1 /* 2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 3 * Author: Joerg Roedel <jroedel@suse.de> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19 #define pr_fmt(fmt) "iommu: " fmt 20 21 #include <linux/device.h> 22 #include <linux/kernel.h> 23 #include <linux/bug.h> 24 #include <linux/types.h> 25 #include <linux/module.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/iommu.h> 29 #include <linux/idr.h> 30 #include <linux/notifier.h> 31 #include <linux/err.h> 32 #include <linux/pci.h> 33 #include <linux/bitops.h> 34 #include <linux/property.h> 35 #include <trace/events/iommu.h> 36 37 static struct kset *iommu_group_kset; 38 static DEFINE_IDA(iommu_group_ida); 39 static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_DMA; 40 41 struct iommu_callback_data { 42 const struct iommu_ops *ops; 43 }; 44 45 struct iommu_group { 46 struct kobject kobj; 47 struct kobject *devices_kobj; 48 struct list_head devices; 49 struct mutex mutex; 50 struct blocking_notifier_head notifier; 51 void *iommu_data; 52 void (*iommu_data_release)(void *iommu_data); 53 char *name; 54 int id; 55 struct iommu_domain *default_domain; 56 struct iommu_domain *domain; 57 }; 58 59 struct group_device { 60 struct list_head list; 61 struct device *dev; 62 char *name; 63 }; 64 65 struct iommu_group_attribute { 66 struct attribute attr; 67 ssize_t (*show)(struct iommu_group *group, char *buf); 68 ssize_t (*store)(struct iommu_group *group, 69 const char *buf, size_t count); 70 }; 71 72 static const char * const iommu_group_resv_type_string[] = { 73 [IOMMU_RESV_DIRECT] = "direct", 74 [IOMMU_RESV_RESERVED] = "reserved", 75 [IOMMU_RESV_MSI] = "msi", 76 [IOMMU_RESV_SW_MSI] = "msi", 77 }; 78 79 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 80 struct iommu_group_attribute iommu_group_attr_##_name = \ 81 __ATTR(_name, _mode, _show, _store) 82 83 #define to_iommu_group_attr(_attr) \ 84 container_of(_attr, struct iommu_group_attribute, attr) 85 #define to_iommu_group(_kobj) \ 86 container_of(_kobj, struct iommu_group, kobj) 87 88 static LIST_HEAD(iommu_device_list); 89 static DEFINE_SPINLOCK(iommu_device_lock); 90 91 int iommu_device_register(struct iommu_device *iommu) 92 { 93 spin_lock(&iommu_device_lock); 94 list_add_tail(&iommu->list, &iommu_device_list); 95 spin_unlock(&iommu_device_lock); 96 97 return 0; 98 } 99 100 void iommu_device_unregister(struct iommu_device *iommu) 101 { 102 spin_lock(&iommu_device_lock); 103 list_del(&iommu->list); 104 spin_unlock(&iommu_device_lock); 105 } 106 107 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 108 unsigned type); 109 static int __iommu_attach_device(struct iommu_domain *domain, 110 struct device *dev); 111 static int __iommu_attach_group(struct iommu_domain *domain, 112 struct iommu_group *group); 113 static void __iommu_detach_group(struct iommu_domain *domain, 114 struct iommu_group *group); 115 116 static int __init iommu_set_def_domain_type(char *str) 117 { 118 bool pt; 119 120 if (!str || strtobool(str, &pt)) 121 return -EINVAL; 122 123 iommu_def_domain_type = pt ? IOMMU_DOMAIN_IDENTITY : IOMMU_DOMAIN_DMA; 124 return 0; 125 } 126 early_param("iommu.passthrough", iommu_set_def_domain_type); 127 128 static ssize_t iommu_group_attr_show(struct kobject *kobj, 129 struct attribute *__attr, char *buf) 130 { 131 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 132 struct iommu_group *group = to_iommu_group(kobj); 133 ssize_t ret = -EIO; 134 135 if (attr->show) 136 ret = attr->show(group, buf); 137 return ret; 138 } 139 140 static ssize_t iommu_group_attr_store(struct kobject *kobj, 141 struct attribute *__attr, 142 const char *buf, size_t count) 143 { 144 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 145 struct iommu_group *group = to_iommu_group(kobj); 146 ssize_t ret = -EIO; 147 148 if (attr->store) 149 ret = attr->store(group, buf, count); 150 return ret; 151 } 152 153 static const struct sysfs_ops iommu_group_sysfs_ops = { 154 .show = iommu_group_attr_show, 155 .store = iommu_group_attr_store, 156 }; 157 158 static int iommu_group_create_file(struct iommu_group *group, 159 struct iommu_group_attribute *attr) 160 { 161 return sysfs_create_file(&group->kobj, &attr->attr); 162 } 163 164 static void iommu_group_remove_file(struct iommu_group *group, 165 struct iommu_group_attribute *attr) 166 { 167 sysfs_remove_file(&group->kobj, &attr->attr); 168 } 169 170 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 171 { 172 return sprintf(buf, "%s\n", group->name); 173 } 174 175 /** 176 * iommu_insert_resv_region - Insert a new region in the 177 * list of reserved regions. 178 * @new: new region to insert 179 * @regions: list of regions 180 * 181 * The new element is sorted by address with respect to the other 182 * regions of the same type. In case it overlaps with another 183 * region of the same type, regions are merged. In case it 184 * overlaps with another region of different type, regions are 185 * not merged. 186 */ 187 static int iommu_insert_resv_region(struct iommu_resv_region *new, 188 struct list_head *regions) 189 { 190 struct iommu_resv_region *region; 191 phys_addr_t start = new->start; 192 phys_addr_t end = new->start + new->length - 1; 193 struct list_head *pos = regions->next; 194 195 while (pos != regions) { 196 struct iommu_resv_region *entry = 197 list_entry(pos, struct iommu_resv_region, list); 198 phys_addr_t a = entry->start; 199 phys_addr_t b = entry->start + entry->length - 1; 200 int type = entry->type; 201 202 if (end < a) { 203 goto insert; 204 } else if (start > b) { 205 pos = pos->next; 206 } else if ((start >= a) && (end <= b)) { 207 if (new->type == type) 208 goto done; 209 else 210 pos = pos->next; 211 } else { 212 if (new->type == type) { 213 phys_addr_t new_start = min(a, start); 214 phys_addr_t new_end = max(b, end); 215 216 list_del(&entry->list); 217 entry->start = new_start; 218 entry->length = new_end - new_start + 1; 219 iommu_insert_resv_region(entry, regions); 220 } else { 221 pos = pos->next; 222 } 223 } 224 } 225 insert: 226 region = iommu_alloc_resv_region(new->start, new->length, 227 new->prot, new->type); 228 if (!region) 229 return -ENOMEM; 230 231 list_add_tail(®ion->list, pos); 232 done: 233 return 0; 234 } 235 236 static int 237 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 238 struct list_head *group_resv_regions) 239 { 240 struct iommu_resv_region *entry; 241 int ret = 0; 242 243 list_for_each_entry(entry, dev_resv_regions, list) { 244 ret = iommu_insert_resv_region(entry, group_resv_regions); 245 if (ret) 246 break; 247 } 248 return ret; 249 } 250 251 int iommu_get_group_resv_regions(struct iommu_group *group, 252 struct list_head *head) 253 { 254 struct group_device *device; 255 int ret = 0; 256 257 mutex_lock(&group->mutex); 258 list_for_each_entry(device, &group->devices, list) { 259 struct list_head dev_resv_regions; 260 261 