1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/amba/bus.h> 10 #include <linux/device.h> 11 #include <linux/kernel.h> 12 #include <linux/bits.h> 13 #include <linux/bug.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/host1x_context_bus.h> 20 #include <linux/iommu.h> 21 #include <linux/idr.h> 22 #include <linux/err.h> 23 #include <linux/pci.h> 24 #include <linux/pci-ats.h> 25 #include <linux/bitops.h> 26 #include <linux/platform_device.h> 27 #include <linux/property.h> 28 #include <linux/fsl/mc.h> 29 #include <linux/module.h> 30 #include <linux/cc_platform.h> 31 #include <trace/events/iommu.h> 32 #include <linux/sched/mm.h> 33 34 #include "dma-iommu.h" 35 36 #include "iommu-sva.h" 37 38 static struct kset *iommu_group_kset; 39 static DEFINE_IDA(iommu_group_ida); 40 41 static unsigned int iommu_def_domain_type __read_mostly; 42 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT); 43 static u32 iommu_cmd_line __read_mostly; 44 45 struct iommu_group { 46 struct kobject kobj; 47 struct kobject *devices_kobj; 48 struct list_head devices; 49 struct xarray pasid_array; 50 struct mutex mutex; 51 void *iommu_data; 52 void (*iommu_data_release)(void *iommu_data); 53 char *name; 54 int id; 55 struct iommu_domain *default_domain; 56 struct iommu_domain *blocking_domain; 57 struct iommu_domain *domain; 58 struct list_head entry; 59 unsigned int owner_cnt; 60 void *owner; 61 }; 62 63 struct group_device { 64 struct list_head list; 65 struct device *dev; 66 char *name; 67 }; 68 69 struct iommu_group_attribute { 70 struct attribute attr; 71 ssize_t (*show)(struct iommu_group *group, char *buf); 72 ssize_t (*store)(struct iommu_group *group, 73 const char *buf, size_t count); 74 }; 75 76 static const char * const iommu_group_resv_type_string[] = { 77 [IOMMU_RESV_DIRECT] = "direct", 78 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 79 [IOMMU_RESV_RESERVED] = "reserved", 80 [IOMMU_RESV_MSI] = "msi", 81 [IOMMU_RESV_SW_MSI] = "msi", 82 }; 83 84 #define IOMMU_CMD_LINE_DMA_API BIT(0) 85 #define IOMMU_CMD_LINE_STRICT BIT(1) 86 87 static int iommu_bus_notifier(struct notifier_block *nb, 88 unsigned long action, void *data); 89 static int iommu_alloc_default_domain(struct iommu_group *group, 90 struct device *dev); 91 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 92 unsigned type); 93 static int __iommu_attach_device(struct iommu_domain *domain, 94 struct device *dev); 95 static int __iommu_attach_group(struct iommu_domain *domain, 96 struct iommu_group *group); 97 static int __iommu_group_set_domain(struct iommu_group *group, 98 struct iommu_domain *new_domain); 99 static int iommu_create_device_direct_mappings(struct iommu_group *group, 100 struct device *dev); 101 static struct iommu_group *iommu_group_get_for_dev(struct device *dev); 102 static ssize_t iommu_group_store_type(struct iommu_group *group, 103 const char *buf, size_t count); 104 105 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 106 struct iommu_group_attribute iommu_group_attr_##_name = \ 107 __ATTR(_name, _mode, _show, _store) 108 109 #define to_iommu_group_attr(_attr) \ 110 container_of(_attr, struct iommu_group_attribute, attr) 111 #define to_iommu_group(_kobj) \ 112 container_of(_kobj, struct iommu_group, kobj) 113 114 static LIST_HEAD(iommu_device_list); 115 static DEFINE_SPINLOCK(iommu_device_lock); 116 117 static struct bus_type * const iommu_buses[] = { 118 &platform_bus_type, 119 #ifdef CONFIG_PCI 120 &pci_bus_type, 121 #endif 122 #ifdef CONFIG_ARM_AMBA 123 &amba_bustype, 124 #endif 125 #ifdef CONFIG_FSL_MC_BUS 126 &fsl_mc_bus_type, 127 #endif 128 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS 129 &host1x_context_device_bus_type, 130 #endif 131 }; 132 133 /* 134 * Use a function instead of an array here because the domain-type is a 135 * bit-field, so an array would waste memory. 136 */ 137 static const char *iommu_domain_type_str(unsigned int t) 138 { 139 switch (t) { 140 case IOMMU_DOMAIN_BLOCKED: 141 return "Blocked"; 142 case IOMMU_DOMAIN_IDENTITY: 143 return "Passthrough"; 144 case IOMMU_DOMAIN_UNMANAGED: 145 return "Unmanaged"; 146 case IOMMU_DOMAIN_DMA: 147 case IOMMU_DOMAIN_DMA_FQ: 148 return "Translated"; 149 default: 150 return "Unknown"; 151 } 152 } 153 154 static int __init iommu_subsys_init(void) 155 { 156 struct notifier_block *nb; 157 158 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) { 159 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 160 iommu_set_default_passthrough(false); 161 else 162 iommu_set_default_translated(false); 163 164 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 165 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 166 iommu_set_default_translated(false); 167 } 168 } 169 170 if (!iommu_default_passthrough() && !iommu_dma_strict) 171 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ; 172 173 pr_info("Default domain type: %s %s\n", 174 iommu_domain_type_str(iommu_def_domain_type), 175 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ? 176 "(set via kernel command line)" : ""); 177 178 if (!iommu_default_passthrough()) 179 pr_info("DMA domain TLB invalidation policy: %s mode %s\n", 180 iommu_dma_strict ? "strict" : "lazy", 181 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ? 182 "(set via kernel command line)" : ""); 183 184 nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL); 185 if (!nb) 186 return -ENOMEM; 187 188 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) { 189 nb[i].notifier_call = iommu_bus_notifier; 190 bus_register_notifier(iommu_buses[i], &nb[i]); 191 } 192 193 return 0; 194 } 195 subsys_initcall(iommu_subsys_init); 196 197 static int remove_iommu_group(struct device *dev, void *data) 198 { 199 if (dev->iommu && dev->iommu->iommu_dev == data) 200 iommu_release_device(dev); 201 202 return 0; 203 } 204 205 /** 206 * iommu_device_register() - Register an IOMMU hardware instance 207 * @iommu: IOMMU handle for the instance 208 * @ops: IOMMU ops to associate with the instance 209 * @hwdev: (optional) actual instance device, used for fwnode lookup 210 * 211 * Return: 0 on success, or an error. 212 */ 213 int iommu_device_register(struct iommu_device *iommu, 214 const struct iommu_ops *ops, struct device *hwdev) 215 { 216 int err = 0; 217 218 /* We need to be able to take module references appropriately */ 219 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner)) 220 return -EINVAL; 221 /* 222 * Temporarily enforce global restriction to a single driver. This was 223 * already the de-facto behaviour, since any possible combination of 224 * existing drivers would compete for at least the PCI or platform bus. 225 */ 226 if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops) 227 return -EBUSY; 228 229 iommu->ops = ops; 230 if (hwdev) 231 iommu->fwnode = dev_fwnode(hwdev); 232 233 spin_lock(&iommu_device_lock); 234 list_add_tail(&iommu->list, &iommu_device_list); 235 spin_unlock(&iommu_device_lock); 236 237 for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) { 238 iommu_buses[i]->iommu_ops = ops; 239 err = bus_iommu_probe(iommu_buses[i]); 240 } 241 if (err) 242 iommu_device_unregister(iommu); 243 return err; 244 } 245 EXPORT_SYMBOL_GPL(iommu_device_register); 246 247 void iommu_device_unregister(struct iommu_device *iommu) 248 { 249 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) 250 bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group); 251 252 spin_lock(&iommu_device_lock); 253 list_del(&iommu->list); 254 spin_unlock(&iommu_device_lock); 255 } 256 EXPORT_SYMBOL_GPL(iommu_device_unregister); 257 258 static struct dev_iommu *dev_iommu_get(struct device *dev) 259 { 260 struct dev_iommu *param = dev->iommu; 261 262 if (param) 263 return param; 264 265 param = kzalloc(sizeof(*param), GFP_KERNEL); 266 if (!param) 267 return NULL; 268 269 mutex_init(¶m->lock); 270 dev->iommu = param; 271 return param; 272 } 273 274 static void dev_iommu_free(struct device *dev) 275 { 276 struct dev_iommu *param = dev->iommu; 277 278 dev->iommu = NULL; 279 if (param->fwspec) { 280 fwnode_handle_put(param->fwspec->iommu_fwnode); 281 kfree(param->fwspec); 282 } 283 kfree(param); 284 } 285 286 static u32 dev_iommu_get_max_pasids(struct device *dev) 287 { 288 u32 max_pasids = 0, bits = 0; 289 int ret; 290 291 if (dev_is_pci(dev)) { 292 ret = pci_max_pasids(to_pci_dev(dev)); 293 if (ret > 0) 294 max_pasids = ret; 295 } else { 296 ret = device_property_read_u32(dev, "pasid-num-bits", &bits); 297 if (!ret) 298 max_pasids = 1UL << bits; 299 } 300 301 return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids); 302 } 303 304 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 305 { 306 const struct iommu_ops *ops = dev->bus->iommu_ops; 307 struct iommu_device *iommu_dev; 308 struct iommu_group *group; 309 static DEFINE_MUTEX(iommu_probe_device_lock); 310 int ret; 311 312 if (!ops) 313 return -ENODEV; 314 /* 315 * Serialise to avoid races between IOMMU drivers registering in 316 * parallel and/or the "replay" calls from ACPI/OF code via client 317 * driver probe. Once the latter have been cleaned up we should 318 * probably be able to use device_lock() here to minimise the scope, 319 * but for now enforcing a simple global ordering is fine. 320 */ 321 mutex_lock(&iommu_probe_device_lock); 322 if (!dev_iommu_get(dev)) { 323 ret = -ENOMEM; 324 goto err_unlock; 325 } 326 327 if (!try_module_get(ops->owner)) { 328 ret = -EINVAL; 329 goto err_free; 330 } 331 332 iommu_dev = ops->probe_device(dev); 333 if (IS_ERR(iommu_dev)) { 334 ret = PTR_ERR(iommu_dev); 335 goto out_module_put; 336 } 337 338 dev->iommu->iommu_dev = iommu_dev; 339 dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev); 340 341 group = iommu_group_get_for_dev(dev); 342 if (IS_ERR(group)) { 343 ret = PTR_ERR(group); 344 goto out_release; 345 } 346 347 mutex_lock(&group->mutex); 348 if (group_list && !group->default_domain && list_empty(&group->entry)) 349 list_add_tail(&group->entry, group_list); 350 mutex_unlock(&group->mutex); 351 iommu_group_put(group); 352 353 mutex_unlock(&iommu_probe_device_lock); 354 iommu_device_link(iommu_dev, dev); 355 356 return 0; 357 358 out_release: 359 if (ops->release_device) 360 ops->release_device(dev); 361 362 out_module_put: 363 module_put(ops->owner); 364 365 err_free: 366 dev_iommu_free(dev); 367 368 err_unlock: 369 mutex_unlock(&iommu_probe_device_lock); 370 371 return ret; 372 } 373 374 int iommu_probe_device(struct device *dev) 375 { 376 const struct iommu_ops *ops; 377 struct iommu_group *group; 378 int ret; 379 380 ret = __iommu_probe_device(dev, NULL); 381 if (ret) 382 goto err_out; 383 384 group = iommu_group_get(dev); 385 if (!group) { 386 ret = -ENODEV; 387 goto err_release; 388 } 389 390 /* 391 * Try to allocate a default domain - needs support from the 392 * IOMMU driver. There are still some drivers which don't 393 * support default domains, so the return value is not yet 394 * checked. 395 */ 396 mutex_lock(&group->mutex); 397 iommu_alloc_default_domain(group, dev); 398 399 /* 400 * If device joined an existing group which has been claimed, don't 401 * attach the default domain. 