xref: /openbmc/linux/drivers/iommu/iommu.c (revision 49a22aae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <trace/events/iommu.h>
32 #include <linux/sched/mm.h>
33 #include <linux/msi.h>
34 
35 #include "dma-iommu.h"
36 
37 #include "iommu-sva.h"
38 
39 static struct kset *iommu_group_kset;
40 static DEFINE_IDA(iommu_group_ida);
41 
42 static unsigned int iommu_def_domain_type __read_mostly;
43 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
44 static u32 iommu_cmd_line __read_mostly;
45 
46 struct iommu_group {
47 	struct kobject kobj;
48 	struct kobject *devices_kobj;
49 	struct list_head devices;
50 	struct xarray pasid_array;
51 	struct mutex mutex;
52 	void *iommu_data;
53 	void (*iommu_data_release)(void *iommu_data);
54 	char *name;
55 	int id;
56 	struct iommu_domain *default_domain;
57 	struct iommu_domain *blocking_domain;
58 	struct iommu_domain *domain;
59 	struct list_head entry;
60 	unsigned int owner_cnt;
61 	void *owner;
62 };
63 
64 struct group_device {
65 	struct list_head list;
66 	struct device *dev;
67 	char *name;
68 };
69 
70 struct iommu_group_attribute {
71 	struct attribute attr;
72 	ssize_t (*show)(struct iommu_group *group, char *buf);
73 	ssize_t (*store)(struct iommu_group *group,
74 			 const char *buf, size_t count);
75 };
76 
77 static const char * const iommu_group_resv_type_string[] = {
78 	[IOMMU_RESV_DIRECT]			= "direct",
79 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
80 	[IOMMU_RESV_RESERVED]			= "reserved",
81 	[IOMMU_RESV_MSI]			= "msi",
82 	[IOMMU_RESV_SW_MSI]			= "msi",
83 };
84 
85 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
86 #define IOMMU_CMD_LINE_STRICT		BIT(1)
87 
88 static int iommu_bus_notifier(struct notifier_block *nb,
89 			      unsigned long action, void *data);
90 static int iommu_alloc_default_domain(struct iommu_group *group,
91 				      struct device *dev);
92 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
93 						 unsigned type);
94 static int __iommu_attach_device(struct iommu_domain *domain,
95 				 struct device *dev);
96 static int __iommu_attach_group(struct iommu_domain *domain,
97 				struct iommu_group *group);
98 static int __iommu_group_set_domain(struct iommu_group *group,
99 				    struct iommu_domain *new_domain);
100 static int iommu_create_device_direct_mappings(struct iommu_group *group,
101 					       struct device *dev);
102 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
103 static ssize_t iommu_group_store_type(struct iommu_group *group,
104 				      const char *buf, size_t count);
105 
106 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
107 struct iommu_group_attribute iommu_group_attr_##_name =		\
108 	__ATTR(_name, _mode, _show, _store)
109 
110 #define to_iommu_group_attr(_attr)	\
111 	container_of(_attr, struct iommu_group_attribute, attr)
112 #define to_iommu_group(_kobj)		\
113 	container_of(_kobj, struct iommu_group, kobj)
114 
115 static LIST_HEAD(iommu_device_list);
116 static DEFINE_SPINLOCK(iommu_device_lock);
117 
118 static struct bus_type * const iommu_buses[] = {
119 	&platform_bus_type,
120 #ifdef CONFIG_PCI
121 	&pci_bus_type,
122 #endif
123 #ifdef CONFIG_ARM_AMBA
124 	&amba_bustype,
125 #endif
126 #ifdef CONFIG_FSL_MC_BUS
127 	&fsl_mc_bus_type,
128 #endif
129 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
130 	&host1x_context_device_bus_type,
131 #endif
132 };
133 
134 /*
135  * Use a function instead of an array here because the domain-type is a
136  * bit-field, so an array would waste memory.
137  */
138 static const char *iommu_domain_type_str(unsigned int t)
139 {
140 	switch (t) {
141 	case IOMMU_DOMAIN_BLOCKED:
142 		return "Blocked";
143 	case IOMMU_DOMAIN_IDENTITY:
144 		return "Passthrough";
145 	case IOMMU_DOMAIN_UNMANAGED:
146 		return "Unmanaged";
147 	case IOMMU_DOMAIN_DMA:
148 	case IOMMU_DOMAIN_DMA_FQ:
149 		return "Translated";
150 	default:
151 		return "Unknown";
152 	}
153 }
154 
155 static int __init iommu_subsys_init(void)
156 {
157 	struct notifier_block *nb;
158 
159 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
160 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
161 			iommu_set_default_passthrough(false);
162 		else
163 			iommu_set_default_translated(false);
164 
165 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
166 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
167 			iommu_set_default_translated(false);
168 		}
169 	}
170 
171 	if (!iommu_default_passthrough() && !iommu_dma_strict)
172 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
173 
174 	pr_info("Default domain type: %s %s\n",
175 		iommu_domain_type_str(iommu_def_domain_type),
176 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
177 			"(set via kernel command line)" : "");
178 
179 	if (!iommu_default_passthrough())
180 		pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
181 			iommu_dma_strict ? "strict" : "lazy",
182 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
183 				"(set via kernel command line)" : "");
184 
185 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
186 	if (!nb)
187 		return -ENOMEM;
188 
189 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
190 		nb[i].notifier_call = iommu_bus_notifier;
191 		bus_register_notifier(iommu_buses[i], &nb[i]);
192 	}
193 
194 	return 0;
195 }
196 subsys_initcall(iommu_subsys_init);
197 
198 static int remove_iommu_group(struct device *dev, void *data)
199 {
200 	if (dev->iommu && dev->iommu->iommu_dev == data)
201 		iommu_release_device(dev);
202 
203 	return 0;
204 }
205 
206 /**
207  * iommu_device_register() - Register an IOMMU hardware instance
208  * @iommu: IOMMU handle for the instance
209  * @ops:   IOMMU ops to associate with the instance
210  * @hwdev: (optional) actual instance device, used for fwnode lookup
211  *
212  * Return: 0 on success, or an error.
213  */
214 int iommu_device_register(struct iommu_device *iommu,
215 			  const struct iommu_ops *ops, struct device *hwdev)
216 {
217 	int err = 0;
218 
219 	/* We need to be able to take module references appropriately */
220 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
221 		return -EINVAL;
222 	/*
223 	 * Temporarily enforce global restriction to a single driver. This was
224 	 * already the de-facto behaviour, since any possible combination of
225 	 * existing drivers would compete for at least the PCI or platform bus.
226 	 */
227 	if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops)
228 		return -EBUSY;
229 
230 	iommu->ops = ops;
231 	if (hwdev)
232 		iommu->fwnode = dev_fwnode(hwdev);
233 
234 	spin_lock(&iommu_device_lock);
235 	list_add_tail(&iommu->list, &iommu_device_list);
236 	spin_unlock(&iommu_device_lock);
237 
238 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) {
239 		iommu_buses[i]->iommu_ops = ops;
240 		err = bus_iommu_probe(iommu_buses[i]);
241 	}
242 	if (err)
243 		iommu_device_unregister(iommu);
244 	return err;
245 }
246 EXPORT_SYMBOL_GPL(iommu_device_register);
247 
248 void iommu_device_unregister(struct iommu_device *iommu)
249 {
250 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
251 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
252 
253 	spin_lock(&iommu_device_lock);
254 	list_del(&iommu->list);
255 	spin_unlock(&iommu_device_lock);
256 }
257 EXPORT_SYMBOL_GPL(iommu_device_unregister);
258 
259 static struct dev_iommu *dev_iommu_get(struct device *dev)
260 {
261 	struct dev_iommu *param = dev->iommu;
262 
263 	if (param)
264 		return param;
265 
266 	param = kzalloc(sizeof(*param), GFP_KERNEL);
267 	if (!param)
268 		return NULL;
269 
270 	mutex_init(&param->lock);
271 	dev->iommu = param;
272 	return param;
273 }
274 
275 static void dev_iommu_free(struct device *dev)
276 {
277 	struct dev_iommu *param = dev->iommu;
278 
279 	dev->iommu = NULL;
280 	if (param->fwspec) {
281 		fwnode_handle_put(param->fwspec->iommu_fwnode);
282 		kfree(param->fwspec);
283 	}
284 	kfree(param);
285 }
286 
287 static u32 dev_iommu_get_max_pasids(struct device *dev)
288 {
289 	u32 max_pasids = 0, bits = 0;
290 	int ret;
291 
292 	if (dev_is_pci(dev)) {
293 		ret = pci_max_pasids(to_pci_dev(dev));
294 		if (ret > 0)
295 			max_pasids = ret;
296 	} else {
297 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
298 		if (!ret)
299 			max_pasids = 1UL << bits;
300 	}
301 
302 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
303 }
304 
305 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
306 {
307 	const struct iommu_ops *ops = dev->bus->iommu_ops;
308 	struct iommu_device *iommu_dev;
309 	struct iommu_group *group;
310 	static DEFINE_MUTEX(iommu_probe_device_lock);
311 	int ret;
312 
313 	if (!ops)
314 		return -ENODEV;
315 	/*
316 	 * Serialise to avoid races between IOMMU drivers registering in
317 	 * parallel and/or the "replay" calls from ACPI/OF code via client
318 	 * driver probe. Once the latter have been cleaned up we should
319 	 * probably be able to use device_lock() here to minimise the scope,
320 	 * but for now enforcing a simple global ordering is fine.
321 	 */
322 	mutex_lock(&iommu_probe_device_lock);
323 	if (!dev_iommu_get(dev)) {
324 		ret = -ENOMEM;
325 		goto err_unlock;
326 	}
327 
328 	if (!try_module_get(ops->owner)) {
329 		ret = -EINVAL;
330 		goto err_free;
331 	}
332 
333 	iommu_dev = ops->probe_device(dev);
334 	if (IS_ERR(iommu_dev)) {
335 		ret = PTR_ERR(iommu_dev);
336 		goto out_module_put;
337 	}
338 
339 	dev->iommu->iommu_dev = iommu_dev;
340 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
341 
342 	group = iommu_group_get_for_dev(dev);
343 	if (IS_ERR(group)) {
344 		ret = PTR_ERR(group);
345 		goto out_release;
346 	}
347 
348 	mutex_lock(&group->mutex);
349 	if (group_list && !group->default_domain && list_empty(&group->entry))
350 		list_add_tail(&group->entry, group_list);
351 	mutex_unlock(&group->mutex);
352 	iommu_group_put(group);
353 
354 	mutex_unlock(&iommu_probe_device_lock);
355 	iommu_device_link(iommu_dev, dev);
356 
357 	return 0;
358 
359 out_release:
360 	if (ops->release_device)
361 		ops->release_device(dev);
362 
363 out_module_put:
364 	module_put(ops->owner);
365 
366 err_free:
367 	dev_iommu_free(dev);
368 
369 err_unlock:
370 	mutex_unlock(&iommu_probe_device_lock);
371 
372 	return ret;
373 }
374 
375 static bool iommu_is_attach_deferred(struct device *dev)
376 {
377 	const struct iommu_ops *ops = dev_iommu_ops(dev);
378 
379 	if (ops->is_attach_deferred)
380 		return ops->is_attach_deferred(dev);
381 
382 	return false;
383 }
384 
385 static int iommu_group_do_dma_first_attach(struct device *dev, void *data)
386 {
387 	struct iommu_domain *domain = data;
388 
389 	lockdep_assert_held(&dev->iommu_group->mutex);
390 
391 	if (iommu_is_attach_deferred(dev)) {
392 		dev->iommu->attach_deferred = 1;
393 		return 0;
394 	}
395 
396 	return __iommu_attach_device(domain, dev);
397 }
398 
399 int iommu_probe_device(struct device *dev)
400 {
401 	const struct iommu_ops *ops;
402 	struct iommu_group *group;
403 	int ret;
404 
405 	ret = __iommu_probe_device(dev, NULL);
406 	if (ret)
407 		goto err_out;
408 
409 	group = iommu_group_get(dev);
410 	if (!group) {
411 		ret = -ENODEV;
412 		goto err_release;
413 	}
414 
415 	/*
416 	 * Try to allocate a default domain - needs support from the
417 	 * IOMMU driver. There are still some drivers which don't
418 	 * support default domains, so the return value is not yet
419 	 * checked.
420 	 */
421 	mutex_lock(&group->mutex);
422 	iommu_alloc_default_domain(group, dev);
423 
424 	/*
425 	 * If device joined an existing group which has been claimed, don't
426 	 * attach the default domain.