INIT_LIST_HEAD(&dev_resv_regions); 262 iommu_get_resv_regions(device->dev, &dev_resv_regions); 263 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 264 iommu_put_resv_regions(device->dev, &dev_resv_regions); 265 if (ret) 266 break; 267 } 268 mutex_unlock(&group->mutex); 269 return ret; 270 } 271 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 272 273 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 274 char *buf) 275 { 276 struct iommu_resv_region *region, *next; 277 struct list_head group_resv_regions; 278 char *str = buf; 279 280 INIT_LIST_HEAD(&group_resv_regions); 281 iommu_get_group_resv_regions(group, &group_resv_regions); 282 283 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 284 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 285 (long long int)region->start, 286 (long long int)(region->start + 287 region->length - 1), 288 iommu_group_resv_type_string[region->type]); 289 kfree(region); 290 } 291 292 return (str - buf); 293 } 294 295 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 296 297 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 298 iommu_group_show_resv_regions, NULL); 299 300 static void iommu_group_release(struct kobject *kobj) 301 { 302 struct iommu_group *group = to_iommu_group(kobj); 303 304 pr_debug("Releasing group %d\n", group->id); 305 306 if (group->iommu_data_release) 307 group->iommu_data_release(group->iommu_data); 308 309 ida_simple_remove(&iommu_group_ida, group->id); 310 311 if (group->default_domain) 312 iommu_domain_free(group->default_domain); 313 314 kfree(group->name); 315 kfree(group); 316 } 317 318 static struct kobj_type iommu_group_ktype = { 319 .sysfs_ops = &iommu_group_sysfs_ops, 320 .release = iommu_group_release, 321 }; 322 323 /** 324 * iommu_group_alloc - Allocate a new group 325 * @name: Optional name to associate with group, visible in sysfs 326 * 327 * This function is called by an iommu driver to allocate a new iommu 328 * group. The iommu group represents the minimum granularity of the iommu. 329 * Upon successful return, the caller holds a reference to the supplied 330 * group in order to hold the group until devices are added. Use 331 * iommu_group_put() to release this extra reference count, allowing the 332 * group to be automatically reclaimed once it has no devices or external 333 * references. 334 */ 335 struct iommu_group *iommu_group_alloc(void) 336 { 337 struct iommu_group *group; 338 int ret; 339 340 group = kzalloc(sizeof(*group), GFP_KERNEL); 341 if (!group) 342 return ERR_PTR(-ENOMEM); 343 344 group->kobj.kset = iommu_group_kset; 345 mutex_init(&group->mutex); 346 INIT_LIST_HEAD(&group->devices); 347 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 348 349 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 350 if (ret < 0) { 351 kfree(group); 352 return ERR_PTR(ret); 353 } 354 group->id = ret; 355 356 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 357 NULL, "%d", group->id); 358 if (ret) { 359 ida_simple_remove(&iommu_group_ida, group->id); 360 kfree(group); 361 return ERR_PTR(ret); 362 } 363 364 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 365 if (!group->devices_kobj) { 366 kobject_put(&group->kobj); /* triggers .release & free */ 367 return ERR_PTR(-ENOMEM); 368 } 369 370 /* 371 * The devices_kobj holds a reference on the group kobject, so 372 * as long as that exists so will the group. We can therefore 373 * use the devices_kobj for reference counting. 374 */ 375 kobject_put(&group->kobj); 376 377 ret = iommu_group_create_file(group, 378 &iommu_group_attr_reserved_regions); 379 if (ret) 380 return ERR_PTR(ret); 381 382 pr_debug("Allocated group %d\n", group->id); 383 384 return group; 385 } 386 EXPORT_SYMBOL_GPL(iommu_group_alloc); 387 388 struct iommu_group *iommu_group_get_by_id(int id) 389 { 390 struct kobject *group_kobj; 391 struct iommu_group *group; 392 const char *name; 393 394 if (!iommu_group_kset) 395 return NULL; 396 397 name = kasprintf(GFP_KERNEL, "%d", id); 398 if (!name) 399 return NULL; 400 401 group_kobj = kset_find_obj(iommu_group_kset, name); 402 kfree(name); 403 404 if (!group_kobj) 405 return NULL; 406 407 group = container_of(group_kobj, struct iommu_group, kobj); 408 BUG_ON(group->id != id); 409 410 kobject_get(group->devices_kobj); 411 kobject_put(&group->kobj); 412 413 return group; 414 } 415 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 416 417 /** 418 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 419 * @group: the group 420 * 421 * iommu drivers can store data in the group for use when doing iommu 422 * operations. This function provides a way to retrieve it. Caller 423 * should hold a group reference. 424 */ 425 void *iommu_group_get_iommudata(struct iommu_group *group) 426 { 427 return group->iommu_data; 428 } 429 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 430 431 /** 432 * iommu_group_set_iommudata - set iommu_data for a group 433 * @group: the group 434 * @iommu_data: new data 435 * @release: release function for iommu_data 436 * 437 * iommu drivers can store data in the group for use when doing iommu 438 * operations. This function provides a way to set the data after 439 * the group has been allocated. Caller should hold a group reference. 440 */ 441 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 442 void (*release)(void *iommu_data)) 443 { 444 group->iommu_data = iommu_data; 445 group->iommu_data_release = release; 446 } 447 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 448 449 /** 450 * iommu_group_set_name - set name for a group 451 * @group: the group 452 * @name: name 453 * 454 * Allow iommu driver to set a name for a group. When set it will 455 * appear in a name attribute file under the group in sysfs. 456 */ 457 int iommu_group_set_name(struct iommu_group *group, const char *name) 458 { 459 int ret; 460 461 if (group->name) { 462 iommu_group_remove_file(group, &iommu_group_attr_name); 463 kfree(group->name); 464 group->name = NULL; 465 if (!name) 466 return 0; 467 } 468 469 group->name = kstrdup(name, GFP_KERNEL); 470 if (!group->name) 471 return -ENOMEM; 472 473 ret = iommu_group_create_file(group, &iommu_group_attr_name); 474 if (ret) { 475 kfree(group->name); 476 group->name = NULL; 477 return ret; 478 } 479 480 return 0; 481 } 482 EXPORT_SYMBOL_GPL(iommu_group_set_name); 483 484 static int iommu_group_create_direct_mappings(struct iommu_group *group, 485 struct device *dev) 486 { 487 struct iommu_domain *domain = group->default_domain; 488 struct iommu_resv_region *entry; 489 struct list_head mappings; 490 unsigned long pg_size; 491 int ret = 0; 492 493 if (!domain || domain->type != IOMMU_DOMAIN_DMA) 494 return 0; 495 496 BUG_ON(!domain->pgsize_bitmap); 497 498 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 499 INIT_LIST_HEAD(&mappings); 500 501 iommu_get_resv_regions(dev, &mappings); 502 503 /* We need to consider