402 */ 403 if (group->default_domain && !group->owner) { 404 ret = __iommu_attach_device(group->default_domain, dev); 405 if (ret) { 406 mutex_unlock(&group->mutex); 407 iommu_group_put(group); 408 goto err_release; 409 } 410 } 411 412 iommu_create_device_direct_mappings(group, dev); 413 414 mutex_unlock(&group->mutex); 415 iommu_group_put(group); 416 417 ops = dev_iommu_ops(dev); 418 if (ops->probe_finalize) 419 ops->probe_finalize(dev); 420 421 return 0; 422 423 err_release: 424 iommu_release_device(dev); 425 426 err_out: 427 return ret; 428 429 } 430 431 void iommu_release_device(struct device *dev) 432 { 433 const struct iommu_ops *ops; 434 435 if (!dev->iommu) 436 return; 437 438 iommu_device_unlink(dev->iommu->iommu_dev, dev); 439 440 ops = dev_iommu_ops(dev); 441 if (ops->release_device) 442 ops->release_device(dev); 443 444 iommu_group_remove_device(dev); 445 module_put(ops->owner); 446 dev_iommu_free(dev); 447 } 448 449 static int __init iommu_set_def_domain_type(char *str) 450 { 451 bool pt; 452 int ret; 453 454 ret = kstrtobool(str, &pt); 455 if (ret) 456 return ret; 457 458 if (pt) 459 iommu_set_default_passthrough(true); 460 else 461 iommu_set_default_translated(true); 462 463 return 0; 464 } 465 early_param("iommu.passthrough", iommu_set_def_domain_type); 466 467 static int __init iommu_dma_setup(char *str) 468 { 469 int ret = kstrtobool(str, &iommu_dma_strict); 470 471 if (!ret) 472 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT; 473 return ret; 474 } 475 early_param("iommu.strict", iommu_dma_setup); 476 477 void iommu_set_dma_strict(void) 478 { 479 iommu_dma_strict = true; 480 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ) 481 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 482 } 483 484 static ssize_t iommu_group_attr_show(struct kobject *kobj, 485 struct attribute *__attr, char *buf) 486 { 487 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 488 struct iommu_group *group = to_iommu_group(kobj); 489 ssize_t ret = -EIO; 490 491 if (attr->show) 492 ret = attr->show(group, buf); 493 return ret; 494 } 495 496 static ssize_t iommu_group_attr_store(struct kobject *kobj, 497 struct attribute *__attr, 498 const char *buf, size_t count) 499 { 500 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 501 struct iommu_group *group = to_iommu_group(kobj); 502 ssize_t ret = -EIO; 503 504 if (attr->store) 505 ret = attr->store(group, buf, count); 506 return ret; 507 } 508 509 static const struct sysfs_ops iommu_group_sysfs_ops = { 510 .show = iommu_group_attr_show, 511 .store = iommu_group_attr_store, 512 }; 513 514 static int iommu_group_create_file(struct iommu_group *group, 515 struct iommu_group_attribute *attr) 516 { 517 return sysfs_create_file(&group->kobj, &attr->attr); 518 } 519 520 static void iommu_group_remove_file(struct iommu_group *group, 521 struct iommu_group_attribute *attr) 522 { 523 sysfs_remove_file(&group->kobj, &attr->attr); 524 } 525 526 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 527 { 528 return sprintf(buf, "%s\n", group->name); 529 } 530 531 /** 532 * iommu_insert_resv_region - Insert a new region in the 533 * list of reserved regions. 534 * @new: new region to insert 535 * @regions: list of regions 536 * 537 * Elements are sorted by start address and overlapping segments 538 * of the same type are merged. 539 */ 540 static int iommu_insert_resv_region(struct iommu_resv_region *new, 541 struct list_head *regions) 542 { 543 struct iommu_resv_region *iter, *tmp, *nr, *top; 544 LIST_HEAD(stack); 545 546 nr = iommu_alloc_resv_region(new->start, new->length, 547 new->prot, new->type, GFP_KERNEL); 548 if (!nr) 549 return -ENOMEM; 550 551 /* First add the new element based on start address sorting */ 552 list_for_each_entry(iter, regions, list) { 553 if (nr->start < iter->start || 554 (nr->start == iter->start && nr->type <= iter->type)) 555 break; 556 } 557 list_add_tail(&nr->list, &iter->list); 558 559 /* Merge overlapping segments of type nr->type in @regions, if any */ 560 list_for_each_entry_safe(iter, tmp, regions, list) { 561 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 562 563 /* no merge needed on elements of different types than @new */ 564 if (iter->type != new->type) { 565 list_move_tail(&iter->list, &stack); 566 continue; 567 } 568 569 /* look for the last stack element of same type as @iter */ 570 list_for_each_entry_reverse(top, &stack, list) 571 if (top->type == iter->type) 572 goto check_overlap; 573 574 list_move_tail(&iter->list, &stack); 575 continue; 576 577 check_overlap: 578 top_end = top->start + top->length - 1; 579 580 if (iter->start > top_end + 1) { 581 list_move_tail(&iter->list, &stack); 582 } else { 583 top->length = max(top_end, iter_end) - top->start + 1; 584 list_del(&iter->list); 585 kfree(iter); 586 } 587 } 588 list_splice(&stack, regions); 589 return 0; 590 } 591 592 static int 593 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 594 struct list_head *group_resv_regions) 595 { 596 struct iommu_resv_region *entry; 597 int ret = 0; 598 599 list_for_each_entry(entry, dev_resv_regions, list) { 600 ret = iommu_insert_resv_region(entry, group_resv_regions); 601 if (ret) 602 break; 603 } 604 return ret; 605 } 606 607 int iommu_get_group_resv_regions(struct iommu_group *group, 608 struct list_head *head) 609 { 610 struct group_device *device; 611 int ret = 0; 612 613 mutex_lock(&group->mutex); 614 list_for_each_entry(device, &group->devices, list) { 615 struct list_head dev_resv_regions; 616 617 /* 618 * Non-API groups still expose reserved_regions in sysfs, 619 * so filter out calls that get here that way. 620 */ 621 if (!device->dev->iommu) 622 break; 623 624 INIT_LIST_HEAD(&dev_resv_regions); 625 iommu_get_resv_regions(device->dev, &dev_resv_regions); 626 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 627 iommu_put_resv_regions(device->dev, &dev_resv_regions); 628 if (ret) 629 break; 630 } 631 mutex_unlock(&group->mutex); 632 return ret; 633 } 634 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 635 636 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 637 char *buf) 638 { 639 struct iommu_resv_region *region, *next; 640 struct list_head group_resv_regions; 641 char *str = buf; 642 643 INIT_LIST_HEAD(&group_resv_regions); 644 iommu_get_group_resv_regions(group, &group_resv_regions); 645 646 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 647 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 648 (long long int)region->start, 649 (long long int)(region->start + 650 region->length - 1), 651 iommu_group_resv_type_string[region->type]); 652 kfree(region); 653 } 654 655 return (str - buf); 656 } 657 658 static ssize_t iommu_group_show_type(struct iommu_group *group, 659 char *buf) 660 { 661 char *type = "unknown\n"; 662 663 mutex_lock(&group->mutex); 664 if (group->default_domain) { 665 switch (group->default_domain->type) { 666 case IOMMU_DOMAIN_BLOCKED: 667 type = "blocked\n"; 668 break; 669 case IOMMU_DOMAIN_IDENTITY: 670 type = "identity\n"; 671 break; 672 case IOMMU_DOMAIN_UNMANAGED: 673 type = "unmanaged\n"; 674 break; 675 case IOMMU_DOMAIN_DMA: 676 type = "DMA\n"; 677 break; 678 case IOMMU_DOMAIN_DMA_FQ: 679 type = "DMA-FQ\n"; 680 break; 681 } 682 } 683 mutex_unlock(&group->mutex); 684 strcpy(buf, type); 685 686 return strlen(type); 687 } 688 689 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 690 691 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 692 iommu_group_show_resv_regions, NULL); 693 694 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type, 695 iommu_group_store_type); 696 697 static void iommu_group_release(struct kobject *kobj) 698 { 699 struct iommu_group *group = to_iommu_group(kobj); 700 701 pr_debug("Releasing group %d\n", group->id); 702 703 if (group->iommu_data_release) 704 group->iommu_data_release(group->iommu_data); 705 706 ida_free(&iommu_group_ida, group->id); 707 708 if (group->default_domain) 709 iommu_domain_free(group->default_domain); 710 if (group->blocking_domain) 711 iommu_domain_free(group->blocking_domain); 712 713 kfree(group->name); 714 kfree(group); 715 } 716 717 static struct kobj_type iommu_group_ktype = { 718 .sysfs_ops = &iommu_group_sysfs_ops, 719 .release = iommu_group_release, 720 }; 721 722 /** 723 * iommu_group_alloc - Allocate a new group 724 * 725 * This function is called by an iommu driver to allocate a new iommu 726 * group. The iommu group represents the minimum granularity of the iommu. 727 * Upon successful return, the caller holds a reference to the supplied 728 * group in order to hold the group until devices are added. Use 729 * iommu_group_put() to release this extra reference count, allowing the 730 * group to be automatically reclaimed once it has no devices or external 731 * references. 732 */ 733 struct iommu_group *iommu_group_alloc(void) 734 { 735 struct iommu_group *group; 736 int ret; 737 738 group = kzalloc(sizeof(*group), GFP_KERNEL); 739 if (!group) 740 return ERR_PTR(-ENOMEM); 741 742 group->kobj.kset = iommu_group_kset; 743 mutex_init(&group->mutex); 744 INIT_LIST_HEAD(&group->devices); 745 INIT_LIST_HEAD(&group->entry); 746 xa_init(&group->pasid_array); 747 748 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL); 749 if (ret < 0) { 750 kfree(group); 751 return ERR_PTR(ret); 752 } 753 group->id = ret; 754 755 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 756 NULL, "%d", group->id); 757 if (ret) { 758 kobject_put(&group->kobj); 759 return ERR_PTR(ret); 760 } 761 762 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 763 if (!group->devices_kobj) { 764 kobject_put(&group->kobj); /* triggers .release & free */ 765 return ERR_PTR(-ENOMEM); 766 } 767 768 /* 769 * The devices_kobj holds a reference on the group kobject, so 770 * as long as that exists so will the group. We can therefore 771 * use the devices_kobj for reference counting. 772 */ 773 kobject_put(&group->kobj); 774 775 ret = iommu_group_create_file(group, 776 &iommu_group_attr_reserved_regions); 777 if (ret) 778 return ERR_PTR(ret); 779 780 ret = iommu_group_create_file(group, &iommu_group_attr_type); 781 if (ret) 782 return ERR_PTR(ret); 783 784 pr_debug("Allocated group %d\n", group->id); 785 786 return group; 787 } 788 EXPORT_SYMBOL_GPL(iommu_group_alloc); 789 790 struct iommu_group *iommu_group_get_by_id(int id) 791 { 792 struct kobject *group_kobj; 793 struct iommu_group *group; 794 const char *name; 795 796 if (!iommu_group_kset) 797 return NULL; 798 799 name = kasprintf(GFP_KERNEL, "%d", id); 800 if (!name) 801 return NULL; 802 803 group_kobj = kset_find_obj(iommu_group_kset, name); 804 kfree(name); 805 806 if (!group_kobj) 807 return NULL; 808 809 group = container_of(group_kobj, struct iommu_group, kobj); 810 BUG_ON(group->id != id); 811 812 kobject_get(group->devices_kobj); 813 kobject_put(&group->kobj); 814 815 return group; 816 } 817 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 818 819 /** 820 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 821 * @group: the group 822 * 823 * iommu drivers can store data in the group for use when doing iommu 824 * operations. This function provides a way to retrieve it. Caller 825 * should hold a group reference. 826 */ 827 void *iommu_group_get_iommudata(struct iommu_group *group) 828 { 829 return group->iommu_data; 830 } 831 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 832 833 /** 834 * iommu_group_set_iommudata - set iommu_data for a group 835 * @group: the group 836 * @iommu_data: new data 837 * @release: release function for iommu_data 838 * 839 * iommu drivers can store data in the group for use when doing iommu 840 * operations. This function provides a way to set the data after 841 * the group has been allocated. Caller should hold a group reference. 842 */ 843 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 844 void (*release)(void *iommu_data)) 845 { 846 group->iommu_data = iommu_data; 847 group->iommu_data_release = release; 848 } 849 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 850 851 /** 852 * iommu_group_set_name - set name for a group 853 * @group: the group 854 * @name: name 855 * 856 * Allow iommu driver to set a name for a group. When set it will 857 * appear in a name attribute file under the group in sysfs. 