1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/device.h> 10 #include <linux/dma-iommu.h> 11 #include <linux/kernel.h> 12 #include <linux/bits.h> 13 #include <linux/bug.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/iommu.h> 20 #include <linux/idr.h> 21 #include <linux/notifier.h> 22 #include <linux/err.h> 23 #include <linux/pci.h> 24 #include <linux/bitops.h> 25 #include <linux/property.h> 26 #include <linux/fsl/mc.h> 27 #include <linux/module.h> 28 #include <linux/cc_platform.h> 29 #include <trace/events/iommu.h> 30 31 static struct kset *iommu_group_kset; 32 static DEFINE_IDA(iommu_group_ida); 33 34 static unsigned int iommu_def_domain_type __read_mostly; 35 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT); 36 static u32 iommu_cmd_line __read_mostly; 37 38 struct iommu_group { 39 struct kobject kobj; 40 struct kobject *devices_kobj; 41 struct list_head devices; 42 struct mutex mutex; 43 struct blocking_notifier_head notifier; 44 void *iommu_data; 45 void (*iommu_data_release)(void *iommu_data); 46 char *name; 47 int id; 48 struct iommu_domain *default_domain; 49 struct iommu_domain *domain; 50 struct list_head entry; 51 }; 52 53 struct group_device { 54 struct list_head list; 55 struct device *dev; 56 char *name; 57 }; 58 59 struct iommu_group_attribute { 60 struct attribute attr; 61 ssize_t (*show)(struct iommu_group *group, char *buf); 62 ssize_t (*store)(struct iommu_group *group, 63 const char *buf, size_t count); 64 }; 65 66 static const char * const iommu_group_resv_type_string[] = { 67 [IOMMU_RESV_DIRECT] = "direct", 68 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 69 [IOMMU_RESV_RESERVED] = "reserved", 70 [IOMMU_RESV_MSI] = "msi", 71 [IOMMU_RESV_SW_MSI] = "msi", 72 }; 73 74 #define IOMMU_CMD_LINE_DMA_API BIT(0) 75 #define IOMMU_CMD_LINE_STRICT BIT(1) 76 77 static int iommu_alloc_default_domain(struct iommu_group *group, 78 struct device *dev); 79 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 80 unsigned type); 81 static int __iommu_attach_device(struct iommu_domain *domain, 82 struct device *dev); 83 static int __iommu_attach_group(struct iommu_domain *domain, 84 struct iommu_group *group); 85 static void __iommu_detach_group(struct iommu_domain *domain, 86 struct iommu_group *group); 87 static int iommu_create_device_direct_mappings(struct iommu_group *group, 88 struct device *dev); 89 static struct iommu_group *iommu_group_get_for_dev(struct device *dev); 90 static ssize_t iommu_group_store_type(struct iommu_group *group, 91 const char *buf, size_t count); 92 93 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 94 struct iommu_group_attribute iommu_group_attr_##_name = \ 95 __ATTR(_name, _mode, _show, _store) 96 97 #define to_iommu_group_attr(_attr) \ 98 container_of(_attr, struct iommu_group_attribute, attr) 99 #define to_iommu_group(_kobj) \ 100 container_of(_kobj, struct iommu_group, kobj) 101 102 static LIST_HEAD(iommu_device_list); 103 static DEFINE_SPINLOCK(iommu_device_lock); 104 105 /* 106 * Use a function instead of an array here because the domain-type is a 107 * bit-field, so an array would waste memory. 108 */ 109 static const char *iommu_domain_type_str(unsigned int t) 110 { 111 switch (t) { 112 case IOMMU_DOMAIN_BLOCKED: 113 return "Blocked"; 114 case IOMMU_DOMAIN_IDENTITY: 115 return "Passthrough"; 116 case IOMMU_DOMAIN_UNMANAGED: 117 return "Unmanaged"; 118 case IOMMU_DOMAIN_DMA: 119 case IOMMU_DOMAIN_DMA_FQ: 120 return "Translated"; 121 default: 122 return "Unknown"; 123 } 124 } 125 126 static int __init iommu_subsys_init(void) 127 { 128 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) { 129 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 130 iommu_set_default_passthrough(false); 131 else 132 iommu_set_default_translated(false); 133 134 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 135 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 136 iommu_set_default_translated(false); 137 } 138 } 139 140 if (!iommu_default_passthrough() && !iommu_dma_strict) 141 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ; 142 143 pr_info("Default domain type: %s %s\n", 144 iommu_domain_type_str(iommu_def_domain_type), 145 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ? 146 "(set via kernel command line)" : ""); 147 148 if (!iommu_default_passthrough()) 149 pr_info("DMA domain TLB invalidation policy: %s mode %s\n", 150 iommu_dma_strict ? "strict" : "lazy", 151 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ? 152 "(set via kernel command line)" : ""); 153 154 return 0; 155 } 156 subsys_initcall(iommu_subsys_init); 157 158 /** 159 * iommu_device_register() - Register an IOMMU hardware instance 160 * @iommu: IOMMU handle for the instance 161 * @ops: IOMMU ops to associate with the instance 162 * @hwdev: (optional) actual instance device, used for fwnode lookup 163 * 164 * Return: 0 on success, or an error. 165 */ 166 int iommu_device_register(struct iommu_device *iommu, 167 const struct iommu_ops *ops, struct device *hwdev) 168 { 169 /* We need to be able to take module references appropriately */ 170 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner)) 171 return -EINVAL; 172 173 iommu->ops = ops; 174 if (hwdev) 175 iommu->fwnode = hwdev->fwnode; 176 177 spin_lock(&iommu_device_lock); 178 list_add_tail(&iommu->list, &iommu_device_list); 179 spin_unlock(&iommu_device_lock); 180 return 0; 181 } 182 EXPORT_SYMBOL_GPL(iommu_device_register); 183 184 void iommu_device_unregister(struct iommu_device *iommu) 185 { 186 spin_lock(&iommu_device_lock); 187 list_del(&iommu->list); 188 spin_unlock(&iommu_device_lock); 189 } 190 EXPORT_SYMBOL_GPL(iommu_device_unregister); 191 192 static struct dev_iommu *dev_iommu_get(struct device *dev) 193 { 194 struct dev_iommu *param = dev->iommu; 195 196 if (param) 197 return param; 198 199 param = kzalloc(sizeof(*param), GFP_KERNEL); 200 if (!param) 201 return NULL; 202 203 mutex_init(¶m->lock); 204 dev->iommu = param; 205 return param; 206 } 207 208 static void dev_iommu_free(struct device *dev) 209 { 210 struct dev_iommu *param = dev->iommu; 211 212 dev->iommu = NULL; 213 if (param->fwspec) { 214 fwnode_handle_put(param->fwspec->iommu_fwnode); 215 kfree(param->fwspec); 216 } 217 kfree(param); 218 } 219 220 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 221 { 222 const struct iommu_ops *ops = dev->bus->iommu_ops; 223 struct iommu_device *iommu_dev; 224 struct iommu_group *group; 225 int ret; 226 227 if (!ops) 228 return -ENODEV; 229 230 if (!dev_iommu_get(dev)) 231 return -ENOMEM; 232 233 if (!try_module_get(ops->owner)) { 234 ret = -EINVAL; 235 goto err_free; 236 } 237 238 iommu_dev = ops->probe_device(dev); 239 if (IS_ERR(iommu_dev)) { 240 ret = PTR_ERR(iommu_dev); 241 goto out_module_put; 242 } 243 244 dev->iommu->iommu_dev = iommu_dev; 245 246 group = iommu_group_get_for_dev(dev); 247 if (IS_ERR(group)) { 248 ret = PTR_ERR(group); 249 goto out_release; 250 } 251 iommu_group_put(group); 252 253 if (group_list && !group->default_domain && list_empty(&group->entry)) 254 list_add_tail(&group->entry, group_list); 255 256 iommu_device_link(iommu_dev, dev); 257 258 return 0; 259 260 out_release: 261 ops->release_device(dev); 262 263 out_module_put: 264 module_put(ops->owner); 265 266 err_free: 267 dev_iommu_free(dev); 268 269 return ret; 270 } 271 272 int iommu_probe_device(struct device *dev) 273 { 274 const struct iommu_ops *ops = dev->bus->iommu_ops; 275 struct iommu_group *group; 276 int ret; 277 278 ret = __iommu_probe_device(dev, NULL); 279 if (ret) 280 goto err_out; 281 282 group = iommu_group_get(dev); 283 if (!group) { 284 ret = -ENODEV; 285 goto err_release; 286 } 287 288 /* 289 * Try to allocate a default domain - needs support from the 290 * IOMMU driver. There are still some drivers which don't 291 * support default domains, so the return value is not yet 292 * checked. 293 */ 294 mutex_lock(&group->mutex); 295 iommu_alloc_default_domain(group, dev); 296 297 if (group->default_domain) { 298 ret = __iommu_attach_device(group->default_domain, dev); 299 if (ret) { 300 mutex_unlock(&group->mutex); 301 iommu_group_put(group); 302 goto err_release; 303 } 304 } 305 306 iommu_create_device_direct_mappings(group, dev); 307 308 mutex_unlock(&group->mutex); 309 iommu_group_put(group); 310 311 if (ops->probe_finalize) 312 ops->probe_finalize(dev); 313 314 return 0; 315 316 err_release: 317 iommu_release_device(dev); 318 319 err_out: 320 return ret; 321 322 } 323 324 void iommu_release_device(struct device *dev) 325 { 326 const struct iommu_ops *ops = dev->bus->iommu_ops; 327 328 if (!dev->iommu) 329 return; 330 331 iommu_device_unlink(dev->iommu->iommu_dev, dev); 332 333 ops->release_device(dev); 334 335 iommu_group_remove_device(dev); 336 module_put(ops->owner); 337 dev_iommu_free(dev); 338 } 339 340 static int __init iommu_set_def_domain_type(char *str) 341 { 342 bool pt; 343 int ret; 344 345 ret = kstrtobool(str, &pt); 346 if (ret) 347 return ret; 348 349 if (pt) 350 iommu_set_default_passthrough(true); 351 else 352 iommu_set_default_translated(true); 353 354 return 0; 355 } 356 early_param("iommu.passthrough", iommu_set_def_domain_type); 357 358 static int __init iommu_dma_setup(char *str) 359 { 360 int ret = kstrtobool(str, &iommu_dma_strict); 361 362 if (!ret) 363 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT; 364 return ret; 365 } 366 early_param("iommu.strict", iommu_dma_setup); 367 368 void iommu_set_dma_strict(void) 369 { 370 iommu_dma_strict = true; 371 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ) 372 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 373 } 374 375 static ssize_t iommu_group_attr_show(struct kobject *kobj, 376 struct attribute *__attr, char *buf) 377 { 378 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 379 struct iommu_group *group = to_iommu_group(kobj); 380 ssize_t ret = -EIO; 381 382 if (attr->show) 383 ret = attr->show(group, buf); 384 return ret; 385 } 386 387 static ssize_t iommu_group_attr_store(struct kobject *kobj, 388 struct attribute *__attr, 389 const char *buf, size_t count) 390 { 391 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 392 struct iommu_group *group = to_iommu_group(kobj); 393 ssize_t ret = -EIO; 394 395 if (attr->store) 396 ret = attr->store(group, buf, count); 397 return ret; 398 } 399 400 static const struct sysfs_ops iommu_group_sysfs_ops = { 401 .show = iommu_group_attr_show, 402 .store = iommu_group_attr_store, 403 }; 404 405 static int iommu_group_create_file(struct iommu_group *group, 406 struct iommu_group_attribute *attr) 407 { 408 return sysfs_create_file(&group->kobj, &attr->attr); 409 } 410 411 static void iommu_group_remove_file(struct iommu_group *group, 412 struct iommu_group_attribute *attr) 413 { 414 sysfs_remove_file(&group->kobj, &attr->attr); 415 } 416 417 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 418 { 419 return sprintf(buf, "%s\n", group->name); 420 } 421 422 /** 423 * iommu_insert_resv_region - Insert a new region in the 424 * list of reserved regions. 425 * @new: new region to insert 426 * @regions: list of regions 427 * 428 * Elements are sorted by start address and overlapping segments 429 * of the same type are merged. 