overlapping regions for different devices */ 504 list_for_each_entry(entry, &mappings, list) { 505 dma_addr_t start, end, addr; 506 507 if (domain->ops->apply_resv_region) 508 domain->ops->apply_resv_region(dev, domain, entry); 509 510 start = ALIGN(entry->start, pg_size); 511 end = ALIGN(entry->start + entry->length, pg_size); 512 513 if (entry->type != IOMMU_RESV_DIRECT) 514 continue; 515 516 for (addr = start; addr < end; addr += pg_size) { 517 phys_addr_t phys_addr; 518 519 phys_addr = iommu_iova_to_phys(domain, addr); 520 if (phys_addr) 521 continue; 522 523 ret = iommu_map(domain, addr, addr, pg_size, entry->prot); 524 if (ret) 525 goto out; 526 } 527 528 } 529 530 iommu_flush_tlb_all(domain); 531 532 out: 533 iommu_put_resv_regions(dev, &mappings); 534 535 return ret; 536 } 537 538 /** 539 * iommu_group_add_device - add a device to an iommu group 540 * @group: the group into which to add the device (reference should be held) 541 * @dev: the device 542 * 543 * This function is called by an iommu driver to add a device into a 544 * group. Adding a device increments the group reference count. 545 */ 546 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 547 { 548 int ret, i = 0; 549 struct group_device *device; 550 551 device = kzalloc(sizeof(*device), GFP_KERNEL); 552 if (!device) 553 return -ENOMEM; 554 555 device->dev = dev; 556 557 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 558 if (ret) 559 goto err_free_device; 560 561 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 562 rename: 563 if (!device->name) { 564 ret = -ENOMEM; 565 goto err_remove_link; 566 } 567 568 ret = sysfs_create_link_nowarn(group->devices_kobj, 569 &dev->kobj, device->name); 570 if (ret) { 571 if (ret == -EEXIST && i >= 0) { 572 /* 573 * Account for the slim chance of collision 574 * and append an instance to the name. 575 */ 576 kfree(device->name); 577 device->name = kasprintf(GFP_KERNEL, "%s.%d", 578 kobject_name(&dev->kobj), i++); 579 goto rename; 580 } 581 goto err_free_name; 582 } 583 584 kobject_get(group->devices_kobj); 585 586 dev->iommu_group = group; 587 588 iommu_group_create_direct_mappings(group, dev); 589 590 mutex_lock(&group->mutex); 591 list_add_tail(&device->list, &group->devices); 592 if (group->domain) 593 ret = __iommu_attach_device(group->domain, dev); 594 mutex_unlock(&group->mutex); 595 if (ret) 596 goto err_put_group; 597 598 /* Notify any listeners about change to group. */ 599 blocking_notifier_call_chain(&group->notifier, 600 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 601 602 trace_add_device_to_group(group->id, dev); 603 604 pr_info("Adding device %s to group %d\n", dev_name(dev), group->id); 605 606 return 0; 607 608 err_put_group: 609 mutex_lock(&group->mutex); 610 list_del(&device->list); 611 mutex_unlock(&group->mutex); 612 dev->iommu_group = NULL; 613 kobject_put(group->devices_kobj); 614 err_free_name: 615 kfree(device->name); 616 err_remove_link: 617 sysfs_remove_link(&dev->kobj, "iommu_group"); 618 err_free_device: 619 kfree(device); 620 pr_err("Failed to add device %s to group %d: %d\n", dev_name(dev), group->id, ret); 621 return ret; 622 } 623 EXPORT_SYMBOL_GPL(iommu_group_add_device); 624 625 /** 626 * iommu_group_remove_device - remove a device from it's current group 627 * @dev: device to be removed 628 * 629 * This function is called by an iommu driver to remove the device from 630 * it's current group. This decrements the iommu group reference count. 631 */ 632 void iommu_group_remove_device(struct device *dev) 633 { 634 struct iommu_group *group = dev->iommu_group; 635 struct group_device *tmp_device, *device = NULL; 636 637 pr_info("Removing device %s from group %d\n", dev_name(dev), group->id); 638 639 /* Pre-notify listeners that a device is being removed. */ 640 blocking_notifier_call_chain(&group->notifier, 641 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 642 643 mutex_lock(&group->mutex); 644 list_for_each_entry(tmp_device, &group->devices, list) { 645 if (tmp_device->dev == dev) { 646 device = tmp_device; 647 list_del(&device->list); 648 break; 649 } 650 } 651 mutex_unlock(&group->mutex); 652 653 if (!device) 654 return; 655 656 sysfs_remove_link(group->devices_kobj, device->name); 657 sysfs_remove_link(&dev->kobj, "iommu_group"); 658 659 trace_remove_device_from_group(group->id, dev); 660 661 kfree(device->name); 662 kfree(device); 663 dev->iommu_group = NULL; 664 kobject_put(group->devices_kobj); 665 } 666 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 667 668 static int iommu_group_device_count(struct iommu_group *group) 669 { 670 struct group_device *entry; 671 int ret = 0; 672 673 list_for_each_entry(entry, &group->devices, list) 674 ret++; 675 676 return ret; 677 } 678 679 /** 680 * iommu_group_for_each_dev - iterate over each device in the group 681 * @group: the group 682 * @data: caller opaque data to be passed to callback function 683 * @fn: caller supplied callback function 684 * 685 * This function is called by group users to iterate over group devices. 686 * Callers should hold a reference count to the group during callback. 687 * The group->mutex is held across callbacks, which will block calls to 688 * iommu_group_add/remove_device. 689 */ 690 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 691 int (*fn)(struct device *, void *)) 692 { 693 struct group_device *device; 694 int ret = 0; 695 696 list_for_each_entry(device, &group->devices, list) { 697 ret = fn(device->dev, data); 698 if (ret) 699 break; 700 } 701 return ret; 702 } 703 704 705 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 706 int (*fn)(struct device *, void *)) 707 { 708 int ret; 709 710 mutex_lock(&group->mutex); 711 ret = __iommu_group_for_each_dev(group, data, fn); 712 mutex_unlock(&group->mutex); 713 714 return ret; 715 } 716 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 717 718 /** 719 * iommu_group_get - Return the group for a device and increment reference 720 * @dev: get the group that this device belongs to 721 * 722 * This function is called by iommu drivers and users to get the group 723 * for the specified device. If found, the group is returned and the group 724 * reference in incremented, else NULL. 725 */ 726 struct iommu_group *iommu_group_get(struct device *dev) 727 { 728 struct iommu_group *group = dev->iommu_group; 729 730 if (group) 731 kobject_get(group->devices_kobj); 732 733 return group; 734 } 735 EXPORT_SYMBOL_GPL(iommu_group_get); 736 737 /** 738 * iommu_group_ref_get - Increment reference on a group 739 * @group: the group to use, must not be NULL 740 * 741 * This function is called by iommu drivers to take additional references on an 742 * existing group. Returns the given group for convenience. 