xref: /openbmc/linux/drivers/iommu/iommu.c (revision 5e2421ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/device.h>
10 #include <linux/dma-iommu.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/iommu.h>
20 #include <linux/idr.h>
21 #include <linux/notifier.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/bitops.h>
25 #include <linux/property.h>
26 #include <linux/fsl/mc.h>
27 #include <linux/module.h>
28 #include <linux/cc_platform.h>
29 #include <trace/events/iommu.h>
30 
31 static struct kset *iommu_group_kset;
32 static DEFINE_IDA(iommu_group_ida);
33 
34 static unsigned int iommu_def_domain_type __read_mostly;
35 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
36 static u32 iommu_cmd_line __read_mostly;
37 
38 struct iommu_group {
39 	struct kobject kobj;
40 	struct kobject *devices_kobj;
41 	struct list_head devices;
42 	struct mutex mutex;
43 	struct blocking_notifier_head notifier;
44 	void *iommu_data;
45 	void (*iommu_data_release)(void *iommu_data);
46 	char *name;
47 	int id;
48 	struct iommu_domain *default_domain;
49 	struct iommu_domain *domain;
50 	struct list_head entry;
51 };
52 
53 struct group_device {
54 	struct list_head list;
55 	struct device *dev;
56 	char *name;
57 };
58 
59 struct iommu_group_attribute {
60 	struct attribute attr;
61 	ssize_t (*show)(struct iommu_group *group, char *buf);
62 	ssize_t (*store)(struct iommu_group *group,
63 			 const char *buf, size_t count);
64 };
65 
66 static const char * const iommu_group_resv_type_string[] = {
67 	[IOMMU_RESV_DIRECT]			= "direct",
68 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
69 	[IOMMU_RESV_RESERVED]			= "reserved",
70 	[IOMMU_RESV_MSI]			= "msi",
71 	[IOMMU_RESV_SW_MSI]			= "msi",
72 };
73 
74 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
75 #define IOMMU_CMD_LINE_STRICT		BIT(1)
76 
77 static int iommu_alloc_default_domain(struct iommu_group *group,
78 				      struct device *dev);
79 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
80 						 unsigned type);
81 static int __iommu_attach_device(struct iommu_domain *domain,
82 				 struct device *dev);
83 static int __iommu_attach_group(struct iommu_domain *domain,
84 				struct iommu_group *group);
85 static void __iommu_detach_group(struct iommu_domain *domain,
86 				 struct iommu_group *group);
87 static int iommu_create_device_direct_mappings(struct iommu_group *group,
88 					       struct device *dev);
89 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
90 static ssize_t iommu_group_store_type(struct iommu_group *group,
91 				      const char *buf, size_t count);
92 
93 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
94 struct iommu_group_attribute iommu_group_attr_##_name =		\
95 	__ATTR(_name, _mode, _show, _store)
96 
97 #define to_iommu_group_attr(_attr)	\
98 	container_of(_attr, struct iommu_group_attribute, attr)
99 #define to_iommu_group(_kobj)		\
100 	container_of(_kobj, struct iommu_group, kobj)
101 
102 static LIST_HEAD(iommu_device_list);
103 static DEFINE_SPINLOCK(iommu_device_lock);
104 
105 /*
106  * Use a function instead of an array here because the domain-type is a
107  * bit-field, so an array would waste memory.
108  */
109 static const char *iommu_domain_type_str(unsigned int t)
110 {
111 	switch (t) {
112 	case IOMMU_DOMAIN_BLOCKED:
113 		return "Blocked";
114 	case IOMMU_DOMAIN_IDENTITY:
115 		return "Passthrough";
116 	case IOMMU_DOMAIN_UNMANAGED:
117 		return "Unmanaged";
118 	case IOMMU_DOMAIN_DMA:
119 	case IOMMU_DOMAIN_DMA_FQ:
120 		return "Translated";
121 	default:
122 		return "Unknown";
123 	}
124 }
125 
126 static int __init iommu_subsys_init(void)
127 {
128 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
129 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
130 			iommu_set_default_passthrough(false);
131 		else
132 			iommu_set_default_translated(false);
133 
134 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
135 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
136 			iommu_set_default_translated(false);
137 		}
138 	}
139 
140 	if (!iommu_default_passthrough() && !iommu_dma_strict)
141 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
142 
143 	pr_info("Default domain type: %s %s\n",
144 		iommu_domain_type_str(iommu_def_domain_type),
145 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
146 			"(set via kernel command line)" : "");
147 
148 	if (!iommu_default_passthrough())
149 		pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
150 			iommu_dma_strict ? "strict" : "lazy",
151 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
152 				"(set via kernel command line)" : "");
153 
154 	return 0;
155 }
156 subsys_initcall(iommu_subsys_init);
157 
158 /**
159  * iommu_device_register() - Register an IOMMU hardware instance
160  * @iommu: IOMMU handle for the instance
161  * @ops:   IOMMU ops to associate with the instance
162  * @hwdev: (optional) actual instance device, used for fwnode lookup
163  *
164  * Return: 0 on success, or an error.
165  */
166 int iommu_device_register(struct iommu_device *iommu,
167 			  const struct iommu_ops *ops, struct device *hwdev)
168 {
169 	/* We need to be able to take module references appropriately */
170 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
171 		return -EINVAL;
172 
173 	iommu->ops = ops;
174 	if (hwdev)
175 		iommu->fwnode = hwdev->fwnode;
176 
177 	spin_lock(&iommu_device_lock);
178 	list_add_tail(&iommu->list, &iommu_device_list);
179 	spin_unlock(&iommu_device_lock);
180 	return 0;
181 }
182 EXPORT_SYMBOL_GPL(iommu_device_register);
183 
184 void iommu_device_unregister(struct iommu_device *iommu)
185 {
186 	spin_lock(&iommu_device_lock);
187 	list_del(&iommu->list);
188 	spin_unlock(&iommu_device_lock);
189 }
190 EXPORT_SYMBOL_GPL(iommu_device_unregister);
191 
192 static struct dev_iommu *dev_iommu_get(struct device *dev)
193 {
194 	struct dev_iommu *param = dev->iommu;
195 
196 	if (param)
197 		return param;
198 
199 	param = kzalloc(sizeof(*param), GFP_KERNEL);
200 	if (!param)
201 		return NULL;
202 
203 	mutex_init(&param->lock);
204 	dev->iommu = param;
205 	return param;
206 }
207 
208 static void dev_iommu_free(struct device *dev)
209 {
210 	iommu_fwspec_free(dev);
211 	kfree(dev->iommu);
212 	dev->iommu = NULL;
213 }
214 
215 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
216 {
217 	const struct iommu_ops *ops = dev->bus->iommu_ops;
218 	struct iommu_device *iommu_dev;
219 	struct iommu_group *group;
220 	int ret;
221 
222 	if (!ops)
223 		return -ENODEV;
224 
225 	if (!dev_iommu_get(dev))
226 		return -ENOMEM;
227 
228 	if (!try_module_get(ops->owner)) {
229 		ret = -EINVAL;
230 		goto err_free;
231 	}
232 
233 	iommu_dev = ops->probe_device(dev);
234 	if (IS_ERR(iommu_dev)) {
235 		ret = PTR_ERR(iommu_dev);
236 		goto out_module_put;
237 	}
238 
239 	dev->iommu->iommu_dev = iommu_dev;
240 
241 	group = iommu_group_get_for_dev(dev);
242 	if (IS_ERR(group)) {
243 		ret = PTR_ERR(group);
244 		goto out_release;
245 	}
246 	iommu_group_put(group);
247 
248 	if (group_list && !group->default_domain && list_empty(&group->entry))
249 		list_add_tail(&group->entry, group_list);
250 
251 	iommu_device_link(iommu_dev, dev);
252 
253 	return 0;
254 
255 out_release:
256 	ops->release_device(dev);
257 
258 out_module_put:
259 	module_put(ops->owner);
260 
261 err_free:
262 	dev_iommu_free(dev);
263 
264 	return ret;
265 }
266 
267 int iommu_probe_device(struct device *dev)
268 {
269 	const struct iommu_ops *ops = dev->bus->iommu_ops;
270 	struct iommu_group *group;
271 	int ret;
272 
273 	ret = __iommu_probe_device(dev, NULL);
274 	if (ret)
275 		goto err_out;
276 
277 	group = iommu_group_get(dev);
278 	if (!group) {
279 		ret = -ENODEV;
280 		goto err_release;
281 	}
282 
283 	/*
284 	 * Try to allocate a default domain - needs support from the
285 	 * IOMMU driver. There are still some drivers which don't
286 	 * support default domains, so the return value is not yet
287 	 * checked.
288 	 */
289 	mutex_lock(&group->mutex);
290 	iommu_alloc_default_domain(group, dev);
291 
292 	if (group->default_domain) {
293 		ret = __iommu_attach_device(group->default_domain, dev);
294 		if (ret) {
295 			mutex_unlock(&group->mutex);
296 			iommu_group_put(group);
297 			goto err_release;
298 		}
299 	}
300 
301 	iommu_create_device_direct_mappings(group, dev);
302 
303 	mutex_unlock(&group->mutex);
304 	iommu_group_put(group);
305 
306 	if (ops->probe_finalize)
307 		ops->probe_finalize(dev);
308 
309 	return 0;
310 
311 err_release:
312 	iommu_release_device(dev);
313 
314 err_out:
315 	return ret;
316 
317 }
318 
319 void iommu_release_device(struct device *dev)
320 {
321 	const struct iommu_ops *ops = dev->bus->iommu_ops;
322 
323 	if (!dev->iommu)
324 		return;
325 
326 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
327 
328 	ops->release_device(dev);
329 
330 	iommu_group_remove_device(dev);
331 	module_put(ops->owner);
332 	dev_iommu_free(dev);
333 }
334 
335 static int __init iommu_set_def_domain_type(char *str)
336 {
337 	bool pt;
338 	int ret;
339 
340 	ret = kstrtobool(str, &pt);
341 	if (ret)
342 		return ret;
343 
344 	if (pt)
345 		iommu_set_default_passthrough(true);
346 	else
347 		iommu_set_default_translated(true);
348 
349 	return 0;
350 }
351 early_param("iommu.passthrough", iommu_set_def_domain_type);
352 
353 static int __init iommu_dma_setup(char *str)
354 {
355 	int ret = kstrtobool(str, &iommu_dma_strict);
356 
357 	if (!ret)
358 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
359 	return ret;
360 }
361 early_param("iommu.strict", iommu_dma_setup);
362 
363 void iommu_set_dma_strict(void)
364 {
365 	iommu_dma_strict = true;
366 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
367 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
368 }
369 
370 static ssize_t iommu_group_attr_show(struct kobject *kobj,
371 				     struct attribute *__attr, char *buf)
372 {
373 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
374 	struct iommu_group *group = to_iommu_group(kobj);
375 	ssize_t ret = -EIO;
376 
377 	if (attr->show)
378 		ret = attr->show(group, buf);
379 	return ret;
380 }
381 
382 static ssize_t iommu_group_attr_store(struct kobject *kobj,
383 				      struct attribute *__attr,
384 				      const char *buf, size_t count)
385 {
386 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
387 	struct iommu_group *group = to_iommu_group(kobj);
388 	ssize_t ret = -EIO;
389 
390 	if (attr->store)
391 		ret = attr->store(group, buf, count);
392 	return ret;
393 }
394 
395 static const struct sysfs_ops iommu_group_sysfs_ops = {
396 	.show = iommu_group_attr_show,
397 	.store = iommu_group_attr_store,
398 };
399 
400 static int iommu_group_create_file(struct iommu_group *group,
401 				   struct iommu_group_attribute *attr)
402 {
403 	return sysfs_create_file(&group->kobj, &attr->attr);
404 }
405 
406 static void iommu_group_remove_file(struct iommu_group *group,
407 				    struct iommu_group_attribute *attr)
408 {
409 	sysfs_remove_file(&group->kobj, &attr->attr);
410 }
411 
412 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
413 {
414 	return sprintf(buf, "%s\n", group->name);
415 }
416 
417 /**
418  * iommu_insert_resv_region - Insert a new region in the
419  * list of reserved regions.
420  * @new: new region to insert
421  * @regions: list of regions
422  *
423  * Elements are sorted by start address and overlapping segments
424  * of the same type are merged.