858 */ 859 int iommu_group_set_name(struct iommu_group *group, const char *name) 860 { 861 int ret; 862 863 if (group->name) { 864 iommu_group_remove_file(group, &iommu_group_attr_name); 865 kfree(group->name); 866 group->name = NULL; 867 if (!name) 868 return 0; 869 } 870 871 group->name = kstrdup(name, GFP_KERNEL); 872 if (!group->name) 873 return -ENOMEM; 874 875 ret = iommu_group_create_file(group, &iommu_group_attr_name); 876 if (ret) { 877 kfree(group->name); 878 group->name = NULL; 879 return ret; 880 } 881 882 return 0; 883 } 884 EXPORT_SYMBOL_GPL(iommu_group_set_name); 885 886 static int iommu_create_device_direct_mappings(struct iommu_group *group, 887 struct device *dev) 888 { 889 struct iommu_domain *domain = group->default_domain; 890 struct iommu_resv_region *entry; 891 struct list_head mappings; 892 unsigned long pg_size; 893 int ret = 0; 894 895 if (!domain || !iommu_is_dma_domain(domain)) 896 return 0; 897 898 BUG_ON(!domain->pgsize_bitmap); 899 900 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 901 INIT_LIST_HEAD(&mappings); 902 903 iommu_get_resv_regions(dev, &mappings); 904 905 /* We need to consider overlapping regions for different devices */ 906 list_for_each_entry(entry, &mappings, list) { 907 dma_addr_t start, end, addr; 908 size_t map_size = 0; 909 910 start = ALIGN(entry->start, pg_size); 911 end = ALIGN(entry->start + entry->length, pg_size); 912 913 if (entry->type != IOMMU_RESV_DIRECT && 914 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 915 continue; 916 917 for (addr = start; addr <= end; addr += pg_size) { 918 phys_addr_t phys_addr; 919 920 if (addr == end) 921 goto map_end; 922 923 phys_addr = iommu_iova_to_phys(domain, addr); 924 if (!phys_addr) { 925 map_size += pg_size; 926 continue; 927 } 928 929 map_end: 930 if (map_size) { 931 ret = iommu_map(domain, addr - map_size, 932 addr - map_size, map_size, 933 entry->prot); 934 if (ret) 935 goto out; 936 map_size = 0; 937 } 938 } 939 940 } 941 942 iommu_flush_iotlb_all(domain); 943 944 out: 945 iommu_put_resv_regions(dev, &mappings); 946 947 return ret; 948 } 949 950 static bool iommu_is_attach_deferred(struct device *dev) 951 { 952 const struct iommu_ops *ops = dev_iommu_ops(dev); 953 954 if (ops->is_attach_deferred) 955 return ops->is_attach_deferred(dev); 956 957 return false; 958 } 959 960 /** 961 * iommu_group_add_device - add a device to an iommu group 962 * @group: the group into which to add the device (reference should be held) 963 * @dev: the device 964 * 965 * This function is called by an iommu driver to add a device into a 966 * group. Adding a device increments the group reference count. 967 */ 968 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 969 { 970 int ret, i = 0; 971 struct group_device *device; 972 973 device = kzalloc(sizeof(*device), GFP_KERNEL); 974 if (!device) 975 return -ENOMEM; 976 977 device->dev = dev; 978 979 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 980 if (ret) 981 goto err_free_device; 982 983 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 984 rename: 985 if (!device->name) { 986 ret = -ENOMEM; 987 goto err_remove_link; 988 } 989 990 ret = sysfs_create_link_nowarn(group->devices_kobj, 991 &dev->kobj, device->name); 992 if (ret) { 993 if (ret == -EEXIST && i >= 0) { 994 /* 995 * Account for the slim chance of collision 996 * and append an instance to the name. 997 */ 998 kfree(device->name); 999 device->name = kasprintf(GFP_KERNEL, "%s.%d", 1000 kobject_name(&dev->kobj), i++); 1001 goto rename; 1002 } 1003 goto err_free_name; 1004 } 1005 1006 kobject_get(group->devices_kobj); 1007 1008 dev->iommu_group = group; 1009 1010 mutex_lock(&group->mutex); 1011 list_add_tail(&device->list, &group->devices); 1012 if (group->domain && !iommu_is_attach_deferred(dev)) 1013 ret = __iommu_attach_device(group->domain, dev); 1014 mutex_unlock(&group->mutex); 1015 if (ret) 1016 goto err_put_group; 1017 1018 trace_add_device_to_group(group->id, dev); 1019 1020 dev_info(dev, "Adding to iommu group %d\n", group->id); 1021 1022 return 0; 1023 1024 err_put_group: 1025 mutex_lock(&group->mutex); 1026 list_del(&device->list); 1027 mutex_unlock(&group->mutex); 1028 dev->iommu_group = NULL; 1029 kobject_put(group->devices_kobj); 1030 sysfs_remove_link(group->devices_kobj, device->name); 1031 err_free_name: 1032 kfree(device->name); 1033 err_remove_link: 1034 sysfs_remove_link(&dev->kobj, "iommu_group"); 1035 err_free_device: 1036 kfree(device); 1037 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 1038 return ret; 1039 } 1040 EXPORT_SYMBOL_GPL(iommu_group_add_device); 1041 1042 /** 1043 * iommu_group_remove_device - remove a device from it's current group 1044 * @dev: device to be removed 1045 * 1046 * This function is called by an iommu driver to remove the device from 1047 * it's current group. This decrements the iommu group reference count. 1048 */ 1049 void iommu_group_remove_device(struct device *dev) 1050 { 1051 struct iommu_group *group = dev->iommu_group; 1052 struct group_device *tmp_device, *device = NULL; 1053 1054 if (!group) 1055 return; 1056 1057 dev_info(dev, "Removing from iommu group %d\n", group->id); 1058 1059 mutex_lock(&group->mutex); 1060 list_for_each_entry(tmp_device, &group->devices, list) { 1061 if (tmp_device->dev == dev) { 1062 device = tmp_device; 1063 list_del(&device->list); 1064 break; 1065 } 1066 } 1067 mutex_unlock(&group->mutex); 1068 1069 if (!device) 1070 return; 1071 1072 sysfs_remove_link(group->devices_kobj, device->name); 1073 sysfs_remove_link(&dev->kobj, "iommu_group"); 1074 1075 trace_remove_device_from_group(group->id, dev); 1076 1077 kfree(device->name); 1078 kfree(device); 1079 dev->iommu_group = NULL; 1080 kobject_put(group->devices_kobj); 1081 } 1082 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 1083 1084 static int iommu_group_device_count(struct iommu_group *group) 1085 { 1086 struct group_device *entry; 1087 int ret = 0; 1088 1089 list_for_each_entry(entry, &group->devices, list) 1090 ret++; 1091 1092 return ret; 1093 } 1094 1095 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 1096 int (*fn)(struct device *, void *)) 1097 { 1098 struct group_device *device; 1099 int ret = 0; 1100 1101 list_for_each_entry(device, &group->devices, list) { 1102 ret = fn(device->dev, data); 1103 if (ret) 1104 break; 1105 } 1106 return ret; 1107 } 1108 1109 /** 1110 * iommu_group_for_each_dev - iterate over each device in the group 1111 * @group: the group 1112 * @data: caller opaque data to be passed to callback function 1113 * @fn: caller supplied callback function 1114 * 1115 * This function is called by group users to iterate over group devices. 1116 * Callers should hold a reference count to the group during callback. 1117 * The group->mutex is held across callbacks, which will block calls to 1118 * iommu_group_add/remove_device. 1119 */ 1120 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 1121 int (*fn)(struct device *, void *)) 1122 { 1123 int ret; 1124 1125 mutex_lock(&group->mutex); 1126 ret = __iommu_group_for_each_dev(group, data, fn); 1127 mutex_unlock(&group->mutex); 1128 1129 return ret; 1130 } 1131 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 1132 1133 /** 1134 * iommu_group_get - Return the group for a device and increment reference 1135 * @dev: get the group that this device belongs to 1136 * 1137 * This function is called by iommu drivers and users to get the group 1138 * for the specified device. If found, the group is returned and the group 1139 * reference in incremented, else NULL. 1140 */ 1141 struct iommu_group *iommu_group_get(struct device *dev) 1142 { 1143 struct iommu_group *group = dev->iommu_group; 1144 1145 if (group) 1146 kobject_get(group->devices_kobj); 1147 1148 return group; 1149 } 1150 EXPORT_SYMBOL_GPL(iommu_group_get); 1151 1152 /** 1153 * iommu_group_ref_get - Increment reference on a group 1154 * @group: the group to use, must not be NULL 1155 * 1156 * This function is called by iommu drivers to take additional references on an 1157 * existing group. Returns the given group for convenience. 1158 */ 1159 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 1160 { 1161 kobject_get(group->devices_kobj); 1162 return group; 1163 } 1164 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 1165 1166 /** 1167 * iommu_group_put - Decrement group reference 1168 * @group: the group to use 1169 * 1170 * This function is called by iommu drivers and users to release the 1171 * iommu group. Once the reference count is zero, the group is released. 1172 */ 1173 void iommu_group_put(struct iommu_group *group) 1174 { 1175 if (group) 1176 kobject_put(group->devices_kobj); 1177 } 1178 EXPORT_SYMBOL_GPL(iommu_group_put); 1179 1180 /** 1181 * iommu_register_device_fault_handler() - Register a device fault handler 1182 * @dev: the device 1183 * @handler: the fault handler 1184 * @data: private data passed as argument to the handler 1185 * 1186 * When an IOMMU fault event is received, this handler gets called with the 1187 * fault event and data as argument. The handler should return 0 on success. If 1188 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 1189 * complete the fault by calling iommu_page_response() with one of the following 1190 * response code: 1191 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 1192 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 1193 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 1194 * page faults if possible. 1195 * 1196 * Return 0 if the fault handler was installed successfully, or an error. 1197 */ 1198 int iommu_register_device_fault_handler(struct device *dev, 1199 iommu_dev_fault_handler_t handler, 1200 void *data) 1201 { 1202 struct dev_iommu *param = dev->iommu; 1203 int ret = 0; 1204 1205 if (!param) 1206 return -EINVAL; 1207 1208 mutex_lock(¶m->lock); 1209 /* Only allow one fault handler registered for each device */ 1210 if (param->fault_param) { 1211 ret = -EBUSY; 1212 goto done_unlock; 1213 } 1214 1215 get_device(dev); 1216 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 1217 if (!param->fault_param) { 1218 put_device(dev); 1219 ret = -ENOMEM; 1220 goto done_unlock; 1221 } 1222 param->fault_param->handler = handler; 1223 param->fault_param->data = data; 1224 mutex_init(¶m->fault_param->lock); 1225 INIT_LIST_HEAD(¶m->fault_param->faults); 1226 1227 done_unlock: 1228 mutex_unlock(¶m->lock); 1229 1230 return ret; 1231 } 1232 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1233 1234 /** 1235 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1236 * @dev: the device 1237 * 1238 * Remove the device fault handler installed with 1239 * iommu_register_device_fault_handler(). 1240 * 1241 * Return 0 on success, or an error. 1242 */ 1243 int iommu_unregister_device_fault_handler(struct device *dev) 1244 { 1245 struct dev_iommu *param = dev->iommu; 1246 int ret = 0; 1247 1248 if (!param) 1249 return -EINVAL; 1250 1251 mutex_lock(¶m->lock); 1252 1253 if (!param->fault_param) 1254 goto unlock; 1255 1256 /* we cannot unregister handler if there are pending faults */ 1257 if (!list_empty(¶m->fault_param->faults)) { 1258 ret = -EBUSY; 1259 goto unlock; 1260 } 1261 1262 kfree(param->fault_param); 1263 param->fault_param = NULL; 1264 put_device(dev); 1265 unlock: 1266 mutex_unlock(¶m->lock); 1267 1268 return ret; 1269 } 1270 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1271 1272 /** 1273 * iommu_report_device_fault() - Report fault event to device driver 1274 * @dev: the device 1275 * @evt: fault event data 1276 * 1277 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1278 * handler. When this function fails and the fault is recoverable, it is the 1279 * caller's responsibility to complete the fault. 1280 * 1281 * Return 0 on success, or an error. 