743 */ 744 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 745 { 746 kobject_get(group->devices_kobj); 747 return group; 748 } 749 750 /** 751 * iommu_group_put - Decrement group reference 752 * @group: the group to use 753 * 754 * This function is called by iommu drivers and users to release the 755 * iommu group. Once the reference count is zero, the group is released. 756 */ 757 void iommu_group_put(struct iommu_group *group) 758 { 759 if (group) 760 kobject_put(group->devices_kobj); 761 } 762 EXPORT_SYMBOL_GPL(iommu_group_put); 763 764 /** 765 * iommu_group_register_notifier - Register a notifier for group changes 766 * @group: the group to watch 767 * @nb: notifier block to signal 768 * 769 * This function allows iommu group users to track changes in a group. 770 * See include/linux/iommu.h for actions sent via this notifier. Caller 771 * should hold a reference to the group throughout notifier registration. 772 */ 773 int iommu_group_register_notifier(struct iommu_group *group, 774 struct notifier_block *nb) 775 { 776 return blocking_notifier_chain_register(&group->notifier, nb); 777 } 778 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 779 780 /** 781 * iommu_group_unregister_notifier - Unregister a notifier 782 * @group: the group to watch 783 * @nb: notifier block to signal 784 * 785 * Unregister a previously registered group notifier block. 786 */ 787 int iommu_group_unregister_notifier(struct iommu_group *group, 788 struct notifier_block *nb) 789 { 790 return blocking_notifier_chain_unregister(&group->notifier, nb); 791 } 792 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 793 794 /** 795 * iommu_group_id - Return ID for a group 796 * @group: the group to ID 797 * 798 * Return the unique ID for the group matching the sysfs group number. 799 */ 800 int iommu_group_id(struct iommu_group *group) 801 { 802 return group->id; 803 } 804 EXPORT_SYMBOL_GPL(iommu_group_id); 805 806 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 807 unsigned long *devfns); 808 809 /* 810 * To consider a PCI device isolated, we require ACS to support Source 811 * Validation, Request Redirection, Completer Redirection, and Upstream 812 * Forwarding. This effectively means that devices cannot spoof their 813 * requester ID, requests and completions cannot be redirected, and all 814 * transactions are forwarded upstream, even as it passes through a 815 * bridge where the target device is downstream. 816 */ 817 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 818 819 /* 820 * For multifunction devices which are not isolated from each other, find 821 * all the other non-isolated functions and look for existing groups. For 822 * each function, we also need to look for aliases to or from other devices 823 * that may already have a group. 824 */ 825 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 826 unsigned long *devfns) 827 { 828 struct pci_dev *tmp = NULL; 829 struct iommu_group *group; 830 831 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 832 return NULL; 833 834 for_each_pci_dev(tmp) { 835 if (tmp == pdev || tmp->bus != pdev->bus || 836 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 837 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 838 continue; 839 840 group = get_pci_alias_group(tmp, devfns); 841 if (group) { 842 pci_dev_put(tmp); 843 return group; 844 } 845 } 846 847 return NULL; 848 } 849 850 /* 851 * Look for aliases to or from the given device for existing groups. DMA 852 * aliases are only supported on the same bus, therefore the search 853 * space is quite small (especially since we're really only looking at pcie 854 * device, and therefore only expect multiple slots on the root complex or 855 * downstream switch ports). It's conceivable though that a pair of 856 * multifunction devices could have aliases between them that would cause a 857 * loop. To prevent this, we use a bitmap to track where we've been. 858 */ 859 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 860 unsigned long *devfns) 861 { 862 struct pci_dev *tmp = NULL; 863 struct iommu_group *group; 864 865 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 866 return NULL; 867 868 group = iommu_group_get(&pdev->dev); 869 if (group) 870 return group; 871 872 for_each_pci_dev(tmp) { 873 if (tmp == pdev || tmp->bus != pdev->bus) 874 continue; 875 876 /* We alias them or they alias us */ 877 if (pci_devs_are_dma_aliases(pdev, tmp)) { 878 group = get_pci_alias_group(tmp, devfns); 879 if (group) { 880 pci_dev_put(tmp); 881 return group; 882 } 883 884 group = get_pci_function_alias_group(tmp, devfns); 885 if (group) { 886 pci_dev_put(tmp); 887 return group; 888 } 889 } 890 } 891 892 return NULL; 893 } 894 895 struct group_for_pci_data { 896 struct pci_dev *pdev; 897 struct iommu_group *group; 898 }; 899 900 /* 901 * DMA alias iterator callback, return the last seen device. Stop and return 902 * the IOMMU group if we find one along the way. 903 */ 904 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 905 { 906 struct group_for_pci_data *data = opaque; 907 908 data->pdev = pdev; 909 data->group = iommu_group_get(&pdev->dev); 910 911 return data->group != NULL; 912 } 913 914 /* 915 * Generic device_group call-back function. It just allocates one 916 * iommu-group per device. 917 */ 918 struct iommu_group *generic_device_group(struct device *dev) 919 { 920 return iommu_group_alloc(); 921 } 922 923 /* 924 * Use standard PCI bus topology, isolation features, and DMA alias quirks 925 * to find or create an IOMMU group for a device. 926 */ 927 struct iommu_group *pci_device_group(struct device *dev) 928 { 929 struct pci_dev *pdev = to_pci_dev(dev); 930 struct group_for_pci_data data; 931 struct pci_bus *bus; 932 struct iommu_group *group = NULL; 933 u64 devfns[4] = { 0 }; 934 935 if (WARN_ON(!dev_is_pci(dev))) 936 return ERR_PTR(-EINVAL); 937 938 /* 939 * Find the upstream DMA alias for the device. A device must not 940 * be aliased due to topology in order to have its own IOMMU group. 941 * If we find an alias along the way that already belongs to a 942 * group, use it. 943 */ 944 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 945 return data.group; 946 947 pdev = data.pdev; 948 949 /* 950 * Continue upstream from the point of minimum IOMMU granularity 951 * due to aliases to the point where devices are protected from 952 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 953 * group, use it. 954 */ 955 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 956 if (!bus->self) 957 continue; 958 959 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 960 break; 961 962 pdev = bus->self; 963 964 group = iommu_group_get(&pdev->dev); 965 if (group) 966 return group; 967 } 968 969 /* 970 * Look for existing groups on device aliases. If we alias another 971 * device or another device aliases us, use the same group. 