */ 2104 iommu_unmap(domain, iova, mapped); 2105 2106 return 0; 2107 2108 } 2109 2110 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2111 struct scatterlist *sg, unsigned int nents, int prot) 2112 { 2113 might_sleep(); 2114 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL); 2115 } 2116 EXPORT_SYMBOL_GPL(iommu_map_sg); 2117 2118 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova, 2119 struct scatterlist *sg, unsigned int nents, int prot) 2120 { 2121 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 2122 } 2123 EXPORT_SYMBOL_GPL(iommu_map_sg_atomic); 2124 2125 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, 2126 phys_addr_t paddr, u64 size, int prot) 2127 { 2128 if (unlikely(domain->ops->domain_window_enable == NULL)) 2129 return -ENODEV; 2130 2131 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, 2132 prot); 2133 } 2134 EXPORT_SYMBOL_GPL(iommu_domain_window_enable); 2135 2136 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) 2137 { 2138 if (unlikely(domain->ops->domain_window_disable == NULL)) 2139 return; 2140 2141 return domain->ops->domain_window_disable(domain, wnd_nr); 2142 } 2143 EXPORT_SYMBOL_GPL(iommu_domain_window_disable); 2144 2145 /** 2146 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2147 * @domain: the iommu domain where the fault has happened 2148 * @dev: the device where the fault has happened 2149 * @iova: the faulting address 2150 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2151 * 2152 * This function should be called by the low-level IOMMU implementations 2153 * whenever IOMMU faults happen, to allow high-level users, that are 2154 * interested in such events, to know about them. 2155 * 2156 * This event may be useful for several possible use cases: 2157 * - mere logging of the event 2158 * - dynamic TLB/PTE loading 2159 * - if restarting of the faulting device is required 2160 * 2161 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2162 * PTE/TLB loading will one day be supported, implementations will be able 2163 * to tell whether it succeeded or not according to this return value). 2164 * 2165 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2166 * (though fault handlers can also return -ENOSYS, in case they want to 2167 * elicit the default behavior of the IOMMU drivers). 2168 */ 2169 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2170 unsigned long iova, int flags) 2171 { 2172 int ret = -ENOSYS; 2173 2174 /* 2175 * if upper layers showed interest and installed a fault handler, 2176 * invoke it. 2177 */ 2178 if (domain->handler) 2179 ret = domain->handler(domain, dev, iova, flags, 2180 domain->handler_token); 2181 2182 trace_io_page_fault(dev, iova, flags); 2183 return ret; 2184 } 2185 EXPORT_SYMBOL_GPL(report_iommu_fault); 2186 2187 static int __init iommu_init(void) 2188 { 2189 iommu_group_kset = kset_create_and_add("iommu_groups", 2190 NULL, kernel_kobj); 2191 BUG_ON(!iommu_group_kset); 2192 2193 iommu_debugfs_setup(); 2194 2195 return 0; 2196 } 2197 core_initcall(iommu_init); 2198 2199 int iommu_domain_get_attr(struct iommu_domain *domain, 2200 enum iommu_attr attr, void *data) 2201 { 2202 struct iommu_domain_geometry *geometry; 2203 bool *paging; 2204 int ret = 0; 2205 2206 switch (attr) { 2207 case DOMAIN_ATTR_GEOMETRY: 2208 geometry = data; 2209 *geometry = domain->geometry; 2210 2211 break; 2212 case DOMAIN_ATTR_PAGING: 2213 paging = data; 2214 *paging = (domain->pgsize_bitmap != 0UL); 2215 break; 2216 default: 2217 if (!domain->ops->domain_get_attr) 2218 return -EINVAL; 2219 2220 ret = domain->ops->domain_get_attr(domain, attr, data); 2221 } 2222 2223 return ret; 2224 } 2225 EXPORT_SYMBOL_GPL(iommu_domain_get_attr); 2226 2227 int iommu_domain_set_attr(struct iommu_domain *domain, 2228 enum iommu_attr attr, void *data) 2229 { 2230 int ret = 0; 2231 2232 switch (attr) { 2233 default: 2234 if (domain->ops->domain_set_attr == NULL) 2235 return -EINVAL; 2236 2237 ret = domain->ops->domain_set_attr(domain, attr, data); 2238 } 2239 2240 return ret; 2241 } 2242 EXPORT_SYMBOL_GPL(iommu_domain_set_attr); 