425  */
426 static int iommu_insert_resv_region(struct iommu_resv_region *new,
427 				    struct list_head *regions)
428 {
429 	struct iommu_resv_region *iter, *tmp, *nr, *top;
430 	LIST_HEAD(stack);
431 
432 	nr = iommu_alloc_resv_region(new->start, new->length,
433 				     new->prot, new->type);
434 	if (!nr)
435 		return -ENOMEM;
436 
437 	/* First add the new element based on start address sorting */
438 	list_for_each_entry(iter, regions, list) {
439 		if (nr->start < iter->start ||
440 		    (nr->start == iter->start && nr->type <= iter->type))
441 			break;
442 	}
443 	list_add_tail(&nr->list, &iter->list);
444 
445 	/* Merge overlapping segments of type nr->type in @regions, if any */
446 	list_for_each_entry_safe(iter, tmp, regions, list) {
447 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
448 
449 		/* no merge needed on elements of different types than @new */
450 		if (iter->type != new->type) {
451 			list_move_tail(&iter->list, &stack);
452 			continue;
453 		}
454 
455 		/* look for the last stack element of same type as @iter */
456 		list_for_each_entry_reverse(top, &stack, list)
457 			if (top->type == iter->type)
458 				goto check_overlap;
459 
460 		list_move_tail(&iter->list, &stack);
461 		continue;
462 
463 check_overlap:
464 		top_end = top->start + top->length - 1;
465 
466 		if (iter->start > top_end + 1) {
467 			list_move_tail(&iter->list, &stack);
468 		} else {
469 			top->length = max(top_end, iter_end) - top->start + 1;
470 			list_del(&iter->list);
471 			kfree(iter);
472 		}
473 	}
474 	list_splice(&stack, regions);
475 	return 0;
476 }
477 
478 static int
479 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
480 				 struct list_head *group_resv_regions)
481 {
482 	struct iommu_resv_region *entry;
483 	int ret = 0;
484 
485 	list_for_each_entry(entry, dev_resv_regions, list) {
486 		ret = iommu_insert_resv_region(entry, group_resv_regions);
487 		if (ret)
488 			break;
489 	}
490 	return ret;
491 }
492 
493 int iommu_get_group_resv_regions(struct iommu_group *group,
494 				 struct list_head *head)
495 {
496 	struct group_device *device;
497 	int ret = 0;
498 
499 	mutex_lock(&group->mutex);
500 	list_for_each_entry(device, &group->devices, list) {
501 		struct list_head dev_resv_regions;
502 
503 		INIT_LIST_HEAD(&dev_resv_regions);
504 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
505 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
506 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
507 		if (ret)
508 			break;
509 	}
510 	mutex_unlock(&group->mutex);
511 	return ret;
512 }
513 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
514 
515 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
516 					     char *buf)
517 {
518 	struct iommu_resv_region *region, *next;
519 	struct list_head group_resv_regions;
520 	char *str = buf;
521 
522 	INIT_LIST_HEAD(&group_resv_regions);
523 	iommu_get_group_resv_regions(group, &group_resv_regions);
524 
525 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
526 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
527 			       (long long int)region->start,
528 			       (long long int)(region->start +
529 						region->length - 1),
530 			       iommu_group_resv_type_string[region->type]);
531 		kfree(region);
532 	}
533 
534 	return (str - buf);
535 }
536 
537 static ssize_t iommu_group_show_type(struct iommu_group *group,
538 				     char *buf)
539 {
540 	char *type = "unknown\n";
541 
542 	mutex_lock(&group->mutex);
543 	if (group->default_domain) {
544 		switch (group->default_domain->type) {
545 		case IOMMU_DOMAIN_BLOCKED:
546 			type = "blocked\n";
547 			break;
548 		case IOMMU_DOMAIN_IDENTITY:
549 			type = "identity\n";
550 			break;
551 		case IOMMU_DOMAIN_UNMANAGED:
552 			type = "unmanaged\n";
553 			break;
554 		case IOMMU_DOMAIN_DMA:
555 			type = "DMA\n";
556 			break;
557 		case IOMMU_DOMAIN_DMA_FQ:
558 			type = "DMA-FQ\n";
559 			break;
560 		}
561 	}
562 	mutex_unlock(&group->mutex);
563 	strcpy(buf, type);
564 
565 	return strlen(type);
566 }
567 
568 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
569 
570 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
571 			iommu_group_show_resv_regions, NULL);
572 
573 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
574 			iommu_group_store_type);
575 
576 static void iommu_group_release(struct kobject *kobj)
577 {
578 	struct iommu_group *group = to_iommu_group(kobj);
579 
580 	pr_debug("Releasing group %d\n", group->id);
581 
582 	if (group->iommu_data_release)
583 		group->iommu_data_release(group->iommu_data);
584 
585 	ida_simple_remove(&iommu_group_ida, group->id);
586 
587 	if (group->default_domain)
588 		iommu_domain_free(group->default_domain);
589 
590 	kfree(group->name);
591 	kfree(group);
592 }
593 
594 static struct kobj_type iommu_group_ktype = {
595 	.sysfs_ops = &iommu_group_sysfs_ops,
596 	.release = iommu_group_release,
597 };
598 
599 /**
600  * iommu_group_alloc - Allocate a new group
601  *
602  * This function is called by an iommu driver to allocate a new iommu
603  * group.  The iommu group represents the minimum granularity of the iommu.
604  * Upon successful return, the caller holds a reference to the supplied
605  * group in order to hold the group until devices are added.  Use
606  * iommu_group_put() to release this extra reference count, allowing the
607  * group to be automatically reclaimed once it has no devices or external
608  * references.
609  */
610 struct iommu_group *iommu_group_alloc(void)
611 {
612 	struct iommu_group *group;
613 	int ret;
614 
615 	group = kzalloc(sizeof(*group), GFP_KERNEL);
616 	if (!group)
617 		return ERR_PTR(-ENOMEM);
618 
619 	group->kobj.kset = iommu_group_kset;
620 	mutex_init(&group->mutex);
621 	INIT_LIST_HEAD(&group->devices);
622 	INIT_LIST_HEAD(&group->entry);
623 	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
624 
625 	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
626 	if (ret < 0) {
627 		kfree(group);
628 		return ERR_PTR(ret);
629 	}
630 	group->id = ret;
631 
632 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
633 				   NULL, "%d", group->id);
634 	if (ret) {
635 		ida_simple_remove(&iommu_group_ida, group->id);
636 		kobject_put(&group->kobj);
637 		return ERR_PTR(ret);
638 	}
639 
640 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
641 	if (!group->devices_kobj) {
642 		kobject_put(&group->kobj); /* triggers .release & free */
643 		return ERR_PTR(-ENOMEM);
644 	}
645 
646 	/*
647 	 * The devices_kobj holds a reference on the group kobject, so
648 	 * as long as that exists so will the group.  We can therefore
649 	 * use the devices_kobj for reference counting.
650 	 */
651 	kobject_put(&group->kobj);
652 
653 	ret = iommu_group_create_file(group,
654 				      &iommu_group_attr_reserved_regions);
655 	if (ret)
656 		return ERR_PTR(ret);
657 
658 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
659 	if (ret)
660 		return ERR_PTR(ret);
661 
662 	pr_debug("Allocated group %d\n", group->id);
663 
664 	return group;
665 }
666 EXPORT_SYMBOL_GPL(iommu_group_alloc);
667 
668 struct iommu_group *iommu_group_get_by_id(int id)
669 {
670 	struct kobject *group_kobj;
671 	struct iommu_group *group;
672 	const char *name;
673 
674 	if (!iommu_group_kset)
675 		return NULL;
676 
677 	name = kasprintf(GFP_KERNEL, "%d", id);
678 	if (!name)
679 		return NULL;
680 
681 	group_kobj = kset_find_obj(iommu_group_kset, name);
682 	kfree(name);
683 
684 	if (!group_kobj)
685 		return NULL;
686 
687 	group = container_of(group_kobj, struct iommu_group, kobj);
688 	BUG_ON(group->id != id);
689 
690 	kobject_get(group->devices_kobj);
691 	kobject_put(&group->kobj);
692 
693 	return group;
694 }
695 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
696 
697 /**
698  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
699  * @group: the group
700  *
701  * iommu drivers can store data in the group for use when doing iommu
702  * operations.  This function provides a way to retrieve it.  Caller
703  * should hold a group reference.
704  */
705 void *iommu_group_get_iommudata(struct iommu_group *group)
706 {
707 	return group->iommu_data;
708 }
709 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
710 
711 /**
712  * iommu_group_set_iommudata - set iommu_data for a group
713  * @group: the group
714  * @iommu_data: new data
715  * @release: release function for iommu_data
716  *
717  * iommu drivers can store data in the group for use when doing iommu
718  * operations.  This function provides a way to set the data after
719  * the group has been allocated.  Caller should hold a group reference.
720  */
721 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
722 			       void (*release)(void *iommu_data))
723 {
724 	group->iommu_data = iommu_data;
725 	group->iommu_data_release = release;
726 }
727 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
728 
729 /**
730  * iommu_group_set_name - set name for a group
731  * @group: the group
732  * @name: name
733  *
734  * Allow iommu driver to set a name for a group.  When set it will
735  * appear in a name attribute file under the group in sysfs.
736  */
737 int iommu_group_set_name(struct iommu_group *group, const char *name)
738 {
739 	int ret;
740 
741 	if (group->name) {
742 		iommu_group_remove_file(group, &iommu_group_attr_name);
743 		kfree(group->name);
744 		group->name = NULL;
745 		if (!name)
746 			return 0;
747 	}
748 
749 	group->name = kstrdup(name, GFP_KERNEL);
750 	if (!group->name)
751 		return -ENOMEM;
752 
753 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
754 	if (ret) {
755 		kfree(group->name);
756 		group->name = NULL;
757 		return ret;
758 	}
759 
760 	return 0;
761 }
762 EXPORT_SYMBOL_GPL(iommu_group_set_name);
763 
764 static int iommu_create_device_direct_mappings(struct iommu_group *group,
765 					       struct device *dev)
766 {
767 	struct iommu_domain *domain = group->default_domain;
768 	struct iommu_resv_region *entry;
769 	struct list_head mappings;
770 	unsigned long pg_size;
771 	int ret = 0;
772 
773 	if (!domain || !iommu_is_dma_domain(domain))
774 		return 0;
775 
776 	BUG_ON(!domain->pgsize_bitmap);
777 
778 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
779 	INIT_LIST_HEAD(&mappings);
780 
781 	iommu_get_resv_regions(dev, &mappings);
782 
783 	/* We need to consider overlapping regions for different devices */
784 	list_for_each_entry(entry, &mappings, list) {
785 		dma_addr_t start, end, addr;
786 		size_t map_size = 0;
787 
788 		if (domain->ops->apply_resv_region)
789 			domain->ops->apply_resv_region(dev, domain, entry);
790 
791 		start = ALIGN(entry->start, pg_size);
792 		end   = ALIGN(entry->start + entry->length, pg_size);
793 
794 		if (entry->type != IOMMU_RESV_DIRECT &&
795 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
796 			continue;
797 
798 		for (addr = start; addr <= end; addr += pg_size) {
799 			phys_addr_t phys_addr;
800 
801 			if (addr == end)
802 				goto map_end;
803 
804 			phys_addr = iommu_iova_to_phys(domain, addr);
805 			if (!phys_addr) {
806 				map_size += pg_size;
807 				continue;
808 			}
809 
810 map_end:
811 			if (map_size) {
812 				ret = iommu_map(domain, addr - map_size,
813 						addr - map_size, map_size,
814 						entry->prot);
815 				if (ret)
816 					goto out;
817 				map_size = 0;
818 			}
819 		}
820 
821 	}
822 
823 	iommu_flush_iotlb_all(domain);
824 
825 out:
826 	iommu_put_resv_regions(dev, &mappings);
827 
828 	return ret;
829 }
830 
831 static bool iommu_is_attach_deferred(struct iommu_domain *domain,
832 				     struct device *dev)
833 {
834 	if (domain->ops->is_attach_deferred)
835 		return domain->ops->is_attach_deferred(domain, dev);
836 
837 	return false;
838 }
839 
840 /**
841  * iommu_group_add_device - add a device to an iommu group
842  * @group: the group into which to add the device (reference should be held)
843  * @dev: the device
844  *
845  * This function is called by an iommu driver to add a device into a
846  * group.  Adding a device increments the group reference count.
847  */
848 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
849 {
850 	int ret, i = 0;
851 	struct group_device *device;
852 
853 	device = kzalloc(sizeof(*device), GFP_KERNEL);
854 	if (!device)
855 		return -ENOMEM;
856 
857 	device->dev = dev;
858 
859 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
860 	if (ret)
861 		goto err_free_device;
862 
863 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
864 rename:
865 	if (!device->name) {
866 		ret = -ENOMEM;
867 		goto err_remove_link;
868 	}
869 
870 	ret = sysfs_create_link_nowarn(group->devices_kobj,
871 				       &dev->kobj, device->name);
872 	if (ret) {
873 		if (ret == -EEXIST && i >= 0) {
874 			/*
875 			 * Account for the slim chance of collision
876 			 * and append an instance to the name.