427 	 */
428 	if (group->default_domain && !group->owner) {
429 		ret = iommu_group_do_dma_first_attach(dev, group->default_domain);
430 		if (ret) {
431 			mutex_unlock(&group->mutex);
432 			iommu_group_put(group);
433 			goto err_release;
434 		}
435 	}
436 
437 	iommu_create_device_direct_mappings(group, dev);
438 
439 	mutex_unlock(&group->mutex);
440 	iommu_group_put(group);
441 
442 	ops = dev_iommu_ops(dev);
443 	if (ops->probe_finalize)
444 		ops->probe_finalize(dev);
445 
446 	return 0;
447 
448 err_release:
449 	iommu_release_device(dev);
450 
451 err_out:
452 	return ret;
453 
454 }
455 
456 /*
457  * Remove a device from a group's device list and return the group device
458  * if successful.
459  */
460 static struct group_device *
461 __iommu_group_remove_device(struct iommu_group *group, struct device *dev)
462 {
463 	struct group_device *device;
464 
465 	lockdep_assert_held(&group->mutex);
466 	list_for_each_entry(device, &group->devices, list) {
467 		if (device->dev == dev) {
468 			list_del(&device->list);
469 			return device;
470 		}
471 	}
472 
473 	return NULL;
474 }
475 
476 /*
477  * Release a device from its group and decrements the iommu group reference
478  * count.
479  */
480 static void __iommu_group_release_device(struct iommu_group *group,
481 					 struct group_device *grp_dev)
482 {
483 	struct device *dev = grp_dev->dev;
484 
485 	sysfs_remove_link(group->devices_kobj, grp_dev->name);
486 	sysfs_remove_link(&dev->kobj, "iommu_group");
487 
488 	trace_remove_device_from_group(group->id, dev);
489 
490 	kfree(grp_dev->name);
491 	kfree(grp_dev);
492 	dev->iommu_group = NULL;
493 	kobject_put(group->devices_kobj);
494 }
495 
496 void iommu_release_device(struct device *dev)
497 {
498 	struct iommu_group *group = dev->iommu_group;
499 	struct group_device *device;
500 	const struct iommu_ops *ops;
501 
502 	if (!dev->iommu || !group)
503 		return;
504 
505 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
506 
507 	mutex_lock(&group->mutex);
508 	device = __iommu_group_remove_device(group, dev);
509 
510 	/*
511 	 * If the group has become empty then ownership must have been released,
512 	 * and the current domain must be set back to NULL or the default
513 	 * domain.
514 	 */
515 	if (list_empty(&group->devices))
516 		WARN_ON(group->owner_cnt ||
517 			group->domain != group->default_domain);
518 
519 	/*
520 	 * release_device() must stop using any attached domain on the device.
521 	 * If there are still other devices in the group they are not effected
522 	 * by this callback.
523 	 *
524 	 * The IOMMU driver must set the device to either an identity or
525 	 * blocking translation and stop using any domain pointer, as it is
526 	 * going to be freed.
527 	 */
528 	ops = dev_iommu_ops(dev);
529 	if (ops->release_device)
530 		ops->release_device(dev);
531 	mutex_unlock(&group->mutex);
532 
533 	if (device)
534 		__iommu_group_release_device(group, device);
535 
536 	module_put(ops->owner);
537 	dev_iommu_free(dev);
538 }
539 
540 static int __init iommu_set_def_domain_type(char *str)
541 {
542 	bool pt;
543 	int ret;
544 
545 	ret = kstrtobool(str, &pt);
546 	if (ret)
547 		return ret;
548 
549 	if (pt)
550 		iommu_set_default_passthrough(true);
551 	else
552 		iommu_set_default_translated(true);
553 
554 	return 0;
555 }
556 early_param("iommu.passthrough", iommu_set_def_domain_type);
557 
558 static int __init iommu_dma_setup(char *str)
559 {
560 	int ret = kstrtobool(str, &iommu_dma_strict);
561 
562 	if (!ret)
563 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
564 	return ret;
565 }
566 early_param("iommu.strict", iommu_dma_setup);
567 
568 void iommu_set_dma_strict(void)
569 {
570 	iommu_dma_strict = true;
571 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
572 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
573 }
574 
575 static ssize_t iommu_group_attr_show(struct kobject *kobj,
576 				     struct attribute *__attr, char *buf)
577 {
578 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
579 	struct iommu_group *group = to_iommu_group(kobj);
580 	ssize_t ret = -EIO;
581 
582 	if (attr->show)
583 		ret = attr->show(group, buf);
584 	return ret;
585 }
586 
587 static ssize_t iommu_group_attr_store(struct kobject *kobj,
588 				      struct attribute *__attr,
589 				      const char *buf, size_t count)
590 {
591 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
592 	struct iommu_group *group = to_iommu_group(kobj);
593 	ssize_t ret = -EIO;
594 
595 	if (attr->store)
596 		ret = attr->store(group, buf, count);
597 	return ret;
598 }
599 
600 static const struct sysfs_ops iommu_group_sysfs_ops = {
601 	.show = iommu_group_attr_show,
602 	.store = iommu_group_attr_store,
603 };
604 
605 static int iommu_group_create_file(struct iommu_group *group,
606 				   struct iommu_group_attribute *attr)
607 {
608 	return sysfs_create_file(&group->kobj, &attr->attr);
609 }
610 
611 static void iommu_group_remove_file(struct iommu_group *group,
612 				    struct iommu_group_attribute *attr)
613 {
614 	sysfs_remove_file(&group->kobj, &attr->attr);
615 }
616 
617 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
618 {
619 	return sprintf(buf, "%s\n", group->name);
620 }
621 
622 /**
623  * iommu_insert_resv_region - Insert a new region in the
624  * list of reserved regions.
625  * @new: new region to insert
626  * @regions: list of regions
627  *
628  * Elements are sorted by start address and overlapping segments
629  * of the same type are merged.
630  */
631 static int iommu_insert_resv_region(struct iommu_resv_region *new,
632 				    struct list_head *regions)
633 {
634 	struct iommu_resv_region *iter, *tmp, *nr, *top;
635 	LIST_HEAD(stack);
636 
637 	nr = iommu_alloc_resv_region(new->start, new->length,
638 				     new->prot, new->type, GFP_KERNEL);
639 	if (!nr)
640 		return -ENOMEM;
641 
642 	/* First add the new element based on start address sorting */
643 	list_for_each_entry(iter, regions, list) {
644 		if (nr->start < iter->start ||
645 		    (nr->start == iter->start && nr->type <= iter->type))
646 			break;
647 	}
648 	list_add_tail(&nr->list, &iter->list);
649 
650 	/* Merge overlapping segments of type nr->type in @regions, if any */
651 	list_for_each_entry_safe(iter, tmp, regions, list) {
652 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
653 
654 		/* no merge needed on elements of different types than @new */
655 		if (iter->type != new->type) {
656 			list_move_tail(&iter->list, &stack);
657 			continue;
658 		}
659 
660 		/* look for the last stack element of same type as @iter */
661 		list_for_each_entry_reverse(top, &stack, list)
662 			if (top->type == iter->type)
663 				goto check_overlap;
664 
665 		list_move_tail(&iter->list, &stack);
666 		continue;
667 
668 check_overlap:
669 		top_end = top->start + top->length - 1;
670 
671 		if (iter->start > top_end + 1) {
672 			list_move_tail(&iter->list, &stack);
673 		} else {
674 			top->length = max(top_end, iter_end) - top->start + 1;
675 			list_del(&iter->list);
676 			kfree(iter);
677 		}
678 	}
679 	list_splice(&stack, regions);
680 	return 0;
681 }
682 
683 static int
684 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
685 				 struct list_head *group_resv_regions)
686 {
687 	struct iommu_resv_region *entry;
688 	int ret = 0;
689 
690 	list_for_each_entry(entry, dev_resv_regions, list) {
691 		ret = iommu_insert_resv_region(entry, group_resv_regions);
692 		if (ret)
693 			break;
694 	}
695 	return ret;
696 }
697 
698 int iommu_get_group_resv_regions(struct iommu_group *group,
699 				 struct list_head *head)
700 {
701 	struct group_device *device;
702 	int ret = 0;
703 
704 	mutex_lock(&group->mutex);
705 	list_for_each_entry(device, &group->devices, list) {
706 		struct list_head dev_resv_regions;
707 
708 		/*
709 		 * Non-API groups still expose reserved_regions in sysfs,
710 		 * so filter out calls that get here that way.
711 		 */
712 		if (!device->dev->iommu)
713 			break;
714 
715 		INIT_LIST_HEAD(&dev_resv_regions);
716 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
717 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
718 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
719 		if (ret)
720 			break;
721 	}
722 	mutex_unlock(&group->mutex);
723 	return ret;
724 }
725 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
726 
727 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
728 					     char *buf)
729 {
730 	struct iommu_resv_region *region, *next;
731 	struct list_head group_resv_regions;
732 	char *str = buf;
733 
734 	INIT_LIST_HEAD(&group_resv_regions);
735 	iommu_get_group_resv_regions(group, &group_resv_regions);
736 
737 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
738 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
739 			       (long long int)region->start,
740 			       (long long int)(region->start +
741 						region->length - 1),
742 			       iommu_group_resv_type_string[region->type]);
743 		kfree(region);
744 	}
745 
746 	return (str - buf);
747 }
748 
749 static ssize_t iommu_group_show_type(struct iommu_group *group,
750 				     char *buf)
751 {
752 	char *type = "unknown\n";
753 
754 	mutex_lock(&group->mutex);
755 	if (group->default_domain) {
756 		switch (group->default_domain->type) {
757 		case IOMMU_DOMAIN_BLOCKED:
758 			type = "blocked\n";
759 			break;
760 		case IOMMU_DOMAIN_IDENTITY:
761 			type = "identity\n";
762 			break;
763 		case IOMMU_DOMAIN_UNMANAGED:
764 			type = "unmanaged\n";
765 			break;
766 		case IOMMU_DOMAIN_DMA:
767 			type = "DMA\n";
768 			break;
769 		case IOMMU_DOMAIN_DMA_FQ:
770 			type = "DMA-FQ\n";
771 			break;
772 		}
773 	}
774 	mutex_unlock(&group->mutex);
775 	strcpy(buf, type);
776 
777 	return strlen(type);
778 }
779 
780 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
781 
782 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
783 			iommu_group_show_resv_regions, NULL);
784 
785 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
786 			iommu_group_store_type);
787 
788 static void iommu_group_release(struct kobject *kobj)
789 {
790 	struct iommu_group *group = to_iommu_group(kobj);
791 
792 	pr_debug("Releasing group %d\n", group->id);
793 
794 	if (group->iommu_data_release)
795 		group->iommu_data_release(group->iommu_data);
796 
797 	ida_free(&iommu_group_ida, group->id);
798 
799 	if (group->default_domain)
800 		iommu_domain_free(group->default_domain);
801 	if (group->blocking_domain)
802 		iommu_domain_free(group->blocking_domain);
803 
804 	kfree(group->name);
805 	kfree(group);
806 }
807 
808 static const struct kobj_type iommu_group_ktype = {
809 	.sysfs_ops = &iommu_group_sysfs_ops,
810 	.release = iommu_group_release,
811 };
812 
813 /**
814  * iommu_group_alloc - Allocate a new group
815  *
816  * This function is called by an iommu driver to allocate a new iommu
817  * group.  The iommu group represents the minimum granularity of the iommu.
818  * Upon successful return, the caller holds a reference to the supplied
819  * group in order to hold the group until devices are added.  Use
820  * iommu_group_put() to release this extra reference count, allowing the
821  * group to be automatically reclaimed once it has no devices or external
822  * references.
823  */
824 struct iommu_group *iommu_group_alloc(void)
825 {
826 	struct iommu_group *group;
827 	int ret;
828 
829 	group = kzalloc(sizeof(*group), GFP_KERNEL);
830 	if (!group)
831 		return ERR_PTR(-ENOMEM);
832 
833 	group->kobj.kset = iommu_group_kset;
834 	mutex_init(&group->mutex);
835 	INIT_LIST_HEAD(&group->devices);
836 	INIT_LIST_HEAD(&group->entry);
837 	xa_init(&group->pasid_array);
838 
839 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
840 	if (ret < 0) {
841 		kfree(group);
842 		return ERR_PTR(ret);
843 	}
844 	group->id = ret;
845 
846 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
847 				   NULL, "%d", group->id);
848 	if (ret) {
849 		kobject_put(&group->kobj);
850 		return ERR_PTR(ret);
851 	}
852 
853 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
854 	if (!group->devices_kobj) {
855 		kobject_put(&group->kobj); /* triggers .release & free */
856 		return ERR_PTR(-ENOMEM);
857 	}
858 
859 	/*
860 	 * The devices_kobj holds a reference on the group kobject, so
861 	 * as long as that exists so will the group.  We can therefore
862 	 * use the devices_kobj for reference counting.