430 */ 431 static int iommu_insert_resv_region(struct iommu_resv_region *new, 432 struct list_head *regions) 433 { 434 struct iommu_resv_region *iter, *tmp, *nr, *top; 435 LIST_HEAD(stack); 436 437 nr = iommu_alloc_resv_region(new->start, new->length, 438 new->prot, new->type); 439 if (!nr) 440 return -ENOMEM; 441 442 /* First add the new element based on start address sorting */ 443 list_for_each_entry(iter, regions, list) { 444 if (nr->start < iter->start || 445 (nr->start == iter->start && nr->type <= iter->type)) 446 break; 447 } 448 list_add_tail(&nr->list, &iter->list); 449 450 /* Merge overlapping segments of type nr->type in @regions, if any */ 451 list_for_each_entry_safe(iter, tmp, regions, list) { 452 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 453 454 /* no merge needed on elements of different types than @new */ 455 if (iter->type != new->type) { 456 list_move_tail(&iter->list, &stack); 457 continue; 458 } 459 460 /* look for the last stack element of same type as @iter */ 461 list_for_each_entry_reverse(top, &stack, list) 462 if (top->type == iter->type) 463 goto check_overlap; 464 465 list_move_tail(&iter->list, &stack); 466 continue; 467 468 check_overlap: 469 top_end = top->start + top->length - 1; 470 471 if (iter->start > top_end + 1) { 472 list_move_tail(&iter->list, &stack); 473 } else { 474 top->length = max(top_end, iter_end) - top->start + 1; 475 list_del(&iter->list); 476 kfree(iter); 477 } 478 } 479 list_splice(&stack, regions); 480 return 0; 481 } 482 483 static int 484 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 485 struct list_head *group_resv_regions) 486 { 487 struct iommu_resv_region *entry; 488 int ret = 0; 489 490 list_for_each_entry(entry, dev_resv_regions, list) { 491 ret = iommu_insert_resv_region(entry, group_resv_regions); 492 if (ret) 493 break; 494 } 495 return ret; 496 } 497 498 int iommu_get_group_resv_regions(struct iommu_group *group, 499 struct list_head *head) 500 { 501 struct group_device *device; 502 int ret = 0; 503 504 mutex_lock(&group->mutex); 505 list_for_each_entry(device, &group->devices, list) { 506 struct list_head dev_resv_regions; 507 508 INIT_LIST_HEAD(&dev_resv_regions); 509 iommu_get_resv_regions(device->dev, &dev_resv_regions); 510 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 511 iommu_put_resv_regions(device->dev, &dev_resv_regions); 512 if (ret) 513 break; 514 } 515 mutex_unlock(&group->mutex); 516 return ret; 517 } 518 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 519 520 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 521 char *buf) 522 { 523 struct iommu_resv_region *region, *next; 524 struct list_head group_resv_regions; 525 char *str = buf; 526 527 INIT_LIST_HEAD(&group_resv_regions); 528 iommu_get_group_resv_regions(group, &group_resv_regions); 529 530 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 531 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 532 (long long int)region->start, 533 (long long int)(region->start + 534 region->length - 1), 535 iommu_group_resv_type_string[region->type]); 536 kfree(region); 537 } 538 539 return (str - buf); 540 } 541 542 static ssize_t iommu_group_show_type(struct iommu_group *group, 543 char *buf) 544 { 545 char *type = "unknown\n"; 546 547 mutex_lock(&group->mutex); 548 if (group->default_domain) { 549 switch (group->default_domain->type) { 550 case IOMMU_DOMAIN_BLOCKED: 551 type = "blocked\n"; 552 break; 553 case IOMMU_DOMAIN_IDENTITY: 554 type = "identity\n"; 555 break; 556 case IOMMU_DOMAIN_UNMANAGED: 557 type = "unmanaged\n"; 558 break; 559 case IOMMU_DOMAIN_DMA: 560 type = "DMA\n"; 561 break; 562 case IOMMU_DOMAIN_DMA_FQ: 563 type = "DMA-FQ\n"; 564 break; 565 } 566 } 567 mutex_unlock(&group->mutex); 568 strcpy(buf, type); 569 570 return strlen(type); 571 } 572 573 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 574 575 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 576 iommu_group_show_resv_regions, NULL); 577 578 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type, 579 iommu_group_store_type); 580 581 static void iommu_group_release(struct kobject *kobj) 582 { 583 struct iommu_group *group = to_iommu_group(kobj); 584 585 pr_debug("Releasing group %d\n", group->id); 586 587 if (group->iommu_data_release) 588 group->iommu_data_release(group->iommu_data); 589 590 ida_simple_remove(&iommu_group_ida, group->id); 591 592 if (group->default_domain) 593 iommu_domain_free(group->default_domain); 594 595 kfree(group->name); 596 kfree(group); 597 } 598 599 static struct kobj_type iommu_group_ktype = { 600 .sysfs_ops = &iommu_group_sysfs_ops, 601 .release = iommu_group_release, 602 }; 603 604 /** 605 * iommu_group_alloc - Allocate a new group 606 * 607 * This function is called by an iommu driver to allocate a new iommu 608 * group. The iommu group represents the minimum granularity of the iommu. 609 * Upon successful return, the caller holds a reference to the supplied 610 * group in order to hold the group until devices are added. Use 611 * iommu_group_put() to release this extra reference count, allowing the 612 * group to be automatically reclaimed once it has no devices or external 613 * references. 614 */ 615 struct iommu_group *iommu_group_alloc(void) 616 { 617 struct iommu_group *group; 618 int ret; 619 620 group = kzalloc(sizeof(*group), GFP_KERNEL); 621 if (!group) 622 return ERR_PTR(-ENOMEM); 623 624 group->kobj.kset = iommu_group_kset; 625 mutex_init(&group->mutex); 626 INIT_LIST_HEAD(&group->devices); 627 INIT_LIST_HEAD(&group->entry); 628 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 629 630 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 631 if (ret < 0) { 632 kfree(group); 633 return ERR_PTR(ret); 634 } 635 group->id = ret; 636 637 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 638 NULL, "%d", group->id); 639 if (ret) { 640 ida_simple_remove(&iommu_group_ida, group->id); 641 kobject_put(&group->kobj); 642 return ERR_PTR(ret); 643 } 644 645 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 646 if (!group->devices_kobj) { 647 kobject_put(&group->kobj); /* triggers .release & free */ 648 return ERR_PTR(-ENOMEM); 649 } 650 651 /* 652 * The devices_kobj holds a reference on the group kobject, so 653 * as long as that exists so will the group. We can therefore 654 * use the devices_kobj for reference counting. 655 */ 656 kobject_put(&group->kobj); 657 658 ret = iommu_group_create_file(group, 659 &iommu_group_attr_reserved_regions); 660 if (ret) 661 return ERR_PTR(ret); 662 663 ret = iommu_group_create_file(group, &iommu_group_attr_type); 664 if (ret) 665 return ERR_PTR(ret); 666 667 pr_debug("Allocated group %d\n", group->id); 668 669 return group; 670 } 671 EXPORT_SYMBOL_GPL(iommu_group_alloc); 672 673 struct iommu_group *iommu_group_get_by_id(int id) 674 { 675 struct kobject *group_kobj; 676 struct iommu_group *group; 677 const char *name; 678 679 if (!iommu_group_kset) 680 return NULL; 681 682 name = kasprintf(GFP_KERNEL, "%d", id); 683 if (!name) 684 return NULL; 685 686 group_kobj = kset_find_obj(iommu_group_kset, name); 687 kfree(name); 688 689 if (!group_kobj) 690 return NULL; 691 692 group = container_of(group_kobj, struct iommu_group, kobj); 693 BUG_ON(group->id != id); 694 695 kobject_get(group->devices_kobj); 696 kobject_put(&group->kobj); 697 698 return group; 699 } 700 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 701 702 /** 703 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 704 * @group: the group 705 * 706 * iommu drivers can store data in the group for use when doing iommu 707 * operations. This function provides a way to retrieve it. Caller 708 * should hold a group reference. 709 */ 710 void *iommu_group_get_iommudata(struct iommu_group *group) 711 { 712 return group->iommu_data; 713 } 714 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 715 716 /** 717 * iommu_group_set_iommudata - set iommu_data for a group 718 * @group: the group 719 * @iommu_data: new data 720 * @release: release function for iommu_data 721 * 722 * iommu drivers can store data in the group for use when doing iommu 723 * operations. This function provides a way to set the data after 724 * the group has been allocated. Caller should hold a group reference. 725 */ 726 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 727 void (*release)(void *iommu_data)) 728 { 729 group->iommu_data = iommu_data; 730 group->iommu_data_release = release; 731 } 732 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 733 734 /** 735 * iommu_group_set_name - set name for a group 736 * @group: the group 737 * @name: name 738 * 739 * Allow iommu driver to set a name for a group. When set it will 740 * appear in a name attribute file under the group in sysfs. 741 */ 742 int iommu_group_set_name(struct iommu_group *group, const char *name) 743 { 744 int ret; 745 746 if (group->name) { 747 iommu_group_remove_file(group, &iommu_group_attr_name); 748 kfree(group->name); 749 group->name = NULL; 750 if (!name) 751 return 0; 752 } 753 754 group->name = kstrdup(name, GFP_KERNEL); 755 if (!group->name) 756 return -ENOMEM; 757 758 ret = iommu_group_create_file(group, &iommu_group_attr_name); 759 if (ret) { 760 kfree(group->name); 761 group->name = NULL; 762 return ret; 763 } 764 765 return 0; 766 } 767 EXPORT_SYMBOL_GPL(iommu_group_set_name); 768 769 static int iommu_create_device_direct_mappings(struct iommu_group *group, 770 struct device *dev) 771 { 772 struct iommu_domain *domain = group->default_domain; 773 struct iommu_resv_region *entry; 774 struct list_head mappings; 775 unsigned long pg_size; 776 int ret = 0; 777 778 if (!domain || !iommu_is_dma_domain(domain)) 779 return 0; 780 781 BUG_ON(!domain->pgsize_bitmap); 782 783 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 784 INIT_LIST_HEAD(&mappings); 785 786 iommu_get_resv_regions(dev, &mappings); 787 788 /* We need to consider overlapping regions for different devices */ 789 list_for_each_entry(entry, &mappings, list) { 790 dma_addr_t start, end, addr; 791 size_t map_size = 0; 792 793 if (domain->ops->apply_resv_region) 794 domain->ops->apply_resv_region(dev, domain, entry); 795 796 start = ALIGN(entry->start, pg_size); 797 end = ALIGN(entry->start + entry->length, pg_size); 798 799 if (entry->type != IOMMU_RESV_DIRECT && 800 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 801 continue; 802 803 for (addr = start; addr <= end; addr += pg_size) { 804 phys_addr_t phys_addr; 805 806 if (addr == end) 807 goto map_end; 808 809 phys_addr = iommu_iova_to_phys(domain, addr); 810 if (!phys_addr) { 811 map_size += pg_size; 812 continue; 813 } 814 815 map_end: 816 if (map_size) { 817 ret = iommu_map(domain, addr - map_size, 818 addr - map_size, map_size, 819 entry->prot); 820 if (ret) 821 goto out; 822 map_size = 0; 823 } 824 } 825 826 } 827 828 iommu_flush_iotlb_all(domain); 829 830 out: 831 iommu_put_resv_regions(dev, &mappings); 832 833 return ret; 834 } 835 836 static bool iommu_is_attach_deferred(struct iommu_domain *domain, 837 struct device *dev) 838 { 839 if (domain->ops->is_attach_deferred) 840 return domain->ops->is_attach_deferred(domain, dev); 841 842 return false; 843 } 844 845 /** 846 * iommu_group_add_device - add a device to an iommu group 847 * @group: the group into which to add the device (reference should be held) 848 * @dev: the device 849 * 850 * This function is called by an iommu driver to add a device into a 851 * group. Adding a device increments the group reference count. 852 */ 853 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 854 { 855 int ret, i = 0; 856 struct group_device *device; 857 858 device = kzalloc(sizeof(*device), GFP_KERNEL); 859 if (!device) 860 return -ENOMEM; 861 862 device->dev = dev; 863 864 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 865 if (ret) 866 goto err_free_device; 867 868 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 869 rename: 870 if (!device->name) { 871 ret = -ENOMEM; 872 goto err_remove_link; 873 } 874 875 ret = sysfs_create_link_nowarn(group->devices_kobj, 876 &dev->kobj, device->name); 877 if (ret) { 878 if (ret == -EEXIST && i >= 0) { 879 /* 880 * Account for the slim chance of collision 881 * and append an instance to the name. 882 */ 883 kfree(device->name); 884 device->name = kasprintf(GFP_KERNEL, "%s.