877 			 */
878 			kfree(device->name);
879 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
880 						 kobject_name(&dev->kobj), i++);
881 			goto rename;
882 		}
883 		goto err_free_name;
884 	}
885 
886 	kobject_get(group->devices_kobj);
887 
888 	dev->iommu_group = group;
889 
890 	mutex_lock(&group->mutex);
891 	list_add_tail(&device->list, &group->devices);
892 	if (group->domain  && !iommu_is_attach_deferred(group->domain, dev))
893 		ret = __iommu_attach_device(group->domain, dev);
894 	mutex_unlock(&group->mutex);
895 	if (ret)
896 		goto err_put_group;
897 
898 	/* Notify any listeners about change to group. */
899 	blocking_notifier_call_chain(&group->notifier,
900 				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
901 
902 	trace_add_device_to_group(group->id, dev);
903 
904 	dev_info(dev, "Adding to iommu group %d\n", group->id);
905 
906 	return 0;
907 
908 err_put_group:
909 	mutex_lock(&group->mutex);
910 	list_del(&device->list);
911 	mutex_unlock(&group->mutex);
912 	dev->iommu_group = NULL;
913 	kobject_put(group->devices_kobj);
914 	sysfs_remove_link(group->devices_kobj, device->name);
915 err_free_name:
916 	kfree(device->name);
917 err_remove_link:
918 	sysfs_remove_link(&dev->kobj, "iommu_group");
919 err_free_device:
920 	kfree(device);
921 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
922 	return ret;
923 }
924 EXPORT_SYMBOL_GPL(iommu_group_add_device);
925 
926 /**
927  * iommu_group_remove_device - remove a device from it's current group
928  * @dev: device to be removed
929  *
930  * This function is called by an iommu driver to remove the device from
931  * it's current group.  This decrements the iommu group reference count.
932  */
933 void iommu_group_remove_device(struct device *dev)
934 {
935 	struct iommu_group *group = dev->iommu_group;
936 	struct group_device *tmp_device, *device = NULL;
937 
938 	if (!group)
939 		return;
940 
941 	dev_info(dev, "Removing from iommu group %d\n", group->id);
942 
943 	/* Pre-notify listeners that a device is being removed. */
944 	blocking_notifier_call_chain(&group->notifier,
945 				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
946 
947 	mutex_lock(&group->mutex);
948 	list_for_each_entry(tmp_device, &group->devices, list) {
949 		if (tmp_device->dev == dev) {
950 			device = tmp_device;
951 			list_del(&device->list);
952 			break;
953 		}
954 	}
955 	mutex_unlock(&group->mutex);
956 
957 	if (!device)
958 		return;
959 
960 	sysfs_remove_link(group->devices_kobj, device->name);
961 	sysfs_remove_link(&dev->kobj, "iommu_group");
962 
963 	trace_remove_device_from_group(group->id, dev);
964 
965 	kfree(device->name);
966 	kfree(device);
967 	dev->iommu_group = NULL;
968 	kobject_put(group->devices_kobj);
969 }
970 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
971 
972 static int iommu_group_device_count(struct iommu_group *group)
973 {
974 	struct group_device *entry;
975 	int ret = 0;
976 
977 	list_for_each_entry(entry, &group->devices, list)
978 		ret++;
979 
980 	return ret;
981 }
982 
983 /**
984  * iommu_group_for_each_dev - iterate over each device in the group
985  * @group: the group
986  * @data: caller opaque data to be passed to callback function
987  * @fn: caller supplied callback function
988  *
989  * This function is called by group users to iterate over group devices.
990  * Callers should hold a reference count to the group during callback.
991  * The group->mutex is held across callbacks, which will block calls to
992  * iommu_group_add/remove_device.
993  */
994 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
995 				      int (*fn)(struct device *, void *))
996 {
997 	struct group_device *device;
998 	int ret = 0;
999 
1000 	list_for_each_entry(device, &group->devices, list) {
1001 		ret = fn(device->dev, data);
1002 		if (ret)
1003 			break;
1004 	}
1005 	return ret;
1006 }
1007 
1008 
1009 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1010 			     int (*fn)(struct device *, void *))
1011 {
1012 	int ret;
1013 
1014 	mutex_lock(&group->mutex);
1015 	ret = __iommu_group_for_each_dev(group, data, fn);
1016 	mutex_unlock(&group->mutex);
1017 
1018 	return ret;
1019 }
1020 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1021 
1022 /**
1023  * iommu_group_get - Return the group for a device and increment reference
1024  * @dev: get the group that this device belongs to
1025  *
1026  * This function is called by iommu drivers and users to get the group
1027  * for the specified device.  If found, the group is returned and the group
1028  * reference in incremented, else NULL.
1029  */
1030 struct iommu_group *iommu_group_get(struct device *dev)
1031 {
1032 	struct iommu_group *group = dev->iommu_group;
1033 
1034 	if (group)
1035 		kobject_get(group->devices_kobj);
1036 
1037 	return group;
1038 }
1039 EXPORT_SYMBOL_GPL(iommu_group_get);
1040 
1041 /**
1042  * iommu_group_ref_get - Increment reference on a group
1043  * @group: the group to use, must not be NULL
1044  *
1045  * This function is called by iommu drivers to take additional references on an
1046  * existing group.  Returns the given group for convenience.
1047  */
1048 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1049 {
1050 	kobject_get(group->devices_kobj);
1051 	return group;
1052 }
1053 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1054 
1055 /**
1056  * iommu_group_put - Decrement group reference
1057  * @group: the group to use
1058  *
1059  * This function is called by iommu drivers and users to release the
1060  * iommu group.  Once the reference count is zero, the group is released.
1061  */
1062 void iommu_group_put(struct iommu_group *group)
1063 {
1064 	if (group)
1065 		kobject_put(group->devices_kobj);
1066 }
1067 EXPORT_SYMBOL_GPL(iommu_group_put);
1068 
1069 /**
1070  * iommu_group_register_notifier - Register a notifier for group changes
1071  * @group: the group to watch
1072  * @nb: notifier block to signal
1073  *
1074  * This function allows iommu group users to track changes in a group.
1075  * See include/linux/iommu.h for actions sent via this notifier.  Caller
1076  * should hold a reference to the group throughout notifier registration.
1077  */
1078 int iommu_group_register_notifier(struct iommu_group *group,
1079 				  struct notifier_block *nb)
1080 {
1081 	return blocking_notifier_chain_register(&group->notifier, nb);
1082 }
1083 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
1084 
1085 /**
1086  * iommu_group_unregister_notifier - Unregister a notifier
1087  * @group: the group to watch
1088  * @nb: notifier block to signal
1089  *
1090  * Unregister a previously registered group notifier block.
1091  */
1092 int iommu_group_unregister_notifier(struct iommu_group *group,
1093 				    struct notifier_block *nb)
1094 {
1095 	return blocking_notifier_chain_unregister(&group->notifier, nb);
1096 }
1097 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
1098 
1099 /**
1100  * iommu_register_device_fault_handler() - Register a device fault handler
1101  * @dev: the device
1102  * @handler: the fault handler
1103  * @data: private data passed as argument to the handler
1104  *
1105  * When an IOMMU fault event is received, this handler gets called with the
1106  * fault event and data as argument. The handler should return 0 on success. If
1107  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1108  * complete the fault by calling iommu_page_response() with one of the following
1109  * response code:
1110  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1111  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1112  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1113  *   page faults if possible.
1114  *
1115  * Return 0 if the fault handler was installed successfully, or an error.
1116  */
1117 int iommu_register_device_fault_handler(struct device *dev,
1118 					iommu_dev_fault_handler_t handler,
1119 					void *data)
1120 {
1121 	struct dev_iommu *param = dev->iommu;
1122 	int ret = 0;
1123 
1124 	if (!param)
1125 		return -EINVAL;
1126 
1127 	mutex_lock(&param->lock);
1128 	/* Only allow one fault handler registered for each device */
1129 	if (param->fault_param) {
1130 		ret = -EBUSY;
1131 		goto done_unlock;
1132 	}
1133 
1134 	get_device(dev);
1135 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1136 	if (!param->fault_param) {
1137 		put_device(dev);
1138 		ret = -ENOMEM;
1139 		goto done_unlock;
1140 	}
1141 	param->fault_param->handler = handler;
1142 	param->fault_param->data = data;
1143 	mutex_init(&param->fault_param->lock);
1144 	INIT_LIST_HEAD(&param->fault_param->faults);
1145 
1146 done_unlock:
1147 	mutex_unlock(&param->lock);
1148 
1149 	return ret;
1150 }
1151 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1152 
1153 /**
1154  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1155  * @dev: the device
1156  *
1157  * Remove the device fault handler installed with
1158  * iommu_register_device_fault_handler().
1159  *
1160  * Return 0 on success, or an error.
1161  */
1162 int iommu_unregister_device_fault_handler(struct device *dev)
1163 {
1164 	struct dev_iommu *param = dev->iommu;
1165 	int ret = 0;
1166 
1167 	if (!param)
1168 		return -EINVAL;
1169 
1170 	mutex_lock(&param->lock);
1171 
1172 	if (!param->fault_param)
1173 		goto unlock;
1174 
1175 	/* we cannot unregister handler if there are pending faults */
1176 	if (!list_empty(&param->fault_param->faults)) {
1177 		ret = -EBUSY;
1178 		goto unlock;
1179 	}
1180 
1181 	kfree(param->fault_param);
1182 	param->fault_param = NULL;
1183 	put_device(dev);
1184 unlock:
1185 	mutex_unlock(&param->lock);
1186 
1187 	return ret;
1188 }
1189 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1190 
1191 /**
1192  * iommu_report_device_fault() - Report fault event to device driver
1193  * @dev: the device
1194  * @evt: fault event data
1195  *
1196  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1197  * handler. When this function fails and the fault is recoverable, it is the
1198  * caller's responsibility to complete the fault.
1199  *
1200  * Return 0 on success, or an error.
1201  */
1202 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1203 {
1204 	struct dev_iommu *param = dev->iommu;
1205 	struct iommu_fault_event *evt_pending = NULL;
1206 	struct iommu_fault_param *fparam;
1207 	int ret = 0;
1208 
1209 	if (!param || !evt)
1210 		return -EINVAL;
1211 
1212 	/* we only report device fault if there is a handler registered */
1213 	mutex_lock(&param->lock);
1214 	fparam = param->fault_param;
1215 	if (!fparam || !fparam->handler) {
1216 		ret = -EINVAL;
1217 		goto done_unlock;
1218 	}
1219 
1220 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1221 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1222 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1223 				      GFP_KERNEL);
1224 		if (!evt_pending) {
1225 			ret = -ENOMEM;
1226 			goto done_unlock;
1227 		}
1228 		mutex_lock(&fparam->lock);
1229 		list_add_tail(&evt_pending->list, &fparam->faults);
1230 		mutex_unlock(&fparam->lock);
1231 	}
1232 
1233 	ret = fparam->handler(&evt->fault, fparam->data);
1234 	if (ret && evt_pending) {
1235 		mutex_lock(&fparam->lock);
1236 		list_del(&evt_pending->list);
1237 		mutex_unlock(&fparam->lock);
1238 		kfree(evt_pending);
1239 	}
1240 done_unlock:
1241 	mutex_unlock(&param->lock);
1242 	return ret;
1243 }
1244 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1245 
1246 int iommu_page_response(struct device *dev,
1247 			struct iommu_page_response *msg)
1248 {
1249 	bool needs_pasid;
1250 	int ret = -EINVAL;
1251 	struct iommu_fault_event *evt;
1252 	struct iommu_fault_page_request *prm;
1253 	struct dev_iommu *param = dev->iommu;
1254 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1255 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1256 
1257 	if (!domain || !domain->ops->page_response)
1258 		return -ENODEV;
1259 
1260 	if (!param || !param->fault_param)
1261 		return -EINVAL;
1262 
1263 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1264 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1265 		return -EINVAL;
1266 
1267 	/* Only send response if there is a fault report pending */
1268 	mutex_lock(&param->fault_param->lock);
1269 	if (list_empty(&param->fault_param->faults)) {
1270 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1271 		goto done_unlock;
1272 	}
1273 	/*
1274 	 * Check if we have a matching page request pending to respond,
1275 	 * otherwise return -EINVAL
1276 	 */
1277 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1278 		prm = &evt->fault.prm;
1279 		if (prm->grpid != msg->grpid)
1280 			continue;
1281 
1282 		/*
1283 		 * If the PASID is required, the corresponding request is
1284 		 * matched using the group ID, the PASID valid bit and the PASID
1285 		 * value. Otherwise only the group ID matches request and
1286 		 * response.