863 	 */
864 	kobject_put(&group->kobj);
865 
866 	ret = iommu_group_create_file(group,
867 				      &iommu_group_attr_reserved_regions);
868 	if (ret) {
869 		kobject_put(group->devices_kobj);
870 		return ERR_PTR(ret);
871 	}
872 
873 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
874 	if (ret) {
875 		kobject_put(group->devices_kobj);
876 		return ERR_PTR(ret);
877 	}
878 
879 	pr_debug("Allocated group %d\n", group->id);
880 
881 	return group;
882 }
883 EXPORT_SYMBOL_GPL(iommu_group_alloc);
884 
885 struct iommu_group *iommu_group_get_by_id(int id)
886 {
887 	struct kobject *group_kobj;
888 	struct iommu_group *group;
889 	const char *name;
890 
891 	if (!iommu_group_kset)
892 		return NULL;
893 
894 	name = kasprintf(GFP_KERNEL, "%d", id);
895 	if (!name)
896 		return NULL;
897 
898 	group_kobj = kset_find_obj(iommu_group_kset, name);
899 	kfree(name);
900 
901 	if (!group_kobj)
902 		return NULL;
903 
904 	group = container_of(group_kobj, struct iommu_group, kobj);
905 	BUG_ON(group->id != id);
906 
907 	kobject_get(group->devices_kobj);
908 	kobject_put(&group->kobj);
909 
910 	return group;
911 }
912 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
913 
914 /**
915  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
916  * @group: the group
917  *
918  * iommu drivers can store data in the group for use when doing iommu
919  * operations.  This function provides a way to retrieve it.  Caller
920  * should hold a group reference.
921  */
922 void *iommu_group_get_iommudata(struct iommu_group *group)
923 {
924 	return group->iommu_data;
925 }
926 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
927 
928 /**
929  * iommu_group_set_iommudata - set iommu_data for a group
930  * @group: the group
931  * @iommu_data: new data
932  * @release: release function for iommu_data
933  *
934  * iommu drivers can store data in the group for use when doing iommu
935  * operations.  This function provides a way to set the data after
936  * the group has been allocated.  Caller should hold a group reference.
937  */
938 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
939 			       void (*release)(void *iommu_data))
940 {
941 	group->iommu_data = iommu_data;
942 	group->iommu_data_release = release;
943 }
944 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
945 
946 /**
947  * iommu_group_set_name - set name for a group
948  * @group: the group
949  * @name: name
950  *
951  * Allow iommu driver to set a name for a group.  When set it will
952  * appear in a name attribute file under the group in sysfs.
953  */
954 int iommu_group_set_name(struct iommu_group *group, const char *name)
955 {
956 	int ret;
957 
958 	if (group->name) {
959 		iommu_group_remove_file(group, &iommu_group_attr_name);
960 		kfree(group->name);
961 		group->name = NULL;
962 		if (!name)
963 			return 0;
964 	}
965 
966 	group->name = kstrdup(name, GFP_KERNEL);
967 	if (!group->name)
968 		return -ENOMEM;
969 
970 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
971 	if (ret) {
972 		kfree(group->name);
973 		group->name = NULL;
974 		return ret;
975 	}
976 
977 	return 0;
978 }
979 EXPORT_SYMBOL_GPL(iommu_group_set_name);
980 
981 static int iommu_create_device_direct_mappings(struct iommu_group *group,
982 					       struct device *dev)
983 {
984 	struct iommu_domain *domain = group->default_domain;
985 	struct iommu_resv_region *entry;
986 	struct list_head mappings;
987 	unsigned long pg_size;
988 	int ret = 0;
989 
990 	if (!domain || !iommu_is_dma_domain(domain))
991 		return 0;
992 
993 	BUG_ON(!domain->pgsize_bitmap);
994 
995 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
996 	INIT_LIST_HEAD(&mappings);
997 
998 	iommu_get_resv_regions(dev, &mappings);
999 
1000 	/* We need to consider overlapping regions for different devices */
1001 	list_for_each_entry(entry, &mappings, list) {
1002 		dma_addr_t start, end, addr;
1003 		size_t map_size = 0;
1004 
1005 		start = ALIGN(entry->start, pg_size);
1006 		end   = ALIGN(entry->start + entry->length, pg_size);
1007 
1008 		if (entry->type != IOMMU_RESV_DIRECT &&
1009 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
1010 			continue;
1011 
1012 		for (addr = start; addr <= end; addr += pg_size) {
1013 			phys_addr_t phys_addr;
1014 
1015 			if (addr == end)
1016 				goto map_end;
1017 
1018 			phys_addr = iommu_iova_to_phys(domain, addr);
1019 			if (!phys_addr) {
1020 				map_size += pg_size;
1021 				continue;
1022 			}
1023 
1024 map_end:
1025 			if (map_size) {
1026 				ret = iommu_map(domain, addr - map_size,
1027 						addr - map_size, map_size,
1028 						entry->prot, GFP_KERNEL);
1029 				if (ret)
1030 					goto out;
1031 				map_size = 0;
1032 			}
1033 		}
1034 
1035 	}
1036 
1037 	iommu_flush_iotlb_all(domain);
1038 
1039 out:
1040 	iommu_put_resv_regions(dev, &mappings);
1041 
1042 	return ret;
1043 }
1044 
1045 /**
1046  * iommu_group_add_device - add a device to an iommu group
1047  * @group: the group into which to add the device (reference should be held)
1048  * @dev: the device
1049  *
1050  * This function is called by an iommu driver to add a device into a
1051  * group.  Adding a device increments the group reference count.
1052  */
1053 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1054 {
1055 	int ret, i = 0;
1056 	struct group_device *device;
1057 
1058 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1059 	if (!device)
1060 		return -ENOMEM;
1061 
1062 	device->dev = dev;
1063 
1064 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1065 	if (ret)
1066 		goto err_free_device;
1067 
1068 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1069 rename:
1070 	if (!device->name) {
1071 		ret = -ENOMEM;
1072 		goto err_remove_link;
1073 	}
1074 
1075 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1076 				       &dev->kobj, device->name);
1077 	if (ret) {
1078 		if (ret == -EEXIST && i >= 0) {
1079 			/*
1080 			 * Account for the slim chance of collision
1081 			 * and append an instance to the name.
1082 			 */
1083 			kfree(device->name);
1084 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1085 						 kobject_name(&dev->kobj), i++);
1086 			goto rename;
1087 		}
1088 		goto err_free_name;
1089 	}
1090 
1091 	kobject_get(group->devices_kobj);
1092 
1093 	dev->iommu_group = group;
1094 
1095 	mutex_lock(&group->mutex);
1096 	list_add_tail(&device->list, &group->devices);
1097 	if (group->domain)
1098 		ret = iommu_group_do_dma_first_attach(dev, group->domain);
1099 	mutex_unlock(&group->mutex);
1100 	if (ret)
1101 		goto err_put_group;
1102 
1103 	trace_add_device_to_group(group->id, dev);
1104 
1105 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1106 
1107 	return 0;
1108 
1109 err_put_group:
1110 	mutex_lock(&group->mutex);
1111 	list_del(&device->list);
1112 	mutex_unlock(&group->mutex);
1113 	dev->iommu_group = NULL;
1114 	kobject_put(group->devices_kobj);
1115 	sysfs_remove_link(group->devices_kobj, device->name);
1116 err_free_name:
1117 	kfree(device->name);
1118 err_remove_link:
1119 	sysfs_remove_link(&dev->kobj, "iommu_group");
1120 err_free_device:
1121 	kfree(device);
1122 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1123 	return ret;
1124 }
1125 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1126 
1127 /**
1128  * iommu_group_remove_device - remove a device from it's current group
1129  * @dev: device to be removed
1130  *
1131  * This function is called by an iommu driver to remove the device from
1132  * it's current group.  This decrements the iommu group reference count.
1133  */
1134 void iommu_group_remove_device(struct device *dev)
1135 {
1136 	struct iommu_group *group = dev->iommu_group;
1137 	struct group_device *device;
1138 
1139 	if (!group)
1140 		return;
1141 
1142 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1143 
1144 	mutex_lock(&group->mutex);
1145 	device = __iommu_group_remove_device(group, dev);
1146 	mutex_unlock(&group->mutex);
1147 
1148 	if (device)
1149 		__iommu_group_release_device(group, device);
1150 }
1151 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1152 
1153 static int iommu_group_device_count(struct iommu_group *group)
1154 {
1155 	struct group_device *entry;
1156 	int ret = 0;
1157 
1158 	list_for_each_entry(entry, &group->devices, list)
1159 		ret++;
1160 
1161 	return ret;
1162 }
1163 
1164 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
1165 				      int (*fn)(struct device *, void *))
1166 {
1167 	struct group_device *device;
1168 	int ret = 0;
1169 
1170 	list_for_each_entry(device, &group->devices, list) {
1171 		ret = fn(device->dev, data);
1172 		if (ret)
1173 			break;
1174 	}
1175 	return ret;
1176 }
1177 
1178 /**
1179  * iommu_group_for_each_dev - iterate over each device in the group
1180  * @group: the group
1181  * @data: caller opaque data to be passed to callback function
1182  * @fn: caller supplied callback function
1183  *
1184  * This function is called by group users to iterate over group devices.
1185  * Callers should hold a reference count to the group during callback.
1186  * The group->mutex is held across callbacks, which will block calls to
1187  * iommu_group_add/remove_device.
1188  */
1189 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1190 			     int (*fn)(struct device *, void *))
1191 {
1192 	int ret;
1193 
1194 	mutex_lock(&group->mutex);
1195 	ret = __iommu_group_for_each_dev(group, data, fn);
1196 	mutex_unlock(&group->mutex);
1197 
1198 	return ret;
1199 }
1200 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1201 
1202 /**
1203  * iommu_group_get - Return the group for a device and increment reference
1204  * @dev: get the group that this device belongs to
1205  *
1206  * This function is called by iommu drivers and users to get the group
1207  * for the specified device.  If found, the group is returned and the group
1208  * reference in incremented, else NULL.
1209  */
1210 struct iommu_group *iommu_group_get(struct device *dev)
1211 {
1212 	struct iommu_group *group = dev->iommu_group;
1213 
1214 	if (group)
1215 		kobject_get(group->devices_kobj);
1216 
1217 	return group;
1218 }
1219 EXPORT_SYMBOL_GPL(iommu_group_get);
1220 
1221 /**
1222  * iommu_group_ref_get - Increment reference on a group
1223  * @group: the group to use, must not be NULL
1224  *
1225  * This function is called by iommu drivers to take additional references on an
1226  * existing group.  Returns the given group for convenience.
1227  */
1228 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1229 {
1230 	kobject_get(group->devices_kobj);
1231 	return group;
1232 }
1233 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1234 
1235 /**
1236  * iommu_group_put - Decrement group reference
1237  * @group: the group to use
1238  *
1239  * This function is called by iommu drivers and users to release the
1240  * iommu group.  Once the reference count is zero, the group is released.
1241  */
1242 void iommu_group_put(struct iommu_group *group)
1243 {
1244 	if (group)
1245 		kobject_put(group->devices_kobj);
1246 }
1247 EXPORT_SYMBOL_GPL(iommu_group_put);
1248 
1249 /**
1250  * iommu_register_device_fault_handler() - Register a device fault handler
1251  * @dev: the device
1252  * @handler: the fault handler
1253  * @data: private data passed as argument to the handler
1254  *
1255  * When an IOMMU fault event is received, this handler gets called with the
1256  * fault event and data as argument. The handler should return 0 on success. If
1257  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1258  * complete the fault by calling iommu_page_response() with one of the following
1259  * response code:
1260  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1261  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1262  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1263  *   page faults if possible.
1264  *
1265  * Return 0 if the fault handler was installed successfully, or an error.
1266  */
1267 int iommu_register_device_fault_handler(struct device *dev,
1268 					iommu_dev_fault_handler_t handler,
1269 					void *data)
1270 {
1271 	struct dev_iommu *param = dev->iommu;
1272 	int ret = 0;
1273 
1274 	if (!param)
1275 		return -EINVAL;
1276 
1277 	mutex_lock(&param->lock);
1278 	/* Only allow one fault handler registered for each device */
1279 	if (param->fault_param) {
1280 		ret = -EBUSY;
1281 		goto done_unlock;
1282 	}
1283 
1284 	get_device(dev);
1285 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1286 	if (!param->fault_param) {
1287 		put_device(dev);
1288 		ret = -ENOMEM;
1289 		goto done_unlock;
1290 	}
1291 	param->fault_param->handler = handler;
1292 	param->fault_param->data = data;
1293 	mutex_init(&param->fault_param->lock);
1294 	INIT_LIST_HEAD(&param->fault_param->faults);
1295 
1296 done_unlock:
1297 	mutex_unlock(&param->lock);
1298 
1299 	return ret;
1300 }
1301 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1302 
1303 /**
1304  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1305  * @dev: the device
1306  *
1307  * Remove the device fault handler installed with
1308  * iommu_register_device_fault_handler().
1309  *
1310  * Return 0 on success, or an error.