%d", 885 kobject_name(&dev->kobj), i++); 886 goto rename; 887 } 888 goto err_free_name; 889 } 890 891 kobject_get(group->devices_kobj); 892 893 dev->iommu_group = group; 894 895 mutex_lock(&group->mutex); 896 list_add_tail(&device->list, &group->devices); 897 if (group->domain && !iommu_is_attach_deferred(group->domain, dev)) 898 ret = __iommu_attach_device(group->domain, dev); 899 mutex_unlock(&group->mutex); 900 if (ret) 901 goto err_put_group; 902 903 /* Notify any listeners about change to group. */ 904 blocking_notifier_call_chain(&group->notifier, 905 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 906 907 trace_add_device_to_group(group->id, dev); 908 909 dev_info(dev, "Adding to iommu group %d\n", group->id); 910 911 return 0; 912 913 err_put_group: 914 mutex_lock(&group->mutex); 915 list_del(&device->list); 916 mutex_unlock(&group->mutex); 917 dev->iommu_group = NULL; 918 kobject_put(group->devices_kobj); 919 sysfs_remove_link(group->devices_kobj, device->name); 920 err_free_name: 921 kfree(device->name); 922 err_remove_link: 923 sysfs_remove_link(&dev->kobj, "iommu_group"); 924 err_free_device: 925 kfree(device); 926 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 927 return ret; 928 } 929 EXPORT_SYMBOL_GPL(iommu_group_add_device); 930 931 /** 932 * iommu_group_remove_device - remove a device from it's current group 933 * @dev: device to be removed 934 * 935 * This function is called by an iommu driver to remove the device from 936 * it's current group. This decrements the iommu group reference count. 937 */ 938 void iommu_group_remove_device(struct device *dev) 939 { 940 struct iommu_group *group = dev->iommu_group; 941 struct group_device *tmp_device, *device = NULL; 942 943 if (!group) 944 return; 945 946 dev_info(dev, "Removing from iommu group %d\n", group->id); 947 948 /* Pre-notify listeners that a device is being removed. */ 949 blocking_notifier_call_chain(&group->notifier, 950 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 951 952 mutex_lock(&group->mutex); 953 list_for_each_entry(tmp_device, &group->devices, list) { 954 if (tmp_device->dev == dev) { 955 device = tmp_device; 956 list_del(&device->list); 957 break; 958 } 959 } 960 mutex_unlock(&group->mutex); 961 962 if (!device) 963 return; 964 965 sysfs_remove_link(group->devices_kobj, device->name); 966 sysfs_remove_link(&dev->kobj, "iommu_group"); 967 968 trace_remove_device_from_group(group->id, dev); 969 970 kfree(device->name); 971 kfree(device); 972 dev->iommu_group = NULL; 973 kobject_put(group->devices_kobj); 974 } 975 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 976 977 static int iommu_group_device_count(struct iommu_group *group) 978 { 979 struct group_device *entry; 980 int ret = 0; 981 982 list_for_each_entry(entry, &group->devices, list) 983 ret++; 984 985 return ret; 986 } 987 988 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 989 int (*fn)(struct device *, void *)) 990 { 991 struct group_device *device; 992 int ret = 0; 993 994 list_for_each_entry(device, &group->devices, list) { 995 ret = fn(device->dev, data); 996 if (ret) 997 break; 998 } 999 return ret; 1000 } 1001 1002 /** 1003 * iommu_group_for_each_dev - iterate over each device in the group 1004 * @group: the group 1005 * @data: caller opaque data to be passed to callback function 1006 * @fn: caller supplied callback function 1007 * 1008 * This function is called by group users to iterate over group devices. 1009 * Callers should hold a reference count to the group during callback. 1010 * The group->mutex is held across callbacks, which will block calls to 1011 * iommu_group_add/remove_device. 1012 */ 1013 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 1014 int (*fn)(struct device *, void *)) 1015 { 1016 int ret; 1017 1018 mutex_lock(&group->mutex); 1019 ret = __iommu_group_for_each_dev(group, data, fn); 1020 mutex_unlock(&group->mutex); 1021 1022 return ret; 1023 } 1024 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 1025 1026 /** 1027 * iommu_group_get - Return the group for a device and increment reference 1028 * @dev: get the group that this device belongs to 1029 * 1030 * This function is called by iommu drivers and users to get the group 1031 * for the specified device. If found, the group is returned and the group 1032 * reference in incremented, else NULL. 1033 */ 1034 struct iommu_group *iommu_group_get(struct device *dev) 1035 { 1036 struct iommu_group *group = dev->iommu_group; 1037 1038 if (group) 1039 kobject_get(group->devices_kobj); 1040 1041 return group; 1042 } 1043 EXPORT_SYMBOL_GPL(iommu_group_get); 1044 1045 /** 1046 * iommu_group_ref_get - Increment reference on a group 1047 * @group: the group to use, must not be NULL 1048 * 1049 * This function is called by iommu drivers to take additional references on an 1050 * existing group. Returns the given group for convenience. 1051 */ 1052 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 1053 { 1054 kobject_get(group->devices_kobj); 1055 return group; 1056 } 1057 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 1058 1059 /** 1060 * iommu_group_put - Decrement group reference 1061 * @group: the group to use 1062 * 1063 * This function is called by iommu drivers and users to release the 1064 * iommu group. Once the reference count is zero, the group is released. 1065 */ 1066 void iommu_group_put(struct iommu_group *group) 1067 { 1068 if (group) 1069 kobject_put(group->devices_kobj); 1070 } 1071 EXPORT_SYMBOL_GPL(iommu_group_put); 1072 1073 /** 1074 * iommu_group_register_notifier - Register a notifier for group changes 1075 * @group: the group to watch 1076 * @nb: notifier block to signal 1077 * 1078 * This function allows iommu group users to track changes in a group. 1079 * See include/linux/iommu.h for actions sent via this notifier. Caller 1080 * should hold a reference to the group throughout notifier registration. 1081 */ 1082 int iommu_group_register_notifier(struct iommu_group *group, 1083 struct notifier_block *nb) 1084 { 1085 return blocking_notifier_chain_register(&group->notifier, nb); 1086 } 1087 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 1088 1089 /** 1090 * iommu_group_unregister_notifier - Unregister a notifier 1091 * @group: the group to watch 1092 * @nb: notifier block to signal 1093 * 1094 * Unregister a previously registered group notifier block. 1095 */ 1096 int iommu_group_unregister_notifier(struct iommu_group *group, 1097 struct notifier_block *nb) 1098 { 1099 return blocking_notifier_chain_unregister(&group->notifier, nb); 1100 } 1101 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 1102 1103 /** 1104 * iommu_register_device_fault_handler() - Register a device fault handler 1105 * @dev: the device 1106 * @handler: the fault handler 1107 * @data: private data passed as argument to the handler 1108 * 1109 * When an IOMMU fault event is received, this handler gets called with the 1110 * fault event and data as argument. The handler should return 0 on success. If 1111 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 1112 * complete the fault by calling iommu_page_response() with one of the following 1113 * response code: 1114 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 1115 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 1116 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 1117 * page faults if possible. 1118 * 1119 * Return 0 if the fault handler was installed successfully, or an error. 1120 */ 1121 int iommu_register_device_fault_handler(struct device *dev, 1122 iommu_dev_fault_handler_t handler, 1123 void *data) 1124 { 1125 struct dev_iommu *param = dev->iommu; 1126 int ret = 0; 1127 1128 if (!param) 1129 return -EINVAL; 1130 1131 mutex_lock(¶m->lock); 1132 /* Only allow one fault handler registered for each device */ 1133 if (param->fault_param) { 1134 ret = -EBUSY; 1135 goto done_unlock; 1136 } 1137 1138 get_device(dev); 1139 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 1140 if (!param->fault_param) { 1141 put_device(dev); 1142 ret = -ENOMEM; 1143 goto done_unlock; 1144 } 1145 param->fault_param->handler = handler; 1146 param->fault_param->data = data; 1147 mutex_init(¶m->fault_param->lock); 1148 INIT_LIST_HEAD(¶m->fault_param->faults); 1149 1150 done_unlock: 1151 mutex_unlock(¶m->lock); 1152 1153 return ret; 1154 } 1155 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1156 1157 /** 1158 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1159 * @dev: the device 1160 * 1161 * Remove the device fault handler installed with 1162 * iommu_register_device_fault_handler(). 1163 * 1164 * Return 0 on success, or an error. 1165 */ 1166 int iommu_unregister_device_fault_handler(struct device *dev) 1167 { 1168 struct dev_iommu *param = dev->iommu; 1169 int ret = 0; 1170 1171 if (!param) 1172 return -EINVAL; 1173 1174 mutex_lock(¶m->lock); 1175 1176 if (!param->fault_param) 1177 goto unlock; 1178 1179 /* we cannot unregister handler if there are pending faults */ 1180 if (!list_empty(¶m->fault_param->faults)) { 1181 ret = -EBUSY; 1182 goto unlock; 1183 } 1184 1185 kfree(param->fault_param); 1186 param->fault_param = NULL; 1187 put_device(dev); 1188 unlock: 1189 mutex_unlock(¶m->lock); 1190 1191 return ret; 1192 } 1193 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1194 1195 /** 1196 * iommu_report_device_fault() - Report fault event to device driver 1197 * @dev: the device 1198 * @evt: fault event data 1199 * 1200 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1201 * handler. When this function fails and the fault is recoverable, it is the 1202 * caller's responsibility to complete the fault. 1203 * 1204 * Return 0 on success, or an error. 1205 */ 1206 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1207 { 1208 struct dev_iommu *param = dev->iommu; 1209 struct iommu_fault_event *evt_pending = NULL; 1210 struct iommu_fault_param *fparam; 1211 int ret = 0; 1212 1213 if (!param || !evt) 1214 return -EINVAL; 1215 1216 /* we only report device fault if there is a handler registered */ 1217 mutex_lock(¶m->lock); 1218 fparam = param->fault_param; 1219 if (!fparam || !fparam->handler) { 1220 ret = -EINVAL; 1221 goto done_unlock; 1222 } 1223 1224 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1225 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1226 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1227 GFP_KERNEL); 1228 if (!evt_pending) { 1229 ret = -ENOMEM; 1230 goto done_unlock; 1231 } 1232 mutex_lock(&fparam->lock); 1233 list_add_tail(&evt_pending->list, &fparam->faults); 1234 mutex_unlock(&fparam->lock); 1235 } 1236 1237 ret = fparam->handler(&evt->fault, fparam->data); 1238 if (ret && evt_pending) { 1239 mutex_lock(&fparam->lock); 1240 list_del(&evt_pending->list); 1241 mutex_unlock(&fparam->lock); 1242 kfree(evt_pending); 1243 } 1244 done_unlock: 1245 mutex_unlock(¶m->lock); 1246 return ret; 1247 } 1248 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1249 1250 int iommu_page_response(struct device *dev, 1251 struct iommu_page_response *msg) 1252 { 1253 bool needs_pasid; 1254 int ret = -EINVAL; 1255 struct iommu_fault_event *evt; 1256 struct iommu_fault_page_request *prm; 1257 struct dev_iommu *param = dev->iommu; 1258 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID; 1259 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1260 1261 if (!domain || !domain->ops->page_response) 1262 return -ENODEV; 1263 1264 if (!param || !param->fault_param) 1265 return -EINVAL; 1266 1267 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1268 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1269 return -EINVAL; 1270 1271 /* Only send response if there is a fault report pending */ 1272 mutex_lock(¶m->fault_param->lock); 1273 if (list_empty(¶m->fault_param->faults)) { 1274 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1275 goto done_unlock; 1276 } 1277 /* 1278 * Check if we have a matching page request pending to respond, 1279 * otherwise return -EINVAL 1280 */ 1281 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1282 prm = &evt->fault.prm; 1283 if (prm->grpid != msg->grpid) 1284 continue; 1285 1286 /* 1287 * If the PASID is required, the corresponding request is 1288 * matched using the group ID, the PASID valid bit and the PASID 1289 * value. Otherwise only the group ID matches request and 1290 * response. 