1287 		 */
1288 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1289 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1290 			continue;
1291 
1292 		if (!needs_pasid && has_pasid) {
1293 			/* No big deal, just clear it. */
1294 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1295 			msg->pasid = 0;
1296 		}
1297 
1298 		ret = domain->ops->page_response(dev, evt, msg);
1299 		list_del(&evt->list);
1300 		kfree(evt);
1301 		break;
1302 	}
1303 
1304 done_unlock:
1305 	mutex_unlock(&param->fault_param->lock);
1306 	return ret;
1307 }
1308 EXPORT_SYMBOL_GPL(iommu_page_response);
1309 
1310 /**
1311  * iommu_group_id - Return ID for a group
1312  * @group: the group to ID
1313  *
1314  * Return the unique ID for the group matching the sysfs group number.
1315  */
1316 int iommu_group_id(struct iommu_group *group)
1317 {
1318 	return group->id;
1319 }
1320 EXPORT_SYMBOL_GPL(iommu_group_id);
1321 
1322 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1323 					       unsigned long *devfns);
1324 
1325 /*
1326  * To consider a PCI device isolated, we require ACS to support Source
1327  * Validation, Request Redirection, Completer Redirection, and Upstream
1328  * Forwarding.  This effectively means that devices cannot spoof their
1329  * requester ID, requests and completions cannot be redirected, and all
1330  * transactions are forwarded upstream, even as it passes through a
1331  * bridge where the target device is downstream.
1332  */
1333 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1334 
1335 /*
1336  * For multifunction devices which are not isolated from each other, find
1337  * all the other non-isolated functions and look for existing groups.  For
1338  * each function, we also need to look for aliases to or from other devices
1339  * that may already have a group.
1340  */
1341 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1342 							unsigned long *devfns)
1343 {
1344 	struct pci_dev *tmp = NULL;
1345 	struct iommu_group *group;
1346 
1347 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1348 		return NULL;
1349 
1350 	for_each_pci_dev(tmp) {
1351 		if (tmp == pdev || tmp->bus != pdev->bus ||
1352 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1353 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1354 			continue;
1355 
1356 		group = get_pci_alias_group(tmp, devfns);
1357 		if (group) {
1358 			pci_dev_put(tmp);
1359 			return group;
1360 		}
1361 	}
1362 
1363 	return NULL;
1364 }
1365 
1366 /*
1367  * Look for aliases to or from the given device for existing groups. DMA
1368  * aliases are only supported on the same bus, therefore the search
1369  * space is quite small (especially since we're really only looking at pcie
1370  * device, and therefore only expect multiple slots on the root complex or
1371  * downstream switch ports).  It's conceivable though that a pair of
1372  * multifunction devices could have aliases between them that would cause a
1373  * loop.  To prevent this, we use a bitmap to track where we've been.
1374  */
1375 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1376 					       unsigned long *devfns)
1377 {
1378 	struct pci_dev *tmp = NULL;
1379 	struct iommu_group *group;
1380 
1381 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1382 		return NULL;
1383 
1384 	group = iommu_group_get(&pdev->dev);
1385 	if (group)
1386 		return group;
1387 
1388 	for_each_pci_dev(tmp) {
1389 		if (tmp == pdev || tmp->bus != pdev->bus)
1390 			continue;
1391 
1392 		/* We alias them or they alias us */
1393 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1394 			group = get_pci_alias_group(tmp, devfns);
1395 			if (group) {
1396 				pci_dev_put(tmp);
1397 				return group;
1398 			}
1399 
1400 			group = get_pci_function_alias_group(tmp, devfns);
1401 			if (group) {
1402 				pci_dev_put(tmp);
1403 				return group;
1404 			}
1405 		}
1406 	}
1407 
1408 	return NULL;
1409 }
1410 
1411 struct group_for_pci_data {
1412 	struct pci_dev *pdev;
1413 	struct iommu_group *group;
1414 };
1415 
1416 /*
1417  * DMA alias iterator callback, return the last seen device.  Stop and return
1418  * the IOMMU group if we find one along the way.
1419  */
1420 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1421 {
1422 	struct group_for_pci_data *data = opaque;
1423 
1424 	data->pdev = pdev;
1425 	data->group = iommu_group_get(&pdev->dev);
1426 
1427 	return data->group != NULL;
1428 }
1429 
1430 /*
1431  * Generic device_group call-back function. It just allocates one
1432  * iommu-group per device.
1433  */
1434 struct iommu_group *generic_device_group(struct device *dev)
1435 {
1436 	return iommu_group_alloc();
1437 }
1438 EXPORT_SYMBOL_GPL(generic_device_group);
1439 
1440 /*
1441  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1442  * to find or create an IOMMU group for a device.
1443  */
1444 struct iommu_group *pci_device_group(struct device *dev)
1445 {
1446 	struct pci_dev *pdev = to_pci_dev(dev);
1447 	struct group_for_pci_data data;
1448 	struct pci_bus *bus;
1449 	struct iommu_group *group = NULL;
1450 	u64 devfns[4] = { 0 };
1451 
1452 	if (WARN_ON(!dev_is_pci(dev)))
1453 		return ERR_PTR(-EINVAL);
1454 
1455 	/*
1456 	 * Find the upstream DMA alias for the device.  A device must not
1457 	 * be aliased due to topology in order to have its own IOMMU group.
1458 	 * If we find an alias along the way that already belongs to a
1459 	 * group, use it.
1460 	 */
1461 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1462 		return data.group;
1463 
1464 	pdev = data.pdev;
1465 
1466 	/*
1467 	 * Continue upstream from the point of minimum IOMMU granularity
1468 	 * due to aliases to the point where devices are protected from
1469 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1470 	 * group, use it.
1471 	 */
1472 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1473 		if (!bus->self)
1474 			continue;
1475 
1476 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1477 			break;
1478 
1479 		pdev = bus->self;
1480 
1481 		group = iommu_group_get(&pdev->dev);
1482 		if (group)
1483 			return group;
1484 	}
1485 
1486 	/*
1487 	 * Look for existing groups on device aliases.  If we alias another
1488 	 * device or another device aliases us, use the same group.
1489 	 */
1490 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1491 	if (group)
1492 		return group;
1493 
1494 	/*
1495 	 * Look for existing groups on non-isolated functions on the same
1496 	 * slot and aliases of those funcions, if any.  No need to clear
1497 	 * the search bitmap, the tested devfns are still valid.
1498 	 */
1499 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1500 	if (group)
1501 		return group;
1502 
1503 	/* No shared group found, allocate new */
1504 	return iommu_group_alloc();
1505 }
1506 EXPORT_SYMBOL_GPL(pci_device_group);
1507 
1508 /* Get the IOMMU group for device on fsl-mc bus */
1509 struct iommu_group *fsl_mc_device_group(struct device *dev)
1510 {
1511 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1512 	struct iommu_group *group;
1513 
1514 	group = iommu_group_get(cont_dev);
1515 	if (!group)
1516 		group = iommu_group_alloc();
1517 	return group;
1518 }
1519 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1520 
1521 static int iommu_get_def_domain_type(struct device *dev)
1522 {
1523 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1524 
1525 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1526 		return IOMMU_DOMAIN_DMA;
1527 
1528 	if (ops->def_domain_type)
1529 		return ops->def_domain_type(dev);
1530 
1531 	return 0;
1532 }
1533 
1534 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1535 					    struct iommu_group *group,
1536 					    unsigned int type)
1537 {
1538 	struct iommu_domain *dom;
1539 
1540 	dom = __iommu_domain_alloc(bus, type);
1541 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1542 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1543 		if (dom)
1544 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1545 				type, group->name);
1546 	}
1547 
1548 	if (!dom)
1549 		return -ENOMEM;
1550 
1551 	group->default_domain = dom;
1552 	if (!group->domain)
1553 		group->domain = dom;
1554 	return 0;
1555 }
1556 
1557 static int iommu_alloc_default_domain(struct iommu_group *group,
1558 				      struct device *dev)
1559 {
1560 	unsigned int type;
1561 
1562 	if (group->default_domain)
1563 		return 0;
1564 
1565 	type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1566 
1567 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1568 }
1569 
1570 /**
1571  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1572  * @dev: target device
1573  *
1574  * This function is intended to be called by IOMMU drivers and extended to
1575  * support common, bus-defined algorithms when determining or creating the
1576  * IOMMU group for a device.  On success, the caller will hold a reference
1577  * to the returned IOMMU group, which will already include the provided
1578  * device.  The reference should be released with iommu_group_put().
1579  */
1580 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1581 {
1582 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1583 	struct iommu_group *group;
1584 	int ret;
1585 
1586 	group = iommu_group_get(dev);
1587 	if (group)
1588 		return group;
1589 
1590 	if (!ops)
1591 		return ERR_PTR(-EINVAL);
1592 
1593 	group = ops->device_group(dev);
1594 	if (WARN_ON_ONCE(group == NULL))
1595 		return ERR_PTR(-EINVAL);
1596 
1597 	if (IS_ERR(group))
1598 		return group;
1599 
1600 	ret = iommu_group_add_device(group, dev);
1601 	if (ret)
1602 		goto out_put_group;
1603 
1604 	return group;
1605 
1606 out_put_group:
1607 	iommu_group_put(group);
1608 
1609 	return ERR_PTR(ret);
1610 }
1611 
1612 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1613 {
1614 	return group->default_domain;
1615 }
1616 
1617 static int probe_iommu_group(struct device *dev, void *data)
1618 {
1619 	struct list_head *group_list = data;
1620 	struct iommu_group *group;
1621 	int ret;
1622 
1623 	/* Device is probed already if in a group */
1624 	group = iommu_group_get(dev);
1625 	if (group) {
1626 		iommu_group_put(group);
1627 		return 0;
1628 	}
1629 
1630 	ret = __iommu_probe_device(dev, group_list);
1631 	if (ret == -ENODEV)
1632 		ret = 0;
1633 
1634 	return ret;
1635 }
1636 
1637 static int remove_iommu_group(struct device *dev, void *data)
1638 {
1639 	iommu_release_device(dev);
1640 
1641 	return 0;
1642 }
1643 
1644 static int iommu_bus_notifier(struct notifier_block *nb,
1645 			      unsigned long action, void *data)
1646 {
1647 	unsigned long group_action = 0;
1648 	struct device *dev = data;
1649 	struct iommu_group *group;
1650 
1651 	/*
1652 	 * ADD/DEL call into iommu driver ops if provided, which may
1653 	 * result in ADD/DEL notifiers to group->notifier
1654 	 */
1655 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1656 		int ret;
1657 
1658 		ret = iommu_probe_device(dev);
1659 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1660 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1661 		iommu_release_device(dev);
1662 		return NOTIFY_OK;
1663 	}
1664 
1665 	/*
1666 	 * Remaining BUS_NOTIFYs get filtered and republished to the
1667 	 * group, if anyone is listening
1668 	 */
1669 	group = iommu_group_get(dev);
1670 	if (!group)
1671 		return 0;
1672 
1673 	switch (action) {
1674 	case BUS_NOTIFY_BIND_DRIVER:
1675 		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1676 		break;
1677 	case BUS_NOTIFY_BOUND_DRIVER:
1678 		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1679 		break;
1680 	case BUS_NOTIFY_UNBIND_DRIVER:
1681 		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1682 		break;
1683 	case BUS_NOTIFY_UNBOUND_DRIVER:
1684 		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1685 		break;
1686 	}
1687 
1688 	if (group_action)
1689 		blocking_notifier_call_chain(&group->notifier,
1690 					     group_action, dev);
1691 
1692 	iommu_group_put(group);
1693 	return 0;
1694 }
1695 
1696 struct __group_domain_type {
1697 	struct device *dev;
1698 	unsigned int type;
1699 };
1700 
1701 static int probe_get_default_domain_type(struct device *dev, void *data)
1702 {
1703 	struct __group_domain_type *gtype = data;
1704 	unsigned int type = iommu_get_def_domain_type(dev);
1705 
1706 	if (type) {
1707 		if (gtype->type && gtype->type != type) {
1708 			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1709 				 iommu_domain_type_str(type),
1710 				 dev_name(gtype->dev),
1711 				 iommu_domain_type_str(gtype->type));
1712 			gtype->type = 0;
1713 		}
1714 
1715 		if (!gtype->dev) {
1716 			gtype->dev  = dev;
1717 			gtype->type = type;
1718 		}
1719 	}
1720 
1721 	return 0;
1722 }
1723 
1724 static void probe_alloc_default_domain(struct bus_type *bus,
1725 				       struct iommu_group *group)
1726 {
1727 	struct __group_domain_type gtype;
1728 
1729 	memset(&gtype, 0, sizeof(gtype));
1730 
1731 	/* Ask for default domain requirements of all devices in the group */
1732 	__iommu_group_for_each_dev(group, &gtype,
1733 				   probe_get_default_domain_type);
1734 
1735 	if (!gtype.type)
1736 		gtype.type = iommu_def_domain_type;
1737 
1738 	iommu_group_alloc_default_domain(bus, group, gtype.type);
1739 
1740 }
1741 
1742 static int iommu_group_do_dma_attach(struct device *dev, void *data)
1743 {
1744 	struct iommu_domain *domain = data;
1745 	int ret = 0;
1746 
1747 	if (!iommu_is_attach_deferred(domain, dev))
1748 		ret = __iommu_attach_device(domain, dev);
1749 
1750 	return ret;
1751 }
1752 
1753 static int __iommu_group_dma_attach(struct iommu_group *group)
1754 {
1755 	return __iommu_group_for_each_dev(group, group->default_domain,
1756 					  iommu_group_do_dma_attach);
1757 }
1758 
1759 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1760 {
1761 	struct iommu_domain *domain = data;
1762 
1763 	if (domain->ops->probe_finalize)
1764 		domain->ops->probe_finalize(dev);
1765 
1766 	return 0;
1767 }
1768 
1769 static void __iommu_group_dma_finalize(struct iommu_group *group)
1770 {
1771 	__iommu_group_for_each_dev(group, group->default_domain,
1772 				   iommu_group_do_probe_finalize);
1773 }
1774 
1775 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1776 {
1777 	struct iommu_group *group = data;
1778 
1779 	iommu_create_device_direct_mappings(group, dev);
1780 
1781 	return 0;
1782 }
1783 
1784 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1785 {
1786 	return __iommu_group_for_each_dev(group, group,
1787 					  iommu_do_create_direct_mappings);
1788 }
1789 
1790 int bus_iommu_probe(struct bus_type *bus)
1791 {
1792 	struct iommu_group *group, *next;
1793 	LIST_HEAD(group_list);
1794 	int ret;
1795 
1796 	/*
1797 	 * This code-path does not allocate the default domain when
1798 	 * creating the iommu group, so do it after the groups are
1799 	 * created.