2243 2244 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2245 { 2246 const struct iommu_ops *ops = dev->bus->iommu_ops; 2247 2248 if (ops && ops->get_resv_regions) 2249 ops->get_resv_regions(dev, list); 2250 } 2251 2252 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2253 { 2254 const struct iommu_ops *ops = dev->bus->iommu_ops; 2255 2256 if (ops && ops->put_resv_regions) 2257 ops->put_resv_regions(dev, list); 2258 } 2259 2260 /** 2261 * generic_iommu_put_resv_regions - Reserved region driver helper 2262 * @dev: device for which to free reserved regions 2263 * @list: reserved region list for device 2264 * 2265 * IOMMU drivers can use this to implement their .put_resv_regions() callback 2266 * for simple reservations. Memory allocated for each reserved region will be 2267 * freed. If an IOMMU driver allocates additional resources per region, it is 2268 * going to have to implement a custom callback. 2269 */ 2270 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list) 2271 { 2272 struct iommu_resv_region *entry, *next; 2273 2274 list_for_each_entry_safe(entry, next, list, list) 2275 kfree(entry); 2276 } 2277 EXPORT_SYMBOL(generic_iommu_put_resv_regions); 2278 2279 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2280 size_t length, int prot, 2281 enum iommu_resv_type type) 2282 { 2283 struct iommu_resv_region *region; 2284 2285 region = kzalloc(sizeof(*region), GFP_KERNEL); 2286 if (!region) 2287 return NULL; 2288 2289 INIT_LIST_HEAD(®ion->list); 2290 region->start = start; 2291 region->length = length; 2292 region->prot = prot; 2293 region->type = type; 2294 return region; 2295 } 2296 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2297 2298 static int 2299 request_default_domain_for_dev(struct device *dev, unsigned long type) 2300 { 2301 struct iommu_domain *domain; 2302 struct iommu_group *group; 2303 int ret; 2304 2305 /* Device must already be in a group before calling this function */ 2306 group = iommu_group_get(dev); 2307 if (!group) 2308 return -EINVAL; 2309 2310 mutex_lock(&group->mutex); 2311 2312 ret = 0; 2313 if (group->default_domain && group->default_domain->type == type) 2314 goto out; 2315 2316 /* Don't change mappings of existing devices */ 2317 ret = -EBUSY; 2318 if (iommu_group_device_count(group) != 1) 2319 goto out; 2320 2321 ret = -ENOMEM; 2322 domain = __iommu_domain_alloc(dev->bus, type); 2323 if (!domain) 2324 goto out; 2325 2326 /* Attach the device to the domain */ 2327 ret = __iommu_attach_group(domain, group); 2328 if (ret) { 2329 iommu_domain_free(domain); 2330 goto out; 2331 } 2332 2333 /* Make the domain the default for this group */ 2334 if (group->default_domain) 2335 iommu_domain_free(group->default_domain); 2336 group->default_domain = domain; 2337 2338 iommu_group_create_direct_mappings(group, dev); 2339 2340 dev_info(dev, "Using iommu %s mapping\n", 2341 type == IOMMU_DOMAIN_DMA ? "dma" : "direct"); 2342 2343 ret = 0; 2344 out: 2345 mutex_unlock(&group->mutex); 2346 iommu_group_put(group); 2347 2348 return ret; 2349 } 2350 2351 /* Request that a device is direct mapped by the IOMMU */ 2352 int iommu_request_dm_for_dev(struct device *dev) 2353 { 2354 return request_default_domain_for_dev(dev, IOMMU_DOMAIN_IDENTITY); 2355 } 2356 2357 /* Request that a device can't be direct mapped by the IOMMU */ 2358 int iommu_request_dma_domain_for_dev(struct device *dev) 2359 { 2360 return request_default_domain_for_dev(dev, IOMMU_DOMAIN_DMA); 2361 } 2362 2363 void iommu_set_default_passthrough(bool cmd_line) 2364 { 2365 if (cmd_line) 2366 iommu_set_cmd_line_dma_api(); 2367 2368 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2369 } 2370 2371 void iommu_set_default_translated(bool cmd_line) 2372 { 2373 if (cmd_line) 2374 iommu_set_cmd_line_dma_api(); 2375 2376 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2377 } 2378 2379 bool iommu_default_passthrough(void) 2380 { 2381 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2382 } 2383 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2384 2385 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2386 { 2387 const struct iommu_ops *ops = NULL; 2388 struct iommu_device *iommu; 2389 2390 spin_lock(&iommu_device_lock); 2391 list_for_each_entry(iommu, &iommu_device_list, list) 2392 if (iommu->fwnode == fwnode) { 2393 ops = iommu->ops; 2394 break; 2395 } 2396 spin_unlock(&iommu_device_lock); 2397 return ops; 2398 } 2399 2400 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2401 const struct iommu_ops *ops) 2402 { 2403 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2404 2405 if (fwspec) 2406 return ops == fwspec->ops ? 