972 */ 973 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 974 if (group) 975 return group; 976 977 /* 978 * Look for existing groups on non-isolated functions on the same 979 * slot and aliases of those funcions, if any. No need to clear 980 * the search bitmap, the tested devfns are still valid. 981 */ 982 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 983 if (group) 984 return group; 985 986 /* No shared group found, allocate new */ 987 return iommu_group_alloc(); 988 } 989 990 /** 991 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 992 * @dev: target device 993 * 994 * This function is intended to be called by IOMMU drivers and extended to 995 * support common, bus-defined algorithms when determining or creating the 996 * IOMMU group for a device. On success, the caller will hold a reference 997 * to the returned IOMMU group, which will already include the provided 998 * device. The reference should be released with iommu_group_put(). 999 */ 1000 struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1001 { 1002 const struct iommu_ops *ops = dev->bus->iommu_ops; 1003 struct iommu_group *group; 1004 int ret; 1005 1006 group = iommu_group_get(dev); 1007 if (group) 1008 return group; 1009 1010 if (!ops) 1011 return ERR_PTR(-EINVAL); 1012 1013 group = ops->device_group(dev); 1014 if (WARN_ON_ONCE(group == NULL)) 1015 return ERR_PTR(-EINVAL); 1016 1017 if (IS_ERR(group)) 1018 return group; 1019 1020 /* 1021 * Try to allocate a default domain - needs support from the 1022 * IOMMU driver. 1023 */ 1024 if (!group->default_domain) { 1025 struct iommu_domain *dom; 1026 1027 dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type); 1028 if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) { 1029 dev_warn(dev, 1030 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA", 1031 iommu_def_domain_type); 1032 dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA); 1033 } 1034 1035 group->default_domain = dom; 1036 if (!group->domain) 1037 group->domain = dom; 1038 } 1039 1040 ret = iommu_group_add_device(group, dev); 1041 if (ret) { 1042 iommu_group_put(group); 1043 return ERR_PTR(ret); 1044 } 1045 1046 return group; 1047 } 1048 1049 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1050 { 1051 return group->default_domain; 1052 } 1053 1054 static int add_iommu_group(struct device *dev, void *data) 1055 { 1056 struct iommu_callback_data *cb = data; 1057 const struct iommu_ops *ops = cb->ops; 1058 int ret; 1059 1060 if (!ops->add_device) 1061 return 0; 1062 1063 WARN_ON(dev->iommu_group); 1064 1065 ret = ops->add_device(dev); 1066 1067 /* 1068 * We ignore -ENODEV errors for now, as they just mean that the 1069 * device is not translated by an IOMMU. We still care about 1070 * other errors and fail to initialize when they happen. 1071 */ 1072 if (ret == -ENODEV) 1073 ret = 0; 1074 1075 return ret; 1076 } 1077 1078 static int remove_iommu_group(struct device *dev, void *data) 1079 { 1080 struct iommu_callback_data *cb = data; 1081 const struct iommu_ops *ops = cb->ops; 1082 1083 if (ops->remove_device && dev->iommu_group) 1084 ops->remove_device(dev); 1085 1086 return 0; 1087 } 1088 1089 static int iommu_bus_notifier(struct notifier_block *nb, 1090 unsigned long action, void *data) 1091 { 1092 struct device *dev = data; 1093 const struct iommu_ops *ops = dev->bus->iommu_ops; 1094 struct iommu_group *group; 1095 unsigned long group_action = 0; 1096 1097 /* 1098 * ADD/DEL call into iommu driver ops if provided, which may 1099 * result in ADD/DEL notifiers to group->notifier 1100 */ 1101 if (action == BUS_NOTIFY_ADD_DEVICE) { 1102 if (ops->add_device) { 1103 int ret; 1104 1105 ret = ops->add_device(dev); 1106 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1107 } 1108 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1109 if (ops->remove_device && dev->iommu_group) { 1110 ops->remove_device(dev); 1111 return 0; 1112 } 1113 } 1114 1115 /* 1116 * Remaining BUS_NOTIFYs get filtered and republished to the 1117 * group, if anyone is listening 1118 */ 1119 group = iommu_group_get(dev); 1120 if (!group) 1121 return 0; 1122 1123 switch (action) { 1124 case BUS_NOTIFY_BIND_DRIVER: 1125 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1126 break; 1127 case BUS_NOTIFY_BOUND_DRIVER: 1128 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1129 break; 1130 case BUS_NOTIFY_UNBIND_DRIVER: 1131 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1132 break; 1133 case BUS_NOTIFY_UNBOUND_DRIVER: 1134 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1135 break; 1136 } 1137 1138 if (group_action) 1139 blocking_notifier_call_chain(&group->notifier, 1140 group_action, dev); 1141 1142 iommu_group_put(group); 1143 return 0; 1144 } 1145 1146 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1147 { 1148 int err; 1149 struct notifier_block *nb; 1150 struct iommu_callback_data cb = { 1151 .ops = ops, 1152 }; 1153 1154 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1155 if (!nb) 1156 return -ENOMEM; 1157 1158 nb->notifier_call = iommu_bus_notifier; 1159 1160 err = bus_register_notifier(bus, nb); 1161 if (err) 1162 goto out_free; 1163 1164 err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group); 1165 if (err) 1166 goto out_err; 1167 1168 1169 return 0; 1170 1171 out_err: 1172 /* Clean up */ 1173 bus_for_each_dev(bus, NULL, &cb, remove_iommu_group); 1174 bus_unregister_notifier(bus, nb); 1175 1176 out_free: 1177 kfree(nb); 1178 1179 return err; 1180 } 1181 1182 /** 1183 * bus_set_iommu - set iommu-callbacks for the bus 1184 * @bus: bus. 1185 * @ops: the callbacks provided by the iommu-driver 1186 * 1187 * This function is called by an iommu driver to set the iommu methods 1188 * used for a particular bus. Drivers for devices on that bus can use 1189 * the iommu-api after these ops are registered. 1190 * This special function is needed because IOMMUs are usually devices on 1191 * the bus itself, so the iommu drivers are not initialized when the bus 1192 * is set up. With this function the iommu-driver can set the iommu-ops 1193 * afterwards. 1194 */ 1195 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1196 { 1197 int err; 1198 1199 if (bus->iommu_ops != NULL) 1200 return -EBUSY; 1201 1202 bus->iommu_ops = ops; 1203 1204 /* Do IOMMU specific setup for this bus-type */ 1205 err = iommu_bus_init(bus, ops); 1206 if (err) 1207 bus->iommu_ops = NULL; 1208 1209 return err; 1210 } 1211 EXPORT_SYMBOL_GPL(bus_set_iommu); 1212 1213 bool iommu_present(struct bus_type *bus) 1214 { 1215 return bus->iommu_ops != NULL; 1216 } 1217 EXPORT_SYMBOL_GPL(iommu_present); 1218 1219 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1220 { 1221 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1222 return false; 1223 1224 return bus->iommu_ops->capable(cap); 1225 } 1226 EXPORT_SYMBOL_GPL(iommu_capable); 1227 1228 /** 1229 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1230 * @domain: iommu domain 1231 * @handler: fault handler 1232 * @token: user data, will be passed back to the fault handler 1233 * 1234 * This function should be used by IOMMU users which want to be notified 1235 * whenever an IOMMU fault happens. 