1282 */ 1283 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1284 { 1285 struct dev_iommu *param = dev->iommu; 1286 struct iommu_fault_event *evt_pending = NULL; 1287 struct iommu_fault_param *fparam; 1288 int ret = 0; 1289 1290 if (!param || !evt) 1291 return -EINVAL; 1292 1293 /* we only report device fault if there is a handler registered */ 1294 mutex_lock(¶m->lock); 1295 fparam = param->fault_param; 1296 if (!fparam || !fparam->handler) { 1297 ret = -EINVAL; 1298 goto done_unlock; 1299 } 1300 1301 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1302 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1303 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1304 GFP_KERNEL); 1305 if (!evt_pending) { 1306 ret = -ENOMEM; 1307 goto done_unlock; 1308 } 1309 mutex_lock(&fparam->lock); 1310 list_add_tail(&evt_pending->list, &fparam->faults); 1311 mutex_unlock(&fparam->lock); 1312 } 1313 1314 ret = fparam->handler(&evt->fault, fparam->data); 1315 if (ret && evt_pending) { 1316 mutex_lock(&fparam->lock); 1317 list_del(&evt_pending->list); 1318 mutex_unlock(&fparam->lock); 1319 kfree(evt_pending); 1320 } 1321 done_unlock: 1322 mutex_unlock(¶m->lock); 1323 return ret; 1324 } 1325 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1326 1327 int iommu_page_response(struct device *dev, 1328 struct iommu_page_response *msg) 1329 { 1330 bool needs_pasid; 1331 int ret = -EINVAL; 1332 struct iommu_fault_event *evt; 1333 struct iommu_fault_page_request *prm; 1334 struct dev_iommu *param = dev->iommu; 1335 const struct iommu_ops *ops = dev_iommu_ops(dev); 1336 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID; 1337 1338 if (!ops->page_response) 1339 return -ENODEV; 1340 1341 if (!param || !param->fault_param) 1342 return -EINVAL; 1343 1344 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1345 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1346 return -EINVAL; 1347 1348 /* Only send response if there is a fault report pending */ 1349 mutex_lock(¶m->fault_param->lock); 1350 if (list_empty(¶m->fault_param->faults)) { 1351 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1352 goto done_unlock; 1353 } 1354 /* 1355 * Check if we have a matching page request pending to respond, 1356 * otherwise return -EINVAL 1357 */ 1358 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1359 prm = &evt->fault.prm; 1360 if (prm->grpid != msg->grpid) 1361 continue; 1362 1363 /* 1364 * If the PASID is required, the corresponding request is 1365 * matched using the group ID, the PASID valid bit and the PASID 1366 * value. Otherwise only the group ID matches request and 1367 * response. 1368 */ 1369 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; 1370 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid)) 1371 continue; 1372 1373 if (!needs_pasid && has_pasid) { 1374 /* No big deal, just clear it. */ 1375 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID; 1376 msg->pasid = 0; 1377 } 1378 1379 ret = ops->page_response(dev, evt, msg); 1380 list_del(&evt->list); 1381 kfree(evt); 1382 break; 1383 } 1384 1385 done_unlock: 1386 mutex_unlock(¶m->fault_param->lock); 1387 return ret; 1388 } 1389 EXPORT_SYMBOL_GPL(iommu_page_response); 1390 1391 /** 1392 * iommu_group_id - Return ID for a group 1393 * @group: the group to ID 1394 * 1395 * Return the unique ID for the group matching the sysfs group number. 1396 */ 1397 int iommu_group_id(struct iommu_group *group) 1398 { 1399 return group->id; 1400 } 1401 EXPORT_SYMBOL_GPL(iommu_group_id); 1402 1403 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1404 unsigned long *devfns); 1405 1406 /* 1407 * To consider a PCI device isolated, we require ACS to support Source 1408 * Validation, Request Redirection, Completer Redirection, and Upstream 1409 * Forwarding. This effectively means that devices cannot spoof their 1410 * requester ID, requests and completions cannot be redirected, and all 1411 * transactions are forwarded upstream, even as it passes through a 1412 * bridge where the target device is downstream. 1413 */ 1414 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1415 1416 /* 1417 * For multifunction devices which are not isolated from each other, find 1418 * all the other non-isolated functions and look for existing groups. For 1419 * each function, we also need to look for aliases to or from other devices 1420 * that may already have a group. 1421 */ 1422 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1423 unsigned long *devfns) 1424 { 1425 struct pci_dev *tmp = NULL; 1426 struct iommu_group *group; 1427 1428 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1429 return NULL; 1430 1431 for_each_pci_dev(tmp) { 1432 if (tmp == pdev || tmp->bus != pdev->bus || 1433 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1434 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1435 continue; 1436 1437 group = get_pci_alias_group(tmp, devfns); 1438 if (group) { 1439 pci_dev_put(tmp); 1440 return group; 1441 } 1442 } 1443 1444 return NULL; 1445 } 1446 1447 /* 1448 * Look for aliases to or from the given device for existing groups. DMA 1449 * aliases are only supported on the same bus, therefore the search 1450 * space is quite small (especially since we're really only looking at pcie 1451 * device, and therefore only expect multiple slots on the root complex or 1452 * downstream switch ports). It's conceivable though that a pair of 1453 * multifunction devices could have aliases between them that would cause a 1454 * loop. To prevent this, we use a bitmap to track where we've been. 1455 */ 1456 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1457 unsigned long *devfns) 1458 { 1459 struct pci_dev *tmp = NULL; 1460 struct iommu_group *group; 1461 1462 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1463 return NULL; 1464 1465 group = iommu_group_get(&pdev->dev); 1466 if (group) 1467 return group; 1468 1469 for_each_pci_dev(tmp) { 1470 if (tmp == pdev || tmp->bus != pdev->bus) 1471 continue; 1472 1473 /* We alias them or they alias us */ 1474 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1475 group = get_pci_alias_group(tmp, devfns); 1476 if (group) { 1477 pci_dev_put(tmp); 1478 return group; 1479 } 1480 1481 group = get_pci_function_alias_group(tmp, devfns); 1482 if (group) { 1483 pci_dev_put(tmp); 1484 return group; 1485 } 1486 } 1487 } 1488 1489 return NULL; 1490 } 1491 1492 struct group_for_pci_data { 1493 struct pci_dev *pdev; 1494 struct iommu_group *group; 1495 }; 1496 1497 /* 1498 * DMA alias iterator callback, return the last seen device. Stop and return 1499 * the IOMMU group if we find one along the way. 1500 */ 1501 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1502 { 1503 struct group_for_pci_data *data = opaque; 1504 1505 data->pdev = pdev; 1506 data->group = iommu_group_get(&pdev->dev); 1507 1508 return data->group != NULL; 1509 } 1510 1511 /* 1512 * Generic device_group call-back function. It just allocates one 1513 * iommu-group per device. 1514 */ 1515 struct iommu_group *generic_device_group(struct device *dev) 1516 { 1517 return iommu_group_alloc(); 1518 } 1519 EXPORT_SYMBOL_GPL(generic_device_group); 1520 1521 /* 1522 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1523 * to find or create an IOMMU group for a device. 1524 */ 1525 struct iommu_group *pci_device_group(struct device *dev) 1526 { 1527 struct pci_dev *pdev = to_pci_dev(dev); 1528 struct group_for_pci_data data; 1529 struct pci_bus *bus; 1530 struct iommu_group *group = NULL; 1531 u64 devfns[4] = { 0 }; 1532 1533 if (WARN_ON(!dev_is_pci(dev))) 1534 return ERR_PTR(-EINVAL); 1535 1536 /* 1537 * Find the upstream DMA alias for the device. A device must not 1538 * be aliased due to topology in order to have its own IOMMU group. 1539 * If we find an alias along the way that already belongs to a 1540 * group, use it. 1541 */ 1542 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1543 return data.group; 1544 1545 pdev = data.pdev; 1546 1547 /* 1548 * Continue upstream from the point of minimum IOMMU granularity 1549 * due to aliases to the point where devices are protected from 1550 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1551 * group, use it. 1552 */ 1553 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1554 if (!bus->self) 1555 continue; 1556 1557 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1558 break; 1559 1560 pdev = bus->self; 1561 1562 group = iommu_group_get(&pdev->dev); 1563 if (group) 1564 return group; 1565 } 1566 1567 /* 1568 * Look for existing groups on device aliases. If we alias another 1569 * device or another device aliases us, use the same group. 1570 */ 1571 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1572 if (group) 1573 return group; 1574 1575 /* 1576 * Look for existing groups on non-isolated functions on the same 1577 * slot and aliases of those funcions, if any. No need to clear 1578 * the search bitmap, the tested devfns are still valid. 1579 */ 1580 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1581 if (group) 1582 return group; 1583 1584 /* No shared group found, allocate new */ 1585 return iommu_group_alloc(); 1586 } 1587 EXPORT_SYMBOL_GPL(pci_device_group); 1588 1589 /* Get the IOMMU group for device on fsl-mc bus */ 1590 struct iommu_group *fsl_mc_device_group(struct device *dev) 1591 { 1592 struct device *cont_dev = fsl_mc_cont_dev(dev); 1593 struct iommu_group *group; 1594 1595 group = iommu_group_get(cont_dev); 1596 if (!group) 1597 group = iommu_group_alloc(); 1598 return group; 1599 } 1600 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1601 1602 static int iommu_get_def_domain_type(struct device *dev) 1603 { 1604 const struct iommu_ops *ops = dev_iommu_ops(dev); 1605 1606 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted) 1607 return IOMMU_DOMAIN_DMA; 1608 1609 if (ops->def_domain_type) 1610 return ops->def_domain_type(dev); 1611 1612 return 0; 1613 } 1614 1615 static int iommu_group_alloc_default_domain(struct bus_type *bus, 1616 struct iommu_group *group, 1617 unsigned int type) 1618 { 1619 struct iommu_domain *dom; 1620 1621 dom = __iommu_domain_alloc(bus, type); 1622 if (!dom && type != IOMMU_DOMAIN_DMA) { 1623 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA); 1624 if (dom) 1625 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1626 type, group->name); 1627 } 1628 1629 if (!dom) 1630 return -ENOMEM; 1631 1632 group->default_domain = dom; 1633 if (!group->domain) 1634 group->domain = dom; 1635 return 0; 1636 } 1637 1638 static int iommu_alloc_default_domain(struct iommu_group *group, 1639 struct device *dev) 1640 { 1641 unsigned int type; 1642 1643 if (group->default_domain) 1644 return 0; 1645 1646 type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type; 1647 1648 return iommu_group_alloc_default_domain(dev->bus, group, type); 1649 } 1650 1651 /** 1652 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1653 * @dev: target device 1654 * 1655 * This function is intended to be called by IOMMU drivers and extended to 1656 * support common, bus-defined algorithms when determining or creating the 1657 * IOMMU group for a device. On success, the caller will hold a reference 1658 * to the returned IOMMU group, which will already include the provided 1659 * device. The reference should be released with iommu_group_put(). 