1291 */ 1292 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; 1293 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid)) 1294 continue; 1295 1296 if (!needs_pasid && has_pasid) { 1297 /* No big deal, just clear it. */ 1298 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID; 1299 msg->pasid = 0; 1300 } 1301 1302 ret = domain->ops->page_response(dev, evt, msg); 1303 list_del(&evt->list); 1304 kfree(evt); 1305 break; 1306 } 1307 1308 done_unlock: 1309 mutex_unlock(¶m->fault_param->lock); 1310 return ret; 1311 } 1312 EXPORT_SYMBOL_GPL(iommu_page_response); 1313 1314 /** 1315 * iommu_group_id - Return ID for a group 1316 * @group: the group to ID 1317 * 1318 * Return the unique ID for the group matching the sysfs group number. 1319 */ 1320 int iommu_group_id(struct iommu_group *group) 1321 { 1322 return group->id; 1323 } 1324 EXPORT_SYMBOL_GPL(iommu_group_id); 1325 1326 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1327 unsigned long *devfns); 1328 1329 /* 1330 * To consider a PCI device isolated, we require ACS to support Source 1331 * Validation, Request Redirection, Completer Redirection, and Upstream 1332 * Forwarding. This effectively means that devices cannot spoof their 1333 * requester ID, requests and completions cannot be redirected, and all 1334 * transactions are forwarded upstream, even as it passes through a 1335 * bridge where the target device is downstream. 1336 */ 1337 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1338 1339 /* 1340 * For multifunction devices which are not isolated from each other, find 1341 * all the other non-isolated functions and look for existing groups. For 1342 * each function, we also need to look for aliases to or from other devices 1343 * that may already have a group. 1344 */ 1345 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1346 unsigned long *devfns) 1347 { 1348 struct pci_dev *tmp = NULL; 1349 struct iommu_group *group; 1350 1351 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1352 return NULL; 1353 1354 for_each_pci_dev(tmp) { 1355 if (tmp == pdev || tmp->bus != pdev->bus || 1356 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1357 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1358 continue; 1359 1360 group = get_pci_alias_group(tmp, devfns); 1361 if (group) { 1362 pci_dev_put(tmp); 1363 return group; 1364 } 1365 } 1366 1367 return NULL; 1368 } 1369 1370 /* 1371 * Look for aliases to or from the given device for existing groups. DMA 1372 * aliases are only supported on the same bus, therefore the search 1373 * space is quite small (especially since we're really only looking at pcie 1374 * device, and therefore only expect multiple slots on the root complex or 1375 * downstream switch ports). It's conceivable though that a pair of 1376 * multifunction devices could have aliases between them that would cause a 1377 * loop. To prevent this, we use a bitmap to track where we've been. 1378 */ 1379 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1380 unsigned long *devfns) 1381 { 1382 struct pci_dev *tmp = NULL; 1383 struct iommu_group *group; 1384 1385 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1386 return NULL; 1387 1388 group = iommu_group_get(&pdev->dev); 1389 if (group) 1390 return group; 1391 1392 for_each_pci_dev(tmp) { 1393 if (tmp == pdev || tmp->bus != pdev->bus) 1394 continue; 1395 1396 /* We alias them or they alias us */ 1397 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1398 group = get_pci_alias_group(tmp, devfns); 1399 if (group) { 1400 pci_dev_put(tmp); 1401 return group; 1402 } 1403 1404 group = get_pci_function_alias_group(tmp, devfns); 1405 if (group) { 1406 pci_dev_put(tmp); 1407 return group; 1408 } 1409 } 1410 } 1411 1412 return NULL; 1413 } 1414 1415 struct group_for_pci_data { 1416 struct pci_dev *pdev; 1417 struct iommu_group *group; 1418 }; 1419 1420 /* 1421 * DMA alias iterator callback, return the last seen device. Stop and return 1422 * the IOMMU group if we find one along the way. 1423 */ 1424 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1425 { 1426 struct group_for_pci_data *data = opaque; 1427 1428 data->pdev = pdev; 1429 data->group = iommu_group_get(&pdev->dev); 1430 1431 return data->group != NULL; 1432 } 1433 1434 /* 1435 * Generic device_group call-back function. It just allocates one 1436 * iommu-group per device. 1437 */ 1438 struct iommu_group *generic_device_group(struct device *dev) 1439 { 1440 return iommu_group_alloc(); 1441 } 1442 EXPORT_SYMBOL_GPL(generic_device_group); 1443 1444 /* 1445 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1446 * to find or create an IOMMU group for a device. 1447 */ 1448 struct iommu_group *pci_device_group(struct device *dev) 1449 { 1450 struct pci_dev *pdev = to_pci_dev(dev); 1451 struct group_for_pci_data data; 1452 struct pci_bus *bus; 1453 struct iommu_group *group = NULL; 1454 u64 devfns[4] = { 0 }; 1455 1456 if (WARN_ON(!dev_is_pci(dev))) 1457 return ERR_PTR(-EINVAL); 1458 1459 /* 1460 * Find the upstream DMA alias for the device. A device must not 1461 * be aliased due to topology in order to have its own IOMMU group. 1462 * If we find an alias along the way that already belongs to a 1463 * group, use it. 1464 */ 1465 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1466 return data.group; 1467 1468 pdev = data.pdev; 1469 1470 /* 1471 * Continue upstream from the point of minimum IOMMU granularity 1472 * due to aliases to the point where devices are protected from 1473 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1474 * group, use it. 1475 */ 1476 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1477 if (!bus->self) 1478 continue; 1479 1480 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1481 break; 1482 1483 pdev = bus->self; 1484 1485 group = iommu_group_get(&pdev->dev); 1486 if (group) 1487 return group; 1488 } 1489 1490 /* 1491 * Look for existing groups on device aliases. If we alias another 1492 * device or another device aliases us, use the same group. 1493 */ 1494 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1495 if (group) 1496 return group; 1497 1498 /* 1499 * Look for existing groups on non-isolated functions on the same 1500 * slot and aliases of those funcions, if any. No need to clear 1501 * the search bitmap, the tested devfns are still valid. 1502 */ 1503 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1504 if (group) 1505 return group; 1506 1507 /* No shared group found, allocate new */ 1508 return iommu_group_alloc(); 1509 } 1510 EXPORT_SYMBOL_GPL(pci_device_group); 1511 1512 /* Get the IOMMU group for device on fsl-mc bus */ 1513 struct iommu_group *fsl_mc_device_group(struct device *dev) 1514 { 1515 struct device *cont_dev = fsl_mc_cont_dev(dev); 1516 struct iommu_group *group; 1517 1518 group = iommu_group_get(cont_dev); 1519 if (!group) 1520 group = iommu_group_alloc(); 1521 return group; 1522 } 1523 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1524 1525 static int iommu_get_def_domain_type(struct device *dev) 1526 { 1527 const struct iommu_ops *ops = dev->bus->iommu_ops; 1528 1529 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted) 1530 return IOMMU_DOMAIN_DMA; 1531 1532 if (ops->def_domain_type) 1533 return ops->def_domain_type(dev); 1534 1535 return 0; 1536 } 1537 1538 static int iommu_group_alloc_default_domain(struct bus_type *bus, 1539 struct iommu_group *group, 1540 unsigned int type) 1541 { 1542 struct iommu_domain *dom; 1543 1544 dom = __iommu_domain_alloc(bus, type); 1545 if (!dom && type != IOMMU_DOMAIN_DMA) { 1546 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA); 1547 if (dom) 1548 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1549 type, group->name); 1550 } 1551 1552 if (!dom) 1553 return -ENOMEM; 1554 1555 group->default_domain = dom; 1556 if (!group->domain) 1557 group->domain = dom; 1558 return 0; 1559 } 1560 1561 static int iommu_alloc_default_domain(struct iommu_group *group, 1562 struct device *dev) 1563 { 1564 unsigned int type; 1565 1566 if (group->default_domain) 1567 return 0; 1568 1569 type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type; 1570 1571 return iommu_group_alloc_default_domain(dev->bus, group, type); 1572 } 1573 1574 /** 1575 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1576 * @dev: target device 1577 * 1578 * This function is intended to be called by IOMMU drivers and extended to 1579 * support common, bus-defined algorithms when determining or creating the 1580 * IOMMU group for a device. On success, the caller will hold a reference 1581 * to the returned IOMMU group, which will already include the provided 1582 * device. The reference should be released with iommu_group_put(). 1583 */ 1584 static struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1585 { 1586 const struct iommu_ops *ops = dev->bus->iommu_ops; 1587 struct iommu_group *group; 1588 int ret; 1589 1590 group = iommu_group_get(dev); 1591 if (group) 1592 return group; 1593 1594 if (!ops) 1595 return ERR_PTR(-EINVAL); 1596 1597 group = ops->device_group(dev); 1598 if (WARN_ON_ONCE(group == NULL)) 1599 return ERR_PTR(-EINVAL); 1600 1601 if (IS_ERR(group)) 1602 return group; 1603 1604 ret = iommu_group_add_device(group, dev); 1605 if (ret) 1606 goto out_put_group; 1607 1608 return group; 1609 1610 out_put_group: 1611 iommu_group_put(group); 1612 1613 return ERR_PTR(ret); 1614 } 1615 1616 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1617 { 1618 return group->default_domain; 1619 } 1620 1621 static int probe_iommu_group(struct device *dev, void *data) 1622 { 1623 struct list_head *group_list = data; 1624 struct iommu_group *group; 1625 int ret; 1626 1627 /* Device is probed already if in a group */ 1628 group = iommu_group_get(dev); 1629 if (group) { 1630 iommu_group_put(group); 1631 return 0; 1632 } 1633 1634 ret = __iommu_probe_device(dev, group_list); 1635 if (ret == -ENODEV) 1636 ret = 0; 1637 1638 return ret; 1639 } 1640 1641 static int remove_iommu_group(struct device *dev, void *data) 1642 { 1643 iommu_release_device(dev); 1644 1645 return 0; 1646 } 1647 1648 static int iommu_bus_notifier(struct notifier_block *nb, 1649 unsigned long action, void *data) 1650 { 1651 unsigned long group_action = 0; 1652 struct device *dev = data; 1653 struct iommu_group *group; 1654 1655 /* 1656 * ADD/DEL call into iommu driver ops if provided, which may 1657 * result in ADD/DEL notifiers to group->notifier 1658 */ 1659 if (action == BUS_NOTIFY_ADD_DEVICE) { 1660 int ret; 1661 1662 ret = iommu_probe_device(dev); 1663 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1664 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1665 iommu_release_device(dev); 1666 return NOTIFY_OK; 1667 } 1668 1669 /* 1670 * Remaining BUS_NOTIFYs get filtered and republished to the 1671 * group, if anyone is listening 1672 */ 1673 group = iommu_group_get(dev); 1674 if (!group) 1675 return 0; 1676 1677 switch (action) { 1678 case BUS_NOTIFY_BIND_DRIVER: 1679 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1680 break; 1681 case BUS_NOTIFY_BOUND_DRIVER: 1682 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1683 break; 1684 case BUS_NOTIFY_UNBIND_DRIVER: 1685 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1686 break; 1687 case BUS_NOTIFY_UNBOUND_DRIVER: 1688 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1689 break; 1690 } 1691 1692 if (group_action) 1693 blocking_notifier_call_chain(&group->notifier, 1694 group_action, dev); 1695 1696 iommu_group_put(group); 1697 return 0; 1698 } 1699 1700 struct __group_domain_type { 1701 struct device *dev; 1702 unsigned int type; 1703 }; 1704 1705 static int probe_get_default_domain_type(struct device *dev, void *data) 1706 { 1707 struct __group_domain_type *gtype = data; 1708 unsigned int type = iommu_get_def_domain_type(dev); 1709 1710 if (type) { 1711 if (gtype->type && gtype->type != type) { 1712 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n", 1713 iommu_domain_type_str(type), 1714 dev_name(gtype->dev), 1715 iommu_domain_type_str(gtype->type)); 1716 gtype->type = 0; 1717 } 1718 1719 if (!gtype->dev) { 1720 gtype->dev = dev; 1721 gtype->type = type; 1722 } 1723 } 1724 1725 return 0; 1726 } 1727 1728 static void probe_alloc_default_domain(struct bus_type *bus, 1729 struct iommu_group *group) 1730 { 1731 struct __group_domain_type gtype; 