1236 * 1237 * The fault handler itself should return 0 on success, and an appropriate 1238 * error code otherwise. 1239 */ 1240 void iommu_set_fault_handler(struct iommu_domain *domain, 1241 iommu_fault_handler_t handler, 1242 void *token) 1243 { 1244 BUG_ON(!domain); 1245 1246 domain->handler = handler; 1247 domain->handler_token = token; 1248 } 1249 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1250 1251 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1252 unsigned type) 1253 { 1254 struct iommu_domain *domain; 1255 1256 if (bus == NULL || bus->iommu_ops == NULL) 1257 return NULL; 1258 1259 domain = bus->iommu_ops->domain_alloc(type); 1260 if (!domain) 1261 return NULL; 1262 1263 domain->ops = bus->iommu_ops; 1264 domain->type = type; 1265 /* Assume all sizes by default; the driver may override this later */ 1266 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1267 1268 return domain; 1269 } 1270 1271 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1272 { 1273 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1274 } 1275 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1276 1277 void iommu_domain_free(struct iommu_domain *domain) 1278 { 1279 domain->ops->domain_free(domain); 1280 } 1281 EXPORT_SYMBOL_GPL(iommu_domain_free); 1282 1283 static int __iommu_attach_device(struct iommu_domain *domain, 1284 struct device *dev) 1285 { 1286 int ret; 1287 if ((domain->ops->is_attach_deferred != NULL) && 1288 domain->ops->is_attach_deferred(domain, dev)) 1289 return 0; 1290 1291 if (unlikely(domain->ops->attach_dev == NULL)) 1292 return -ENODEV; 1293 1294 ret = domain->ops->attach_dev(domain, dev); 1295 if (!ret) 1296 trace_attach_device_to_domain(dev); 1297 return ret; 1298 } 1299 1300 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1301 { 1302 struct iommu_group *group; 1303 int ret; 1304 1305 group = iommu_group_get(dev); 1306 if (!group) 1307 return -ENODEV; 1308 1309 /* 1310 * Lock the group to make sure the device-count doesn't 1311 * change while we are attaching 1312 */ 1313 mutex_lock(&group->mutex); 1314 ret = -EINVAL; 1315 if (iommu_group_device_count(group) != 1) 1316 goto out_unlock; 1317 1318 ret = __iommu_attach_group(domain, group); 1319 1320 out_unlock: 1321 mutex_unlock(&group->mutex); 1322 iommu_group_put(group); 1323 1324 return ret; 1325 } 1326 EXPORT_SYMBOL_GPL(iommu_attach_device); 1327 1328 static void __iommu_detach_device(struct iommu_domain *domain, 1329 struct device *dev) 1330 { 1331 if ((domain->ops->is_attach_deferred != NULL) && 1332 domain->ops->is_attach_deferred(domain, dev)) 1333 return; 1334 1335 if (unlikely(domain->ops->detach_dev == NULL)) 1336 return; 1337 1338 domain->ops->detach_dev(domain, dev); 1339 trace_detach_device_from_domain(dev); 1340 } 1341 1342 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 1343 { 1344 struct iommu_group *group; 1345 1346 group = iommu_group_get(dev); 1347 if (!group) 1348 return; 1349 1350 mutex_lock(&group->mutex); 1351 if (iommu_group_device_count(group) != 1) { 1352 WARN_ON(1); 1353 goto out_unlock; 1354 } 1355 1356 __iommu_detach_group(domain, group); 1357 1358 out_unlock: 1359 mutex_unlock(&group->mutex); 1360 iommu_group_put(group); 1361 } 1362 EXPORT_SYMBOL_GPL(iommu_detach_device); 1363 1364 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 1365 { 1366 struct iommu_domain *domain; 1367 struct iommu_group *group; 1368 1369 group = iommu_group_get(dev); 1370 if (!group) 1371 return NULL; 1372 1373 domain = group->domain; 1374 1375 iommu_group_put(group); 1376 1377 return domain; 1378 } 1379 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 1380 1381 /* 1382 * IOMMU groups are really the natrual working unit of the IOMMU, but 1383 * the IOMMU API works on domains and devices. Bridge that gap by 1384 * iterating over the devices in a group. Ideally we'd have a single 1385 * device which represents the requestor ID of the group, but we also 1386 * allow IOMMU drivers to create policy defined minimum sets, where 1387 * the physical hardware may be able to distiguish members, but we 1388 * wish to group them at a higher level (ex. untrusted multi-function 1389 * PCI devices). Thus we attach each device. 1390 */ 1391 static int iommu_group_do_attach_device(struct device *dev, void *data) 1392 { 1393 struct iommu_domain *domain = data; 1394 1395 return __iommu_attach_device(domain, dev); 1396 } 1397 1398 static int __iommu_attach_group(struct iommu_domain *domain, 1399 struct iommu_group *group) 1400 { 1401 int ret; 1402 1403 if (group->default_domain && group->domain != group->default_domain) 1404 return -EBUSY; 1405 1406 ret = __iommu_group_for_each_dev(group, domain, 1407 iommu_group_do_attach_device); 1408 if (ret == 0) 1409 group->domain = domain; 1410 1411 return ret; 1412 } 1413 1414 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 1415 { 1416 int ret; 1417 1418 mutex_lock(&group->mutex); 1419 ret = __iommu_attach_group(domain, group); 1420 mutex_unlock(&group->mutex); 1421 1422 return ret; 1423 } 1424 EXPORT_SYMBOL_GPL(iommu_attach_group); 1425 1426 static int iommu_group_do_detach_device(struct device *dev, void *data) 1427 { 1428 struct iommu_domain *domain = data; 1429 1430 __iommu_detach_device(domain, dev); 1431 1432 return 0; 1433 } 1434 1435 static void __iommu_detach_group(struct iommu_domain *domain, 1436 struct iommu_group *group) 1437 { 1438 int ret; 1439 1440 if (!group->default_domain) { 1441 __iommu_group_for_each_dev(group, domain, 1442 iommu_group_do_detach_device); 1443 group->domain = NULL; 1444 return; 1445 } 1446 1447 if (group->domain == group->default_domain) 1448 return; 1449 1450 /* Detach by re-attaching to the default domain */ 1451 ret = __iommu_group_for_each_dev(group, group->default_domain, 1452 iommu_group_do_attach_device); 1453 if (ret != 0) 1454 WARN_ON(1); 1455 else 1456 group->domain = group->default_domain; 1457 } 1458 1459 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 1460 { 1461 mutex_lock(&group->mutex); 1462 __iommu_detach_group(domain, group); 1463 mutex_unlock(&group->mutex); 1464 } 1465 EXPORT_SYMBOL_GPL(iommu_detach_group); 1466 1467 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 1468 { 1469 if (unlikely(domain->ops->iova_to_phys == NULL)) 1470 return 0; 1471 1472 return domain->ops->iova_to_phys(domain, iova); 1473 } 1474 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 1475 1476 static size_t iommu_pgsize(struct iommu_domain *domain, 1477 unsigned long addr_merge, size_t size) 1478 { 1479 unsigned int pgsize_idx; 1480 size_t pgsize; 1481 1482 /* Max page size that still fits into 'size' */ 1483 pgsize_idx = __fls(size); 1484 1485 /* need to consider alignment requirements ? */ 1486 if (likely(addr_merge)) { 