1660 */ 1661 static struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1662 { 1663 const struct iommu_ops *ops = dev_iommu_ops(dev); 1664 struct iommu_group *group; 1665 int ret; 1666 1667 group = iommu_group_get(dev); 1668 if (group) 1669 return group; 1670 1671 group = ops->device_group(dev); 1672 if (WARN_ON_ONCE(group == NULL)) 1673 return ERR_PTR(-EINVAL); 1674 1675 if (IS_ERR(group)) 1676 return group; 1677 1678 ret = iommu_group_add_device(group, dev); 1679 if (ret) 1680 goto out_put_group; 1681 1682 return group; 1683 1684 out_put_group: 1685 iommu_group_put(group); 1686 1687 return ERR_PTR(ret); 1688 } 1689 1690 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1691 { 1692 return group->default_domain; 1693 } 1694 1695 static int probe_iommu_group(struct device *dev, void *data) 1696 { 1697 struct list_head *group_list = data; 1698 struct iommu_group *group; 1699 int ret; 1700 1701 /* Device is probed already if in a group */ 1702 group = iommu_group_get(dev); 1703 if (group) { 1704 iommu_group_put(group); 1705 return 0; 1706 } 1707 1708 ret = __iommu_probe_device(dev, group_list); 1709 if (ret == -ENODEV) 1710 ret = 0; 1711 1712 return ret; 1713 } 1714 1715 static int iommu_bus_notifier(struct notifier_block *nb, 1716 unsigned long action, void *data) 1717 { 1718 struct device *dev = data; 1719 1720 if (action == BUS_NOTIFY_ADD_DEVICE) { 1721 int ret; 1722 1723 ret = iommu_probe_device(dev); 1724 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1725 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1726 iommu_release_device(dev); 1727 return NOTIFY_OK; 1728 } 1729 1730 return 0; 1731 } 1732 1733 struct __group_domain_type { 1734 struct device *dev; 1735 unsigned int type; 1736 }; 1737 1738 static int probe_get_default_domain_type(struct device *dev, void *data) 1739 { 1740 struct __group_domain_type *gtype = data; 1741 unsigned int type = iommu_get_def_domain_type(dev); 1742 1743 if (type) { 1744 if (gtype->type && gtype->type != type) { 1745 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n", 1746 iommu_domain_type_str(type), 1747 dev_name(gtype->dev), 1748 iommu_domain_type_str(gtype->type)); 1749 gtype->type = 0; 1750 } 1751 1752 if (!gtype->dev) { 1753 gtype->dev = dev; 1754 gtype->type = type; 1755 } 1756 } 1757 1758 return 0; 1759 } 1760 1761 static void probe_alloc_default_domain(struct bus_type *bus, 1762 struct iommu_group *group) 1763 { 1764 struct __group_domain_type gtype; 1765 1766 memset(>ype, 0, sizeof(gtype)); 1767 1768 /* Ask for default domain requirements of all devices in the group */ 1769 __iommu_group_for_each_dev(group, >ype, 1770 probe_get_default_domain_type); 1771 1772 if (!gtype.type) 1773 gtype.type = iommu_def_domain_type; 1774 1775 iommu_group_alloc_default_domain(bus, group, gtype.type); 1776 1777 } 1778 1779 static int iommu_group_do_dma_attach(struct device *dev, void *data) 1780 { 1781 struct iommu_domain *domain = data; 1782 int ret = 0; 1783 1784 if (!iommu_is_attach_deferred(dev)) 1785 ret = __iommu_attach_device(domain, dev); 1786 1787 return ret; 1788 } 1789 1790 static int __iommu_group_dma_attach(struct iommu_group *group) 1791 { 1792 return __iommu_group_for_each_dev(group, group->default_domain, 1793 iommu_group_do_dma_attach); 1794 } 1795 1796 static int iommu_group_do_probe_finalize(struct device *dev, void *data) 1797 { 1798 const struct iommu_ops *ops = dev_iommu_ops(dev); 1799 1800 if (ops->probe_finalize) 1801 ops->probe_finalize(dev); 1802 1803 return 0; 1804 } 1805 1806 static void __iommu_group_dma_finalize(struct iommu_group *group) 1807 { 1808 __iommu_group_for_each_dev(group, group->default_domain, 1809 iommu_group_do_probe_finalize); 1810 } 1811 1812 static int iommu_do_create_direct_mappings(struct device *dev, void *data) 1813 { 1814 struct iommu_group *group = data; 1815 1816 iommu_create_device_direct_mappings(group, dev); 1817 1818 return 0; 1819 } 1820 1821 static int iommu_group_create_direct_mappings(struct iommu_group *group) 1822 { 1823 return __iommu_group_for_each_dev(group, group, 1824 iommu_do_create_direct_mappings); 1825 } 1826 1827 int bus_iommu_probe(struct bus_type *bus) 1828 { 1829 struct iommu_group *group, *next; 1830 LIST_HEAD(group_list); 1831 int ret; 1832 1833 /* 1834 * This code-path does not allocate the default domain when 1835 * creating the iommu group, so do it after the groups are 1836 * created. 1837 */ 1838 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1839 if (ret) 1840 return ret; 1841 1842 list_for_each_entry_safe(group, next, &group_list, entry) { 1843 mutex_lock(&group->mutex); 1844 1845 /* Remove item from the list */ 1846 list_del_init(&group->entry); 1847 1848 /* Try to allocate default domain */ 1849 probe_alloc_default_domain(bus, group); 1850 1851 if (!group->default_domain) { 1852 mutex_unlock(&group->mutex); 1853 continue; 1854 } 1855 1856 iommu_group_create_direct_mappings(group); 1857 1858 ret = __iommu_group_dma_attach(group); 1859 1860 mutex_unlock(&group->mutex); 1861 1862 if (ret) 1863 break; 1864 1865 __iommu_group_dma_finalize(group); 1866 } 1867 1868 return ret; 1869 } 1870 1871 bool iommu_present(struct bus_type *bus) 1872 { 1873 return bus->iommu_ops != NULL; 1874 } 1875 EXPORT_SYMBOL_GPL(iommu_present); 1876 1877 /** 1878 * device_iommu_capable() - check for a general IOMMU capability 1879 * @dev: device to which the capability would be relevant, if available 1880 * @cap: IOMMU capability 1881 * 1882 * Return: true if an IOMMU is present and supports the given capability 1883 * for the given device, otherwise false. 1884 */ 1885 bool device_iommu_capable(struct device *dev, enum iommu_cap cap) 1886 { 1887 const struct iommu_ops *ops; 1888 1889 if (!dev->iommu || !dev->iommu->iommu_dev) 1890 return false; 1891 1892 ops = dev_iommu_ops(dev); 1893 if (!ops->capable) 1894 return false; 1895 1896 return ops->capable(dev, cap); 1897 } 1898 EXPORT_SYMBOL_GPL(device_iommu_capable); 1899 1900 /** 1901 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1902 * @domain: iommu domain 1903 * @handler: fault handler 1904 * @token: user data, will be passed back to the fault handler 1905 * 1906 * This function should be used by IOMMU users which want to be notified 1907 * whenever an IOMMU fault happens. 1908 * 1909 * The fault handler itself should return 0 on success, and an appropriate 1910 * error code otherwise. 1911 */ 1912 void iommu_set_fault_handler(struct iommu_domain *domain, 1913 iommu_fault_handler_t handler, 1914 void *token) 1915 { 1916 BUG_ON(!domain); 1917 1918 domain->handler = handler; 1919 domain->handler_token = token; 1920 } 1921 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1922 1923 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1924 unsigned type) 1925 { 1926 struct iommu_domain *domain; 1927 1928 if (bus == NULL || bus->iommu_ops == NULL) 1929 return NULL; 1930 1931 domain = bus->iommu_ops->domain_alloc(type); 1932 if (!domain) 1933 return NULL; 1934 1935 domain->type = type; 1936 /* Assume all sizes by default; the driver may override this later */ 1937 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1938 if (!domain->ops) 1939 domain->ops = bus->iommu_ops->default_domain_ops; 1940 1941 if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) { 1942 iommu_domain_free(domain); 1943 domain = NULL; 1944 } 1945 return domain; 1946 } 1947 1948 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1949 { 1950 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1951 } 1952 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1953 1954 void iommu_domain_free(struct iommu_domain *domain) 1955 { 1956 if (domain->type == IOMMU_DOMAIN_SVA) 1957 mmdrop(domain->mm); 1958 iommu_put_dma_cookie(domain); 1959 domain->ops->free(domain); 1960 } 1961 EXPORT_SYMBOL_GPL(iommu_domain_free); 1962 1963 /* 1964 * Put the group's domain back to the appropriate core-owned domain - either the 1965 * standard kernel-mode DMA configuration or an all-DMA-blocked domain. 1966 */ 1967 static void __iommu_group_set_core_domain(struct iommu_group *group) 1968 { 1969 struct iommu_domain *new_domain; 1970 int ret; 1971 1972 if (group->owner) 1973 new_domain = group->blocking_domain; 1974 else 1975 new_domain = group->default_domain; 1976 1977 ret = __iommu_group_set_domain(group, new_domain); 1978 WARN(ret, "iommu driver failed to attach the default/blocking domain"); 1979 } 1980 1981 static int __iommu_attach_device(struct iommu_domain *domain, 1982 struct device *dev) 1983 { 1984 int ret; 1985 1986 if (unlikely(domain->ops->attach_dev == NULL)) 1987 return -ENODEV; 1988 1989 ret = domain->ops->attach_dev(domain, dev); 1990 if (!ret) 1991 trace_attach_device_to_domain(dev); 1992 return ret; 1993 } 1994 1995 /** 1996 * iommu_attach_device - Attach an IOMMU domain to a device 1997 * @domain: IOMMU domain to attach 1998 * @dev: Device that will be attached 1999 * 2000 * Returns 0 on success and error code on failure 2001 * 2002 * Note that EINVAL can be treated as a soft failure, indicating 2003 * that certain configuration of the domain is incompatible with 2004 * the device. In this case attaching a different domain to the 2005 * device may succeed. 2006 */ 2007 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 2008 { 2009 struct iommu_group *group; 2010 int ret; 2011 2012 group = iommu_group_get(dev); 2013 if (!group) 2014 return -ENODEV; 2015 2016 /* 2017 * Lock the group to make sure the device-count doesn't 2018 * change while we are attaching 2019 */ 2020 mutex_lock(&group->mutex); 2021 ret = -EINVAL; 2022 if (iommu_group_device_count(group) != 1) 2023 goto out_unlock; 2024 2025 ret = __iommu_attach_group(domain, group); 2026 2027 out_unlock: 2028 mutex_unlock(&group->mutex); 2029 iommu_group_put(group); 2030 2031 return ret; 2032 } 2033 EXPORT_SYMBOL_GPL(iommu_attach_device); 2034 2035 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain) 2036 { 2037 if (iommu_is_attach_deferred(dev)) 2038 return __iommu_attach_device(domain, dev); 2039 2040 return 0; 2041 } 2042 2043 static void __iommu_detach_device(struct iommu_domain *domain, 2044 struct device *dev) 2045 { 2046 if (iommu_is_attach_deferred(dev)) 2047 return; 2048 2049 domain->ops->detach_dev(domain, dev); 2050 trace_detach_device_from_domain(dev); 2051 } 2052 2053 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 2054 { 2055 struct iommu_group *group; 2056 2057 group = iommu_group_get(dev); 2058 if (!group) 2059 return; 2060 2061 mutex_lock(&group->mutex); 2062 if (WARN_ON(domain != group->domain) || 2063 WARN_ON(iommu_group_device_count(group) != 1)) 2064 goto out_unlock; 2065 __iommu_group_set_core_domain(group); 2066 2067 out_unlock: 2068 mutex_unlock(&group->mutex); 2069 iommu_group_put(group); 2070 } 2071 EXPORT_SYMBOL_GPL(iommu_detach_device); 2072 2073 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2074 { 2075 struct iommu_domain *domain; 2076 struct iommu_group *group; 2077 2078 group = iommu_group_get(dev); 2079 if (!group) 2080 return NULL; 2081 2082 domain = group->domain; 2083 2084 iommu_group_put(group); 2085 2086 return domain; 2087 } 2088 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2089 2090 /* 2091 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2092 * guarantees that the group and its default domain are valid and correct. 2093 */ 2094 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2095 { 2096 return dev->iommu_group->default_domain; 2097 } 2098 2099 /* 2100 * IOMMU groups are really the natural working unit of the IOMMU, but 2101 * the IOMMU API works on domains and devices. Bridge that gap by 2102 * iterating over the devices in a group. Ideally we'd have a single 2103 * device which represents the requestor ID of the group, but we also 2104 * allow IOMMU drivers to create policy defined minimum sets, where 2105 * the physical hardware may be able to distiguish members, but we 2106 * wish to group them at a higher level (ex. untrusted multi-function 2107 * PCI devices). Thus we attach each device. 2108 */ 2109 static int iommu_group_do_attach_device(struct device *dev, void *data) 2110 { 2111 struct iommu_domain *domain = data; 2112 2113 return __iommu_attach_device(domain, dev); 2114 } 2115 2116 static int __iommu_attach_group(struct iommu_domain *domain, 2117 struct iommu_group *group) 2118 { 2119 int ret; 2120 2121 if (group->domain && group->domain != group->default_domain && 2122 group->domain != group->blocking_domain) 2123 return -EBUSY; 2124 2125 ret = __iommu_group_for_each_dev(group, domain, 2126 iommu_group_do_attach_device); 2127 if (ret == 0) 2128 group->domain = domain; 2129 2130 return ret; 2131 } 2132 2133 /** 2134 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group 2135 * @domain: IOMMU domain to attach 2136 * @group: IOMMU group that will be attached 2137 * 2138 * Returns 0 on success and error code on failure 2139 * 2140 * Note that EINVAL can be treated as a soft failure, indicating 2141 * that certain configuration of the domain is incompatible with 2142 * the group. In this case attaching a different domain to the 2143 * group may succeed. 