1311  */
1312 int iommu_unregister_device_fault_handler(struct device *dev)
1313 {
1314 	struct dev_iommu *param = dev->iommu;
1315 	int ret = 0;
1316 
1317 	if (!param)
1318 		return -EINVAL;
1319 
1320 	mutex_lock(&param->lock);
1321 
1322 	if (!param->fault_param)
1323 		goto unlock;
1324 
1325 	/* we cannot unregister handler if there are pending faults */
1326 	if (!list_empty(&param->fault_param->faults)) {
1327 		ret = -EBUSY;
1328 		goto unlock;
1329 	}
1330 
1331 	kfree(param->fault_param);
1332 	param->fault_param = NULL;
1333 	put_device(dev);
1334 unlock:
1335 	mutex_unlock(&param->lock);
1336 
1337 	return ret;
1338 }
1339 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1340 
1341 /**
1342  * iommu_report_device_fault() - Report fault event to device driver
1343  * @dev: the device
1344  * @evt: fault event data
1345  *
1346  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1347  * handler. When this function fails and the fault is recoverable, it is the
1348  * caller's responsibility to complete the fault.
1349  *
1350  * Return 0 on success, or an error.
1351  */
1352 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1353 {
1354 	struct dev_iommu *param = dev->iommu;
1355 	struct iommu_fault_event *evt_pending = NULL;
1356 	struct iommu_fault_param *fparam;
1357 	int ret = 0;
1358 
1359 	if (!param || !evt)
1360 		return -EINVAL;
1361 
1362 	/* we only report device fault if there is a handler registered */
1363 	mutex_lock(&param->lock);
1364 	fparam = param->fault_param;
1365 	if (!fparam || !fparam->handler) {
1366 		ret = -EINVAL;
1367 		goto done_unlock;
1368 	}
1369 
1370 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1371 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1372 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1373 				      GFP_KERNEL);
1374 		if (!evt_pending) {
1375 			ret = -ENOMEM;
1376 			goto done_unlock;
1377 		}
1378 		mutex_lock(&fparam->lock);
1379 		list_add_tail(&evt_pending->list, &fparam->faults);
1380 		mutex_unlock(&fparam->lock);
1381 	}
1382 
1383 	ret = fparam->handler(&evt->fault, fparam->data);
1384 	if (ret && evt_pending) {
1385 		mutex_lock(&fparam->lock);
1386 		list_del(&evt_pending->list);
1387 		mutex_unlock(&fparam->lock);
1388 		kfree(evt_pending);
1389 	}
1390 done_unlock:
1391 	mutex_unlock(&param->lock);
1392 	return ret;
1393 }
1394 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1395 
1396 int iommu_page_response(struct device *dev,
1397 			struct iommu_page_response *msg)
1398 {
1399 	bool needs_pasid;
1400 	int ret = -EINVAL;
1401 	struct iommu_fault_event *evt;
1402 	struct iommu_fault_page_request *prm;
1403 	struct dev_iommu *param = dev->iommu;
1404 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1405 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1406 
1407 	if (!ops->page_response)
1408 		return -ENODEV;
1409 
1410 	if (!param || !param->fault_param)
1411 		return -EINVAL;
1412 
1413 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1414 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1415 		return -EINVAL;
1416 
1417 	/* Only send response if there is a fault report pending */
1418 	mutex_lock(&param->fault_param->lock);
1419 	if (list_empty(&param->fault_param->faults)) {
1420 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1421 		goto done_unlock;
1422 	}
1423 	/*
1424 	 * Check if we have a matching page request pending to respond,
1425 	 * otherwise return -EINVAL
1426 	 */
1427 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1428 		prm = &evt->fault.prm;
1429 		if (prm->grpid != msg->grpid)
1430 			continue;
1431 
1432 		/*
1433 		 * If the PASID is required, the corresponding request is
1434 		 * matched using the group ID, the PASID valid bit and the PASID
1435 		 * value. Otherwise only the group ID matches request and
1436 		 * response.
1437 		 */
1438 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1439 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1440 			continue;
1441 
1442 		if (!needs_pasid && has_pasid) {
1443 			/* No big deal, just clear it. */
1444 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1445 			msg->pasid = 0;
1446 		}
1447 
1448 		ret = ops->page_response(dev, evt, msg);
1449 		list_del(&evt->list);
1450 		kfree(evt);
1451 		break;
1452 	}
1453 
1454 done_unlock:
1455 	mutex_unlock(&param->fault_param->lock);
1456 	return ret;
1457 }
1458 EXPORT_SYMBOL_GPL(iommu_page_response);
1459 
1460 /**
1461  * iommu_group_id - Return ID for a group
1462  * @group: the group to ID
1463  *
1464  * Return the unique ID for the group matching the sysfs group number.
1465  */
1466 int iommu_group_id(struct iommu_group *group)
1467 {
1468 	return group->id;
1469 }
1470 EXPORT_SYMBOL_GPL(iommu_group_id);
1471 
1472 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1473 					       unsigned long *devfns);
1474 
1475 /*
1476  * To consider a PCI device isolated, we require ACS to support Source
1477  * Validation, Request Redirection, Completer Redirection, and Upstream
1478  * Forwarding.  This effectively means that devices cannot spoof their
1479  * requester ID, requests and completions cannot be redirected, and all
1480  * transactions are forwarded upstream, even as it passes through a
1481  * bridge where the target device is downstream.
1482  */
1483 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1484 
1485 /*
1486  * For multifunction devices which are not isolated from each other, find
1487  * all the other non-isolated functions and look for existing groups.  For
1488  * each function, we also need to look for aliases to or from other devices
1489  * that may already have a group.
1490  */
1491 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1492 							unsigned long *devfns)
1493 {
1494 	struct pci_dev *tmp = NULL;
1495 	struct iommu_group *group;
1496 
1497 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1498 		return NULL;
1499 
1500 	for_each_pci_dev(tmp) {
1501 		if (tmp == pdev || tmp->bus != pdev->bus ||
1502 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1503 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1504 			continue;
1505 
1506 		group = get_pci_alias_group(tmp, devfns);
1507 		if (group) {
1508 			pci_dev_put(tmp);
1509 			return group;
1510 		}
1511 	}
1512 
1513 	return NULL;
1514 }
1515 
1516 /*
1517  * Look for aliases to or from the given device for existing groups. DMA
1518  * aliases are only supported on the same bus, therefore the search
1519  * space is quite small (especially since we're really only looking at pcie
1520  * device, and therefore only expect multiple slots on the root complex or
1521  * downstream switch ports).  It's conceivable though that a pair of
1522  * multifunction devices could have aliases between them that would cause a
1523  * loop.  To prevent this, we use a bitmap to track where we've been.
1524  */
1525 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1526 					       unsigned long *devfns)
1527 {
1528 	struct pci_dev *tmp = NULL;
1529 	struct iommu_group *group;
1530 
1531 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1532 		return NULL;
1533 
1534 	group = iommu_group_get(&pdev->dev);
1535 	if (group)
1536 		return group;
1537 
1538 	for_each_pci_dev(tmp) {
1539 		if (tmp == pdev || tmp->bus != pdev->bus)
1540 			continue;
1541 
1542 		/* We alias them or they alias us */
1543 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1544 			group = get_pci_alias_group(tmp, devfns);
1545 			if (group) {
1546 				pci_dev_put(tmp);
1547 				return group;
1548 			}
1549 
1550 			group = get_pci_function_alias_group(tmp, devfns);
1551 			if (group) {
1552 				pci_dev_put(tmp);
1553 				return group;
1554 			}
1555 		}
1556 	}
1557 
1558 	return NULL;
1559 }
1560 
1561 struct group_for_pci_data {
1562 	struct pci_dev *pdev;
1563 	struct iommu_group *group;
1564 };
1565 
1566 /*
1567  * DMA alias iterator callback, return the last seen device.  Stop and return
1568  * the IOMMU group if we find one along the way.
1569  */
1570 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1571 {
1572 	struct group_for_pci_data *data = opaque;
1573 
1574 	data->pdev = pdev;
1575 	data->group = iommu_group_get(&pdev->dev);
1576 
1577 	return data->group != NULL;
1578 }
1579 
1580 /*
1581  * Generic device_group call-back function. It just allocates one
1582  * iommu-group per device.
1583  */
1584 struct iommu_group *generic_device_group(struct device *dev)
1585 {
1586 	return iommu_group_alloc();
1587 }
1588 EXPORT_SYMBOL_GPL(generic_device_group);
1589 
1590 /*
1591  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1592  * to find or create an IOMMU group for a device.
1593  */
1594 struct iommu_group *pci_device_group(struct device *dev)
1595 {
1596 	struct pci_dev *pdev = to_pci_dev(dev);
1597 	struct group_for_pci_data data;
1598 	struct pci_bus *bus;
1599 	struct iommu_group *group = NULL;
1600 	u64 devfns[4] = { 0 };
1601 
1602 	if (WARN_ON(!dev_is_pci(dev)))
1603 		return ERR_PTR(-EINVAL);
1604 
1605 	/*
1606 	 * Find the upstream DMA alias for the device.  A device must not
1607 	 * be aliased due to topology in order to have its own IOMMU group.
1608 	 * If we find an alias along the way that already belongs to a
1609 	 * group, use it.
1610 	 */
1611 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1612 		return data.group;
1613 
1614 	pdev = data.pdev;
1615 
1616 	/*
1617 	 * Continue upstream from the point of minimum IOMMU granularity
1618 	 * due to aliases to the point where devices are protected from
1619 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1620 	 * group, use it.
1621 	 */
1622 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1623 		if (!bus->self)
1624 			continue;
1625 
1626 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1627 			break;
1628 
1629 		pdev = bus->self;
1630 
1631 		group = iommu_group_get(&pdev->dev);
1632 		if (group)
1633 			return group;
1634 	}
1635 
1636 	/*
1637 	 * Look for existing groups on device aliases.  If we alias another
1638 	 * device or another device aliases us, use the same group.
1639 	 */
1640 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1641 	if (group)
1642 		return group;
1643 
1644 	/*
1645 	 * Look for existing groups on non-isolated functions on the same
1646 	 * slot and aliases of those funcions, if any.  No need to clear
1647 	 * the search bitmap, the tested devfns are still valid.
1648 	 */
1649 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1650 	if (group)
1651 		return group;
1652 
1653 	/* No shared group found, allocate new */
1654 	return iommu_group_alloc();
1655 }
1656 EXPORT_SYMBOL_GPL(pci_device_group);
1657 
1658 /* Get the IOMMU group for device on fsl-mc bus */
1659 struct iommu_group *fsl_mc_device_group(struct device *dev)
1660 {
1661 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1662 	struct iommu_group *group;
1663 
1664 	group = iommu_group_get(cont_dev);
1665 	if (!group)
1666 		group = iommu_group_alloc();
1667 	return group;
1668 }
1669 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1670 
1671 static int iommu_get_def_domain_type(struct device *dev)
1672 {
1673 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1674 
1675 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1676 		return IOMMU_DOMAIN_DMA;
1677 
1678 	if (ops->def_domain_type)
1679 		return ops->def_domain_type(dev);
1680 
1681 	return 0;
1682 }
1683 
1684 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1685 					    struct iommu_group *group,
1686 					    unsigned int type)
1687 {
1688 	struct iommu_domain *dom;
1689 
1690 	dom = __iommu_domain_alloc(bus, type);
1691 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1692 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1693 		if (dom)
1694 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1695 				type, group->name);
1696 	}
1697 
1698 	if (!dom)
1699 		return -ENOMEM;
1700 
1701 	group->default_domain = dom;
1702 	if (!group->domain)
1703 		group->domain = dom;
1704 	return 0;
1705 }
1706 
1707 static int iommu_alloc_default_domain(struct iommu_group *group,
1708 				      struct device *dev)
1709 {
1710 	unsigned int type;
1711 
1712 	if (group->default_domain)
1713 		return 0;
1714 
1715 	type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1716 
1717 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1718 }
1719 
1720 /**
1721  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1722  * @dev: target device
1723  *
1724  * This function is intended to be called by IOMMU drivers and extended to
1725  * support common, bus-defined algorithms when determining or creating the
1726  * IOMMU group for a device.  On success, the caller will hold a reference
1727  * to the returned IOMMU group, which will already include the provided
1728  * device.  The reference should be released with iommu_group_put().