1487 /* Max page size allowed by address */ 1488 unsigned int align_pgsize_idx = __ffs(addr_merge); 1489 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 1490 } 1491 1492 /* build a mask of acceptable page sizes */ 1493 pgsize = (1UL << (pgsize_idx + 1)) - 1; 1494 1495 /* throw away page sizes not supported by the hardware */ 1496 pgsize &= domain->pgsize_bitmap; 1497 1498 /* make sure we're still sane */ 1499 BUG_ON(!pgsize); 1500 1501 /* pick the biggest page */ 1502 pgsize_idx = __fls(pgsize); 1503 pgsize = 1UL << pgsize_idx; 1504 1505 return pgsize; 1506 } 1507 1508 int iommu_map(struct iommu_domain *domain, unsigned long iova, 1509 phys_addr_t paddr, size_t size, int prot) 1510 { 1511 unsigned long orig_iova = iova; 1512 unsigned int min_pagesz; 1513 size_t orig_size = size; 1514 phys_addr_t orig_paddr = paddr; 1515 int ret = 0; 1516 1517 if (unlikely(domain->ops->map == NULL || 1518 domain->pgsize_bitmap == 0UL)) 1519 return -ENODEV; 1520 1521 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1522 return -EINVAL; 1523 1524 /* find out the minimum page size supported */ 1525 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1526 1527 /* 1528 * both the virtual address and the physical one, as well as 1529 * the size of the mapping, must be aligned (at least) to the 1530 * size of the smallest page supported by the hardware 1531 */ 1532 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 1533 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 1534 iova, &paddr, size, min_pagesz); 1535 return -EINVAL; 1536 } 1537 1538 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 1539 1540 while (size) { 1541 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 1542 1543 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 1544 iova, &paddr, pgsize); 1545 1546 ret = domain->ops->map(domain, iova, paddr, pgsize, prot); 1547 if (ret) 1548 break; 1549 1550 iova += pgsize; 1551 paddr += pgsize; 1552 size -= pgsize; 1553 } 1554 1555 /* unroll mapping in case something went wrong */ 1556 if (ret) 1557 iommu_unmap(domain, orig_iova, orig_size - size); 1558 else 1559 trace_map(orig_iova, orig_paddr, orig_size); 1560 1561 return ret; 1562 } 1563 EXPORT_SYMBOL_GPL(iommu_map); 1564 1565 static size_t __iommu_unmap(struct iommu_domain *domain, 1566 unsigned long iova, size_t size, 1567 bool sync) 1568 { 1569 const struct iommu_ops *ops = domain->ops; 1570 size_t unmapped_page, unmapped = 0; 1571 unsigned long orig_iova = iova; 1572 unsigned int min_pagesz; 1573 1574 if (unlikely(ops->unmap == NULL || 1575 domain->pgsize_bitmap == 0UL)) 1576 return 0; 1577 1578 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1579 return 0; 1580 1581 /* find out the minimum page size supported */ 1582 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1583 1584 /* 1585 * The virtual address, as well as the size of the mapping, must be 1586 * aligned (at least) to the size of the smallest page supported 1587 * by the hardware 1588 */ 1589 if (!IS_ALIGNED(iova | size, min_pagesz)) { 1590 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 1591 iova, size, min_pagesz); 1592 return 0; 1593 } 1594 1595 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 1596 1597 /* 1598 * Keep iterating until we either unmap 'size' bytes (or more) 1599 * or we hit an area that isn't mapped. 1600 */ 1601 while (unmapped < size) { 1602 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 1603 1604 unmapped_page = ops->unmap(domain, iova, pgsize); 1605 if (!unmapped_page) 1606 break; 1607 1608 if (sync && ops->iotlb_range_add) 1609 ops->iotlb_range_add(domain, iova, pgsize); 1610 1611 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 1612 iova, unmapped_page); 1613 1614 iova += unmapped_page; 1615 unmapped += unmapped_page; 1616 } 1617 1618 if (sync && ops->iotlb_sync) 1619 ops->iotlb_sync(domain); 1620 1621 trace_unmap(orig_iova, size, unmapped); 1622 return unmapped; 1623 } 1624 1625 size_t iommu_unmap(struct iommu_domain *domain, 1626 unsigned long iova, size_t size) 1627 { 1628 return __iommu_unmap(domain, iova, size, true); 1629 } 1630 EXPORT_SYMBOL_GPL(iommu_unmap); 1631 1632 size_t iommu_unmap_fast(struct iommu_domain *domain, 1633 unsigned long iova, size_t size) 1634 { 1635 return __iommu_unmap(domain, iova, size, false); 1636 } 1637 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 1638 1639 size_t default_iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 1640 struct scatterlist *sg, unsigned int nents, int prot) 1641 { 1642 struct scatterlist *s; 1643 size_t mapped = 0; 1644 unsigned int i, min_pagesz; 1645 int ret; 1646 1647 if (unlikely(domain->pgsize_bitmap == 0UL)) 1648 return 0; 1649 1650 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1651 1652 for_each_sg(sg, s, nents, i) { 1653 phys_addr_t phys = page_to_phys(sg_page(s)) + s->offset; 1654 1655 /* 1656 * We are mapping on IOMMU page boundaries, so offset within 1657 * the page must be 0. However, the IOMMU may support pages 1658 * smaller than PAGE_SIZE, so s->offset may still represent 1659 * an offset of that boundary within the CPU page. 1660 */ 1661 if (!IS_ALIGNED(s->offset, min_pagesz)) 1662 goto out_err; 1663 1664 ret = iommu_map(domain, iova + mapped, phys, s->length, prot); 1665 if (ret) 1666 goto out_err; 1667 1668 mapped += s->length; 1669 } 1670 1671 return mapped; 1672 1673 out_err: 1674 /* undo mappings already done */ 1675 iommu_unmap(domain, iova, mapped); 1676 1677 return 0; 1678 1679 } 1680 EXPORT_SYMBOL_GPL(default_iommu_map_sg); 1681 1682 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, 1683 phys_addr_t paddr, u64 size, int prot) 1684 { 1685 if (unlikely(domain->ops->domain_window_enable == NULL)) 1686 return -ENODEV; 1687 1688 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, 1689 prot); 1690 } 1691 EXPORT_SYMBOL_GPL(iommu_domain_window_enable); 1692 1693 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) 1694 { 1695 if (unlikely(domain->ops->domain_window_disable == NULL)) 1696 return; 1697 1698 return domain->ops->domain_window_disable(domain, wnd_nr); 1699 } 1700 EXPORT_SYMBOL_GPL(iommu_domain_window_disable); 1701 1702 /** 1703 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 1704 * @domain: the iommu domain where the fault has happened 1705 * @dev: the device where the fault has happened 1706 * @iova: the faulting address 1707 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 1708 * 1709 * This function should be called by the low-level IOMMU implementations 1710 * whenever IOMMU faults happen, to allow high-level users, that are 1711 * interested in such events, to know about them. 1712 * 1713 * This event may be useful for several possible use cases: 1714 * - mere logging of the event 1715 * - dynamic TLB/PTE loading 1716 * - if restarting of the faulting device is required 1717 * 1718 * Returns 0 on success and an appropriate error code otherwise (if dynamic 1719 * PTE/TLB loading will one day be supported, implementations will be able 1720 * to tell whether it succeeded or not according to this return value). 