1732 1733 memset(>ype, 0, sizeof(gtype)); 1734 1735 /* Ask for default domain requirements of all devices in the group */ 1736 __iommu_group_for_each_dev(group, >ype, 1737 probe_get_default_domain_type); 1738 1739 if (!gtype.type) 1740 gtype.type = iommu_def_domain_type; 1741 1742 iommu_group_alloc_default_domain(bus, group, gtype.type); 1743 1744 } 1745 1746 static int iommu_group_do_dma_attach(struct device *dev, void *data) 1747 { 1748 struct iommu_domain *domain = data; 1749 int ret = 0; 1750 1751 if (!iommu_is_attach_deferred(domain, dev)) 1752 ret = __iommu_attach_device(domain, dev); 1753 1754 return ret; 1755 } 1756 1757 static int __iommu_group_dma_attach(struct iommu_group *group) 1758 { 1759 return __iommu_group_for_each_dev(group, group->default_domain, 1760 iommu_group_do_dma_attach); 1761 } 1762 1763 static int iommu_group_do_probe_finalize(struct device *dev, void *data) 1764 { 1765 struct iommu_domain *domain = data; 1766 1767 if (domain->ops->probe_finalize) 1768 domain->ops->probe_finalize(dev); 1769 1770 return 0; 1771 } 1772 1773 static void __iommu_group_dma_finalize(struct iommu_group *group) 1774 { 1775 __iommu_group_for_each_dev(group, group->default_domain, 1776 iommu_group_do_probe_finalize); 1777 } 1778 1779 static int iommu_do_create_direct_mappings(struct device *dev, void *data) 1780 { 1781 struct iommu_group *group = data; 1782 1783 iommu_create_device_direct_mappings(group, dev); 1784 1785 return 0; 1786 } 1787 1788 static int iommu_group_create_direct_mappings(struct iommu_group *group) 1789 { 1790 return __iommu_group_for_each_dev(group, group, 1791 iommu_do_create_direct_mappings); 1792 } 1793 1794 int bus_iommu_probe(struct bus_type *bus) 1795 { 1796 struct iommu_group *group, *next; 1797 LIST_HEAD(group_list); 1798 int ret; 1799 1800 /* 1801 * This code-path does not allocate the default domain when 1802 * creating the iommu group, so do it after the groups are 1803 * created. 1804 */ 1805 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1806 if (ret) 1807 return ret; 1808 1809 list_for_each_entry_safe(group, next, &group_list, entry) { 1810 /* Remove item from the list */ 1811 list_del_init(&group->entry); 1812 1813 mutex_lock(&group->mutex); 1814 1815 /* Try to allocate default domain */ 1816 probe_alloc_default_domain(bus, group); 1817 1818 if (!group->default_domain) { 1819 mutex_unlock(&group->mutex); 1820 continue; 1821 } 1822 1823 iommu_group_create_direct_mappings(group); 1824 1825 ret = __iommu_group_dma_attach(group); 1826 1827 mutex_unlock(&group->mutex); 1828 1829 if (ret) 1830 break; 1831 1832 __iommu_group_dma_finalize(group); 1833 } 1834 1835 return ret; 1836 } 1837 1838 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1839 { 1840 struct notifier_block *nb; 1841 int err; 1842 1843 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1844 if (!nb) 1845 return -ENOMEM; 1846 1847 nb->notifier_call = iommu_bus_notifier; 1848 1849 err = bus_register_notifier(bus, nb); 1850 if (err) 1851 goto out_free; 1852 1853 err = bus_iommu_probe(bus); 1854 if (err) 1855 goto out_err; 1856 1857 1858 return 0; 1859 1860 out_err: 1861 /* Clean up */ 1862 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group); 1863 bus_unregister_notifier(bus, nb); 1864 1865 out_free: 1866 kfree(nb); 1867 1868 return err; 1869 } 1870 1871 /** 1872 * bus_set_iommu - set iommu-callbacks for the bus 1873 * @bus: bus. 1874 * @ops: the callbacks provided by the iommu-driver 1875 * 1876 * This function is called by an iommu driver to set the iommu methods 1877 * used for a particular bus. Drivers for devices on that bus can use 1878 * the iommu-api after these ops are registered. 1879 * This special function is needed because IOMMUs are usually devices on 1880 * the bus itself, so the iommu drivers are not initialized when the bus 1881 * is set up. With this function the iommu-driver can set the iommu-ops 1882 * afterwards. 1883 */ 1884 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1885 { 1886 int err; 1887 1888 if (ops == NULL) { 1889 bus->iommu_ops = NULL; 1890 return 0; 1891 } 1892 1893 if (bus->iommu_ops != NULL) 1894 return -EBUSY; 1895 1896 bus->iommu_ops = ops; 1897 1898 /* Do IOMMU specific setup for this bus-type */ 1899 err = iommu_bus_init(bus, ops); 1900 if (err) 1901 bus->iommu_ops = NULL; 1902 1903 return err; 1904 } 1905 EXPORT_SYMBOL_GPL(bus_set_iommu); 1906 1907 bool iommu_present(struct bus_type *bus) 1908 { 1909 return bus->iommu_ops != NULL; 1910 } 1911 EXPORT_SYMBOL_GPL(iommu_present); 1912 1913 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1914 { 1915 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1916 return false; 1917 1918 return bus->iommu_ops->capable(cap); 1919 } 1920 EXPORT_SYMBOL_GPL(iommu_capable); 1921 1922 /** 1923 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1924 * @domain: iommu domain 1925 * @handler: fault handler 1926 * @token: user data, will be passed back to the fault handler 1927 * 1928 * This function should be used by IOMMU users which want to be notified 1929 * whenever an IOMMU fault happens. 1930 * 1931 * The fault handler itself should return 0 on success, and an appropriate 1932 * error code otherwise. 1933 */ 1934 void iommu_set_fault_handler(struct iommu_domain *domain, 1935 iommu_fault_handler_t handler, 1936 void *token) 1937 { 1938 BUG_ON(!domain); 1939 1940 domain->handler = handler; 1941 domain->handler_token = token; 1942 } 1943 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1944 1945 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1946 unsigned type) 1947 { 1948 struct iommu_domain *domain; 1949 1950 if (bus == NULL || bus->iommu_ops == NULL) 1951 return NULL; 1952 1953 domain = bus->iommu_ops->domain_alloc(type); 1954 if (!domain) 1955 return NULL; 1956 1957 domain->ops = bus->iommu_ops; 1958 domain->type = type; 1959 /* Assume all sizes by default; the driver may override this later */ 1960 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1961 1962 if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) { 1963 iommu_domain_free(domain); 1964 domain = NULL; 1965 } 1966 return domain; 1967 } 1968 1969 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1970 { 1971 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1972 } 1973 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1974 1975 void iommu_domain_free(struct iommu_domain *domain) 1976 { 1977 iommu_put_dma_cookie(domain); 1978 domain->ops->domain_free(domain); 1979 } 1980 EXPORT_SYMBOL_GPL(iommu_domain_free); 1981 1982 static int __iommu_attach_device(struct iommu_domain *domain, 1983 struct device *dev) 1984 { 1985 int ret; 1986 1987 if (unlikely(domain->ops->attach_dev == NULL)) 1988 return -ENODEV; 1989 1990 ret = domain->ops->attach_dev(domain, dev); 1991 if (!ret) 1992 trace_attach_device_to_domain(dev); 1993 return ret; 1994 } 1995 1996 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1997 { 1998 struct iommu_group *group; 1999 int ret; 2000 2001 group = iommu_group_get(dev); 2002 if (!group) 2003 return -ENODEV; 2004 2005 /* 2006 * Lock the group to make sure the device-count doesn't 2007 * change while we are attaching 2008 */ 2009 mutex_lock(&group->mutex); 2010 ret = -EINVAL; 2011 if (iommu_group_device_count(group) != 1) 2012 goto out_unlock; 2013 2014 ret = __iommu_attach_group(domain, group); 2015 2016 out_unlock: 2017 mutex_unlock(&group->mutex); 2018 iommu_group_put(group); 2019 2020 return ret; 2021 } 2022 EXPORT_SYMBOL_GPL(iommu_attach_device); 2023 2024 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain) 2025 { 2026 const struct iommu_ops *ops = domain->ops; 2027 2028 if (ops->is_attach_deferred && ops->is_attach_deferred(domain, dev)) 2029 return __iommu_attach_device(domain, dev); 2030 2031 return 0; 2032 } 2033 2034 /* 2035 * Check flags and other user provided data for valid combinations. We also 2036 * make sure no reserved fields or unused flags are set. This is to ensure 2037 * not breaking userspace in the future when these fields or flags are used. 2038 */ 2039 static int iommu_check_cache_invl_data(struct iommu_cache_invalidate_info *info) 2040 { 2041 u32 mask; 2042 int i; 2043 2044 if (info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1) 2045 return -EINVAL; 2046 2047 mask = (1 << IOMMU_CACHE_INV_TYPE_NR) - 1; 2048 if (info->cache & ~mask) 2049 return -EINVAL; 2050 2051 if (info->granularity >= IOMMU_INV_GRANU_NR) 2052 return -EINVAL; 2053 2054 switch (info->granularity) { 2055 case IOMMU_INV_GRANU_ADDR: 2056 if (info->cache & IOMMU_CACHE_INV_TYPE_PASID) 2057 return -EINVAL; 2058 2059 mask = IOMMU_INV_ADDR_FLAGS_PASID | 2060 IOMMU_INV_ADDR_FLAGS_ARCHID | 2061 IOMMU_INV_ADDR_FLAGS_LEAF; 2062 2063 if (info->granu.addr_info.flags & ~mask) 2064 return -EINVAL; 2065 break; 2066 case IOMMU_INV_GRANU_PASID: 2067 mask = IOMMU_INV_PASID_FLAGS_PASID | 2068 IOMMU_INV_PASID_FLAGS_ARCHID; 2069 if (info->granu.pasid_info.flags & ~mask) 2070 return -EINVAL; 2071 2072 break; 2073 case IOMMU_INV_GRANU_DOMAIN: 2074 if (info->cache & IOMMU_CACHE_INV_TYPE_DEV_IOTLB) 2075 return -EINVAL; 2076 break; 2077 default: 2078 return -EINVAL; 2079 } 2080 2081 /* Check reserved padding fields */ 2082 for (i = 0; i < sizeof(info->padding); i++) { 2083 if (info->padding[i]) 2084 return -EINVAL; 2085 } 2086 2087 return 0; 2088 } 2089 2090 int iommu_uapi_cache_invalidate(struct iommu_domain *domain, struct device *dev, 2091 void __user *uinfo) 2092 { 2093 struct iommu_cache_invalidate_info inv_info = { 0 }; 2094 u32 minsz; 2095 int ret; 2096 2097 if (unlikely(!domain->ops->cache_invalidate)) 2098 return -ENODEV; 2099 2100 /* 2101 * No new spaces can be added before the variable sized union, the 2102 * minimum size is the offset to the union. 2103 */ 2104 minsz = offsetof(struct iommu_cache_invalidate_info, granu); 2105 2106 /* Copy minsz from user to get flags and argsz */ 2107 if (copy_from_user(&inv_info, uinfo, minsz)) 2108 return -EFAULT; 2109 2110 /* Fields before the variable size union are mandatory */ 2111 if (inv_info.argsz < minsz) 2112 return -EINVAL; 2113 2114 /* PASID and address granu require additional info beyond minsz */ 2115 if (inv_info.granularity == IOMMU_INV_GRANU_PASID && 2116 inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.pasid_info)) 2117 return -EINVAL; 2118 2119 if (inv_info.granularity == IOMMU_INV_GRANU_ADDR && 2120 inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.addr_info)) 2121 return -EINVAL; 2122 2123 /* 2124 * User might be using a newer UAPI header which has a larger data 2125 * size, we shall support the existing flags within the current 2126 * size. Copy the remaining user data _after_ minsz but not more 2127 * than the current kernel supported size. 2128 */ 2129 if (copy_from_user((void *)&inv_info + minsz, uinfo + minsz, 2130 min_t(u32, inv_info.argsz, sizeof(inv_info)) - minsz)) 2131 return -EFAULT; 2132 2133 /* Now the argsz is validated, check the content */ 2134 ret = iommu_check_cache_invl_data(&inv_info); 2135 if (ret) 2136 return ret; 2137 2138 return domain->ops->cache_invalidate(domain, dev, &inv_info); 2139 } 2140 EXPORT_SYMBOL_GPL(iommu_uapi_cache_invalidate); 2141 2142 static int iommu_check_bind_data(struct iommu_gpasid_bind_data *data) 2143 { 2144 u64 mask; 2145 int i; 2146 2147 if (data->version != IOMMU_GPASID_BIND_VERSION_1) 2148 return -EINVAL; 2149 2150 /* Check the range of supported formats */ 2151 if (data->format >= IOMMU_PASID_FORMAT_LAST) 2152 return -EINVAL; 2153 2154 /* Check all flags */ 2155 mask = IOMMU_SVA_GPASID_VAL; 2156 if (data->flags & ~mask) 2157 return -EINVAL; 2158 2159 /* Check reserved padding fields */ 2160 for (i = 0; i < sizeof(data->padding); i++) { 2161 if (data->padding[i]) 2162 return -EINVAL; 2163 } 2164 2165 return 0; 2166 } 2167 2168 static int iommu_sva_prepare_bind_data(void __user *udata, 2169 struct iommu_gpasid_bind_data *data) 2170 { 2171 u32 minsz; 2172 2173 /* 2174 * No new spaces can be added before the variable sized union, the 2175 * minimum size is the offset to the union. 