1800 	 */
1801 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1802 	if (ret)
1803 		return ret;
1804 
1805 	list_for_each_entry_safe(group, next, &group_list, entry) {
1806 		/* Remove item from the list */
1807 		list_del_init(&group->entry);
1808 
1809 		mutex_lock(&group->mutex);
1810 
1811 		/* Try to allocate default domain */
1812 		probe_alloc_default_domain(bus, group);
1813 
1814 		if (!group->default_domain) {
1815 			mutex_unlock(&group->mutex);
1816 			continue;
1817 		}
1818 
1819 		iommu_group_create_direct_mappings(group);
1820 
1821 		ret = __iommu_group_dma_attach(group);
1822 
1823 		mutex_unlock(&group->mutex);
1824 
1825 		if (ret)
1826 			break;
1827 
1828 		__iommu_group_dma_finalize(group);
1829 	}
1830 
1831 	return ret;
1832 }
1833 
1834 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1835 {
1836 	struct notifier_block *nb;
1837 	int err;
1838 
1839 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1840 	if (!nb)
1841 		return -ENOMEM;
1842 
1843 	nb->notifier_call = iommu_bus_notifier;
1844 
1845 	err = bus_register_notifier(bus, nb);
1846 	if (err)
1847 		goto out_free;
1848 
1849 	err = bus_iommu_probe(bus);
1850 	if (err)
1851 		goto out_err;
1852 
1853 
1854 	return 0;
1855 
1856 out_err:
1857 	/* Clean up */
1858 	bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1859 	bus_unregister_notifier(bus, nb);
1860 
1861 out_free:
1862 	kfree(nb);
1863 
1864 	return err;
1865 }
1866 
1867 /**
1868  * bus_set_iommu - set iommu-callbacks for the bus
1869  * @bus: bus.
1870  * @ops: the callbacks provided by the iommu-driver
1871  *
1872  * This function is called by an iommu driver to set the iommu methods
1873  * used for a particular bus. Drivers for devices on that bus can use
1874  * the iommu-api after these ops are registered.
1875  * This special function is needed because IOMMUs are usually devices on
1876  * the bus itself, so the iommu drivers are not initialized when the bus
1877  * is set up. With this function the iommu-driver can set the iommu-ops
1878  * afterwards.
1879  */
1880 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1881 {
1882 	int err;
1883 
1884 	if (ops == NULL) {
1885 		bus->iommu_ops = NULL;
1886 		return 0;
1887 	}
1888 
1889 	if (bus->iommu_ops != NULL)
1890 		return -EBUSY;
1891 
1892 	bus->iommu_ops = ops;
1893 
1894 	/* Do IOMMU specific setup for this bus-type */
1895 	err = iommu_bus_init(bus, ops);
1896 	if (err)
1897 		bus->iommu_ops = NULL;
1898 
1899 	return err;
1900 }
1901 EXPORT_SYMBOL_GPL(bus_set_iommu);
1902 
1903 bool iommu_present(struct bus_type *bus)
1904 {
1905 	return bus->iommu_ops != NULL;
1906 }
1907 EXPORT_SYMBOL_GPL(iommu_present);
1908 
1909 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1910 {
1911 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1912 		return false;
1913 
1914 	return bus->iommu_ops->capable(cap);
1915 }
1916 EXPORT_SYMBOL_GPL(iommu_capable);
1917 
1918 /**
1919  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1920  * @domain: iommu domain
1921  * @handler: fault handler
1922  * @token: user data, will be passed back to the fault handler
1923  *
1924  * This function should be used by IOMMU users which want to be notified
1925  * whenever an IOMMU fault happens.
1926  *
1927  * The fault handler itself should return 0 on success, and an appropriate
1928  * error code otherwise.
1929  */
1930 void iommu_set_fault_handler(struct iommu_domain *domain,
1931 					iommu_fault_handler_t handler,
1932 					void *token)
1933 {
1934 	BUG_ON(!domain);
1935 
1936 	domain->handler = handler;
1937 	domain->handler_token = token;
1938 }
1939 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1940 
1941 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1942 						 unsigned type)
1943 {
1944 	struct iommu_domain *domain;
1945 
1946 	if (bus == NULL || bus->iommu_ops == NULL)
1947 		return NULL;
1948 
1949 	domain = bus->iommu_ops->domain_alloc(type);
1950 	if (!domain)
1951 		return NULL;
1952 
1953 	domain->ops  = bus->iommu_ops;
1954 	domain->type = type;
1955 	/* Assume all sizes by default; the driver may override this later */
1956 	domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
1957 
1958 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1959 		iommu_domain_free(domain);
1960 		domain = NULL;
1961 	}
1962 	return domain;
1963 }
1964 
1965 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1966 {
1967 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1968 }
1969 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1970 
1971 void iommu_domain_free(struct iommu_domain *domain)
1972 {
1973 	iommu_put_dma_cookie(domain);
1974 	domain->ops->domain_free(domain);
1975 }
1976 EXPORT_SYMBOL_GPL(iommu_domain_free);
1977 
1978 static int __iommu_attach_device(struct iommu_domain *domain,
1979 				 struct device *dev)
1980 {
1981 	int ret;
1982 
1983 	if (unlikely(domain->ops->attach_dev == NULL))
1984 		return -ENODEV;
1985 
1986 	ret = domain->ops->attach_dev(domain, dev);
1987 	if (!ret)
1988 		trace_attach_device_to_domain(dev);
1989 	return ret;
1990 }
1991 
1992 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1993 {
1994 	struct iommu_group *group;
1995 	int ret;
1996 
1997 	group = iommu_group_get(dev);
1998 	if (!group)
1999 		return -ENODEV;
2000 
2001 	/*
2002 	 * Lock the group to make sure the device-count doesn't
2003 	 * change while we are attaching
2004 	 */
2005 	mutex_lock(&group->mutex);
2006 	ret = -EINVAL;
2007 	if (iommu_group_device_count(group) != 1)
2008 		goto out_unlock;
2009 
2010 	ret = __iommu_attach_group(domain, group);
2011 
2012 out_unlock:
2013 	mutex_unlock(&group->mutex);
2014 	iommu_group_put(group);
2015 
2016 	return ret;
2017 }
2018 EXPORT_SYMBOL_GPL(iommu_attach_device);
2019 
2020 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2021 {
2022 	const struct iommu_ops *ops = domain->ops;
2023 
2024 	if (ops->is_attach_deferred && ops->is_attach_deferred(domain, dev))
2025 		return __iommu_attach_device(domain, dev);
2026 
2027 	return 0;
2028 }
2029 
2030 /*
2031  * Check flags and other user provided data for valid combinations. We also
2032  * make sure no reserved fields or unused flags are set. This is to ensure
2033  * not breaking userspace in the future when these fields or flags are used.
2034  */
2035 static int iommu_check_cache_invl_data(struct iommu_cache_invalidate_info *info)
2036 {
2037 	u32 mask;
2038 	int i;
2039 
2040 	if (info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
2041 		return -EINVAL;
2042 
2043 	mask = (1 << IOMMU_CACHE_INV_TYPE_NR) - 1;
2044 	if (info->cache & ~mask)
2045 		return -EINVAL;
2046 
2047 	if (info->granularity >= IOMMU_INV_GRANU_NR)
2048 		return -EINVAL;
2049 
2050 	switch (info->granularity) {
2051 	case IOMMU_INV_GRANU_ADDR:
2052 		if (info->cache & IOMMU_CACHE_INV_TYPE_PASID)
2053 			return -EINVAL;
2054 
2055 		mask = IOMMU_INV_ADDR_FLAGS_PASID |
2056 			IOMMU_INV_ADDR_FLAGS_ARCHID |
2057 			IOMMU_INV_ADDR_FLAGS_LEAF;
2058 
2059 		if (info->granu.addr_info.flags & ~mask)
2060 			return -EINVAL;
2061 		break;
2062 	case IOMMU_INV_GRANU_PASID:
2063 		mask = IOMMU_INV_PASID_FLAGS_PASID |
2064 			IOMMU_INV_PASID_FLAGS_ARCHID;
2065 		if (info->granu.pasid_info.flags & ~mask)
2066 			return -EINVAL;
2067 
2068 		break;
2069 	case IOMMU_INV_GRANU_DOMAIN:
2070 		if (info->cache & IOMMU_CACHE_INV_TYPE_DEV_IOTLB)
2071 			return -EINVAL;
2072 		break;
2073 	default:
2074 		return -EINVAL;
2075 	}
2076 
2077 	/* Check reserved padding fields */
2078 	for (i = 0; i < sizeof(info->padding); i++) {
2079 		if (info->padding[i])
2080 			return -EINVAL;
2081 	}
2082 
2083 	return 0;
2084 }
2085 
2086 int iommu_uapi_cache_invalidate(struct iommu_domain *domain, struct device *dev,
2087 				void __user *uinfo)
2088 {
2089 	struct iommu_cache_invalidate_info inv_info = { 0 };
2090 	u32 minsz;
2091 	int ret;
2092 
2093 	if (unlikely(!domain->ops->cache_invalidate))
2094 		return -ENODEV;
2095 
2096 	/*
2097 	 * No new spaces can be added before the variable sized union, the
2098 	 * minimum size is the offset to the union.
2099 	 */
2100 	minsz = offsetof(struct iommu_cache_invalidate_info, granu);
2101 
2102 	/* Copy minsz from user to get flags and argsz */
2103 	if (copy_from_user(&inv_info, uinfo, minsz))
2104 		return -EFAULT;
2105 
2106 	/* Fields before the variable size union are mandatory */
2107 	if (inv_info.argsz < minsz)
2108 		return -EINVAL;
2109 
2110 	/* PASID and address granu require additional info beyond minsz */
2111 	if (inv_info.granularity == IOMMU_INV_GRANU_PASID &&
2112 	    inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.pasid_info))
2113 		return -EINVAL;
2114 
2115 	if (inv_info.granularity == IOMMU_INV_GRANU_ADDR &&
2116 	    inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.addr_info))
2117 		return -EINVAL;
2118 
2119 	/*
2120 	 * User might be using a newer UAPI header which has a larger data
2121 	 * size, we shall support the existing flags within the current
2122 	 * size. Copy the remaining user data _after_ minsz but not more
2123 	 * than the current kernel supported size.