1729  */
1730 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1731 {
1732 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1733 	struct iommu_group *group;
1734 	int ret;
1735 
1736 	group = iommu_group_get(dev);
1737 	if (group)
1738 		return group;
1739 
1740 	group = ops->device_group(dev);
1741 	if (WARN_ON_ONCE(group == NULL))
1742 		return ERR_PTR(-EINVAL);
1743 
1744 	if (IS_ERR(group))
1745 		return group;
1746 
1747 	ret = iommu_group_add_device(group, dev);
1748 	if (ret)
1749 		goto out_put_group;
1750 
1751 	return group;
1752 
1753 out_put_group:
1754 	iommu_group_put(group);
1755 
1756 	return ERR_PTR(ret);
1757 }
1758 
1759 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1760 {
1761 	return group->default_domain;
1762 }
1763 
1764 static int probe_iommu_group(struct device *dev, void *data)
1765 {
1766 	struct list_head *group_list = data;
1767 	struct iommu_group *group;
1768 	int ret;
1769 
1770 	/* Device is probed already if in a group */
1771 	group = iommu_group_get(dev);
1772 	if (group) {
1773 		iommu_group_put(group);
1774 		return 0;
1775 	}
1776 
1777 	ret = __iommu_probe_device(dev, group_list);
1778 	if (ret == -ENODEV)
1779 		ret = 0;
1780 
1781 	return ret;
1782 }
1783 
1784 static int iommu_bus_notifier(struct notifier_block *nb,
1785 			      unsigned long action, void *data)
1786 {
1787 	struct device *dev = data;
1788 
1789 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1790 		int ret;
1791 
1792 		ret = iommu_probe_device(dev);
1793 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1794 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1795 		iommu_release_device(dev);
1796 		return NOTIFY_OK;
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 struct __group_domain_type {
1803 	struct device *dev;
1804 	unsigned int type;
1805 };
1806 
1807 static int probe_get_default_domain_type(struct device *dev, void *data)
1808 {
1809 	struct __group_domain_type *gtype = data;
1810 	unsigned int type = iommu_get_def_domain_type(dev);
1811 
1812 	if (type) {
1813 		if (gtype->type && gtype->type != type) {
1814 			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1815 				 iommu_domain_type_str(type),
1816 				 dev_name(gtype->dev),
1817 				 iommu_domain_type_str(gtype->type));
1818 			gtype->type = 0;
1819 		}
1820 
1821 		if (!gtype->dev) {
1822 			gtype->dev  = dev;
1823 			gtype->type = type;
1824 		}
1825 	}
1826 
1827 	return 0;
1828 }
1829 
1830 static void probe_alloc_default_domain(struct bus_type *bus,
1831 				       struct iommu_group *group)
1832 {
1833 	struct __group_domain_type gtype;
1834 
1835 	memset(&gtype, 0, sizeof(gtype));
1836 
1837 	/* Ask for default domain requirements of all devices in the group */
1838 	__iommu_group_for_each_dev(group, &gtype,
1839 				   probe_get_default_domain_type);
1840 
1841 	if (!gtype.type)
1842 		gtype.type = iommu_def_domain_type;
1843 
1844 	iommu_group_alloc_default_domain(bus, group, gtype.type);
1845 
1846 }
1847 
1848 static int __iommu_group_dma_first_attach(struct iommu_group *group)
1849 {
1850 	return __iommu_group_for_each_dev(group, group->default_domain,
1851 					  iommu_group_do_dma_first_attach);
1852 }
1853 
1854 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1855 {
1856 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1857 
1858 	if (ops->probe_finalize)
1859 		ops->probe_finalize(dev);
1860 
1861 	return 0;
1862 }
1863 
1864 static void __iommu_group_dma_finalize(struct iommu_group *group)
1865 {
1866 	__iommu_group_for_each_dev(group, group->default_domain,
1867 				   iommu_group_do_probe_finalize);
1868 }
1869 
1870 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1871 {
1872 	struct iommu_group *group = data;
1873 
1874 	iommu_create_device_direct_mappings(group, dev);
1875 
1876 	return 0;
1877 }
1878 
1879 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1880 {
1881 	return __iommu_group_for_each_dev(group, group,
1882 					  iommu_do_create_direct_mappings);
1883 }
1884 
1885 int bus_iommu_probe(struct bus_type *bus)
1886 {
1887 	struct iommu_group *group, *next;
1888 	LIST_HEAD(group_list);
1889 	int ret;
1890 
1891 	/*
1892 	 * This code-path does not allocate the default domain when
1893 	 * creating the iommu group, so do it after the groups are
1894 	 * created.
1895 	 */
1896 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1897 	if (ret)
1898 		return ret;
1899 
1900 	list_for_each_entry_safe(group, next, &group_list, entry) {
1901 		mutex_lock(&group->mutex);
1902 
1903 		/* Remove item from the list */
1904 		list_del_init(&group->entry);
1905 
1906 		/* Try to allocate default domain */
1907 		probe_alloc_default_domain(bus, group);
1908 
1909 		if (!group->default_domain) {
1910 			mutex_unlock(&group->mutex);
1911 			continue;
1912 		}
1913 
1914 		iommu_group_create_direct_mappings(group);
1915 
1916 		ret = __iommu_group_dma_first_attach(group);
1917 
1918 		mutex_unlock(&group->mutex);
1919 
1920 		if (ret)
1921 			break;
1922 
1923 		__iommu_group_dma_finalize(group);
1924 	}
1925 
1926 	return ret;
1927 }
1928 
1929 bool iommu_present(struct bus_type *bus)
1930 {
1931 	return bus->iommu_ops != NULL;
1932 }
1933 EXPORT_SYMBOL_GPL(iommu_present);
1934 
1935 /**
1936  * device_iommu_capable() - check for a general IOMMU capability
1937  * @dev: device to which the capability would be relevant, if available
1938  * @cap: IOMMU capability
1939  *
1940  * Return: true if an IOMMU is present and supports the given capability
1941  * for the given device, otherwise false.
1942  */
1943 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1944 {
1945 	const struct iommu_ops *ops;
1946 
1947 	if (!dev->iommu || !dev->iommu->iommu_dev)
1948 		return false;
1949 
1950 	ops = dev_iommu_ops(dev);
1951 	if (!ops->capable)
1952 		return false;
1953 
1954 	return ops->capable(dev, cap);
1955 }
1956 EXPORT_SYMBOL_GPL(device_iommu_capable);
1957 
1958 /**
1959  * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1960  *       for a group
1961  * @group: Group to query
1962  *
1963  * IOMMU groups should not have differing values of
1964  * msi_device_has_isolated_msi() for devices in a group. However nothing
1965  * directly prevents this, so ensure mistakes don't result in isolation failures
1966  * by checking that all the devices are the same.
1967  */
1968 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1969 {
1970 	struct group_device *group_dev;
1971 	bool ret = true;
1972 
1973 	mutex_lock(&group->mutex);
1974 	list_for_each_entry(group_dev, &group->devices, list)
1975 		ret &= msi_device_has_isolated_msi(group_dev->dev);
1976 	mutex_unlock(&group->mutex);
1977 	return ret;
1978 }
1979 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1980 
1981 /**
1982  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1983  * @domain: iommu domain
1984  * @handler: fault handler
1985  * @token: user data, will be passed back to the fault handler
1986  *
1987  * This function should be used by IOMMU users which want to be notified
1988  * whenever an IOMMU fault happens.
1989  *
1990  * The fault handler itself should return 0 on success, and an appropriate
1991  * error code otherwise.
1992  */
1993 void iommu_set_fault_handler(struct iommu_domain *domain,
1994 					iommu_fault_handler_t handler,
1995 					void *token)
1996 {
1997 	BUG_ON(!domain);
1998 
1999 	domain->handler = handler;
2000 	domain->handler_token = token;
2001 }
2002 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
2003 
2004 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
2005 						 unsigned type)
2006 {
2007 	struct iommu_domain *domain;
2008 
2009 	if (bus == NULL || bus->iommu_ops == NULL)
2010 		return NULL;
2011 
2012 	domain = bus->iommu_ops->domain_alloc(type);
2013 	if (!domain)
2014 		return NULL;
2015 
2016 	domain->type = type;
2017 	/* Assume all sizes by default; the driver may override this later */
2018 	domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
2019 	if (!domain->ops)
2020 		domain->ops = bus->iommu_ops->default_domain_ops;
2021 
2022 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
2023 		iommu_domain_free(domain);
2024 		domain = NULL;
2025 	}
2026 	return domain;
2027 }
2028 
2029 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
2030 {
2031 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
2032 }
2033 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
2034 
2035 void iommu_domain_free(struct iommu_domain *domain)
2036 {
2037 	if (domain->type == IOMMU_DOMAIN_SVA)
2038 		mmdrop(domain->mm);
2039 	iommu_put_dma_cookie(domain);
2040 	domain->ops->free(domain);
2041 }
2042 EXPORT_SYMBOL_GPL(iommu_domain_free);
2043 
2044 /*
2045  * Put the group's domain back to the appropriate core-owned domain - either the
2046  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2047  */
2048 static void __iommu_group_set_core_domain(struct iommu_group *group)
2049 {
2050 	struct iommu_domain *new_domain;
2051 	int ret;
2052 
2053 	if (group->owner)
2054 		new_domain = group->blocking_domain;
2055 	else
2056 		new_domain = group->default_domain;
2057 
2058 	ret = __iommu_group_set_domain(group, new_domain);
2059 	WARN(ret, "iommu driver failed to attach the default/blocking domain");
2060 }
2061 
2062 static int __iommu_attach_device(struct iommu_domain *domain,
2063 				 struct device *dev)
2064 {
2065 	int ret;
2066 
2067 	if (unlikely(domain->ops->attach_dev == NULL))
2068 		return -ENODEV;
2069 
2070 	ret = domain->ops->attach_dev(domain, dev);
2071 	if (ret)
2072 		return ret;
2073 	dev->iommu->attach_deferred = 0;
2074 	trace_attach_device_to_domain(dev);
2075 	return 0;
2076 }
2077 
2078 /**
2079  * iommu_attach_device - Attach an IOMMU domain to a device
2080  * @domain: IOMMU domain to attach
2081  * @dev: Device that will be attached
2082  *
2083  * Returns 0 on success and error code on failure
2084  *
2085  * Note that EINVAL can be treated as a soft failure, indicating
2086  * that certain configuration of the domain is incompatible with
2087  * the device. In this case attaching a different domain to the
2088  * device may succeed.
2089  */
2090 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2091 {
2092 	struct iommu_group *group;
2093 	int ret;
2094 
2095 	group = iommu_group_get(dev);
2096 	if (!group)
2097 		return -ENODEV;
2098 
2099 	/*
2100 	 * Lock the group to make sure the device-count doesn't
2101 	 * change while we are attaching
2102 	 */
2103 	mutex_lock(&group->mutex);
2104 	ret = -EINVAL;
2105 	if (iommu_group_device_count(group) != 1)
2106 		goto out_unlock;
2107 
2108 	ret = __iommu_attach_group(domain, group);
2109 
2110 out_unlock:
2111 	mutex_unlock(&group->mutex);
2112 	iommu_group_put(group);
2113 
2114 	return ret;
2115 }
2116 EXPORT_SYMBOL_GPL(iommu_attach_device);
2117 
2118 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2119 {
2120 	if (dev->iommu && dev->iommu->attach_deferred)
2121 		return __iommu_attach_device(domain, dev);
2122 
2123 	return 0;
2124 }
2125 
2126 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2127 {
2128 	struct iommu_group *group;
2129 
2130 	group = iommu_group_get(dev);
2131 	if (!group)
2132 		return;
2133 
2134 	mutex_lock(&group->mutex);
2135 	if (WARN_ON(domain != group->domain) ||
2136 	    WARN_ON(iommu_group_device_count(group) != 1))
2137 		goto out_unlock;
2138 	__iommu_group_set_core_domain(group);
2139 
2140 out_unlock:
2141 	mutex_unlock(&group->mutex);
2142 	iommu_group_put(group);
2143 }
2144 EXPORT_SYMBOL_GPL(iommu_detach_device);
2145 
2146 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2147 {
2148 	struct iommu_domain *domain;
2149 	struct iommu_group *group;
2150 
2151 	group = iommu_group_get(dev);
2152 	if (!group)
2153 		return NULL;
2154 
2155 	domain = group->domain;
2156 
2157 	iommu_group_put(group);
2158 
2159 	return domain;
2160 }
2161 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2162 
2163 /*
2164  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2165  * guarantees that the group and its default domain are valid and correct.
2166  */
2167 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2168 {
2169 	return dev->iommu_group->default_domain;
2170 }
2171 
2172 /*
2173  * IOMMU groups are really the natural working unit of the IOMMU, but
2174  * the IOMMU API works on domains and devices.  Bridge that gap by
2175  * iterating over the devices in a group.  Ideally we'd have a single
2176  * device which represents the requestor ID of the group, but we also
2177  * allow IOMMU drivers to create policy defined minimum sets, where
2178  * the physical hardware may be able to distiguish members, but we
2179  * wish to group them at a higher level (ex. untrusted multi-function
2180  * PCI devices).  Thus we attach each device.