0 : -EINVAL; 2407 2408 fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL); 2409 if (!fwspec) 2410 return -ENOMEM; 2411 2412 of_node_get(to_of_node(iommu_fwnode)); 2413 fwspec->iommu_fwnode = iommu_fwnode; 2414 fwspec->ops = ops; 2415 dev_iommu_fwspec_set(dev, fwspec); 2416 return 0; 2417 } 2418 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2419 2420 void iommu_fwspec_free(struct device *dev) 2421 { 2422 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2423 2424 if (fwspec) { 2425 fwnode_handle_put(fwspec->iommu_fwnode); 2426 kfree(fwspec); 2427 dev_iommu_fwspec_set(dev, NULL); 2428 } 2429 } 2430 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2431 2432 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2433 { 2434 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2435 size_t size; 2436 int i; 2437 2438 if (!fwspec) 2439 return -EINVAL; 2440 2441 size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]); 2442 if (size > sizeof(*fwspec)) { 2443 fwspec = krealloc(fwspec, size, GFP_KERNEL); 2444 if (!fwspec) 2445 return -ENOMEM; 2446 2447 dev_iommu_fwspec_set(dev, fwspec); 2448 } 2449 2450 for (i = 0; i < num_ids; i++) 2451 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2452 2453 fwspec->num_ids += num_ids; 2454 return 0; 2455 } 2456 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2457 2458 /* 2459 * Per device IOMMU features. 2460 */ 2461 bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat) 2462 { 2463 const struct iommu_ops *ops = dev->bus->iommu_ops; 2464 2465 if (ops && ops->dev_has_feat) 2466 return ops->dev_has_feat(dev, feat); 2467 2468 return false; 2469 } 2470 EXPORT_SYMBOL_GPL(iommu_dev_has_feature); 2471 2472 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2473 { 2474 const struct iommu_ops *ops = dev->bus->iommu_ops; 2475 2476 if (ops && ops->dev_enable_feat) 2477 return ops->dev_enable_feat(dev, feat); 2478 2479 return -ENODEV; 2480 } 2481 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2482 2483 /* 2484 * The device drivers should do the necessary cleanups before calling this. 2485 * For example, before disabling the aux-domain feature, the device driver 2486 * should detach all aux-domains. Otherwise, this will return -EBUSY. 2487 */ 2488 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2489 { 2490 const struct iommu_ops *ops = dev->bus->iommu_ops; 2491 2492 if (ops && ops->dev_disable_feat) 2493 return ops->dev_disable_feat(dev, feat); 2494 2495 return -EBUSY; 2496 } 2497 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2498 2499 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat) 2500 { 2501 const struct iommu_ops *ops = dev->bus->iommu_ops; 2502 2503 if (ops && ops->dev_feat_enabled) 2504 return ops->dev_feat_enabled(dev, feat); 2505 2506 return false; 2507 } 2508 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled); 2509 2510 /* 2511 * Aux-domain specific attach/detach. 2512 * 2513 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns 2514 * true. Also, as long as domains are attached to a device through this 2515 * interface, any tries to call iommu_attach_device() should fail 2516 * (iommu_detach_device() can't fail, so we fail when trying to re-attach). 2517 * This should make us safe against a device being attached to a guest as a 2518 * whole while there are still pasid users on it (aux and sva). 