2176 */ 2177 minsz = offsetof(struct iommu_gpasid_bind_data, vendor); 2178 2179 /* Copy minsz from user to get flags and argsz */ 2180 if (copy_from_user(data, udata, minsz)) 2181 return -EFAULT; 2182 2183 /* Fields before the variable size union are mandatory */ 2184 if (data->argsz < minsz) 2185 return -EINVAL; 2186 /* 2187 * User might be using a newer UAPI header, we shall let IOMMU vendor 2188 * driver decide on what size it needs. Since the guest PASID bind data 2189 * can be vendor specific, larger argsz could be the result of extension 2190 * for one vendor but it should not affect another vendor. 2191 * Copy the remaining user data _after_ minsz 2192 */ 2193 if (copy_from_user((void *)data + minsz, udata + minsz, 2194 min_t(u32, data->argsz, sizeof(*data)) - minsz)) 2195 return -EFAULT; 2196 2197 return iommu_check_bind_data(data); 2198 } 2199 2200 int iommu_uapi_sva_bind_gpasid(struct iommu_domain *domain, struct device *dev, 2201 void __user *udata) 2202 { 2203 struct iommu_gpasid_bind_data data = { 0 }; 2204 int ret; 2205 2206 if (unlikely(!domain->ops->sva_bind_gpasid)) 2207 return -ENODEV; 2208 2209 ret = iommu_sva_prepare_bind_data(udata, &data); 2210 if (ret) 2211 return ret; 2212 2213 return domain->ops->sva_bind_gpasid(domain, dev, &data); 2214 } 2215 EXPORT_SYMBOL_GPL(iommu_uapi_sva_bind_gpasid); 2216 2217 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev, 2218 ioasid_t pasid) 2219 { 2220 if (unlikely(!domain->ops->sva_unbind_gpasid)) 2221 return -ENODEV; 2222 2223 return domain->ops->sva_unbind_gpasid(dev, pasid); 2224 } 2225 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid); 2226 2227 int iommu_uapi_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev, 2228 void __user *udata) 2229 { 2230 struct iommu_gpasid_bind_data data = { 0 }; 2231 int ret; 2232 2233 if (unlikely(!domain->ops->sva_bind_gpasid)) 2234 return -ENODEV; 2235 2236 ret = iommu_sva_prepare_bind_data(udata, &data); 2237 if (ret) 2238 return ret; 2239 2240 return iommu_sva_unbind_gpasid(domain, dev, data.hpasid); 2241 } 2242 EXPORT_SYMBOL_GPL(iommu_uapi_sva_unbind_gpasid); 2243 2244 static void __iommu_detach_device(struct iommu_domain *domain, 2245 struct device *dev) 2246 { 2247 if (iommu_is_attach_deferred(domain, dev)) 2248 return; 2249 2250 if (unlikely(domain->ops->detach_dev == NULL)) 2251 return; 2252 2253 domain->ops->detach_dev(domain, dev); 2254 trace_detach_device_from_domain(dev); 2255 } 2256 2257 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 2258 { 2259 struct iommu_group *group; 2260 2261 group = iommu_group_get(dev); 2262 if (!group) 2263 return; 2264 2265 mutex_lock(&group->mutex); 2266 if (iommu_group_device_count(group) != 1) { 2267 WARN_ON(1); 2268 goto out_unlock; 2269 } 2270 2271 __iommu_detach_group(domain, group); 2272 2273 out_unlock: 2274 mutex_unlock(&group->mutex); 2275 iommu_group_put(group); 2276 } 2277 EXPORT_SYMBOL_GPL(iommu_detach_device); 2278 2279 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2280 { 2281 struct iommu_domain *domain; 2282 struct iommu_group *group; 2283 2284 group = iommu_group_get(dev); 2285 if (!group) 2286 return NULL; 2287 2288 domain = group->domain; 2289 2290 iommu_group_put(group); 2291 2292 return domain; 2293 } 2294 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2295 2296 /* 2297 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2298 * guarantees that the group and its default domain are valid and correct. 2299 */ 2300 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2301 { 2302 return dev->iommu_group->default_domain; 2303 } 2304 2305 /* 2306 * IOMMU groups are really the natural working unit of the IOMMU, but 2307 * the IOMMU API works on domains and devices. Bridge that gap by 2308 * iterating over the devices in a group. Ideally we'd have a single 2309 * device which represents the requestor ID of the group, but we also 2310 * allow IOMMU drivers to create policy defined minimum sets, where 2311 * the physical hardware may be able to distiguish members, but we 2312 * wish to group them at a higher level (ex. untrusted multi-function 2313 * PCI devices). Thus we attach each device. 2314 */ 2315 static int iommu_group_do_attach_device(struct device *dev, void *data) 2316 { 2317 struct iommu_domain *domain = data; 2318 2319 return __iommu_attach_device(domain, dev); 2320 } 2321 2322 static int __iommu_attach_group(struct iommu_domain *domain, 2323 struct iommu_group *group) 2324 { 2325 int ret; 2326 2327 if (group->default_domain && group->domain != group->default_domain) 2328 return -EBUSY; 2329 2330 ret = __iommu_group_for_each_dev(group, domain, 2331 iommu_group_do_attach_device); 2332 if (ret == 0) 2333 group->domain = domain; 2334 2335 return ret; 2336 } 2337 2338 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2339 { 2340 int ret; 2341 2342 mutex_lock(&group->mutex); 2343 ret = __iommu_attach_group(domain, group); 2344 mutex_unlock(&group->mutex); 2345 2346 return ret; 2347 } 2348 EXPORT_SYMBOL_GPL(iommu_attach_group); 2349 2350 static int iommu_group_do_detach_device(struct device *dev, void *data) 2351 { 2352 struct iommu_domain *domain = data; 2353 2354 __iommu_detach_device(domain, dev); 2355 2356 return 0; 2357 } 2358 2359 static void __iommu_detach_group(struct iommu_domain *domain, 2360 struct iommu_group *group) 2361 { 2362 int ret; 2363 2364 if (!group->default_domain) { 2365 __iommu_group_for_each_dev(group, domain, 2366 iommu_group_do_detach_device); 2367 group->domain = NULL; 2368 return; 2369 } 2370 2371 if (group->domain == group->default_domain) 2372 return; 2373 2374 /* Detach by re-attaching to the default domain */ 2375 ret = __iommu_group_for_each_dev(group, group->default_domain, 2376 iommu_group_do_attach_device); 2377 if (ret != 0) 2378 WARN_ON(1); 2379 else 2380 group->domain = group->default_domain; 2381 } 2382 2383 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2384 { 2385 mutex_lock(&group->mutex); 2386 __iommu_detach_group(domain, group); 2387 mutex_unlock(&group->mutex); 2388 } 2389 EXPORT_SYMBOL_GPL(iommu_detach_group); 2390 2391 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2392 { 2393 if (domain->type == IOMMU_DOMAIN_IDENTITY) 2394 return iova; 2395 2396 if (domain->type == IOMMU_DOMAIN_BLOCKED) 2397 return 0; 2398 2399 return domain->ops->iova_to_phys(domain, iova); 2400 } 2401 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2402 2403 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova, 2404 phys_addr_t paddr, size_t size, size_t *count) 2405 { 2406 unsigned int pgsize_idx, pgsize_idx_next; 2407 unsigned long pgsizes; 2408 size_t offset, pgsize, pgsize_next; 2409 unsigned long addr_merge = paddr | iova; 2410 2411 /* Page sizes supported by the hardware and small enough for @size */ 2412 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0); 2413 2414 /* Constrain the page sizes further based on the maximum alignment */ 2415 if (likely(addr_merge)) 2416 pgsizes &= GENMASK(__ffs(addr_merge), 0); 2417 2418 /* Make sure we have at least one suitable page size */ 2419 BUG_ON(!pgsizes); 2420 2421 /* Pick the biggest page size remaining */ 2422 pgsize_idx = __fls(pgsizes); 2423 pgsize = BIT(pgsize_idx); 2424 if (!count) 2425 return pgsize; 2426 2427 /* Find the next biggest support page size, if it exists */ 2428 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0); 2429 if (!pgsizes) 2430 goto out_set_count; 2431 2432 pgsize_idx_next = __ffs(pgsizes); 2433 pgsize_next = BIT(pgsize_idx_next); 2434 2435 /* 2436 * There's no point trying a bigger page size unless the virtual 2437 * and physical addresses are similarly offset within the larger page. 2438 */ 2439 if ((iova ^ paddr) & (pgsize_next - 1)) 2440 goto out_set_count; 2441 2442 /* Calculate the offset to the next page size alignment boundary */ 2443 offset = pgsize_next - (addr_merge & (pgsize_next - 1)); 2444 2445 /* 2446 * If size is big enough to accommodate the larger page, reduce 2447 * the number of smaller pages. 2448 */ 2449 if (offset + pgsize_next <= size) 2450 size = offset; 2451 2452 out_set_count: 2453 *count = size >> pgsize_idx; 2454 return pgsize; 2455 } 2456 2457 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova, 2458 phys_addr_t paddr, size_t size, int prot, 2459 gfp_t gfp, size_t *mapped) 2460 { 2461 const struct iommu_ops *ops = domain->ops; 2462 size_t pgsize, count; 2463 int ret; 2464 2465 pgsize = iommu_pgsize(domain, iova, paddr, size, &count); 2466 2467 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n", 2468 iova, &paddr, pgsize, count); 2469 2470 if (ops->map_pages) { 2471 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot, 2472 gfp, mapped); 2473 } else { 2474 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 2475 *mapped = ret ? 0 : pgsize; 2476 } 2477 2478 return ret; 2479 } 2480 2481 static int __iommu_map(struct iommu_domain *domain, unsigned long iova, 2482 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2483 { 2484 const struct iommu_ops *ops = domain->ops; 2485 unsigned long orig_iova = iova; 2486 unsigned int min_pagesz; 2487 size_t orig_size = size; 2488 phys_addr_t orig_paddr = paddr; 2489 int ret = 0; 2490 2491 if (unlikely(!(ops->map || ops->map_pages) || 2492 domain->pgsize_bitmap == 0UL)) 2493 return -ENODEV; 2494 2495 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2496 return -EINVAL; 2497 2498 /* find out the minimum page size supported */ 2499 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2500 2501 /* 2502 * both the virtual address and the physical one, as well as 2503 * the size of the mapping, must be aligned (at least) to the 2504 * size of the smallest page supported by the hardware 2505 */ 2506 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2507 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2508 iova, &paddr, size, min_pagesz); 2509 return -EINVAL; 2510 } 2511 2512 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2513 2514 while (size) { 2515 size_t mapped = 0; 2516 2517 ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp, 2518 &mapped); 2519 /* 2520 * Some pages may have been mapped, even if an error occurred, 2521 * so we should account for those so they can be unmapped. 2522 */ 2523 size -= mapped; 2524 2525 if (ret) 2526 break; 2527 2528 iova += mapped; 2529 paddr += mapped; 2530 } 2531 2532 /* unroll mapping in case something went wrong */ 2533 if (ret) 2534 iommu_unmap(domain, orig_iova, orig_size - size); 2535 else 2536 trace_map(orig_iova, orig_paddr, orig_size); 2537 2538 return ret; 2539 } 2540 2541 static int _iommu_map(struct iommu_domain *domain, unsigned long iova, 2542 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2543 { 2544 const struct iommu_ops *ops = domain->ops; 2545 int ret; 2546 2547 ret = __iommu_map(domain, iova, paddr, size, prot, gfp); 2548 if (ret == 0 && ops->iotlb_sync_map) 2549 ops->iotlb_sync_map(domain, iova, size); 2550 2551 return ret; 2552 } 2553 2554 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2555 phys_addr_t paddr, size_t size, int prot) 2556 { 2557 might_sleep(); 2558 return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL); 2559 } 2560 EXPORT_SYMBOL_GPL(iommu_map); 2561 2562 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova, 2563 phys_addr_t paddr, size_t size, int prot) 2564 { 2565 return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC); 2566 } 2567 EXPORT_SYMBOL_GPL(iommu_map_atomic); 2568 2569 static size_t __iommu_unmap_pages(struct iommu_domain *domain, 2570 unsigned long iova, size_t size, 2571 struct iommu_iotlb_gather *iotlb_gather) 2572 { 2573 const struct iommu_ops *ops = domain->ops; 2574 size_t pgsize, count; 2575 2576 pgsize = iommu_pgsize(domain, iova, iova, size, &count); 2577 return ops->unmap_pages ? 2578 ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) : 2579 ops->unmap(domain, iova, pgsize, iotlb_gather); 2580 } 2581 2582 static size_t __iommu_unmap(struct iommu_domain *domain, 2583 unsigned long iova, size_t size, 2584 struct iommu_iotlb_gather *iotlb_gather) 2585 { 2586 const struct iommu_ops *ops = domain->ops; 2587 size_t unmapped_page, unmapped = 0; 2588 unsigned long orig_iova = iova; 2589 unsigned int min_pagesz; 2590 2591 if (unlikely(!