1721 * 1722 * Specifically, -ENOSYS is returned if a fault handler isn't installed 1723 * (though fault handlers can also return -ENOSYS, in case they want to 1724 * elicit the default behavior of the IOMMU drivers). 1725 */ 1726 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 1727 unsigned long iova, int flags) 1728 { 1729 int ret = -ENOSYS; 1730 1731 /* 1732 * if upper layers showed interest and installed a fault handler, 1733 * invoke it. 1734 */ 1735 if (domain->handler) 1736 ret = domain->handler(domain, dev, iova, flags, 1737 domain->handler_token); 1738 1739 trace_io_page_fault(dev, iova, flags); 1740 return ret; 1741 } 1742 EXPORT_SYMBOL_GPL(report_iommu_fault); 1743 1744 static int __init iommu_init(void) 1745 { 1746 iommu_group_kset = kset_create_and_add("iommu_groups", 1747 NULL, kernel_kobj); 1748 BUG_ON(!iommu_group_kset); 1749 1750 return 0; 1751 } 1752 core_initcall(iommu_init); 1753 1754 int iommu_domain_get_attr(struct iommu_domain *domain, 1755 enum iommu_attr attr, void *data) 1756 { 1757 struct iommu_domain_geometry *geometry; 1758 bool *paging; 1759 int ret = 0; 1760 u32 *count; 1761 1762 switch (attr) { 1763 case DOMAIN_ATTR_GEOMETRY: 1764 geometry = data; 1765 *geometry = domain->geometry; 1766 1767 break; 1768 case DOMAIN_ATTR_PAGING: 1769 paging = data; 1770 *paging = (domain->pgsize_bitmap != 0UL); 1771 break; 1772 case DOMAIN_ATTR_WINDOWS: 1773 count = data; 1774 1775 if (domain->ops->domain_get_windows != NULL) 1776 *count = domain->ops->domain_get_windows(domain); 1777 else 1778 ret = -ENODEV; 1779 1780 break; 1781 default: 1782 if (!domain->ops->domain_get_attr) 1783 return -EINVAL; 1784 1785 ret = domain->ops->domain_get_attr(domain, attr, data); 1786 } 1787 1788 return ret; 1789 } 1790 EXPORT_SYMBOL_GPL(iommu_domain_get_attr); 1791 1792 int iommu_domain_set_attr(struct iommu_domain *domain, 1793 enum iommu_attr attr, void *data) 1794 { 1795 int ret = 0; 1796 u32 *count; 1797 1798 switch (attr) { 1799 case DOMAIN_ATTR_WINDOWS: 1800 count = data; 1801 1802 if (domain->ops->domain_set_windows != NULL) 1803 ret = domain->ops->domain_set_windows(domain, *count); 1804 else 1805 ret = -ENODEV; 1806 1807 break; 1808 default: 1809 if (domain->ops->domain_set_attr == NULL) 1810 return -EINVAL; 1811 1812 ret = domain->ops->domain_set_attr(domain, attr, data); 1813 } 1814 1815 return ret; 1816 } 1817 EXPORT_SYMBOL_GPL(iommu_domain_set_attr); 1818 1819 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 1820 { 1821 const struct iommu_ops *ops = dev->bus->iommu_ops; 1822 1823 if (ops && ops->get_resv_regions) 1824 ops->get_resv_regions(dev, list); 1825 } 1826 1827 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 1828 { 1829 const struct iommu_ops *ops = dev->bus->iommu_ops; 1830 1831 if (ops && ops->put_resv_regions) 1832 ops->put_resv_regions(dev, list); 1833 } 1834 1835 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 1836 size_t length, int prot, 1837 enum iommu_resv_type type) 1838 { 1839 struct iommu_resv_region *region; 1840 1841 region = kzalloc(sizeof(*region), GFP_KERNEL); 1842 if (!region) 1843 return NULL; 1844 1845 INIT_LIST_HEAD(®ion->list); 1846 region->start = start; 1847 region->length = length; 1848 region->prot = prot; 1849 region->type = type; 1850 return region; 1851 } 1852 1853 /* Request that a device is direct mapped by the IOMMU */ 1854 int iommu_request_dm_for_dev(struct device *dev) 1855 { 1856 struct iommu_domain *dm_domain; 1857 struct iommu_group *group; 1858 int ret; 1859 1860 /* Device must already be in a group before calling this function */ 1861 group = iommu_group_get_for_dev(dev); 1862 if (IS_ERR(group)) 1863 return PTR_ERR(group); 1864 1865 mutex_lock(&group->mutex); 1866 1867 /* Check if the default domain is already direct mapped */ 1868 ret = 0; 1869 if (group->default_domain && 1870 group->default_domain->type == IOMMU_DOMAIN_IDENTITY) 1871 goto out; 1872 1873 /* Don't change mappings of existing devices */ 1874 ret = -EBUSY; 1875 if (iommu_group_device_count(group) != 1) 1876 goto out; 1877 1878 /* Allocate a direct mapped domain */ 1879 ret = -ENOMEM; 1880 dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY); 1881 if (!dm_domain) 1882 goto out; 1883 1884 /* Attach the device to the domain */ 1885 ret = __iommu_attach_group(dm_domain, group); 1886 if (ret) { 1887 iommu_domain_free(dm_domain); 1888 goto out; 1889 } 1890 1891 /* Make the direct mapped domain the default for this group */ 1892 if (group->default_domain) 1893 iommu_domain_free(group->default_domain); 1894 group->default_domain = dm_domain; 1895 1896 pr_info("Using direct mapping for device %s\n", dev_name(dev)); 1897 1898 ret = 0; 1899 out: 1900 mutex_unlock(&group->mutex); 1901 iommu_group_put(group); 1902 1903 return ret; 1904 } 1905 1906 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 1907 { 1908 const struct iommu_ops *ops = NULL; 1909 struct iommu_device *iommu; 1910 1911 spin_lock(&iommu_device_lock); 1912 list_for_each_entry(iommu, &iommu_device_list, list) 1913 if (iommu->fwnode == fwnode) { 1914 ops = iommu->ops; 1915 break; 1916 } 1917 spin_unlock(&iommu_device_lock); 1918 return ops; 1919 } 1920 1921 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 1922 const struct iommu_ops *ops) 1923 { 1924 struct iommu_fwspec *fwspec = dev->iommu_fwspec; 1925 1926 if (fwspec) 1927 return ops == fwspec->ops ? 0 : -EINVAL; 1928 1929 fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL); 1930 if (!fwspec) 1931 return -ENOMEM; 1932 1933 of_node_get(to_of_node(iommu_fwnode)); 1934 fwspec->iommu_fwnode = iommu_fwnode; 1935 fwspec->ops = ops; 1936 dev->iommu_fwspec = fwspec; 1937 return 0; 1938 } 1939 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 1940 1941 void iommu_fwspec_free(struct device *dev) 1942 { 1943 struct iommu_fwspec *fwspec = dev->iommu_fwspec; 1944 1945 if (fwspec) { 1946 fwnode_handle_put(fwspec->iommu_fwnode); 1947 kfree(fwspec); 1948 dev->iommu_fwspec = NULL; 1949 } 1950 } 1951 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 1952 1953 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 1954 { 1955 struct iommu_fwspec *fwspec = dev->iommu_fwspec; 1956 size_t size; 1957 int i; 1958 1959 if (!fwspec) 1960 return -EINVAL; 1961 1962 size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]); 1963 if (size > sizeof(*fwspec)) { 1964 fwspec = krealloc(dev->iommu_fwspec, size, GFP_KERNEL); 1965 if (!fwspec) 1966 return -ENOMEM; 1967 1968 dev->iommu_fwspec = fwspec; 1969 } 1970 1971 for (i = 0; i < num_ids; i++) 1972 fwspec->ids[fwspec->num_ids + i] = ids[i]; 1973 1974 fwspec->num_ids += num_ids; 1975 return 0; 1976 } 1977 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 1978