2144 */ 2145 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2146 { 2147 int ret; 2148 2149 mutex_lock(&group->mutex); 2150 ret = __iommu_attach_group(domain, group); 2151 mutex_unlock(&group->mutex); 2152 2153 return ret; 2154 } 2155 EXPORT_SYMBOL_GPL(iommu_attach_group); 2156 2157 static int iommu_group_do_detach_device(struct device *dev, void *data) 2158 { 2159 struct iommu_domain *domain = data; 2160 2161 __iommu_detach_device(domain, dev); 2162 2163 return 0; 2164 } 2165 2166 static int __iommu_group_set_domain(struct iommu_group *group, 2167 struct iommu_domain *new_domain) 2168 { 2169 int ret; 2170 2171 if (group->domain == new_domain) 2172 return 0; 2173 2174 /* 2175 * New drivers should support default domains and so the detach_dev() op 2176 * will never be called. Otherwise the NULL domain represents some 2177 * platform specific behavior. 2178 */ 2179 if (!new_domain) { 2180 if (WARN_ON(!group->domain->ops->detach_dev)) 2181 return -EINVAL; 2182 __iommu_group_for_each_dev(group, group->domain, 2183 iommu_group_do_detach_device); 2184 group->domain = NULL; 2185 return 0; 2186 } 2187 2188 /* 2189 * Changing the domain is done by calling attach_dev() on the new 2190 * domain. This switch does not have to be atomic and DMA can be 2191 * discarded during the transition. DMA must only be able to access 2192 * either new_domain or group->domain, never something else. 2193 * 2194 * Note that this is called in error unwind paths, attaching to a 2195 * domain that has already been attached cannot fail. 2196 */ 2197 ret = __iommu_group_for_each_dev(group, new_domain, 2198 iommu_group_do_attach_device); 2199 if (ret) 2200 return ret; 2201 group->domain = new_domain; 2202 return 0; 2203 } 2204 2205 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2206 { 2207 mutex_lock(&group->mutex); 2208 __iommu_group_set_core_domain(group); 2209 mutex_unlock(&group->mutex); 2210 } 2211 EXPORT_SYMBOL_GPL(iommu_detach_group); 2212 2213 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2214 { 2215 if (domain->type == IOMMU_DOMAIN_IDENTITY) 2216 return iova; 2217 2218 if (domain->type == IOMMU_DOMAIN_BLOCKED) 2219 return 0; 2220 2221 return domain->ops->iova_to_phys(domain, iova); 2222 } 2223 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2224 2225 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova, 2226 phys_addr_t paddr, size_t size, size_t *count) 2227 { 2228 unsigned int pgsize_idx, pgsize_idx_next; 2229 unsigned long pgsizes; 2230 size_t offset, pgsize, pgsize_next; 2231 unsigned long addr_merge = paddr | iova; 2232 2233 /* Page sizes supported by the hardware and small enough for @size */ 2234 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0); 2235 2236 /* Constrain the page sizes further based on the maximum alignment */ 2237 if (likely(addr_merge)) 2238 pgsizes &= GENMASK(__ffs(addr_merge), 0); 2239 2240 /* Make sure we have at least one suitable page size */ 2241 BUG_ON(!pgsizes); 2242 2243 /* Pick the biggest page size remaining */ 2244 pgsize_idx = __fls(pgsizes); 2245 pgsize = BIT(pgsize_idx); 2246 if (!count) 2247 return pgsize; 2248 2249 /* Find the next biggest support page size, if it exists */ 2250 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0); 2251 if (!pgsizes) 2252 goto out_set_count; 2253 2254 pgsize_idx_next = __ffs(pgsizes); 2255 pgsize_next = BIT(pgsize_idx_next); 2256 2257 /* 2258 * There's no point trying a bigger page size unless the virtual 2259 * and physical addresses are similarly offset within the larger page. 2260 */ 2261 if ((iova ^ paddr) & (pgsize_next - 1)) 2262 goto out_set_count; 2263 2264 /* Calculate the offset to the next page size alignment boundary */ 2265 offset = pgsize_next - (addr_merge & (pgsize_next - 1)); 2266 2267 /* 2268 * If size is big enough to accommodate the larger page, reduce 2269 * the number of smaller pages. 2270 */ 2271 if (offset + pgsize_next <= size) 2272 size = offset; 2273 2274 out_set_count: 2275 *count = size >> pgsize_idx; 2276 return pgsize; 2277 } 2278 2279 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova, 2280 phys_addr_t paddr, size_t size, int prot, 2281 gfp_t gfp, size_t *mapped) 2282 { 2283 const struct iommu_domain_ops *ops = domain->ops; 2284 size_t pgsize, count; 2285 int ret; 2286 2287 pgsize = iommu_pgsize(domain, iova, paddr, size, &count); 2288 2289 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n", 2290 iova, &paddr, pgsize, count); 2291 2292 if (ops->map_pages) { 2293 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot, 2294 gfp, mapped); 2295 } else { 2296 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 2297 *mapped = ret ? 0 : pgsize; 2298 } 2299 2300 return ret; 2301 } 2302 2303 static int __iommu_map(struct iommu_domain *domain, unsigned long iova, 2304 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2305 { 2306 const struct iommu_domain_ops *ops = domain->ops; 2307 unsigned long orig_iova = iova; 2308 unsigned int min_pagesz; 2309 size_t orig_size = size; 2310 phys_addr_t orig_paddr = paddr; 2311 int ret = 0; 2312 2313 if (unlikely(!(ops->map || ops->map_pages) || 2314 domain->pgsize_bitmap == 0UL)) 2315 return -ENODEV; 2316 2317 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2318 return -EINVAL; 2319 2320 /* find out the minimum page size supported */ 2321 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2322 2323 /* 2324 * both the virtual address and the physical one, as well as 2325 * the size of the mapping, must be aligned (at least) to the 2326 * size of the smallest page supported by the hardware 2327 */ 2328 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2329 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2330 iova, &paddr, size, min_pagesz); 2331 return -EINVAL; 2332 } 2333 2334 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2335 2336 while (size) { 2337 size_t mapped = 0; 2338 2339 ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp, 2340 &mapped); 2341 /* 2342 * Some pages may have been mapped, even if an error occurred, 2343 * so we should account for those so they can be unmapped. 2344 */ 2345 size -= mapped; 2346 2347 if (ret) 2348 break; 2349 2350 iova += mapped; 2351 paddr += mapped; 2352 } 2353 2354 /* unroll mapping in case something went wrong */ 2355 if (ret) 2356 iommu_unmap(domain, orig_iova, orig_size - size); 2357 else 2358 trace_map(orig_iova, orig_paddr, orig_size); 2359 2360 return ret; 2361 } 2362 2363 static int _iommu_map(struct iommu_domain *domain, unsigned long iova, 2364 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2365 { 2366 const struct iommu_domain_ops *ops = domain->ops; 2367 int ret; 2368 2369 ret = __iommu_map(domain, iova, paddr, size, prot, gfp); 2370 if (ret == 0 && ops->iotlb_sync_map) 2371 ops->iotlb_sync_map(domain, iova, size); 2372 2373 return ret; 2374 } 2375 2376 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2377 phys_addr_t paddr, size_t size, int prot) 2378 { 2379 might_sleep(); 2380 return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL); 2381 } 2382 EXPORT_SYMBOL_GPL(iommu_map); 2383 2384 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova, 2385 phys_addr_t paddr, size_t size, int prot) 2386 { 2387 return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC); 2388 } 2389 EXPORT_SYMBOL_GPL(iommu_map_atomic); 2390 2391 static size_t __iommu_unmap_pages(struct iommu_domain *domain, 2392 unsigned long iova, size_t size, 2393 struct iommu_iotlb_gather *iotlb_gather) 2394 { 2395 const struct iommu_domain_ops *ops = domain->ops; 2396 size_t pgsize, count; 2397 2398 pgsize = iommu_pgsize(domain, iova, iova, size, &count); 2399 return ops->unmap_pages ? 2400 ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) : 2401 ops->unmap(domain, iova, pgsize, iotlb_gather); 2402 } 2403 2404 static size_t __iommu_unmap(struct iommu_domain *domain, 2405 unsigned long iova, size_t size, 2406 struct iommu_iotlb_gather *iotlb_gather) 2407 { 2408 const struct iommu_domain_ops *ops = domain->ops; 2409 size_t unmapped_page, unmapped = 0; 2410 unsigned long orig_iova = iova; 2411 unsigned int min_pagesz; 2412 2413 if (unlikely(!(ops->unmap || ops->unmap_pages) || 2414 domain->pgsize_bitmap == 0UL)) 2415 return 0; 2416 2417 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2418 return 0; 2419 2420 /* find out the minimum page size supported */ 2421 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2422 2423 /* 2424 * The virtual address, as well as the size of the mapping, must be 2425 * aligned (at least) to the size of the smallest page supported 2426 * by the hardware 2427 */ 2428 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2429 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2430 iova, size, min_pagesz); 2431 return 0; 2432 } 2433 2434 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2435 2436 /* 2437 * Keep iterating until we either unmap 'size' bytes (or more) 2438 * or we hit an area that isn't mapped. 2439 */ 2440 while (unmapped < size) { 2441 unmapped_page = __iommu_unmap_pages(domain, iova, 2442 size - unmapped, 2443 iotlb_gather); 2444 if (!unmapped_page) 2445 break; 2446 2447 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2448 iova, unmapped_page); 2449 2450 iova += unmapped_page; 2451 unmapped += unmapped_page; 2452 } 2453 2454 trace_unmap(orig_iova, size, unmapped); 2455 return unmapped; 2456 } 2457 2458 size_t iommu_unmap(struct iommu_domain *domain, 2459 unsigned long iova, size_t size) 2460 { 2461 struct iommu_iotlb_gather iotlb_gather; 2462 size_t ret; 2463 2464 iommu_iotlb_gather_init(&iotlb_gather); 2465 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2466 iommu_iotlb_sync(domain, &iotlb_gather); 2467 2468 return ret; 2469 } 2470 EXPORT_SYMBOL_GPL(iommu_unmap); 2471 2472 size_t iommu_unmap_fast(struct iommu_domain *domain, 2473 unsigned long iova, size_t size, 2474 struct iommu_iotlb_gather *iotlb_gather) 2475 { 2476 return __iommu_unmap(domain, iova, size, iotlb_gather); 2477 } 2478 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2479 2480 static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2481 struct scatterlist *sg, unsigned int nents, int prot, 2482 gfp_t gfp) 2483 { 2484 const struct iommu_domain_ops *ops = domain->ops; 2485 size_t len = 0, mapped = 0; 2486 phys_addr_t start; 2487 unsigned int i = 0; 2488 int ret; 2489 2490 while (i <= nents) { 2491 phys_addr_t s_phys = sg_phys(sg); 2492 2493 if (len && s_phys != start + len) { 2494 ret = __iommu_map(domain, iova + mapped, start, 2495 len, prot, gfp); 2496 2497 if (ret) 2498 goto out_err; 2499 2500 mapped += len; 2501 len = 0; 2502 } 2503 2504 if (sg_is_dma_bus_address(sg)) 2505 goto next; 2506 2507 if (len) { 2508 len += sg->length; 2509 } else { 2510 len = sg->length; 2511 start = s_phys; 2512 } 2513 2514 next: 2515 if (++i < nents) 2516 sg = sg_next(sg); 2517 } 2518 2519 if (ops->iotlb_sync_map) 2520 ops->iotlb_sync_map(domain, iova, mapped); 2521 return mapped; 2522 2523 out_err: 2524 /* undo mappings already done */ 2525 iommu_unmap(domain, iova, mapped); 2526 2527 return ret; 2528 } 2529 2530 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2531 struct scatterlist *sg, unsigned int nents, int prot) 2532 { 2533 might_sleep(); 2534 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL); 2535 } 2536 EXPORT_SYMBOL_GPL(iommu_map_sg); 2537 2538 ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova, 2539 struct scatterlist *sg, unsigned int nents, int prot) 2540 { 2541 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 2542 } 2543 2544 /** 2545 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2546 * @domain: the iommu domain where the fault has happened 2547 * @dev: the device where the fault has happened 2548 * @iova: the faulting address 2549 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2550 * 2551 * This function should be called by the low-level IOMMU implementations 2552 * whenever IOMMU faults happen, to allow high-level users, that are 2553 * interested in such events, to know about them. 2554 * 2555 * This event may be useful for several possible use cases: 2556 * - mere logging of the event 2557 * - dynamic TLB/PTE loading 2558 * - if restarting of the faulting device is required 2559 * 2560 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2561 * PTE/TLB loading will one day be supported, implementations will be able 2562 * to tell whether it succeeded or not according to this return value). 