(ops->unmap || ops->unmap_pages) || 2592 domain->pgsize_bitmap == 0UL)) 2593 return 0; 2594 2595 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2596 return 0; 2597 2598 /* find out the minimum page size supported */ 2599 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2600 2601 /* 2602 * The virtual address, as well as the size of the mapping, must be 2603 * aligned (at least) to the size of the smallest page supported 2604 * by the hardware 2605 */ 2606 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2607 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2608 iova, size, min_pagesz); 2609 return 0; 2610 } 2611 2612 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2613 2614 /* 2615 * Keep iterating until we either unmap 'size' bytes (or more) 2616 * or we hit an area that isn't mapped. 2617 */ 2618 while (unmapped < size) { 2619 unmapped_page = __iommu_unmap_pages(domain, iova, 2620 size - unmapped, 2621 iotlb_gather); 2622 if (!unmapped_page) 2623 break; 2624 2625 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2626 iova, unmapped_page); 2627 2628 iova += unmapped_page; 2629 unmapped += unmapped_page; 2630 } 2631 2632 trace_unmap(orig_iova, size, unmapped); 2633 return unmapped; 2634 } 2635 2636 size_t iommu_unmap(struct iommu_domain *domain, 2637 unsigned long iova, size_t size) 2638 { 2639 struct iommu_iotlb_gather iotlb_gather; 2640 size_t ret; 2641 2642 iommu_iotlb_gather_init(&iotlb_gather); 2643 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2644 iommu_iotlb_sync(domain, &iotlb_gather); 2645 2646 return ret; 2647 } 2648 EXPORT_SYMBOL_GPL(iommu_unmap); 2649 2650 size_t iommu_unmap_fast(struct iommu_domain *domain, 2651 unsigned long iova, size_t size, 2652 struct iommu_iotlb_gather *iotlb_gather) 2653 { 2654 return __iommu_unmap(domain, iova, size, iotlb_gather); 2655 } 2656 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2657 2658 static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2659 struct scatterlist *sg, unsigned int nents, int prot, 2660 gfp_t gfp) 2661 { 2662 const struct iommu_ops *ops = domain->ops; 2663 size_t len = 0, mapped = 0; 2664 phys_addr_t start; 2665 unsigned int i = 0; 2666 int ret; 2667 2668 while (i <= nents) { 2669 phys_addr_t s_phys = sg_phys(sg); 2670 2671 if (len && s_phys != start + len) { 2672 ret = __iommu_map(domain, iova + mapped, start, 2673 len, prot, gfp); 2674 2675 if (ret) 2676 goto out_err; 2677 2678 mapped += len; 2679 len = 0; 2680 } 2681 2682 if (len) { 2683 len += sg->length; 2684 } else { 2685 len = sg->length; 2686 start = s_phys; 2687 } 2688 2689 if (++i < nents) 2690 sg = sg_next(sg); 2691 } 2692 2693 if (ops->iotlb_sync_map) 2694 ops->iotlb_sync_map(domain, iova, mapped); 2695 return mapped; 2696 2697 out_err: 2698 /* undo mappings already done */ 2699 iommu_unmap(domain, iova, mapped); 2700 2701 return ret; 2702 } 2703 2704 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2705 struct scatterlist *sg, unsigned int nents, int prot) 2706 { 2707 might_sleep(); 2708 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL); 2709 } 2710 EXPORT_SYMBOL_GPL(iommu_map_sg); 2711 2712 ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova, 2713 struct scatterlist *sg, unsigned int nents, int prot) 2714 { 2715 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 2716 } 2717 2718 /** 2719 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2720 * @domain: the iommu domain where the fault has happened 2721 * @dev: the device where the fault has happened 2722 * @iova: the faulting address 2723 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2724 * 2725 * This function should be called by the low-level IOMMU implementations 2726 * whenever IOMMU faults happen, to allow high-level users, that are 2727 * interested in such events, to know about them. 2728 * 2729 * This event may be useful for several possible use cases: 2730 * - mere logging of the event 2731 * - dynamic TLB/PTE loading 2732 * - if restarting of the faulting device is required 2733 * 2734 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2735 * PTE/TLB loading will one day be supported, implementations will be able 2736 * to tell whether it succeeded or not according to this return value). 2737 * 2738 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2739 * (though fault handlers can also return -ENOSYS, in case they want to 2740 * elicit the default behavior of the IOMMU drivers). 2741 */ 2742 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2743 unsigned long iova, int flags) 2744 { 2745 int ret = -ENOSYS; 2746 2747 /* 2748 * if upper layers showed interest and installed a fault handler, 2749 * invoke it. 2750 */ 2751 if (domain->handler) 2752 ret = domain->handler(domain, dev, iova, flags, 2753 domain->handler_token); 2754 2755 trace_io_page_fault(dev, iova, flags); 2756 return ret; 2757 } 2758 EXPORT_SYMBOL_GPL(report_iommu_fault); 2759 2760 static int __init iommu_init(void) 2761 { 2762 iommu_group_kset = kset_create_and_add("iommu_groups", 2763 NULL, kernel_kobj); 2764 BUG_ON(!iommu_group_kset); 2765 2766 iommu_debugfs_setup(); 2767 2768 return 0; 2769 } 2770 core_initcall(iommu_init); 2771 2772 int iommu_enable_nesting(struct iommu_domain *domain) 2773 { 2774 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2775 return -EINVAL; 2776 if (!domain->ops->enable_nesting) 2777 return -EINVAL; 2778 return domain->ops->enable_nesting(domain); 2779 } 2780 EXPORT_SYMBOL_GPL(iommu_enable_nesting); 2781 2782 int iommu_set_pgtable_quirks(struct iommu_domain *domain, 2783 unsigned long quirk) 2784 { 2785 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2786 return -EINVAL; 2787 if (!domain->ops->set_pgtable_quirks) 2788 return -EINVAL; 2789 return domain->ops->set_pgtable_quirks(domain, quirk); 2790 } 2791 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks); 2792 2793 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2794 { 2795 const struct iommu_ops *ops = dev->bus->iommu_ops; 2796 2797 if (ops && ops->get_resv_regions) 2798 ops->get_resv_regions(dev, list); 2799 } 2800 2801 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2802 { 2803 const struct iommu_ops *ops = dev->bus->iommu_ops; 2804 2805 if (ops && ops->put_resv_regions) 2806 ops->put_resv_regions(dev, list); 2807 } 2808 2809 /** 2810 * generic_iommu_put_resv_regions - Reserved region driver helper 2811 * @dev: device for which to free reserved regions 2812 * @list: reserved region list for device 2813 * 2814 * IOMMU drivers can use this to implement their .put_resv_regions() callback 2815 * for simple reservations. Memory allocated for each reserved region will be 2816 * freed. If an IOMMU driver allocates additional resources per region, it is 2817 * going to have to implement a custom callback. 2818 */ 2819 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list) 2820 { 2821 struct iommu_resv_region *entry, *next; 2822 2823 list_for_each_entry_safe(entry, next, list, list) 2824 kfree(entry); 2825 } 2826 EXPORT_SYMBOL(generic_iommu_put_resv_regions); 2827 2828 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2829 size_t length, int prot, 2830 enum iommu_resv_type type) 2831 { 2832 struct iommu_resv_region *region; 2833 2834 region = kzalloc(sizeof(*region), GFP_KERNEL); 2835 if (!region) 2836 return NULL; 2837 2838 INIT_LIST_HEAD(®ion->list); 2839 region->start = start; 2840 region->length = length; 2841 region->prot = prot; 2842 region->type = type; 2843 return region; 2844 } 2845 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2846 2847 void iommu_set_default_passthrough(bool cmd_line) 2848 { 2849 if (cmd_line) 2850 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2851 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2852 } 2853 2854 void iommu_set_default_translated(bool cmd_line) 2855 { 2856 if (cmd_line) 2857 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2858 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2859 } 2860 2861 bool iommu_default_passthrough(void) 2862 { 2863 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2864 } 2865 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2866 2867 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2868 { 2869 const struct iommu_ops *ops = NULL; 2870 struct iommu_device *iommu; 2871 2872 spin_lock(&iommu_device_lock); 2873 list_for_each_entry(iommu, &iommu_device_list, list) 2874 if (iommu->fwnode == fwnode) { 2875 ops = iommu->ops; 2876 break; 2877 } 2878 spin_unlock(&iommu_device_lock); 2879 return ops; 2880 } 2881 2882 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2883 const struct iommu_ops *ops) 2884 { 2885 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2886 2887 if (fwspec) 2888 return ops == fwspec->ops ? 0 : -EINVAL; 2889 2890 if (!dev_iommu_get(dev)) 2891 return -ENOMEM; 2892 2893 /* Preallocate for the overwhelmingly common case of 1 ID */ 2894 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2895 if (!fwspec) 2896 return -ENOMEM; 2897 2898 of_node_get(to_of_node(iommu_fwnode)); 2899 fwspec->iommu_fwnode = iommu_fwnode; 2900 fwspec->ops = ops; 2901 dev_iommu_fwspec_set(dev, fwspec); 2902 return 0; 2903 } 2904 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2905 2906 void iommu_fwspec_free(struct device *dev) 2907 { 2908 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2909 2910 if (fwspec) { 2911 fwnode_handle_put(fwspec->iommu_fwnode); 2912 kfree(fwspec); 2913 dev_iommu_fwspec_set(dev, NULL); 2914 } 2915 } 2916 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2917 2918 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2919 { 2920 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2921 int i, new_num; 2922 2923 if (!fwspec) 2924 return -EINVAL; 2925 2926 new_num = fwspec->num_ids + num_ids; 2927 if (new_num > 1) { 2928 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2929 GFP_KERNEL); 2930 if (!fwspec) 2931 return -ENOMEM; 2932 2933 dev_iommu_fwspec_set(dev, fwspec); 2934 } 2935 2936 for (i = 0; i < num_ids; i++) 2937 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2938 2939 fwspec->num_ids = new_num; 2940 return 0; 2941 } 2942 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2943 2944 /* 2945 * Per device IOMMU features. 2946 */ 2947 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2948 { 2949 if (dev->iommu && dev->iommu->iommu_dev) { 2950 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2951 2952 if (ops->dev_enable_feat) 2953 return ops->dev_enable_feat(dev, feat); 2954 } 2955 2956 return -ENODEV; 2957 } 2958 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2959 2960 /* 2961 * The device drivers should do the necessary cleanups before calling this. 2962 * For example, before disabling the aux-domain feature, the device driver 2963 * should detach all aux-domains. Otherwise, this will return -EBUSY. 2964 */ 2965 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2966 { 2967 if (dev->iommu && dev->iommu->iommu_dev) { 2968 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2969 2970 if (ops->dev_disable_feat) 2971 return ops->dev_disable_feat(dev, feat); 2972 } 2973 2974 return -EBUSY; 2975 } 2976 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2977 2978 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat) 2979 { 2980 if (dev->iommu && dev->iommu->iommu_dev) { 2981 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2982 2983 if (ops->dev_feat_enabled) 2984 return ops->dev_feat_enabled(dev, feat); 2985 } 2986 2987 return false; 2988 } 2989 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled); 2990 2991 /* 2992 * Aux-domain specific attach/detach. 2993 * 2994 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns 2995 * true. Also, as long as domains are attached to a device through this 2996 * interface, any tries to call iommu_attach_device() should fail 2997 * (iommu_detach_device() can't fail, so we fail when trying to re-attach). 