2181  */
2182 static int iommu_group_do_attach_device(struct device *dev, void *data)
2183 {
2184 	struct iommu_domain *domain = data;
2185 
2186 	return __iommu_attach_device(domain, dev);
2187 }
2188 
2189 static int __iommu_attach_group(struct iommu_domain *domain,
2190 				struct iommu_group *group)
2191 {
2192 	int ret;
2193 
2194 	if (group->domain && group->domain != group->default_domain &&
2195 	    group->domain != group->blocking_domain)
2196 		return -EBUSY;
2197 
2198 	ret = __iommu_group_for_each_dev(group, domain,
2199 					 iommu_group_do_attach_device);
2200 	if (ret == 0) {
2201 		group->domain = domain;
2202 	} else {
2203 		/*
2204 		 * To recover from the case when certain device within the
2205 		 * group fails to attach to the new domain, we need force
2206 		 * attaching all devices back to the old domain. The old
2207 		 * domain is compatible for all devices in the group,
2208 		 * hence the iommu driver should always return success.
2209 		 */
2210 		struct iommu_domain *old_domain = group->domain;
2211 
2212 		group->domain = NULL;
2213 		WARN(__iommu_group_set_domain(group, old_domain),
2214 		     "iommu driver failed to attach a compatible domain");
2215 	}
2216 
2217 	return ret;
2218 }
2219 
2220 /**
2221  * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2222  * @domain: IOMMU domain to attach
2223  * @group: IOMMU group that will be attached
2224  *
2225  * Returns 0 on success and error code on failure
2226  *
2227  * Note that EINVAL can be treated as a soft failure, indicating
2228  * that certain configuration of the domain is incompatible with
2229  * the group. In this case attaching a different domain to the
2230  * group may succeed.
2231  */
2232 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2233 {
2234 	int ret;
2235 
2236 	mutex_lock(&group->mutex);
2237 	ret = __iommu_attach_group(domain, group);
2238 	mutex_unlock(&group->mutex);
2239 
2240 	return ret;
2241 }
2242 EXPORT_SYMBOL_GPL(iommu_attach_group);
2243 
2244 static int iommu_group_do_set_platform_dma(struct device *dev, void *data)
2245 {
2246 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2247 
2248 	if (!WARN_ON(!ops->set_platform_dma_ops))
2249 		ops->set_platform_dma_ops(dev);
2250 
2251 	return 0;
2252 }
2253 
2254 static int __iommu_group_set_domain(struct iommu_group *group,
2255 				    struct iommu_domain *new_domain)
2256 {
2257 	int ret;
2258 
2259 	if (group->domain == new_domain)
2260 		return 0;
2261 
2262 	/*
2263 	 * New drivers should support default domains, so set_platform_dma()
2264 	 * op will never be called. Otherwise the NULL domain represents some
2265 	 * platform specific behavior.
2266 	 */
2267 	if (!new_domain) {
2268 		__iommu_group_for_each_dev(group, NULL,
2269 					   iommu_group_do_set_platform_dma);
2270 		group->domain = NULL;
2271 		return 0;
2272 	}
2273 
2274 	/*
2275 	 * Changing the domain is done by calling attach_dev() on the new
2276 	 * domain. This switch does not have to be atomic and DMA can be
2277 	 * discarded during the transition. DMA must only be able to access
2278 	 * either new_domain or group->domain, never something else.
2279 	 *
2280 	 * Note that this is called in error unwind paths, attaching to a
2281 	 * domain that has already been attached cannot fail.
2282 	 */
2283 	ret = __iommu_group_for_each_dev(group, new_domain,
2284 					 iommu_group_do_attach_device);
2285 	if (ret)
2286 		return ret;
2287 	group->domain = new_domain;
2288 	return 0;
2289 }
2290 
2291 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2292 {
2293 	mutex_lock(&group->mutex);
2294 	__iommu_group_set_core_domain(group);
2295 	mutex_unlock(&group->mutex);
2296 }
2297 EXPORT_SYMBOL_GPL(iommu_detach_group);
2298 
2299 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2300 {
2301 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2302 		return iova;
2303 
2304 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2305 		return 0;
2306 
2307 	return domain->ops->iova_to_phys(domain, iova);
2308 }
2309 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2310 
2311 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2312 			   phys_addr_t paddr, size_t size, size_t *count)
2313 {
2314 	unsigned int pgsize_idx, pgsize_idx_next;
2315 	unsigned long pgsizes;
2316 	size_t offset, pgsize, pgsize_next;
2317 	unsigned long addr_merge = paddr | iova;
2318 
2319 	/* Page sizes supported by the hardware and small enough for @size */
2320 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2321 
2322 	/* Constrain the page sizes further based on the maximum alignment */
2323 	if (likely(addr_merge))
2324 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2325 
2326 	/* Make sure we have at least one suitable page size */
2327 	BUG_ON(!pgsizes);
2328 
2329 	/* Pick the biggest page size remaining */
2330 	pgsize_idx = __fls(pgsizes);
2331 	pgsize = BIT(pgsize_idx);
2332 	if (!count)
2333 		return pgsize;
2334 
2335 	/* Find the next biggest support page size, if it exists */
2336 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2337 	if (!pgsizes)
2338 		goto out_set_count;
2339 
2340 	pgsize_idx_next = __ffs(pgsizes);
2341 	pgsize_next = BIT(pgsize_idx_next);
2342 
2343 	/*
2344 	 * There's no point trying a bigger page size unless the virtual
2345 	 * and physical addresses are similarly offset within the larger page.
2346 	 */
2347 	if ((iova ^ paddr) & (pgsize_next - 1))
2348 		goto out_set_count;
2349 
2350 	/* Calculate the offset to the next page size alignment boundary */
2351 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2352 
2353 	/*
2354 	 * If size is big enough to accommodate the larger page, reduce
2355 	 * the number of smaller pages.
2356 	 */
2357 	if (offset + pgsize_next <= size)
2358 		size = offset;
2359 
2360 out_set_count:
2361 	*count = size >> pgsize_idx;
2362 	return pgsize;
2363 }
2364 
2365 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2366 			     phys_addr_t paddr, size_t size, int prot,
2367 			     gfp_t gfp, size_t *mapped)
2368 {
2369 	const struct iommu_domain_ops *ops = domain->ops;
2370 	size_t pgsize, count;
2371 	int ret;
2372 
2373 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2374 
2375 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2376 		 iova, &paddr, pgsize, count);
2377 
2378 	if (ops->map_pages) {
2379 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2380 				     gfp, mapped);
2381 	} else {
2382 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2383 		*mapped = ret ? 0 : pgsize;
2384 	}
2385 
2386 	return ret;
2387 }
2388 
2389 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2390 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2391 {
2392 	const struct iommu_domain_ops *ops = domain->ops;
2393 	unsigned long orig_iova = iova;
2394 	unsigned int min_pagesz;
2395 	size_t orig_size = size;
2396 	phys_addr_t orig_paddr = paddr;
2397 	int ret = 0;
2398 
2399 	if (unlikely(!(ops->map || ops->map_pages) ||
2400 		     domain->pgsize_bitmap == 0UL))
2401 		return -ENODEV;
2402 
2403 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2404 		return -EINVAL;
2405 
2406 	/* find out the minimum page size supported */
2407 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2408 
2409 	/*
2410 	 * both the virtual address and the physical one, as well as
2411 	 * the size of the mapping, must be aligned (at least) to the
2412 	 * size of the smallest page supported by the hardware
2413 	 */
2414 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2415 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2416 		       iova, &paddr, size, min_pagesz);
2417 		return -EINVAL;
2418 	}
2419 
2420 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2421 
2422 	while (size) {
2423 		size_t mapped = 0;
2424 
2425 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2426 					&mapped);
2427 		/*
2428 		 * Some pages may have been mapped, even if an error occurred,
2429 		 * so we should account for those so they can be unmapped.
2430 		 */
2431 		size -= mapped;
2432 
2433 		if (ret)
2434 			break;
2435 
2436 		iova += mapped;
2437 		paddr += mapped;
2438 	}
2439 
2440 	/* unroll mapping in case something went wrong */
2441 	if (ret)
2442 		iommu_unmap(domain, orig_iova, orig_size - size);
2443 	else
2444 		trace_map(orig_iova, orig_paddr, orig_size);
2445 
2446 	return ret;
2447 }
2448 
2449 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2450 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2451 {
2452 	const struct iommu_domain_ops *ops = domain->ops;
2453 	int ret;
2454 
2455 	might_sleep_if(gfpflags_allow_blocking(gfp));
2456 
2457 	/* Discourage passing strange GFP flags */
2458 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2459 				__GFP_HIGHMEM)))
2460 		return -EINVAL;
2461 
2462 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2463 	if (ret == 0 && ops->iotlb_sync_map)
2464 		ops->iotlb_sync_map(domain, iova, size);
2465 
2466 	return ret;
2467 }
2468 EXPORT_SYMBOL_GPL(iommu_map);
2469 
2470 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2471 				  unsigned long iova, size_t size,
2472 				  struct iommu_iotlb_gather *iotlb_gather)
2473 {
2474 	const struct iommu_domain_ops *ops = domain->ops;
2475 	size_t pgsize, count;
2476 
2477 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2478 	return ops->unmap_pages ?
2479 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2480 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2481 }
2482 
2483 static size_t __iommu_unmap(struct iommu_domain *domain,
2484 			    unsigned long iova, size_t size,
2485 			    struct iommu_iotlb_gather *iotlb_gather)
2486 {
2487 	const struct iommu_domain_ops *ops = domain->ops;
2488 	size_t unmapped_page, unmapped = 0;
2489 	unsigned long orig_iova = iova;
2490 	unsigned int min_pagesz;
2491 
2492 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2493 		     domain->pgsize_bitmap == 0UL))
2494 		return 0;
2495 
2496 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2497 		return 0;
2498 
2499 	/* find out the minimum page size supported */
2500 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2501 
2502 	/*
2503 	 * The virtual address, as well as the size of the mapping, must be
2504 	 * aligned (at least) to the size of the smallest page supported
2505 	 * by the hardware
2506 	 */
2507 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2508 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2509 		       iova, size, min_pagesz);
2510 		return 0;
2511 	}
2512 
2513 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2514 
2515 	/*
2516 	 * Keep iterating until we either unmap 'size' bytes (or more)
2517 	 * or we hit an area that isn't mapped.
2518 	 */
2519 	while (unmapped < size) {
2520 		unmapped_page = __iommu_unmap_pages(domain, iova,
2521 						    size - unmapped,
2522 						    iotlb_gather);
2523 		if (!unmapped_page)
2524 			break;
2525 
2526 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2527 			 iova, unmapped_page);
2528 
2529 		iova += unmapped_page;
2530 		unmapped += unmapped_page;
2531 	}
2532 
2533 	trace_unmap(orig_iova, size, unmapped);
2534 	return unmapped;
2535 }
2536 
2537 size_t iommu_unmap(struct iommu_domain *domain,
2538 		   unsigned long iova, size_t size)
2539 {
2540 	struct iommu_iotlb_gather iotlb_gather;
2541 	size_t ret;
2542 
2543 	iommu_iotlb_gather_init(&iotlb_gather);
2544 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2545 	iommu_iotlb_sync(domain, &iotlb_gather);
2546 
2547 	return ret;
2548 }
2549 EXPORT_SYMBOL_GPL(iommu_unmap);
2550 
2551 size_t iommu_unmap_fast(struct iommu_domain *domain,
2552 			unsigned long iova, size_t size,
2553 			struct iommu_iotlb_gather *iotlb_gather)
2554 {
2555 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2556 }
2557 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2558 
2559 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2560 		     struct scatterlist *sg, unsigned int nents, int prot,
2561 		     gfp_t gfp)
2562 {
2563 	const struct iommu_domain_ops *ops = domain->ops;
2564 	size_t len = 0, mapped = 0;
2565 	phys_addr_t start;
2566 	unsigned int i = 0;
2567 	int ret;
2568 
2569 	might_sleep_if(gfpflags_allow_blocking(gfp));
2570 
2571 	/* Discourage passing strange GFP flags */
2572 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2573 				__GFP_HIGHMEM)))
2574 		return -EINVAL;
2575 
2576 	while (i <= nents) {
2577 		phys_addr_t s_phys = sg_phys(sg);
2578 
2579 		if (len && s_phys != start + len) {
2580 			ret = __iommu_map(domain, iova + mapped, start,
2581 					len, prot, gfp);
2582 
2583 			if (ret)
2584 				goto out_err;
2585 
2586 			mapped += len;
2587 			len = 0;
2588 		}
2589 
2590 		if (sg_is_dma_bus_address(sg))
2591 			goto next;
2592 
2593 		if (len) {
2594 			len += sg->length;
2595 		} else {
2596 			len = sg->length;
2597 			start = s_phys;
2598 		}
2599 
2600 next:
2601 		if (++i < nents)
2602 			sg = sg_next(sg);
2603 	}
2604 
2605 	if (ops->iotlb_sync_map)
2606 		ops->iotlb_sync_map(domain, iova, mapped);
2607 	return mapped;
2608 
2609 out_err:
2610 	/* undo mappings already done */
2611 	iommu_unmap(domain, iova, mapped);
2612 
2613 	return ret;
2614 }
2615 EXPORT_SYMBOL_GPL(iommu_map_sg);
2616 
2617 /**
2618  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2619  * @domain: the iommu domain where the fault has happened
2620  * @dev: the device where the fault has happened
2621  * @iova: the faulting address
2622  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2623  *
2624  * This function should be called by the low-level IOMMU implementations
2625  * whenever IOMMU faults happen, to allow high-level users, that are
2626  * interested in such events, to know about them.