2124 	 */
2125 	if (copy_from_user((void *)&inv_info + minsz, uinfo + minsz,
2126 			   min_t(u32, inv_info.argsz, sizeof(inv_info)) - minsz))
2127 		return -EFAULT;
2128 
2129 	/* Now the argsz is validated, check the content */
2130 	ret = iommu_check_cache_invl_data(&inv_info);
2131 	if (ret)
2132 		return ret;
2133 
2134 	return domain->ops->cache_invalidate(domain, dev, &inv_info);
2135 }
2136 EXPORT_SYMBOL_GPL(iommu_uapi_cache_invalidate);
2137 
2138 static int iommu_check_bind_data(struct iommu_gpasid_bind_data *data)
2139 {
2140 	u64 mask;
2141 	int i;
2142 
2143 	if (data->version != IOMMU_GPASID_BIND_VERSION_1)
2144 		return -EINVAL;
2145 
2146 	/* Check the range of supported formats */
2147 	if (data->format >= IOMMU_PASID_FORMAT_LAST)
2148 		return -EINVAL;
2149 
2150 	/* Check all flags */
2151 	mask = IOMMU_SVA_GPASID_VAL;
2152 	if (data->flags & ~mask)
2153 		return -EINVAL;
2154 
2155 	/* Check reserved padding fields */
2156 	for (i = 0; i < sizeof(data->padding); i++) {
2157 		if (data->padding[i])
2158 			return -EINVAL;
2159 	}
2160 
2161 	return 0;
2162 }
2163 
2164 static int iommu_sva_prepare_bind_data(void __user *udata,
2165 				       struct iommu_gpasid_bind_data *data)
2166 {
2167 	u32 minsz;
2168 
2169 	/*
2170 	 * No new spaces can be added before the variable sized union, the
2171 	 * minimum size is the offset to the union.
2172 	 */
2173 	minsz = offsetof(struct iommu_gpasid_bind_data, vendor);
2174 
2175 	/* Copy minsz from user to get flags and argsz */
2176 	if (copy_from_user(data, udata, minsz))
2177 		return -EFAULT;
2178 
2179 	/* Fields before the variable size union are mandatory */
2180 	if (data->argsz < minsz)
2181 		return -EINVAL;
2182 	/*
2183 	 * User might be using a newer UAPI header, we shall let IOMMU vendor
2184 	 * driver decide on what size it needs. Since the guest PASID bind data
2185 	 * can be vendor specific, larger argsz could be the result of extension
2186 	 * for one vendor but it should not affect another vendor.
2187 	 * Copy the remaining user data _after_ minsz
2188 	 */
2189 	if (copy_from_user((void *)data + minsz, udata + minsz,
2190 			   min_t(u32, data->argsz, sizeof(*data)) - minsz))
2191 		return -EFAULT;
2192 
2193 	return iommu_check_bind_data(data);
2194 }
2195 
2196 int iommu_uapi_sva_bind_gpasid(struct iommu_domain *domain, struct device *dev,
2197 			       void __user *udata)
2198 {
2199 	struct iommu_gpasid_bind_data data = { 0 };
2200 	int ret;
2201 
2202 	if (unlikely(!domain->ops->sva_bind_gpasid))
2203 		return -ENODEV;
2204 
2205 	ret = iommu_sva_prepare_bind_data(udata, &data);
2206 	if (ret)
2207 		return ret;
2208 
2209 	return domain->ops->sva_bind_gpasid(domain, dev, &data);
2210 }
2211 EXPORT_SYMBOL_GPL(iommu_uapi_sva_bind_gpasid);
2212 
2213 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2214 			     ioasid_t pasid)
2215 {
2216 	if (unlikely(!domain->ops->sva_unbind_gpasid))
2217 		return -ENODEV;
2218 
2219 	return domain->ops->sva_unbind_gpasid(dev, pasid);
2220 }
2221 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid);
2222 
2223 int iommu_uapi_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2224 				 void __user *udata)
2225 {
2226 	struct iommu_gpasid_bind_data data = { 0 };
2227 	int ret;
2228 
2229 	if (unlikely(!domain->ops->sva_bind_gpasid))
2230 		return -ENODEV;
2231 
2232 	ret = iommu_sva_prepare_bind_data(udata, &data);
2233 	if (ret)
2234 		return ret;
2235 
2236 	return iommu_sva_unbind_gpasid(domain, dev, data.hpasid);
2237 }
2238 EXPORT_SYMBOL_GPL(iommu_uapi_sva_unbind_gpasid);
2239 
2240 static void __iommu_detach_device(struct iommu_domain *domain,
2241 				  struct device *dev)
2242 {
2243 	if (iommu_is_attach_deferred(domain, dev))
2244 		return;
2245 
2246 	if (unlikely(domain->ops->detach_dev == NULL))
2247 		return;
2248 
2249 	domain->ops->detach_dev(domain, dev);
2250 	trace_detach_device_from_domain(dev);
2251 }
2252 
2253 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2254 {
2255 	struct iommu_group *group;
2256 
2257 	group = iommu_group_get(dev);
2258 	if (!group)
2259 		return;
2260 
2261 	mutex_lock(&group->mutex);
2262 	if (iommu_group_device_count(group) != 1) {
2263 		WARN_ON(1);
2264 		goto out_unlock;
2265 	}
2266 
2267 	__iommu_detach_group(domain, group);
2268 
2269 out_unlock:
2270 	mutex_unlock(&group->mutex);
2271 	iommu_group_put(group);
2272 }
2273 EXPORT_SYMBOL_GPL(iommu_detach_device);
2274 
2275 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2276 {
2277 	struct iommu_domain *domain;
2278 	struct iommu_group *group;
2279 
2280 	group = iommu_group_get(dev);
2281 	if (!group)
2282 		return NULL;
2283 
2284 	domain = group->domain;
2285 
2286 	iommu_group_put(group);
2287 
2288 	return domain;
2289 }
2290 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2291 
2292 /*
2293  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2294  * guarantees that the group and its default domain are valid and correct.
2295  */
2296 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2297 {
2298 	return dev->iommu_group->default_domain;
2299 }
2300 
2301 /*
2302  * IOMMU groups are really the natural working unit of the IOMMU, but
2303  * the IOMMU API works on domains and devices.  Bridge that gap by
2304  * iterating over the devices in a group.  Ideally we'd have a single
2305  * device which represents the requestor ID of the group, but we also
2306  * allow IOMMU drivers to create policy defined minimum sets, where
2307  * the physical hardware may be able to distiguish members, but we
2308  * wish to group them at a higher level (ex. untrusted multi-function
2309  * PCI devices).  Thus we attach each device.
2310  */
2311 static int iommu_group_do_attach_device(struct device *dev, void *data)
2312 {
2313 	struct iommu_domain *domain = data;
2314 
2315 	return __iommu_attach_device(domain, dev);
2316 }
2317 
2318 static int __iommu_attach_group(struct iommu_domain *domain,
2319 				struct iommu_group *group)
2320 {
2321 	int ret;
2322 
2323 	if (group->default_domain && group->domain != group->default_domain)
2324 		return -EBUSY;
2325 
2326 	ret = __iommu_group_for_each_dev(group, domain,
2327 					 iommu_group_do_attach_device);
2328 	if (ret == 0)
2329 		group->domain = domain;
2330 
2331 	return ret;
2332 }
2333 
2334 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2335 {
2336 	int ret;
2337 
2338 	mutex_lock(&group->mutex);
2339 	ret = __iommu_attach_group(domain, group);
2340 	mutex_unlock(&group->mutex);
2341 
2342 	return ret;
2343 }
2344 EXPORT_SYMBOL_GPL(iommu_attach_group);
2345 
2346 static int iommu_group_do_detach_device(struct device *dev, void *data)
2347 {
2348 	struct iommu_domain *domain = data;
2349 
2350 	__iommu_detach_device(domain, dev);
2351 
2352 	return 0;
2353 }
2354 
2355 static void __iommu_detach_group(struct iommu_domain *domain,
2356 				 struct iommu_group *group)
2357 {
2358 	int ret;
2359 
2360 	if (!group->default_domain) {
2361 		__iommu_group_for_each_dev(group, domain,
2362 					   iommu_group_do_detach_device);
2363 		group->domain = NULL;
2364 		return;
2365 	}
2366 
2367 	if (group->domain == group->default_domain)
2368 		return;
2369 
2370 	/* Detach by re-attaching to the default domain */
2371 	ret = __iommu_group_for_each_dev(group, group->default_domain,
2372 					 iommu_group_do_attach_device);
2373 	if (ret != 0)
2374 		WARN_ON(1);
2375 	else
2376 		group->domain = group->default_domain;
2377 }
2378 
2379 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2380 {
2381 	mutex_lock(&group->mutex);
2382 	__iommu_detach_group(domain, group);
2383 	mutex_unlock(&group->mutex);
2384 }
2385 EXPORT_SYMBOL_GPL(iommu_detach_group);
2386 
2387 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2388 {
2389 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2390 		return iova;
2391 
2392 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2393 		return 0;
2394 
2395 	return domain->ops->iova_to_phys(domain, iova);
2396 }
2397 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2398 
2399 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2400 			   phys_addr_t paddr, size_t size, size_t *count)
2401 {
2402 	unsigned int pgsize_idx, pgsize_idx_next;
2403 	unsigned long pgsizes;
2404 	size_t offset, pgsize, pgsize_next;
2405 	unsigned long addr_merge = paddr | iova;
2406 
2407 	/* Page sizes supported by the hardware and small enough for @size */
2408 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2409 
2410 	/* Constrain the page sizes further based on the maximum alignment */
2411 	if (likely(addr_merge))
2412 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2413 
2414 	/* Make sure we have at least one suitable page size */
2415 	BUG_ON(!pgsizes);
2416 
2417 	/* Pick the biggest page size remaining */
2418 	pgsize_idx = __fls(pgsizes);
2419 	pgsize = BIT(pgsize_idx);
2420 	if (!count)
2421 		return pgsize;
2422 
2423 	/* Find the next biggest support page size, if it exists */
2424 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2425 	if (!pgsizes)
2426 		goto out_set_count;
2427 
2428 	pgsize_idx_next = __ffs(pgsizes);
2429 	pgsize_next = BIT(pgsize_idx_next);
2430 
2431 	/*
2432 	 * There's no point trying a bigger page size unless the virtual
2433 	 * and physical addresses are similarly offset within the larger page.
2434 	 */
2435 	if ((iova ^ paddr) & (pgsize_next - 1))
2436 		goto out_set_count;
2437 
2438 	/* Calculate the offset to the next page size alignment boundary */
2439 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2440 
2441 	/*
2442 	 * If size is big enough to accommodate the larger page, reduce
2443 	 * the number of smaller pages.
2444 	 */
2445 	if (offset + pgsize_next <= size)
2446 		size = offset;
2447 
2448 out_set_count:
2449 	*count = size >> pgsize_idx;
2450 	return pgsize;
2451 }
2452 
2453 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2454 			     phys_addr_t paddr, size_t size, int prot,
2455 			     gfp_t gfp, size_t *mapped)
2456 {
2457 	const struct iommu_ops *ops = domain->ops;
2458 	size_t pgsize, count;
2459 	int ret;
2460 
2461 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2462 
2463 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2464 		 iova, &paddr, pgsize, count);
2465 
2466 	if (ops->map_pages) {
2467 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2468 				     gfp, mapped);
2469 	} else {
2470 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2471 		*mapped = ret ? 0 : pgsize;
2472 	}
2473 
2474 	return ret;
2475 }
2476 
2477 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2478 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2479 {
2480 	const struct iommu_ops *ops = domain->ops;
2481 	unsigned long orig_iova = iova;
2482 	unsigned int min_pagesz;
2483 	size_t orig_size = size;
2484 	phys_addr_t orig_paddr = paddr;
2485 	int ret = 0;
2486 
2487 	if (unlikely(!(ops->map || ops->map_pages) ||
2488 		     domain->pgsize_bitmap == 0UL))
2489 		return -ENODEV;
2490 
2491 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2492 		return -EINVAL;
2493 
2494 	/* find out the minimum page size supported */
2495 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2496 
2497 	/*
2498 	 * both the virtual address and the physical one, as well as
2499 	 * the size of the mapping, must be aligned (at least) to the
2500 	 * size of the smallest page supported by the hardware
2501 	 */
2502 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2503 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2504 		       iova, &paddr, size, min_pagesz);
2505 		return -EINVAL;
2506 	}
2507 
2508 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2509 
2510 	while (size) {
2511 		size_t mapped = 0;
2512 
2513 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2514 					&mapped);
2515 		/*
2516 		 * Some pages may have been mapped, even if an error occurred,
2517 		 * so we should account for those so they can be unmapped.
2518 		 */
2519 		size -= mapped;
2520 
2521 		if (ret)
2522 			break;
2523 
2524 		iova += mapped;
2525 		paddr += mapped;
2526 	}
2527 
2528 	/* unroll mapping in case something went wrong */
2529 	if (ret)
2530 		iommu_unmap(domain, orig_iova, orig_size - size);
2531 	else
2532 		trace_map(orig_iova, orig_paddr, orig_size);
2533 
2534 	return ret;
2535 }
2536 
2537 static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
2538 		      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2539 {
2540 	const struct iommu_ops *ops = domain->ops;
2541 	int ret;
2542 
2543 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2544 	if (ret == 0 && ops->iotlb_sync_map)
2545 		ops->iotlb_sync_map(domain, iova, size);
2546 
2547 	return ret;
2548 }
2549 
2550 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2551 	      phys_addr_t paddr, size_t size, int prot)
2552 {
2553 	might_sleep();
2554 	return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2555 }
2556 EXPORT_SYMBOL_GPL(iommu_map);
2557 
2558 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2559 	      phys_addr_t paddr, size_t size, int prot)
2560 {
2561 	return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2562 }
2563 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2564 
2565 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2566 				  unsigned long iova, size_t size,
2567 				  struct iommu_iotlb_gather *iotlb_gather)
2568 {
2569 	const struct iommu_ops *ops = domain->ops;
2570 	size_t pgsize, count;
2571 
2572 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2573 	return ops->unmap_pages ?