2563 * 2564 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2565 * (though fault handlers can also return -ENOSYS, in case they want to 2566 * elicit the default behavior of the IOMMU drivers). 2567 */ 2568 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2569 unsigned long iova, int flags) 2570 { 2571 int ret = -ENOSYS; 2572 2573 /* 2574 * if upper layers showed interest and installed a fault handler, 2575 * invoke it. 2576 */ 2577 if (domain->handler) 2578 ret = domain->handler(domain, dev, iova, flags, 2579 domain->handler_token); 2580 2581 trace_io_page_fault(dev, iova, flags); 2582 return ret; 2583 } 2584 EXPORT_SYMBOL_GPL(report_iommu_fault); 2585 2586 static int __init iommu_init(void) 2587 { 2588 iommu_group_kset = kset_create_and_add("iommu_groups", 2589 NULL, kernel_kobj); 2590 BUG_ON(!iommu_group_kset); 2591 2592 iommu_debugfs_setup(); 2593 2594 return 0; 2595 } 2596 core_initcall(iommu_init); 2597 2598 int iommu_enable_nesting(struct iommu_domain *domain) 2599 { 2600 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2601 return -EINVAL; 2602 if (!domain->ops->enable_nesting) 2603 return -EINVAL; 2604 return domain->ops->enable_nesting(domain); 2605 } 2606 EXPORT_SYMBOL_GPL(iommu_enable_nesting); 2607 2608 int iommu_set_pgtable_quirks(struct iommu_domain *domain, 2609 unsigned long quirk) 2610 { 2611 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2612 return -EINVAL; 2613 if (!domain->ops->set_pgtable_quirks) 2614 return -EINVAL; 2615 return domain->ops->set_pgtable_quirks(domain, quirk); 2616 } 2617 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks); 2618 2619 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2620 { 2621 const struct iommu_ops *ops = dev_iommu_ops(dev); 2622 2623 if (ops->get_resv_regions) 2624 ops->get_resv_regions(dev, list); 2625 } 2626 2627 /** 2628 * iommu_put_resv_regions - release resered regions 2629 * @dev: device for which to free reserved regions 2630 * @list: reserved region list for device 2631 * 2632 * This releases a reserved region list acquired by iommu_get_resv_regions(). 2633 */ 2634 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2635 { 2636 struct iommu_resv_region *entry, *next; 2637 2638 list_for_each_entry_safe(entry, next, list, list) { 2639 if (entry->free) 2640 entry->free(dev, entry); 2641 else 2642 kfree(entry); 2643 } 2644 } 2645 EXPORT_SYMBOL(iommu_put_resv_regions); 2646 2647 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2648 size_t length, int prot, 2649 enum iommu_resv_type type, 2650 gfp_t gfp) 2651 { 2652 struct iommu_resv_region *region; 2653 2654 region = kzalloc(sizeof(*region), gfp); 2655 if (!region) 2656 return NULL; 2657 2658 INIT_LIST_HEAD(®ion->list); 2659 region->start = start; 2660 region->length = length; 2661 region->prot = prot; 2662 region->type = type; 2663 return region; 2664 } 2665 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2666 2667 void iommu_set_default_passthrough(bool cmd_line) 2668 { 2669 if (cmd_line) 2670 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2671 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2672 } 2673 2674 void iommu_set_default_translated(bool cmd_line) 2675 { 2676 if (cmd_line) 2677 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2678 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2679 } 2680 2681 bool iommu_default_passthrough(void) 2682 { 2683 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2684 } 2685 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2686 2687 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2688 { 2689 const struct iommu_ops *ops = NULL; 2690 struct iommu_device *iommu; 2691 2692 spin_lock(&iommu_device_lock); 2693 list_for_each_entry(iommu, &iommu_device_list, list) 2694 if (iommu->fwnode == fwnode) { 2695 ops = iommu->ops; 2696 break; 2697 } 2698 spin_unlock(&iommu_device_lock); 2699 return ops; 2700 } 2701 2702 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2703 const struct iommu_ops *ops) 2704 { 2705 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2706 2707 if (fwspec) 2708 return ops == fwspec->ops ? 0 : -EINVAL; 2709 2710 if (!dev_iommu_get(dev)) 2711 return -ENOMEM; 2712 2713 /* Preallocate for the overwhelmingly common case of 1 ID */ 2714 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2715 if (!fwspec) 2716 return -ENOMEM; 2717 2718 of_node_get(to_of_node(iommu_fwnode)); 2719 fwspec->iommu_fwnode = iommu_fwnode; 2720 fwspec->ops = ops; 2721 dev_iommu_fwspec_set(dev, fwspec); 2722 return 0; 2723 } 2724 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2725 2726 void iommu_fwspec_free(struct device *dev) 2727 { 2728 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2729 2730 if (fwspec) { 2731 fwnode_handle_put(fwspec->iommu_fwnode); 2732 kfree(fwspec); 2733 dev_iommu_fwspec_set(dev, NULL); 2734 } 2735 } 2736 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2737 2738 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2739 { 2740 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2741 int i, new_num; 2742 2743 if (!fwspec) 2744 return -EINVAL; 2745 2746 new_num = fwspec->num_ids + num_ids; 2747 if (new_num > 1) { 2748 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2749 GFP_KERNEL); 2750 if (!fwspec) 2751 return -ENOMEM; 2752 2753 dev_iommu_fwspec_set(dev, fwspec); 2754 } 2755 2756 for (i = 0; i < num_ids; i++) 2757 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2758 2759 fwspec->num_ids = new_num; 2760 return 0; 2761 } 2762 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2763 2764 /* 2765 * Per device IOMMU features. 2766 */ 2767 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2768 { 2769 if (dev->iommu && dev->iommu->iommu_dev) { 2770 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2771 2772 if (ops->dev_enable_feat) 2773 return ops->dev_enable_feat(dev, feat); 2774 } 2775 2776 return -ENODEV; 2777 } 2778 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2779 2780 /* 2781 * The device drivers should do the necessary cleanups before calling this. 2782 */ 2783 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2784 { 2785 if (dev->iommu && dev->iommu->iommu_dev) { 2786 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2787 2788 if (ops->dev_disable_feat) 2789 return ops->dev_disable_feat(dev, feat); 2790 } 2791 2792 return -EBUSY; 2793 } 2794 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2795 2796 /* 2797 * Changes the default domain of an iommu group that has *only* one device 2798 * 2799 * @group: The group for which the default domain should be changed 2800 * @prev_dev: The device in the group (this is used to make sure that the device 2801 * hasn't changed after the caller has called this function) 2802 * @type: The type of the new default domain that gets associated with the group 2803 * 2804 * Returns 0 on success and error code on failure 2805 * 2806 * Note: 2807 * 1. Presently, this function is called only when user requests to change the 2808 * group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type 2809 * Please take a closer look if intended to use for other purposes. 2810 */ 2811 static int iommu_change_dev_def_domain(struct iommu_group *group, 2812 struct device *prev_dev, int type) 2813 { 2814 struct iommu_domain *prev_dom; 2815 struct group_device *grp_dev; 2816 int ret, dev_def_dom; 2817 struct device *dev; 2818 2819 mutex_lock(&group->mutex); 2820 2821 if (group->default_domain != group->domain) { 2822 dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n"); 2823 ret = -EBUSY; 2824 goto out; 2825 } 2826 2827 /* 2828 * iommu group wasn't locked while acquiring device lock in 2829 * iommu_group_store_type(). So, make sure that the device count hasn't 2830 * changed while acquiring device lock. 2831 * 2832 * Changing default domain of an iommu group with two or more devices 2833 * isn't supported because there could be a potential deadlock. Consider 2834 * the following scenario. T1 is trying to acquire device locks of all 2835 * the devices in the group and before it could acquire all of them, 2836 * there could be another thread T2 (from different sub-system and use 2837 * case) that has already acquired some of the device locks and might be 2838 * waiting for T1 to release other device locks. 2839 */ 2840 if (iommu_group_device_count(group) != 1) { 2841 dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n"); 2842 ret = -EINVAL; 2843 goto out; 2844 } 2845 2846 /* Since group has only one device */ 2847 grp_dev = list_first_entry(&group->devices, struct group_device, list); 2848 dev = grp_dev->dev; 2849 2850 if (prev_dev != dev) { 2851 dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n"); 2852 ret = -EBUSY; 2853 goto out; 2854 } 2855 2856 prev_dom = group->default_domain; 2857 if (!prev_dom) { 2858 ret = -EINVAL; 2859 goto out; 2860 } 2861 2862 dev_def_dom = iommu_get_def_domain_type(dev); 2863 if (!type) { 2864 /* 2865 * If the user hasn't requested any specific type of domain and 2866 * if the device supports both the domains, then default to the 2867 * domain the device was booted with 2868 */ 2869 type = dev_def_dom ? : iommu_def_domain_type; 2870 } else if (dev_def_dom && type != dev_def_dom) { 2871 dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n", 2872 iommu_domain_type_str(type)); 2873 ret = -EINVAL; 2874 goto out; 2875 } 2876 2877 /* 2878 * Switch to a new domain only if the requested domain type is different 2879 * from the existing default domain type 2880 */ 2881 if (prev_dom->type == type) { 2882 ret = 0; 2883 goto out; 2884 } 2885 2886 /* We can bring up a flush queue without tearing down the domain */ 2887 if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) { 2888 ret = iommu_dma_init_fq(prev_dom); 2889 if (!ret) 2890 prev_dom->type = IOMMU_DOMAIN_DMA_FQ; 2891 goto out; 2892 } 2893 2894 /* Sets group->default_domain to the newly allocated domain */ 2895 ret = iommu_group_alloc_default_domain(dev->bus, group, type); 2896 if (ret) 2897 goto out; 2898 2899 ret = iommu_create_device_direct_mappings(group, dev); 2900 if (ret) 2901 goto free_new_domain; 2902 2903 ret = __iommu_attach_device(group->default_domain, dev); 2904 if (ret) 2905 goto free_new_domain; 2906 2907 group->domain = group->default_domain; 2908 2909 /* 2910 * Release the mutex here because ops->probe_finalize() call-back of 2911 * some vendor IOMMU drivers calls arm_iommu_attach_device() which 2912 * in-turn might call back into IOMMU core code, where it tries to take 2913 * group->mutex, resulting in a deadlock. 