2627  *
2628  * This event may be useful for several possible use cases:
2629  * - mere logging of the event
2630  * - dynamic TLB/PTE loading
2631  * - if restarting of the faulting device is required
2632  *
2633  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2634  * PTE/TLB loading will one day be supported, implementations will be able
2635  * to tell whether it succeeded or not according to this return value).
2636  *
2637  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2638  * (though fault handlers can also return -ENOSYS, in case they want to
2639  * elicit the default behavior of the IOMMU drivers).
2640  */
2641 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2642 		       unsigned long iova, int flags)
2643 {
2644 	int ret = -ENOSYS;
2645 
2646 	/*
2647 	 * if upper layers showed interest and installed a fault handler,
2648 	 * invoke it.
2649 	 */
2650 	if (domain->handler)
2651 		ret = domain->handler(domain, dev, iova, flags,
2652 						domain->handler_token);
2653 
2654 	trace_io_page_fault(dev, iova, flags);
2655 	return ret;
2656 }
2657 EXPORT_SYMBOL_GPL(report_iommu_fault);
2658 
2659 static int __init iommu_init(void)
2660 {
2661 	iommu_group_kset = kset_create_and_add("iommu_groups",
2662 					       NULL, kernel_kobj);
2663 	BUG_ON(!iommu_group_kset);
2664 
2665 	iommu_debugfs_setup();
2666 
2667 	return 0;
2668 }
2669 core_initcall(iommu_init);
2670 
2671 int iommu_enable_nesting(struct iommu_domain *domain)
2672 {
2673 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2674 		return -EINVAL;
2675 	if (!domain->ops->enable_nesting)
2676 		return -EINVAL;
2677 	return domain->ops->enable_nesting(domain);
2678 }
2679 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2680 
2681 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2682 		unsigned long quirk)
2683 {
2684 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2685 		return -EINVAL;
2686 	if (!domain->ops->set_pgtable_quirks)
2687 		return -EINVAL;
2688 	return domain->ops->set_pgtable_quirks(domain, quirk);
2689 }
2690 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2691 
2692 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2693 {
2694 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2695 
2696 	if (ops->get_resv_regions)
2697 		ops->get_resv_regions(dev, list);
2698 }
2699 
2700 /**
2701  * iommu_put_resv_regions - release resered regions
2702  * @dev: device for which to free reserved regions
2703  * @list: reserved region list for device
2704  *
2705  * This releases a reserved region list acquired by iommu_get_resv_regions().
2706  */
2707 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2708 {
2709 	struct iommu_resv_region *entry, *next;
2710 
2711 	list_for_each_entry_safe(entry, next, list, list) {
2712 		if (entry->free)
2713 			entry->free(dev, entry);
2714 		else
2715 			kfree(entry);
2716 	}
2717 }
2718 EXPORT_SYMBOL(iommu_put_resv_regions);
2719 
2720 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2721 						  size_t length, int prot,
2722 						  enum iommu_resv_type type,
2723 						  gfp_t gfp)
2724 {
2725 	struct iommu_resv_region *region;
2726 
2727 	region = kzalloc(sizeof(*region), gfp);
2728 	if (!region)
2729 		return NULL;
2730 
2731 	INIT_LIST_HEAD(&region->list);
2732 	region->start = start;
2733 	region->length = length;
2734 	region->prot = prot;
2735 	region->type = type;
2736 	return region;
2737 }
2738 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2739 
2740 void iommu_set_default_passthrough(bool cmd_line)
2741 {
2742 	if (cmd_line)
2743 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2744 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2745 }
2746 
2747 void iommu_set_default_translated(bool cmd_line)
2748 {
2749 	if (cmd_line)
2750 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2751 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2752 }
2753 
2754 bool iommu_default_passthrough(void)
2755 {
2756 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2757 }
2758 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2759 
2760 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2761 {
2762 	const struct iommu_ops *ops = NULL;
2763 	struct iommu_device *iommu;
2764 
2765 	spin_lock(&iommu_device_lock);
2766 	list_for_each_entry(iommu, &iommu_device_list, list)
2767 		if (iommu->fwnode == fwnode) {
2768 			ops = iommu->ops;
2769 			break;
2770 		}
2771 	spin_unlock(&iommu_device_lock);
2772 	return ops;
2773 }
2774 
2775 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2776 		      const struct iommu_ops *ops)
2777 {
2778 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2779 
2780 	if (fwspec)
2781 		return ops == fwspec->ops ? 0 : -EINVAL;
2782 
2783 	if (!dev_iommu_get(dev))
2784 		return -ENOMEM;
2785 
2786 	/* Preallocate for the overwhelmingly common case of 1 ID */
2787 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2788 	if (!fwspec)
2789 		return -ENOMEM;
2790 
2791 	of_node_get(to_of_node(iommu_fwnode));
2792 	fwspec->iommu_fwnode = iommu_fwnode;
2793 	fwspec->ops = ops;
2794 	dev_iommu_fwspec_set(dev, fwspec);
2795 	return 0;
2796 }
2797 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2798 
2799 void iommu_fwspec_free(struct device *dev)
2800 {
2801 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2802 
2803 	if (fwspec) {
2804 		fwnode_handle_put(fwspec->iommu_fwnode);
2805 		kfree(fwspec);
2806 		dev_iommu_fwspec_set(dev, NULL);
2807 	}
2808 }
2809 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2810 
2811 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2812 {
2813 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2814 	int i, new_num;
2815 
2816 	if (!fwspec)
2817 		return -EINVAL;
2818 
2819 	new_num = fwspec->num_ids + num_ids;
2820 	if (new_num > 1) {
2821 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2822 				  GFP_KERNEL);
2823 		if (!fwspec)
2824 			return -ENOMEM;
2825 
2826 		dev_iommu_fwspec_set(dev, fwspec);
2827 	}
2828 
2829 	for (i = 0; i < num_ids; i++)
2830 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2831 
2832 	fwspec->num_ids = new_num;
2833 	return 0;
2834 }
2835 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2836 
2837 /*
2838  * Per device IOMMU features.
2839  */
2840 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2841 {
2842 	if (dev->iommu && dev->iommu->iommu_dev) {
2843 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2844 
2845 		if (ops->dev_enable_feat)
2846 			return ops->dev_enable_feat(dev, feat);
2847 	}
2848 
2849 	return -ENODEV;
2850 }
2851 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2852 
2853 /*
2854  * The device drivers should do the necessary cleanups before calling this.
2855  */
2856 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2857 {
2858 	if (dev->iommu && dev->iommu->iommu_dev) {
2859 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2860 
2861 		if (ops->dev_disable_feat)
2862 			return ops->dev_disable_feat(dev, feat);
2863 	}
2864 
2865 	return -EBUSY;
2866 }
2867 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2868 
2869 /*
2870  * Changes the default domain of an iommu group that has *only* one device
2871  *
2872  * @group: The group for which the default domain should be changed
2873  * @prev_dev: The device in the group (this is used to make sure that the device
2874  *	 hasn't changed after the caller has called this function)
2875  * @type: The type of the new default domain that gets associated with the group
2876  *
2877  * Returns 0 on success and error code on failure
2878  *
2879  * Note:
2880  * 1. Presently, this function is called only when user requests to change the
2881  *    group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
2882  *    Please take a closer look if intended to use for other purposes.
2883  */
2884 static int iommu_change_dev_def_domain(struct iommu_group *group,
2885 				       struct device *prev_dev, int type)
2886 {
2887 	struct iommu_domain *prev_dom;
2888 	struct group_device *grp_dev;
2889 	int ret, dev_def_dom;
2890 	struct device *dev;
2891 
2892 	lockdep_assert_held(&group->mutex);
2893 
2894 	if (group->default_domain != group->domain) {
2895 		dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
2896 		ret = -EBUSY;
2897 		goto out;
2898 	}
2899 
2900 	/*
2901 	 * iommu group wasn't locked while acquiring device lock in
2902 	 * iommu_group_store_type(). So, make sure that the device count hasn't
2903 	 * changed while acquiring device lock.
2904 	 *
2905 	 * Changing default domain of an iommu group with two or more devices
2906 	 * isn't supported because there could be a potential deadlock. Consider
2907 	 * the following scenario. T1 is trying to acquire device locks of all
2908 	 * the devices in the group and before it could acquire all of them,
2909 	 * there could be another thread T2 (from different sub-system and use
2910 	 * case) that has already acquired some of the device locks and might be
2911 	 * waiting for T1 to release other device locks.
2912 	 */
2913 	if (iommu_group_device_count(group) != 1) {
2914 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
2915 		ret = -EINVAL;
2916 		goto out;
2917 	}
2918 
2919 	/* Since group has only one device */
2920 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
2921 	dev = grp_dev->dev;
2922 
2923 	if (prev_dev != dev) {
2924 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
2925 		ret = -EBUSY;
2926 		goto out;
2927 	}
2928 
2929 	prev_dom = group->default_domain;
2930 	if (!prev_dom) {
2931 		ret = -EINVAL;
2932 		goto out;
2933 	}
2934 
2935 	dev_def_dom = iommu_get_def_domain_type(dev);
2936 	if (!type) {
2937 		/*
2938 		 * If the user hasn't requested any specific type of domain and
2939 		 * if the device supports both the domains, then default to the
2940 		 * domain the device was booted with
2941 		 */
2942 		type = dev_def_dom ? : iommu_def_domain_type;
2943 	} else if (dev_def_dom && type != dev_def_dom) {
2944 		dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
2945 				    iommu_domain_type_str(type));
2946 		ret = -EINVAL;
2947 		goto out;
2948 	}
2949 
2950 	/*
2951 	 * Switch to a new domain only if the requested domain type is different
2952 	 * from the existing default domain type
2953 	 */
2954 	if (prev_dom->type == type) {
2955 		ret = 0;
2956 		goto out;
2957 	}
2958 
2959 	/* Sets group->default_domain to the newly allocated domain */
2960 	ret = iommu_group_alloc_default_domain(dev->bus, group, type);
2961 	if (ret)
2962 		goto out;
2963 
2964 	ret = iommu_create_device_direct_mappings(group, dev);
2965 	if (ret)
2966 		goto free_new_domain;
2967 
2968 	ret = __iommu_attach_device(group->default_domain, dev);
2969 	if (ret)
2970 		goto free_new_domain;
2971 
2972 	group->domain = group->default_domain;
2973 	iommu_domain_free(prev_dom);
2974 
2975 	return 0;
2976 
2977 free_new_domain:
2978 	iommu_domain_free(group->default_domain);
2979 	group->default_domain = prev_dom;
2980 	group->domain = prev_dom;
2981 out:
2982 	return ret;
2983 }
2984 
2985 /*
2986  * Changing the default domain through sysfs requires the users to unbind the
2987  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
2988  * transition. Return failure if this isn't met.
2989  *
2990  * We need to consider the race between this and the device release path.
2991  * group->mutex is used here to guarantee that the device release path
2992  * will not be entered at the same time.
2993  */
2994 static ssize_t iommu_group_store_type(struct iommu_group *group,
2995 				      const char *buf, size_t count)
2996 {
2997 	struct group_device *grp_dev;
2998 	struct device *dev;
2999 	int ret, req_type;
3000 
3001 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3002 		return -EACCES;
3003 
3004 	if (WARN_ON(!group) || !group->default_domain)
3005 		return -EINVAL;
3006 
3007 	if (sysfs_streq(buf, "identity"))
3008 		req_type = IOMMU_DOMAIN_IDENTITY;
3009 	else if (sysfs_streq(buf, "DMA"))
3010 		req_type = IOMMU_DOMAIN_DMA;
3011 	else if (sysfs_streq(buf, "DMA-FQ"))
3012 		req_type = IOMMU_DOMAIN_DMA_FQ;
3013 	else if (sysfs_streq(buf, "auto"))
3014 		req_type = 0;
3015 	else
3016 		return -EINVAL;
3017 
3018 	mutex_lock(&group->mutex);
3019 	/* We can bring up a flush queue without tearing down the domain. */
3020 	if (req_type == IOMMU_DOMAIN_DMA_FQ &&
3021 	    group->default_domain->type == IOMMU_DOMAIN_DMA) {
3022 		ret = iommu_dma_init_fq(group->default_domain);
3023 		if (!ret)
3024 			group->default_domain->type = IOMMU_DOMAIN_DMA_FQ;
3025 		mutex_unlock(&group->mutex);
3026 
3027 		return ret ?: count;
3028 	}
3029 
3030 	/* Otherwise, ensure that device exists and no driver is bound. */
3031 	if (list_empty(&group->devices) || group->owner_cnt) {
3032 		mutex_unlock(&group->mutex);
3033 		return -EPERM;
3034 	}
3035 
3036 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3037 	dev = grp_dev->dev;
3038 
3039 	ret = iommu_change_dev_def_domain(group, dev, req_type);
3040 
3041 	/*
3042 	 * Release the mutex here because ops->probe_finalize() call-back of
3043 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
3044 	 * in-turn might call back into IOMMU core code, where it tries to take
3045 	 * group->mutex, resulting in a deadlock.