2998 * This should make us safe against a device being attached to a guest as a 2999 * whole while there are still pasid users on it (aux and sva). 3000 */ 3001 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev) 3002 { 3003 int ret = -ENODEV; 3004 3005 if (domain->ops->aux_attach_dev) 3006 ret = domain->ops->aux_attach_dev(domain, dev); 3007 3008 if (!ret) 3009 trace_attach_device_to_domain(dev); 3010 3011 return ret; 3012 } 3013 EXPORT_SYMBOL_GPL(iommu_aux_attach_device); 3014 3015 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev) 3016 { 3017 if (domain->ops->aux_detach_dev) { 3018 domain->ops->aux_detach_dev(domain, dev); 3019 trace_detach_device_from_domain(dev); 3020 } 3021 } 3022 EXPORT_SYMBOL_GPL(iommu_aux_detach_device); 3023 3024 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) 3025 { 3026 int ret = -ENODEV; 3027 3028 if (domain->ops->aux_get_pasid) 3029 ret = domain->ops->aux_get_pasid(domain, dev); 3030 3031 return ret; 3032 } 3033 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid); 3034 3035 /** 3036 * iommu_sva_bind_device() - Bind a process address space to a device 3037 * @dev: the device 3038 * @mm: the mm to bind, caller must hold a reference to it 3039 * @drvdata: opaque data pointer to pass to bind callback 3040 * 3041 * Create a bond between device and address space, allowing the device to access 3042 * the mm using the returned PASID. If a bond already exists between @device and 3043 * @mm, it is returned and an additional reference is taken. Caller must call 3044 * iommu_sva_unbind_device() to release each reference. 3045 * 3046 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to 3047 * initialize the required SVA features. 3048 * 3049 * On error, returns an ERR_PTR value. 3050 */ 3051 struct iommu_sva * 3052 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata) 3053 { 3054 struct iommu_group *group; 3055 struct iommu_sva *handle = ERR_PTR(-EINVAL); 3056 const struct iommu_ops *ops = dev->bus->iommu_ops; 3057 3058 if (!ops || !ops->sva_bind) 3059 return ERR_PTR(-ENODEV); 3060 3061 group = iommu_group_get(dev); 3062 if (!group) 3063 return ERR_PTR(-ENODEV); 3064 3065 /* Ensure device count and domain don't change while we're binding */ 3066 mutex_lock(&group->mutex); 3067 3068 /* 3069 * To keep things simple, SVA currently doesn't support IOMMU groups 3070 * with more than one device. Existing SVA-capable systems are not 3071 * affected by the problems that required IOMMU groups (lack of ACS 3072 * isolation, device ID aliasing and other hardware issues). 3073 */ 3074 if (iommu_group_device_count(group) != 1) 3075 goto out_unlock; 3076 3077 handle = ops->sva_bind(dev, mm, drvdata); 3078 3079 out_unlock: 3080 mutex_unlock(&group->mutex); 3081 iommu_group_put(group); 3082 3083 return handle; 3084 } 3085 EXPORT_SYMBOL_GPL(iommu_sva_bind_device); 3086 3087 /** 3088 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device 3089 * @handle: the handle returned by iommu_sva_bind_device() 3090 * 3091 * Put reference to a bond between device and address space. The device should 3092 * not be issuing any more transaction for this PASID. All outstanding page 3093 * requests for this PASID must have been flushed to the IOMMU. 3094 */ 3095 void iommu_sva_unbind_device(struct iommu_sva *handle) 3096 { 3097 struct iommu_group *group; 3098 struct device *dev = handle->dev; 3099 const struct iommu_ops *ops = dev->bus->iommu_ops; 3100 3101 if (!ops || !ops->sva_unbind) 3102 return; 3103 3104 group = iommu_group_get(dev); 3105 if (!group) 3106 return; 3107 3108 mutex_lock(&group->mutex); 3109 ops->sva_unbind(handle); 3110 mutex_unlock(&group->mutex); 3111 3112 iommu_group_put(group); 3113 } 3114 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device); 3115 3116 u32 iommu_sva_get_pasid(struct iommu_sva *handle) 3117 { 3118 const struct iommu_ops *ops = handle->dev->bus->iommu_ops; 3119 3120 if (!ops || !ops->sva_get_pasid) 3121 return IOMMU_PASID_INVALID; 3122 3123 return ops->sva_get_pasid(handle); 3124 } 3125 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid); 3126 3127 /* 3128 * Changes the default domain of an iommu group that has *only* one device 3129 * 3130 * @group: The group for which the default domain should be changed 3131 * @prev_dev: The device in the group (this is used to make sure that the device 3132 * hasn't changed after the caller has called this function) 3133 * @type: The type of the new default domain that gets associated with the group 3134 * 3135 * Returns 0 on success and error code on failure 3136 * 3137 * Note: 3138 * 1. Presently, this function is called only when user requests to change the 3139 * group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type 3140 * Please take a closer look if intended to use for other purposes. 3141 */ 3142 static int iommu_change_dev_def_domain(struct iommu_group *group, 3143 struct device *prev_dev, int type) 3144 { 3145 struct iommu_domain *prev_dom; 3146 struct group_device *grp_dev; 3147 int ret, dev_def_dom; 3148 struct device *dev; 3149 3150 mutex_lock(&group->mutex); 3151 3152 if (group->default_domain != group->domain) { 3153 dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n"); 3154 ret = -EBUSY; 3155 goto out; 3156 } 3157 3158 /* 3159 * iommu group wasn't locked while acquiring device lock in 3160 * iommu_group_store_type(). So, make sure that the device count hasn't 3161 * changed while acquiring device lock. 3162 * 3163 * Changing default domain of an iommu group with two or more devices 3164 * isn't supported because there could be a potential deadlock. Consider 3165 * the following scenario. T1 is trying to acquire device locks of all 3166 * the devices in the group and before it could acquire all of them, 3167 * there could be another thread T2 (from different sub-system and use 3168 * case) that has already acquired some of the device locks and might be 3169 * waiting for T1 to release other device locks. 3170 */ 3171 if (iommu_group_device_count(group) != 1) { 3172 dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n"); 3173 ret = -EINVAL; 3174 goto out; 3175 } 3176 3177 /* Since group has only one device */ 3178 grp_dev = list_first_entry(&group->devices, struct group_device, list); 3179 dev = grp_dev->dev; 3180 3181 if (prev_dev != dev) { 3182 dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n"); 3183 ret = -EBUSY; 3184 goto out; 3185 } 3186 3187 prev_dom = group->default_domain; 3188 if (!prev_dom) { 3189 ret = -EINVAL; 3190 goto out; 3191 } 3192 3193 dev_def_dom = iommu_get_def_domain_type(dev); 3194 if (!type) { 3195 /* 3196 * If the user hasn't requested any specific type of domain and 3197 * if the device supports both the domains, then default to the 3198 * domain the device was booted with 3199 */ 3200 type = dev_def_dom ? : iommu_def_domain_type; 3201 } else if (dev_def_dom && type != dev_def_dom) { 3202 dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n", 3203 iommu_domain_type_str(type)); 3204 ret = -EINVAL; 3205 goto out; 3206 } 3207 3208 /* 3209 * Switch to a new domain only if the requested domain type is different 3210 * from the existing default domain type 3211 */ 3212 if (prev_dom->type == type) { 3213 ret = 0; 3214 goto out; 3215 } 3216 3217 /* We can bring up a flush queue without tearing down the domain */ 3218 if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) { 3219 ret = iommu_dma_init_fq(prev_dom); 3220 if (!ret) 3221 prev_dom->type = IOMMU_DOMAIN_DMA_FQ; 3222 goto out; 3223 } 3224 3225 /* Sets group->default_domain to the newly allocated domain */ 3226 ret = iommu_group_alloc_default_domain(dev->bus, group, type); 3227 if (ret) 3228 goto out; 3229 3230 ret = iommu_create_device_direct_mappings(group, dev); 3231 if (ret) 3232 goto free_new_domain; 3233 3234 ret = __iommu_attach_device(group->default_domain, dev); 3235 if (ret) 3236 goto free_new_domain; 3237 3238 group->domain = group->default_domain; 3239 3240 /* 3241 * Release the mutex here because ops->probe_finalize() call-back of 3242 * some vendor IOMMU drivers calls arm_iommu_attach_device() which 3243 * in-turn might call back into IOMMU core code, where it tries to take 3244 * group->mutex, resulting in a deadlock. 3245 */ 3246 mutex_unlock(&group->mutex); 3247 3248 /* Make sure dma_ops is appropriatley set */ 3249 iommu_group_do_probe_finalize(dev, group->default_domain); 3250 iommu_domain_free(prev_dom); 3251 return 0; 3252 3253 free_new_domain: 3254 iommu_domain_free(group->default_domain); 3255 group->default_domain = prev_dom; 3256 group->domain = prev_dom; 3257 3258 out: 3259 mutex_unlock(&group->mutex); 3260 3261 return ret; 3262 } 3263 3264 /* 3265 * Changing the default domain through sysfs requires the users to unbind the 3266 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ 3267 * transition. Return failure if this isn't met. 3268 * 3269 * We need to consider the race between this and the device release path. 3270 * device_lock(dev) is used here to guarantee that the device release path 3271 * will not be entered at the same time. 3272 */ 3273 static ssize_t iommu_group_store_type(struct iommu_group *group, 3274 const char *buf, size_t count) 3275 { 3276 struct group_device *grp_dev; 3277 struct device *dev; 3278 int ret, req_type; 3279 3280 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 3281 return -EACCES; 3282 3283 if (WARN_ON(!group)) 3284 return -EINVAL; 3285 3286 if (sysfs_streq(buf, "identity")) 3287 req_type = IOMMU_DOMAIN_IDENTITY; 3288 else if (sysfs_streq(buf, "DMA")) 3289 req_type = IOMMU_DOMAIN_DMA; 3290 else if (sysfs_streq(buf, "DMA-FQ")) 3291 req_type = IOMMU_DOMAIN_DMA_FQ; 3292 else if (sysfs_streq(buf, "auto")) 3293 req_type = 0; 3294 else 3295 return -EINVAL; 3296 3297 /* 3298 * Lock/Unlock the group mutex here before device lock to 3299 * 1. Make sure that the iommu group has only one device (this is a 3300 * prerequisite for step 2) 3301 * 2. Get struct *dev which is needed to lock device 3302 */ 3303 mutex_lock(&group->mutex); 3304 if (iommu_group_device_count(group) != 1) { 3305 mutex_unlock(&group->mutex); 3306 pr_err_ratelimited("Cannot change default domain: Group has more than one device\n"); 3307 return -EINVAL; 3308 } 3309 3310 /* Since group has only one device */ 3311 grp_dev = list_first_entry(&group->devices, struct group_device, list); 3312 dev = grp_dev->dev; 3313 get_device(dev); 3314 3315 /* 3316 * Don't hold the group mutex because taking group mutex first and then 3317 * the device lock could potentially cause a deadlock as below. Assume 3318 * two threads T1 and T2. T1 is trying to change default domain of an 3319 * iommu group and T2 is trying to hot unplug a device or release [1] VF 3320 * of a PCIe device which is in the same iommu group. T1 takes group 3321 * mutex and before it could take device lock assume T2 has taken device 3322 * lock and is yet to take group mutex. Now, both the threads will be 3323 * waiting for the other thread to release lock. Below, lock order was 3324 * suggested. 3325 * device_lock(dev); 3326 * mutex_lock(&group->mutex); 3327 * iommu_change_dev_def_domain(); 3328 * mutex_unlock(&group->mutex); 3329 * device_unlock(dev); 3330 * 3331 * [1] Typical device release path 3332 * device_lock() from device/driver core code 3333 * -> bus_notifier() 3334 * -> iommu_bus_notifier() 3335 * -> iommu_release_device() 3336 * -> ops->release_device() vendor driver calls back iommu core code 3337 * -> mutex_lock() from iommu core code 3338 */ 3339 mutex_unlock(&group->mutex); 3340 3341 /* Check if the device in the group still has a driver bound to it */ 3342 device_lock(dev); 3343 if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ && 3344 group->default_domain->type == IOMMU_DOMAIN_DMA)) { 3345 pr_err_ratelimited("Device is still bound to driver\n"); 3346 ret = -EBUSY; 3347 goto out; 3348 } 3349 3350 ret = iommu_change_dev_def_domain(group, dev, req_type); 3351 ret = ret ?: count; 3352 3353 out: 3354 device_unlock(dev); 3355 put_device(dev); 3356 3357 return ret; 3358 } 3359