2519 */ 2520 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev) 2521 { 2522 int ret = -ENODEV; 2523 2524 if (domain->ops->aux_attach_dev) 2525 ret = domain->ops->aux_attach_dev(domain, dev); 2526 2527 if (!ret) 2528 trace_attach_device_to_domain(dev); 2529 2530 return ret; 2531 } 2532 EXPORT_SYMBOL_GPL(iommu_aux_attach_device); 2533 2534 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev) 2535 { 2536 if (domain->ops->aux_detach_dev) { 2537 domain->ops->aux_detach_dev(domain, dev); 2538 trace_detach_device_from_domain(dev); 2539 } 2540 } 2541 EXPORT_SYMBOL_GPL(iommu_aux_detach_device); 2542 2543 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) 2544 { 2545 int ret = -ENODEV; 2546 2547 if (domain->ops->aux_get_pasid) 2548 ret = domain->ops->aux_get_pasid(domain, dev); 2549 2550 return ret; 2551 } 2552 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid); 2553 2554 /** 2555 * iommu_sva_bind_device() - Bind a process address space to a device 2556 * @dev: the device 2557 * @mm: the mm to bind, caller must hold a reference to it 2558 * 2559 * Create a bond between device and address space, allowing the device to access 2560 * the mm using the returned PASID. If a bond already exists between @device and 2561 * @mm, it is returned and an additional reference is taken. Caller must call 2562 * iommu_sva_unbind_device() to release each reference. 2563 * 2564 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to 2565 * initialize the required SVA features. 2566 * 2567 * On error, returns an ERR_PTR value. 2568 */ 2569 struct iommu_sva * 2570 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata) 2571 { 2572 struct iommu_group *group; 2573 struct iommu_sva *handle = ERR_PTR(-EINVAL); 2574 const struct iommu_ops *ops = dev->bus->iommu_ops; 2575 2576 if (!ops || !ops->sva_bind) 2577 return ERR_PTR(-ENODEV); 2578 2579 group = iommu_group_get(dev); 2580 if (!group) 2581 return ERR_PTR(-ENODEV); 2582 2583 /* Ensure device count and domain don't change while we're binding */ 2584 mutex_lock(&group->mutex); 2585 2586 /* 2587 * To keep things simple, SVA currently doesn't support IOMMU groups 2588 * with more than one device. Existing SVA-capable systems are not 2589 * affected by the problems that required IOMMU groups (lack of ACS 2590 * isolation, device ID aliasing and other hardware issues). 2591 */ 2592 if (iommu_group_device_count(group) != 1) 2593 goto out_unlock; 2594 2595 handle = ops->sva_bind(dev, mm, drvdata); 2596 2597 out_unlock: 2598 mutex_unlock(&group->mutex); 2599 iommu_group_put(group); 2600 2601 return handle; 2602 } 2603 EXPORT_SYMBOL_GPL(iommu_sva_bind_device); 2604 2605 /** 2606 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device 2607 * @handle: the handle returned by iommu_sva_bind_device() 2608 * 2609 * Put reference to a bond between device and address space. The device should 2610 * not be issuing any more transaction for this PASID. All outstanding page 2611 * requests for this PASID must have been flushed to the IOMMU. 2612 * 2613 * Returns 0 on success, or an error value 2614 */ 2615 void iommu_sva_unbind_device(struct iommu_sva *handle) 2616 { 2617 struct iommu_group *group; 2618 struct device *dev = handle->dev; 2619 const struct iommu_ops *ops = dev->bus->iommu_ops; 2620 2621 if (!ops || !ops->sva_unbind) 2622 return; 2623 2624 group = iommu_group_get(dev); 2625 if (!group) 2626 return; 2627 2628 mutex_lock(&group->mutex); 2629 ops->sva_unbind(handle); 2630 mutex_unlock(&group->mutex); 2631 2632 iommu_group_put(group); 2633 } 2634 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device); 2635 2636 int iommu_sva_set_ops(struct iommu_sva *handle, 2637 const struct iommu_sva_ops *sva_ops) 2638 { 2639 if (handle->ops && handle->ops != sva_ops) 2640 return -EEXIST; 2641 2642 handle->ops = sva_ops; 2643 return 0; 2644 } 2645 EXPORT_SYMBOL_GPL(iommu_sva_set_ops); 2646 2647 int iommu_sva_get_pasid(struct iommu_sva *handle) 2648 { 2649 const struct iommu_ops *ops = handle->dev->bus->iommu_ops; 2650 2651 if (!ops || !ops->sva_get_pasid) 2652 return IOMMU_PASID_INVALID; 2653 2654 return ops->sva_get_pasid(handle); 2655 } 2656 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid); 2657