2574 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2575 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2576 }
2577 
2578 static size_t __iommu_unmap(struct iommu_domain *domain,
2579 			    unsigned long iova, size_t size,
2580 			    struct iommu_iotlb_gather *iotlb_gather)
2581 {
2582 	const struct iommu_ops *ops = domain->ops;
2583 	size_t unmapped_page, unmapped = 0;
2584 	unsigned long orig_iova = iova;
2585 	unsigned int min_pagesz;
2586 
2587 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2588 		     domain->pgsize_bitmap == 0UL))
2589 		return 0;
2590 
2591 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2592 		return 0;
2593 
2594 	/* find out the minimum page size supported */
2595 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2596 
2597 	/*
2598 	 * The virtual address, as well as the size of the mapping, must be
2599 	 * aligned (at least) to the size of the smallest page supported
2600 	 * by the hardware
2601 	 */
2602 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2603 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2604 		       iova, size, min_pagesz);
2605 		return 0;
2606 	}
2607 
2608 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2609 
2610 	/*
2611 	 * Keep iterating until we either unmap 'size' bytes (or more)
2612 	 * or we hit an area that isn't mapped.
2613 	 */
2614 	while (unmapped < size) {
2615 		unmapped_page = __iommu_unmap_pages(domain, iova,
2616 						    size - unmapped,
2617 						    iotlb_gather);
2618 		if (!unmapped_page)
2619 			break;
2620 
2621 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2622 			 iova, unmapped_page);
2623 
2624 		iova += unmapped_page;
2625 		unmapped += unmapped_page;
2626 	}
2627 
2628 	trace_unmap(orig_iova, size, unmapped);
2629 	return unmapped;
2630 }
2631 
2632 size_t iommu_unmap(struct iommu_domain *domain,
2633 		   unsigned long iova, size_t size)
2634 {
2635 	struct iommu_iotlb_gather iotlb_gather;
2636 	size_t ret;
2637 
2638 	iommu_iotlb_gather_init(&iotlb_gather);
2639 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2640 	iommu_iotlb_sync(domain, &iotlb_gather);
2641 
2642 	return ret;
2643 }
2644 EXPORT_SYMBOL_GPL(iommu_unmap);
2645 
2646 size_t iommu_unmap_fast(struct iommu_domain *domain,
2647 			unsigned long iova, size_t size,
2648 			struct iommu_iotlb_gather *iotlb_gather)
2649 {
2650 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2651 }
2652 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2653 
2654 static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2655 		struct scatterlist *sg, unsigned int nents, int prot,
2656 		gfp_t gfp)
2657 {
2658 	const struct iommu_ops *ops = domain->ops;
2659 	size_t len = 0, mapped = 0;
2660 	phys_addr_t start;
2661 	unsigned int i = 0;
2662 	int ret;
2663 
2664 	while (i <= nents) {
2665 		phys_addr_t s_phys = sg_phys(sg);
2666 
2667 		if (len && s_phys != start + len) {
2668 			ret = __iommu_map(domain, iova + mapped, start,
2669 					len, prot, gfp);
2670 
2671 			if (ret)
2672 				goto out_err;
2673 
2674 			mapped += len;
2675 			len = 0;
2676 		}
2677 
2678 		if (len) {
2679 			len += sg->length;
2680 		} else {
2681 			len = sg->length;
2682 			start = s_phys;
2683 		}
2684 
2685 		if (++i < nents)
2686 			sg = sg_next(sg);
2687 	}
2688 
2689 	if (ops->iotlb_sync_map)
2690 		ops->iotlb_sync_map(domain, iova, mapped);
2691 	return mapped;
2692 
2693 out_err:
2694 	/* undo mappings already done */
2695 	iommu_unmap(domain, iova, mapped);
2696 
2697 	return ret;
2698 }
2699 
2700 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2701 		     struct scatterlist *sg, unsigned int nents, int prot)
2702 {
2703 	might_sleep();
2704 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2705 }
2706 EXPORT_SYMBOL_GPL(iommu_map_sg);
2707 
2708 ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2709 		    struct scatterlist *sg, unsigned int nents, int prot)
2710 {
2711 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2712 }
2713 
2714 /**
2715  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2716  * @domain: the iommu domain where the fault has happened
2717  * @dev: the device where the fault has happened
2718  * @iova: the faulting address
2719  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2720  *
2721  * This function should be called by the low-level IOMMU implementations
2722  * whenever IOMMU faults happen, to allow high-level users, that are
2723  * interested in such events, to know about them.
2724  *
2725  * This event may be useful for several possible use cases:
2726  * - mere logging of the event
2727  * - dynamic TLB/PTE loading
2728  * - if restarting of the faulting device is required
2729  *
2730  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2731  * PTE/TLB loading will one day be supported, implementations will be able
2732  * to tell whether it succeeded or not according to this return value).
2733  *
2734  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2735  * (though fault handlers can also return -ENOSYS, in case they want to
2736  * elicit the default behavior of the IOMMU drivers).
2737  */
2738 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2739 		       unsigned long iova, int flags)
2740 {
2741 	int ret = -ENOSYS;
2742 
2743 	/*
2744 	 * if upper layers showed interest and installed a fault handler,
2745 	 * invoke it.
2746 	 */
2747 	if (domain->handler)
2748 		ret = domain->handler(domain, dev, iova, flags,
2749 						domain->handler_token);
2750 
2751 	trace_io_page_fault(dev, iova, flags);
2752 	return ret;
2753 }
2754 EXPORT_SYMBOL_GPL(report_iommu_fault);
2755 
2756 static int __init iommu_init(void)
2757 {
2758 	iommu_group_kset = kset_create_and_add("iommu_groups",
2759 					       NULL, kernel_kobj);
2760 	BUG_ON(!iommu_group_kset);
2761 
2762 	iommu_debugfs_setup();
2763 
2764 	return 0;
2765 }
2766 core_initcall(iommu_init);
2767 
2768 int iommu_enable_nesting(struct iommu_domain *domain)
2769 {
2770 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2771 		return -EINVAL;
2772 	if (!domain->ops->enable_nesting)
2773 		return -EINVAL;
2774 	return domain->ops->enable_nesting(domain);
2775 }
2776 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2777 
2778 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2779 		unsigned long quirk)
2780 {
2781 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2782 		return -EINVAL;
2783 	if (!domain->ops->set_pgtable_quirks)
2784 		return -EINVAL;
2785 	return domain->ops->set_pgtable_quirks(domain, quirk);
2786 }
2787 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2788 
2789 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2790 {
2791 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2792 
2793 	if (ops && ops->get_resv_regions)
2794 		ops->get_resv_regions(dev, list);
2795 }
2796 
2797 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2798 {
2799 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2800 
2801 	if (ops && ops->put_resv_regions)
2802 		ops->put_resv_regions(dev, list);
2803 }
2804 
2805 /**
2806  * generic_iommu_put_resv_regions - Reserved region driver helper
2807  * @dev: device for which to free reserved regions
2808  * @list: reserved region list for device
2809  *
2810  * IOMMU drivers can use this to implement their .put_resv_regions() callback
2811  * for simple reservations. Memory allocated for each reserved region will be
2812  * freed. If an IOMMU driver allocates additional resources per region, it is
2813  * going to have to implement a custom callback.
2814  */
2815 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list)
2816 {
2817 	struct iommu_resv_region *entry, *next;
2818 
2819 	list_for_each_entry_safe(entry, next, list, list)
2820 		kfree(entry);
2821 }
2822 EXPORT_SYMBOL(generic_iommu_put_resv_regions);
2823 
2824 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2825 						  size_t length, int prot,
2826 						  enum iommu_resv_type type)
2827 {
2828 	struct iommu_resv_region *region;
2829 
2830 	region = kzalloc(sizeof(*region), GFP_KERNEL);
2831 	if (!region)
2832 		return NULL;
2833 
2834 	INIT_LIST_HEAD(&region->list);
2835 	region->start = start;
2836 	region->length = length;
2837 	region->prot = prot;
2838 	region->type = type;
2839 	return region;
2840 }
2841 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2842 
2843 void iommu_set_default_passthrough(bool cmd_line)
2844 {
2845 	if (cmd_line)
2846 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2847 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2848 }
2849 
2850 void iommu_set_default_translated(bool cmd_line)
2851 {
2852 	if (cmd_line)
2853 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2854 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2855 }
2856 
2857 bool iommu_default_passthrough(void)
2858 {
2859 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2860 }
2861 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2862 
2863 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2864 {
2865 	const struct iommu_ops *ops = NULL;
2866 	struct iommu_device *iommu;
2867 
2868 	spin_lock(&iommu_device_lock);
2869 	list_for_each_entry(iommu, &iommu_device_list, list)
2870 		if (iommu->fwnode == fwnode) {
2871 			ops = iommu->ops;
2872 			break;
2873 		}
2874 	spin_unlock(&iommu_device_lock);
2875 	return ops;
2876 }
2877 
2878 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2879 		      const struct iommu_ops *ops)
2880 {
2881 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2882 
2883 	if (fwspec)
2884 		return ops == fwspec->ops ? 0 : -EINVAL;
2885 
2886 	if (!dev_iommu_get(dev))
2887 		return -ENOMEM;
2888 
2889 	/* Preallocate for the overwhelmingly common case of 1 ID */
2890 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2891 	if (!fwspec)
2892 		return -ENOMEM;
2893 
2894 	of_node_get(to_of_node(iommu_fwnode));
2895 	fwspec->iommu_fwnode = iommu_fwnode;
2896 	fwspec->ops = ops;
2897 	dev_iommu_fwspec_set(dev, fwspec);
2898 	return 0;
2899 }
2900 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2901 
2902 void iommu_fwspec_free(struct device *dev)
2903 {
2904 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2905 
2906 	if (fwspec) {
2907 		fwnode_handle_put(fwspec->iommu_fwnode);
2908 		kfree(fwspec);
2909 		dev_iommu_fwspec_set(dev, NULL);
2910 	}
2911 }
2912 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2913 
2914 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2915 {
2916 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2917 	int i, new_num;
2918 
2919 	if (!fwspec)
2920 		return -EINVAL;
2921 
2922 	new_num = fwspec->num_ids + num_ids;
2923 	if (new_num > 1) {
2924 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2925 				  GFP_KERNEL);
2926 		if (!fwspec)
2927 			return -ENOMEM;
2928 
2929 		dev_iommu_fwspec_set(dev, fwspec);
2930 	}
2931 
2932 	for (i = 0; i < num_ids; i++)
2933 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2934 
2935 	fwspec->num_ids = new_num;
2936 	return 0;
2937 }
2938 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2939 
2940 /*
2941  * Per device IOMMU features.
2942  */
2943 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2944 {
2945 	if (dev->iommu && dev->iommu->iommu_dev) {
2946 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2947 
2948 		if (ops->dev_enable_feat)
2949 			return ops->dev_enable_feat(dev, feat);
2950 	}
2951 
2952 	return -ENODEV;
2953 }
2954 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2955 
2956 /*
2957  * The device drivers should do the necessary cleanups before calling this.
2958  * For example, before disabling the aux-domain feature, the device driver
2959  * should detach all aux-domains. Otherwise, this will return -EBUSY.
2960  */
2961 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2962 {
2963 	if (dev->iommu && dev->iommu->iommu_dev) {
2964 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2965 
2966 		if (ops->dev_disable_feat)
2967 			return ops->dev_disable_feat(dev, feat);
2968 	}
2969 
2970 	return -EBUSY;
2971 }
2972 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2973 
2974 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2975 {
2976 	if (dev->iommu && dev->iommu->iommu_dev) {
2977 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2978 
2979 		if (ops->dev_feat_enabled)
2980 			return ops->dev_feat_enabled(dev, feat);
2981 	}
2982 
2983 	return false;
2984 }
2985 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2986 
2987 /*
2988  * Aux-domain specific attach/detach.
2989  *
2990  * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns
2991  * true. Also, as long as domains are attached to a device through this
2992  * interface, any tries to call iommu_attach_device() should fail
2993  * (iommu_detach_device() can't fail, so we fail when trying to re-attach).
2994  * This should make us safe against a device being attached to a guest as a
2995  * whole while there are still pasid users on it (aux and sva).