3046 	 */
3047 	mutex_unlock(&group->mutex);
3048 
3049 	/* Make sure dma_ops is appropriatley set */
3050 	if (!ret)
3051 		__iommu_group_dma_finalize(group);
3052 
3053 	return ret ?: count;
3054 }
3055 
3056 static bool iommu_is_default_domain(struct iommu_group *group)
3057 {
3058 	if (group->domain == group->default_domain)
3059 		return true;
3060 
3061 	/*
3062 	 * If the default domain was set to identity and it is still an identity
3063 	 * domain then we consider this a pass. This happens because of
3064 	 * amd_iommu_init_device() replacing the default idenytity domain with an
3065 	 * identity domain that has a different configuration for AMDGPU.
3066 	 */
3067 	if (group->default_domain &&
3068 	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY &&
3069 	    group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY)
3070 		return true;
3071 	return false;
3072 }
3073 
3074 /**
3075  * iommu_device_use_default_domain() - Device driver wants to handle device
3076  *                                     DMA through the kernel DMA API.
3077  * @dev: The device.
3078  *
3079  * The device driver about to bind @dev wants to do DMA through the kernel
3080  * DMA API. Return 0 if it is allowed, otherwise an error.
3081  */
3082 int iommu_device_use_default_domain(struct device *dev)
3083 {
3084 	struct iommu_group *group = iommu_group_get(dev);
3085 	int ret = 0;
3086 
3087 	if (!group)
3088 		return 0;
3089 
3090 	mutex_lock(&group->mutex);
3091 	if (group->owner_cnt) {
3092 		if (group->owner || !iommu_is_default_domain(group) ||
3093 		    !xa_empty(&group->pasid_array)) {
3094 			ret = -EBUSY;
3095 			goto unlock_out;
3096 		}
3097 	}
3098 
3099 	group->owner_cnt++;
3100 
3101 unlock_out:
3102 	mutex_unlock(&group->mutex);
3103 	iommu_group_put(group);
3104 
3105 	return ret;
3106 }
3107 
3108 /**
3109  * iommu_device_unuse_default_domain() - Device driver stops handling device
3110  *                                       DMA through the kernel DMA API.
3111  * @dev: The device.
3112  *
3113  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3114  * It must be called after iommu_device_use_default_domain().
3115  */
3116 void iommu_device_unuse_default_domain(struct device *dev)
3117 {
3118 	struct iommu_group *group = iommu_group_get(dev);
3119 
3120 	if (!group)
3121 		return;
3122 
3123 	mutex_lock(&group->mutex);
3124 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3125 		group->owner_cnt--;
3126 
3127 	mutex_unlock(&group->mutex);
3128 	iommu_group_put(group);
3129 }
3130 
3131 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3132 {
3133 	struct group_device *dev =
3134 		list_first_entry(&group->devices, struct group_device, list);
3135 
3136 	if (group->blocking_domain)
3137 		return 0;
3138 
3139 	group->blocking_domain =
3140 		__iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3141 	if (!group->blocking_domain) {
3142 		/*
3143 		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3144 		 * create an empty domain instead.
3145 		 */
3146 		group->blocking_domain = __iommu_domain_alloc(
3147 			dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3148 		if (!group->blocking_domain)
3149 			return -EINVAL;
3150 	}
3151 	return 0;
3152 }
3153 
3154 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3155 {
3156 	int ret;
3157 
3158 	if ((group->domain && group->domain != group->default_domain) ||
3159 	    !xa_empty(&group->pasid_array))
3160 		return -EBUSY;
3161 
3162 	ret = __iommu_group_alloc_blocking_domain(group);
3163 	if (ret)
3164 		return ret;
3165 	ret = __iommu_group_set_domain(group, group->blocking_domain);
3166 	if (ret)
3167 		return ret;
3168 
3169 	group->owner = owner;
3170 	group->owner_cnt++;
3171 	return 0;
3172 }
3173 
3174 /**
3175  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3176  * @group: The group.
3177  * @owner: Caller specified pointer. Used for exclusive ownership.
3178  *
3179  * This is to support backward compatibility for vfio which manages the dma
3180  * ownership in iommu_group level. New invocations on this interface should be
3181  * prohibited. Only a single owner may exist for a group.
3182  */
3183 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3184 {
3185 	int ret = 0;
3186 
3187 	if (WARN_ON(!owner))
3188 		return -EINVAL;
3189 
3190 	mutex_lock(&group->mutex);
3191 	if (group->owner_cnt) {
3192 		ret = -EPERM;
3193 		goto unlock_out;
3194 	}
3195 
3196 	ret = __iommu_take_dma_ownership(group, owner);
3197 unlock_out:
3198 	mutex_unlock(&group->mutex);
3199 
3200 	return ret;
3201 }
3202 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3203 
3204 /**
3205  * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3206  * @dev: The device.
3207  * @owner: Caller specified pointer. Used for exclusive ownership.
3208  *
3209  * Claim the DMA ownership of a device. Multiple devices in the same group may
3210  * concurrently claim ownership if they present the same owner value. Returns 0
3211  * on success and error code on failure
3212  */
3213 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3214 {
3215 	struct iommu_group *group;
3216 	int ret = 0;
3217 
3218 	if (WARN_ON(!owner))
3219 		return -EINVAL;
3220 
3221 	group = iommu_group_get(dev);
3222 	if (!group)
3223 		return -ENODEV;
3224 
3225 	mutex_lock(&group->mutex);
3226 	if (group->owner_cnt) {
3227 		if (group->owner != owner) {
3228 			ret = -EPERM;
3229 			goto unlock_out;
3230 		}
3231 		group->owner_cnt++;
3232 		goto unlock_out;
3233 	}
3234 
3235 	ret = __iommu_take_dma_ownership(group, owner);
3236 unlock_out:
3237 	mutex_unlock(&group->mutex);
3238 	iommu_group_put(group);
3239 
3240 	return ret;
3241 }
3242 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3243 
3244 static void __iommu_release_dma_ownership(struct iommu_group *group)
3245 {
3246 	int ret;
3247 
3248 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3249 		    !xa_empty(&group->pasid_array)))
3250 		return;
3251 
3252 	group->owner_cnt = 0;
3253 	group->owner = NULL;
3254 	ret = __iommu_group_set_domain(group, group->default_domain);
3255 	WARN(ret, "iommu driver failed to attach the default domain");
3256 }
3257 
3258 /**
3259  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3260  * @dev: The device
3261  *
3262  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3263  */
3264 void iommu_group_release_dma_owner(struct iommu_group *group)
3265 {
3266 	mutex_lock(&group->mutex);
3267 	__iommu_release_dma_ownership(group);
3268 	mutex_unlock(&group->mutex);
3269 }
3270 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3271 
3272 /**
3273  * iommu_device_release_dma_owner() - Release DMA ownership of a device
3274  * @group: The device.
3275  *
3276  * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3277  */
3278 void iommu_device_release_dma_owner(struct device *dev)
3279 {
3280 	struct iommu_group *group = iommu_group_get(dev);
3281 
3282 	mutex_lock(&group->mutex);
3283 	if (group->owner_cnt > 1)
3284 		group->owner_cnt--;
3285 	else
3286 		__iommu_release_dma_ownership(group);
3287 	mutex_unlock(&group->mutex);
3288 	iommu_group_put(group);
3289 }
3290 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3291 
3292 /**
3293  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3294  * @group: The group.
3295  *
3296  * This provides status query on a given group. It is racy and only for
3297  * non-binding status reporting.
3298  */
3299 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3300 {
3301 	unsigned int user;
3302 
3303 	mutex_lock(&group->mutex);
3304 	user = group->owner_cnt;
3305 	mutex_unlock(&group->mutex);
3306 
3307 	return user;
3308 }
3309 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3310 
3311 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3312 				   struct iommu_group *group, ioasid_t pasid)
3313 {
3314 	struct group_device *device;
3315 	int ret = 0;
3316 
3317 	list_for_each_entry(device, &group->devices, list) {
3318 		ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3319 		if (ret)
3320 			break;
3321 	}
3322 
3323 	return ret;
3324 }
3325 
3326 static void __iommu_remove_group_pasid(struct iommu_group *group,
3327 				       ioasid_t pasid)
3328 {
3329 	struct group_device *device;
3330 	const struct iommu_ops *ops;
3331 
3332 	list_for_each_entry(device, &group->devices, list) {
3333 		ops = dev_iommu_ops(device->dev);
3334 		ops->remove_dev_pasid(device->dev, pasid);
3335 	}
3336 }
3337 
3338 /*
3339  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3340  * @domain: the iommu domain.
3341  * @dev: the attached device.
3342  * @pasid: the pasid of the device.
3343  *
3344  * Return: 0 on success, or an error.
3345  */
3346 int iommu_attach_device_pasid(struct iommu_domain *domain,
3347 			      struct device *dev, ioasid_t pasid)
3348 {
3349 	struct iommu_group *group;
3350 	void *curr;
3351 	int ret;
3352 
3353 	if (!domain->ops->set_dev_pasid)
3354 		return -EOPNOTSUPP;
3355 
3356 	group = iommu_group_get(dev);
3357 	if (!group)
3358 		return -ENODEV;
3359 
3360 	mutex_lock(&group->mutex);
3361 	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL);
3362 	if (curr) {
3363 		ret = xa_err(curr) ? : -EBUSY;
3364 		goto out_unlock;
3365 	}
3366 
3367 	ret = __iommu_set_group_pasid(domain, group, pasid);
3368 	if (ret) {
3369 		__iommu_remove_group_pasid(group, pasid);
3370 		xa_erase(&group->pasid_array, pasid);
3371 	}
3372 out_unlock:
3373 	mutex_unlock(&group->mutex);
3374 	iommu_group_put(group);
3375 
3376 	return ret;
3377 }
3378 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3379 
3380 /*
3381  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3382  * @domain: the iommu domain.
3383  * @dev: the attached device.
3384  * @pasid: the pasid of the device.
3385  *
3386  * The @domain must have been attached to @pasid of the @dev with
3387  * iommu_attach_device_pasid().
3388  */
3389 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3390 			       ioasid_t pasid)
3391 {
3392 	struct iommu_group *group = iommu_group_get(dev);
3393 
3394 	mutex_lock(&group->mutex);
3395 	__iommu_remove_group_pasid(group, pasid);
3396 	WARN_ON(xa_erase(&group->pasid_array, pasid) != domain);
3397 	mutex_unlock(&group->mutex);
3398 
3399 	iommu_group_put(group);
3400 }
3401 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3402 
3403 /*
3404  * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev
3405  * @dev: the queried device
3406  * @pasid: the pasid of the device
3407  * @type: matched domain type, 0 for any match
3408  *
3409  * This is a variant of iommu_get_domain_for_dev(). It returns the existing
3410  * domain attached to pasid of a device. Callers must hold a lock around this
3411  * function, and both iommu_attach/detach_dev_pasid() whenever a domain of
3412  * type is being manipulated. This API does not internally resolve races with
3413  * attach/detach.
3414  *
3415  * Return: attached domain on success, NULL otherwise.
3416  */
3417 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev,
3418 						    ioasid_t pasid,
3419 						    unsigned int type)
3420 {
3421 	struct iommu_domain *domain;
3422 	struct iommu_group *group;
3423 
3424 	group = iommu_group_get(dev);
3425 	if (!group)
3426 		return NULL;
3427 
3428 	xa_lock(&group->pasid_array);
3429 	domain = xa_load(&group->pasid_array, pasid);
3430 	if (type && domain && domain->type != type)
3431 		domain = ERR_PTR(-EBUSY);
3432 	xa_unlock(&group->pasid_array);
3433 	iommu_group_put(group);
3434 
3435 	return domain;
3436 }
3437 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid);
3438 
3439 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev,
3440 					    struct mm_struct *mm)
3441 {
3442 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3443 	struct iommu_domain *domain;
3444 
3445 	domain = ops->domain_alloc(IOMMU_DOMAIN_SVA);
3446 	if (!domain)
3447 		return NULL;
3448 
3449 	domain->type = IOMMU_DOMAIN_SVA;
3450 	mmgrab(mm);
3451 	domain->mm = mm;
3452 	domain->iopf_handler = iommu_sva_handle_iopf;
3453 	domain->fault_data = mm;
3454 
3455 	return domain;
3456 }
3457