2996  */
2997 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev)
2998 {
2999 	int ret = -ENODEV;
3000 
3001 	if (domain->ops->aux_attach_dev)
3002 		ret = domain->ops->aux_attach_dev(domain, dev);
3003 
3004 	if (!ret)
3005 		trace_attach_device_to_domain(dev);
3006 
3007 	return ret;
3008 }
3009 EXPORT_SYMBOL_GPL(iommu_aux_attach_device);
3010 
3011 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev)
3012 {
3013 	if (domain->ops->aux_detach_dev) {
3014 		domain->ops->aux_detach_dev(domain, dev);
3015 		trace_detach_device_from_domain(dev);
3016 	}
3017 }
3018 EXPORT_SYMBOL_GPL(iommu_aux_detach_device);
3019 
3020 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
3021 {
3022 	int ret = -ENODEV;
3023 
3024 	if (domain->ops->aux_get_pasid)
3025 		ret = domain->ops->aux_get_pasid(domain, dev);
3026 
3027 	return ret;
3028 }
3029 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid);
3030 
3031 /**
3032  * iommu_sva_bind_device() - Bind a process address space to a device
3033  * @dev: the device
3034  * @mm: the mm to bind, caller must hold a reference to it
3035  *
3036  * Create a bond between device and address space, allowing the device to access
3037  * the mm using the returned PASID. If a bond already exists between @device and
3038  * @mm, it is returned and an additional reference is taken. Caller must call
3039  * iommu_sva_unbind_device() to release each reference.
3040  *
3041  * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
3042  * initialize the required SVA features.
3043  *
3044  * On error, returns an ERR_PTR value.
3045  */
3046 struct iommu_sva *
3047 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
3048 {
3049 	struct iommu_group *group;
3050 	struct iommu_sva *handle = ERR_PTR(-EINVAL);
3051 	const struct iommu_ops *ops = dev->bus->iommu_ops;
3052 
3053 	if (!ops || !ops->sva_bind)
3054 		return ERR_PTR(-ENODEV);
3055 
3056 	group = iommu_group_get(dev);
3057 	if (!group)
3058 		return ERR_PTR(-ENODEV);
3059 
3060 	/* Ensure device count and domain don't change while we're binding */
3061 	mutex_lock(&group->mutex);
3062 
3063 	/*
3064 	 * To keep things simple, SVA currently doesn't support IOMMU groups
3065 	 * with more than one device. Existing SVA-capable systems are not
3066 	 * affected by the problems that required IOMMU groups (lack of ACS
3067 	 * isolation, device ID aliasing and other hardware issues).
3068 	 */
3069 	if (iommu_group_device_count(group) != 1)
3070 		goto out_unlock;
3071 
3072 	handle = ops->sva_bind(dev, mm, drvdata);
3073 
3074 out_unlock:
3075 	mutex_unlock(&group->mutex);
3076 	iommu_group_put(group);
3077 
3078 	return handle;
3079 }
3080 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
3081 
3082 /**
3083  * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
3084  * @handle: the handle returned by iommu_sva_bind_device()
3085  *
3086  * Put reference to a bond between device and address space. The device should
3087  * not be issuing any more transaction for this PASID. All outstanding page
3088  * requests for this PASID must have been flushed to the IOMMU.
3089  */
3090 void iommu_sva_unbind_device(struct iommu_sva *handle)
3091 {
3092 	struct iommu_group *group;
3093 	struct device *dev = handle->dev;
3094 	const struct iommu_ops *ops = dev->bus->iommu_ops;
3095 
3096 	if (!ops || !ops->sva_unbind)
3097 		return;
3098 
3099 	group = iommu_group_get(dev);
3100 	if (!group)
3101 		return;
3102 
3103 	mutex_lock(&group->mutex);
3104 	ops->sva_unbind(handle);
3105 	mutex_unlock(&group->mutex);
3106 
3107 	iommu_group_put(group);
3108 }
3109 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
3110 
3111 u32 iommu_sva_get_pasid(struct iommu_sva *handle)
3112 {
3113 	const struct iommu_ops *ops = handle->dev->bus->iommu_ops;
3114 
3115 	if (!ops || !ops->sva_get_pasid)
3116 		return IOMMU_PASID_INVALID;
3117 
3118 	return ops->sva_get_pasid(handle);
3119 }
3120 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
3121 
3122 /*
3123  * Changes the default domain of an iommu group that has *only* one device
3124  *
3125  * @group: The group for which the default domain should be changed
3126  * @prev_dev: The device in the group (this is used to make sure that the device
3127  *	 hasn't changed after the caller has called this function)
3128  * @type: The type of the new default domain that gets associated with the group
3129  *
3130  * Returns 0 on success and error code on failure
3131  *
3132  * Note:
3133  * 1. Presently, this function is called only when user requests to change the
3134  *    group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
3135  *    Please take a closer look if intended to use for other purposes.
3136  */
3137 static int iommu_change_dev_def_domain(struct iommu_group *group,
3138 				       struct device *prev_dev, int type)
3139 {
3140 	struct iommu_domain *prev_dom;
3141 	struct group_device *grp_dev;
3142 	int ret, dev_def_dom;
3143 	struct device *dev;
3144 
3145 	mutex_lock(&group->mutex);
3146 
3147 	if (group->default_domain != group->domain) {
3148 		dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
3149 		ret = -EBUSY;
3150 		goto out;
3151 	}
3152 
3153 	/*
3154 	 * iommu group wasn't locked while acquiring device lock in
3155 	 * iommu_group_store_type(). So, make sure that the device count hasn't
3156 	 * changed while acquiring device lock.
3157 	 *
3158 	 * Changing default domain of an iommu group with two or more devices
3159 	 * isn't supported because there could be a potential deadlock. Consider
3160 	 * the following scenario. T1 is trying to acquire device locks of all
3161 	 * the devices in the group and before it could acquire all of them,
3162 	 * there could be another thread T2 (from different sub-system and use
3163 	 * case) that has already acquired some of the device locks and might be
3164 	 * waiting for T1 to release other device locks.
3165 	 */
3166 	if (iommu_group_device_count(group) != 1) {
3167 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
3168 		ret = -EINVAL;
3169 		goto out;
3170 	}
3171 
3172 	/* Since group has only one device */
3173 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3174 	dev = grp_dev->dev;
3175 
3176 	if (prev_dev != dev) {
3177 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
3178 		ret = -EBUSY;
3179 		goto out;
3180 	}
3181 
3182 	prev_dom = group->default_domain;
3183 	if (!prev_dom) {
3184 		ret = -EINVAL;
3185 		goto out;
3186 	}
3187 
3188 	dev_def_dom = iommu_get_def_domain_type(dev);
3189 	if (!type) {
3190 		/*
3191 		 * If the user hasn't requested any specific type of domain and
3192 		 * if the device supports both the domains, then default to the
3193 		 * domain the device was booted with
3194 		 */
3195 		type = dev_def_dom ? : iommu_def_domain_type;
3196 	} else if (dev_def_dom && type != dev_def_dom) {
3197 		dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
3198 				    iommu_domain_type_str(type));
3199 		ret = -EINVAL;
3200 		goto out;
3201 	}
3202 
3203 	/*
3204 	 * Switch to a new domain only if the requested domain type is different
3205 	 * from the existing default domain type
3206 	 */
3207 	if (prev_dom->type == type) {
3208 		ret = 0;
3209 		goto out;
3210 	}
3211 
3212 	/* We can bring up a flush queue without tearing down the domain */
3213 	if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) {
3214 		ret = iommu_dma_init_fq(prev_dom);
3215 		if (!ret)
3216 			prev_dom->type = IOMMU_DOMAIN_DMA_FQ;
3217 		goto out;
3218 	}
3219 
3220 	/* Sets group->default_domain to the newly allocated domain */
3221 	ret = iommu_group_alloc_default_domain(dev->bus, group, type);
3222 	if (ret)
3223 		goto out;
3224 
3225 	ret = iommu_create_device_direct_mappings(group, dev);
3226 	if (ret)
3227 		goto free_new_domain;
3228 
3229 	ret = __iommu_attach_device(group->default_domain, dev);
3230 	if (ret)
3231 		goto free_new_domain;
3232 
3233 	group->domain = group->default_domain;
3234 
3235 	/*
3236 	 * Release the mutex here because ops->probe_finalize() call-back of
3237 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
3238 	 * in-turn might call back into IOMMU core code, where it tries to take
3239 	 * group->mutex, resulting in a deadlock.
3240 	 */
3241 	mutex_unlock(&group->mutex);
3242 
3243 	/* Make sure dma_ops is appropriatley set */
3244 	iommu_group_do_probe_finalize(dev, group->default_domain);
3245 	iommu_domain_free(prev_dom);
3246 	return 0;
3247 
3248 free_new_domain:
3249 	iommu_domain_free(group->default_domain);
3250 	group->default_domain = prev_dom;
3251 	group->domain = prev_dom;
3252 
3253 out:
3254 	mutex_unlock(&group->mutex);
3255 
3256 	return ret;
3257 }
3258 
3259 /*
3260  * Changing the default domain through sysfs requires the users to unbind the
3261  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3262  * transition. Return failure if this isn't met.
3263  *
3264  * We need to consider the race between this and the device release path.
3265  * device_lock(dev) is used here to guarantee that the device release path
3266  * will not be entered at the same time.
3267  */
3268 static ssize_t iommu_group_store_type(struct iommu_group *group,
3269 				      const char *buf, size_t count)
3270 {
3271 	struct group_device *grp_dev;
3272 	struct device *dev;
3273 	int ret, req_type;
3274 
3275 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3276 		return -EACCES;
3277 
3278 	if (WARN_ON(!group))
3279 		return -EINVAL;
3280 
3281 	if (sysfs_streq(buf, "identity"))
3282 		req_type = IOMMU_DOMAIN_IDENTITY;
3283 	else if (sysfs_streq(buf, "DMA"))
3284 		req_type = IOMMU_DOMAIN_DMA;
3285 	else if (sysfs_streq(buf, "DMA-FQ"))
3286 		req_type = IOMMU_DOMAIN_DMA_FQ;
3287 	else if (sysfs_streq(buf, "auto"))
3288 		req_type = 0;
3289 	else
3290 		return -EINVAL;
3291 
3292 	/*
3293 	 * Lock/Unlock the group mutex here before device lock to
3294 	 * 1. Make sure that the iommu group has only one device (this is a
3295 	 *    prerequisite for step 2)
3296 	 * 2. Get struct *dev which is needed to lock device
3297 	 */
3298 	mutex_lock(&group->mutex);
3299 	if (iommu_group_device_count(group) != 1) {
3300 		mutex_unlock(&group->mutex);
3301 		pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
3302 		return -EINVAL;
3303 	}
3304 
3305 	/* Since group has only one device */
3306 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3307 	dev = grp_dev->dev;
3308 	get_device(dev);
3309 
3310 	/*
3311 	 * Don't hold the group mutex because taking group mutex first and then
3312 	 * the device lock could potentially cause a deadlock as below. Assume
3313 	 * two threads T1 and T2. T1 is trying to change default domain of an
3314 	 * iommu group and T2 is trying to hot unplug a device or release [1] VF
3315 	 * of a PCIe device which is in the same iommu group. T1 takes group
3316 	 * mutex and before it could take device lock assume T2 has taken device
3317 	 * lock and is yet to take group mutex. Now, both the threads will be
3318 	 * waiting for the other thread to release lock. Below, lock order was
3319 	 * suggested.
3320 	 * device_lock(dev);
3321 	 *	mutex_lock(&group->mutex);
3322 	 *		iommu_change_dev_def_domain();
3323 	 *	mutex_unlock(&group->mutex);
3324 	 * device_unlock(dev);
3325 	 *
3326 	 * [1] Typical device release path
3327 	 * device_lock() from device/driver core code
3328 	 *  -> bus_notifier()
3329 	 *   -> iommu_bus_notifier()
3330 	 *    -> iommu_release_device()
3331 	 *     -> ops->release_device() vendor driver calls back iommu core code
3332 	 *      -> mutex_lock() from iommu core code
3333 	 */
3334 	mutex_unlock(&group->mutex);
3335 
3336 	/* Check if the device in the group still has a driver bound to it */
3337 	device_lock(dev);
3338 	if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ &&
3339 	    group->default_domain->type == IOMMU_DOMAIN_DMA)) {
3340 		pr_err_ratelimited("Device is still bound to driver\n");
3341 		ret = -EBUSY;
3342 		goto out;
3343 	}
3344 
3345 	ret = iommu_change_dev_def_domain(group, dev, req_type);
3346 	ret = ret ?: count;
3347 
3348 out:
3349 	device_unlock(dev);
3350 	put_device(dev);
3351 
3352 	return ret;
3353 }
3354