2914 */ 2915 mutex_unlock(&group->mutex); 2916 2917 /* Make sure dma_ops is appropriatley set */ 2918 iommu_group_do_probe_finalize(dev, group->default_domain); 2919 iommu_domain_free(prev_dom); 2920 return 0; 2921 2922 free_new_domain: 2923 iommu_domain_free(group->default_domain); 2924 group->default_domain = prev_dom; 2925 group->domain = prev_dom; 2926 2927 out: 2928 mutex_unlock(&group->mutex); 2929 2930 return ret; 2931 } 2932 2933 /* 2934 * Changing the default domain through sysfs requires the users to unbind the 2935 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ 2936 * transition. Return failure if this isn't met. 2937 * 2938 * We need to consider the race between this and the device release path. 2939 * device_lock(dev) is used here to guarantee that the device release path 2940 * will not be entered at the same time. 2941 */ 2942 static ssize_t iommu_group_store_type(struct iommu_group *group, 2943 const char *buf, size_t count) 2944 { 2945 struct group_device *grp_dev; 2946 struct device *dev; 2947 int ret, req_type; 2948 2949 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 2950 return -EACCES; 2951 2952 if (WARN_ON(!group) || !group->default_domain) 2953 return -EINVAL; 2954 2955 if (sysfs_streq(buf, "identity")) 2956 req_type = IOMMU_DOMAIN_IDENTITY; 2957 else if (sysfs_streq(buf, "DMA")) 2958 req_type = IOMMU_DOMAIN_DMA; 2959 else if (sysfs_streq(buf, "DMA-FQ")) 2960 req_type = IOMMU_DOMAIN_DMA_FQ; 2961 else if (sysfs_streq(buf, "auto")) 2962 req_type = 0; 2963 else 2964 return -EINVAL; 2965 2966 /* 2967 * Lock/Unlock the group mutex here before device lock to 2968 * 1. Make sure that the iommu group has only one device (this is a 2969 * prerequisite for step 2) 2970 * 2. Get struct *dev which is needed to lock device 2971 */ 2972 mutex_lock(&group->mutex); 2973 if (iommu_group_device_count(group) != 1) { 2974 mutex_unlock(&group->mutex); 2975 pr_err_ratelimited("Cannot change default domain: Group has more than one device\n"); 2976 return -EINVAL; 2977 } 2978 2979 /* Since group has only one device */ 2980 grp_dev = list_first_entry(&group->devices, struct group_device, list); 2981 dev = grp_dev->dev; 2982 get_device(dev); 2983 2984 /* 2985 * Don't hold the group mutex because taking group mutex first and then 2986 * the device lock could potentially cause a deadlock as below. Assume 2987 * two threads T1 and T2. T1 is trying to change default domain of an 2988 * iommu group and T2 is trying to hot unplug a device or release [1] VF 2989 * of a PCIe device which is in the same iommu group. T1 takes group 2990 * mutex and before it could take device lock assume T2 has taken device 2991 * lock and is yet to take group mutex. Now, both the threads will be 2992 * waiting for the other thread to release lock. Below, lock order was 2993 * suggested. 2994 * device_lock(dev); 2995 * mutex_lock(&group->mutex); 2996 * iommu_change_dev_def_domain(); 2997 * mutex_unlock(&group->mutex); 2998 * device_unlock(dev); 2999 * 3000 * [1] Typical device release path 3001 * device_lock() from device/driver core code 3002 * -> bus_notifier() 3003 * -> iommu_bus_notifier() 3004 * -> iommu_release_device() 3005 * -> ops->release_device() vendor driver calls back iommu core code 3006 * -> mutex_lock() from iommu core code 3007 */ 3008 mutex_unlock(&group->mutex); 3009 3010 /* Check if the device in the group still has a driver bound to it */ 3011 device_lock(dev); 3012 if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ && 3013 group->default_domain->type == IOMMU_DOMAIN_DMA)) { 3014 pr_err_ratelimited("Device is still bound to driver\n"); 3015 ret = -EBUSY; 3016 goto out; 3017 } 3018 3019 ret = iommu_change_dev_def_domain(group, dev, req_type); 3020 ret = ret ?: count; 3021 3022 out: 3023 device_unlock(dev); 3024 put_device(dev); 3025 3026 return ret; 3027 } 3028 3029 static bool iommu_is_default_domain(struct iommu_group *group) 3030 { 3031 if (group->domain == group->default_domain) 3032 return true; 3033 3034 /* 3035 * If the default domain was set to identity and it is still an identity 3036 * domain then we consider this a pass. This happens because of 3037 * amd_iommu_init_device() replacing the default idenytity domain with an 3038 * identity domain that has a different configuration for AMDGPU. 3039 */ 3040 if (group->default_domain && 3041 group->default_domain->type == IOMMU_DOMAIN_IDENTITY && 3042 group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY) 3043 return true; 3044 return false; 3045 } 3046 3047 /** 3048 * iommu_device_use_default_domain() - Device driver wants to handle device 3049 * DMA through the kernel DMA API. 3050 * @dev: The device. 3051 * 3052 * The device driver about to bind @dev wants to do DMA through the kernel 3053 * DMA API. Return 0 if it is allowed, otherwise an error. 3054 */ 3055 int iommu_device_use_default_domain(struct device *dev) 3056 { 3057 struct iommu_group *group = iommu_group_get(dev); 3058 int ret = 0; 3059 3060 if (!group) 3061 return 0; 3062 3063 mutex_lock(&group->mutex); 3064 if (group->owner_cnt) { 3065 if (group->owner || !iommu_is_default_domain(group) || 3066 !xa_empty(&group->pasid_array)) { 3067 ret = -EBUSY; 3068 goto unlock_out; 3069 } 3070 } 3071 3072 group->owner_cnt++; 3073 3074 unlock_out: 3075 mutex_unlock(&group->mutex); 3076 iommu_group_put(group); 3077 3078 return ret; 3079 } 3080 3081 /** 3082 * iommu_device_unuse_default_domain() - Device driver stops handling device 3083 * DMA through the kernel DMA API. 3084 * @dev: The device. 3085 * 3086 * The device driver doesn't want to do DMA through kernel DMA API anymore. 3087 * It must be called after iommu_device_use_default_domain(). 3088 */ 3089 void iommu_device_unuse_default_domain(struct device *dev) 3090 { 3091 struct iommu_group *group = iommu_group_get(dev); 3092 3093 if (!group) 3094 return; 3095 3096 mutex_lock(&group->mutex); 3097 if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array))) 3098 group->owner_cnt--; 3099 3100 mutex_unlock(&group->mutex); 3101 iommu_group_put(group); 3102 } 3103 3104 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group) 3105 { 3106 struct group_device *dev = 3107 list_first_entry(&group->devices, struct group_device, list); 3108 3109 if (group->blocking_domain) 3110 return 0; 3111 3112 group->blocking_domain = 3113 __iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED); 3114 if (!group->blocking_domain) { 3115 /* 3116 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED 3117 * create an empty domain instead. 3118 */ 3119 group->blocking_domain = __iommu_domain_alloc( 3120 dev->dev->bus, IOMMU_DOMAIN_UNMANAGED); 3121 if (!group->blocking_domain) 3122 return -EINVAL; 3123 } 3124 return 0; 3125 } 3126 3127 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner) 3128 { 3129 int ret; 3130 3131 if ((group->domain && group->domain != group->default_domain) || 3132 !xa_empty(&group->pasid_array)) 3133 return -EBUSY; 3134 3135 ret = __iommu_group_alloc_blocking_domain(group); 3136 if (ret) 3137 return ret; 3138 ret = __iommu_group_set_domain(group, group->blocking_domain); 3139 if (ret) 3140 return ret; 3141 3142 group->owner = owner; 3143 group->owner_cnt++; 3144 return 0; 3145 } 3146 3147 /** 3148 * iommu_group_claim_dma_owner() - Set DMA ownership of a group 3149 * @group: The group. 3150 * @owner: Caller specified pointer. Used for exclusive ownership. 3151 * 3152 * This is to support backward compatibility for vfio which manages the dma 3153 * ownership in iommu_group level. New invocations on this interface should be 3154 * prohibited. Only a single owner may exist for a group. 3155 */ 3156 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner) 3157 { 3158 int ret = 0; 3159 3160 if (WARN_ON(!owner)) 3161 return -EINVAL; 3162 3163 mutex_lock(&group->mutex); 3164 if (group->owner_cnt) { 3165 ret = -EPERM; 3166 goto unlock_out; 3167 } 3168 3169 ret = __iommu_take_dma_ownership(group, owner); 3170 unlock_out: 3171 mutex_unlock(&group->mutex); 3172 3173 return ret; 3174 } 3175 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner); 3176 3177 /** 3178 * iommu_device_claim_dma_owner() - Set DMA ownership of a device 3179 * @dev: The device. 3180 * @owner: Caller specified pointer. Used for exclusive ownership. 3181 * 3182 * Claim the DMA ownership of a device. Multiple devices in the same group may 3183 * concurrently claim ownership if they present the same owner value. Returns 0 3184 * on success and error code on failure 3185 */ 3186 int iommu_device_claim_dma_owner(struct device *dev, void *owner) 3187 { 3188 struct iommu_group *group = iommu_group_get(dev); 3189 int ret = 0; 3190 3191 if (!group) 3192 return -ENODEV; 3193 if (WARN_ON(!owner)) 3194 return -EINVAL; 3195 3196 mutex_lock(&group->mutex); 3197 if (group->owner_cnt) { 3198 if (group->owner != owner) { 3199 ret = -EPERM; 3200 goto unlock_out; 3201 } 3202 group->owner_cnt++; 3203 goto unlock_out; 3204 } 3205 3206 ret = __iommu_take_dma_ownership(group, owner); 3207 unlock_out: 3208 mutex_unlock(&group->mutex); 3209 iommu_group_put(group); 3210 3211 return ret; 3212 } 3213 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner); 3214 3215 static void __iommu_release_dma_ownership(struct iommu_group *group) 3216 { 3217 int ret; 3218 3219 if (WARN_ON(!group->owner_cnt || !group->owner || 3220 !xa_empty(&group->pasid_array))) 3221 return; 3222 3223 group->owner_cnt = 0; 3224 group->owner = NULL; 3225 ret = __iommu_group_set_domain(group, group->default_domain); 3226 WARN(ret, "iommu driver failed to attach the default domain"); 3227 } 3228 3229 /** 3230 * iommu_group_release_dma_owner() - Release DMA ownership of a group 3231 * @dev: The device 3232 * 3233 * Release the DMA ownership claimed by iommu_group_claim_dma_owner(). 3234 */ 3235 void iommu_group_release_dma_owner(struct iommu_group *group) 3236 { 3237 mutex_lock(&group->mutex); 3238 __iommu_release_dma_ownership(group); 3239 mutex_unlock(&group->mutex); 3240 } 3241 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner); 3242 3243 /** 3244 * iommu_device_release_dma_owner() - Release DMA ownership of a device 3245 * @group: The device. 3246 * 3247 * Release the DMA ownership claimed by iommu_device_claim_dma_owner(). 3248 */ 3249 void iommu_device_release_dma_owner(struct device *dev) 3250 { 3251 struct iommu_group *group = iommu_group_get(dev); 3252 3253 mutex_lock(&group->mutex); 3254 if (group->owner_cnt > 1) 3255 group->owner_cnt--; 3256 else 3257 __iommu_release_dma_ownership(group); 3258 mutex_unlock(&group->mutex); 3259 iommu_group_put(group); 3260 } 3261 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner); 3262 3263 /** 3264 * iommu_group_dma_owner_claimed() - Query group dma ownership status 3265 * @group: The group. 3266 * 3267 * This provides status query on a given group. It is racy and only for 3268 * non-binding status reporting. 3269 */ 3270 bool iommu_group_dma_owner_claimed(struct iommu_group *group) 3271 { 3272 unsigned int user; 3273 3274 mutex_lock(&group->mutex); 3275 user = group->owner_cnt; 3276 mutex_unlock(&group->mutex); 3277 3278 return user; 3279 } 3280 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed); 3281 3282 static int __iommu_set_group_pasid(struct iommu_domain *domain, 3283 struct iommu_group *group, ioasid_t pasid) 3284 { 3285 struct group_device *device; 3286 int ret = 0; 3287 3288 list_for_each_entry(device, &group->devices, list) { 3289 ret = domain->ops->set_dev_pasid(domain, device->dev, pasid); 3290 if (ret) 3291 break; 3292 } 3293 3294 return ret; 3295 } 3296 3297 static void __iommu_remove_group_pasid(struct iommu_group *group, 3298 ioasid_t pasid) 3299 { 3300 struct group_device *device; 3301 const struct iommu_ops *ops; 3302 3303 list_for_each_entry(device, &group->devices, list) { 3304 ops = dev_iommu_ops(device->dev); 3305 ops->remove_dev_pasid(device->dev, pasid); 3306 } 3307 } 3308 3309 /* 3310 * iommu_attach_device_pasid() - Attach a domain to pasid of device 3311 * @domain: the iommu domain. 3312 * @dev: the attached device. 3313 * @pasid: the pasid of the device. 3314 * 3315 * Return: 0 on success, or an error. 3316 */ 3317 int iommu_attach_device_pasid(struct iommu_domain *domain, 3318 struct device *dev, ioasid_t pasid) 3319 { 3320 struct iommu_group *group; 3321 void *curr; 3322 int ret; 3323 3324 if (!domain->ops->set_dev_pasid) 3325 return -EOPNOTSUPP; 3326 3327 group = iommu_group_get(dev); 3328 if (!group) 3329 return -ENODEV; 3330 3331 mutex_lock(&group->mutex); 3332 curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL); 3333 if (curr) { 3334 ret = xa_err(curr) ? : -EBUSY; 3335 goto out_unlock; 3336 } 3337 3338 ret = __iommu_set_group_pasid(domain, group, pasid); 3339 if (ret) { 3340 __iommu_remove_group_pasid(group, pasid); 3341 xa_erase(&group->pasid_array, pasid); 3342 } 3343 out_unlock: 3344 mutex_unlock(&group->mutex); 3345 iommu_group_put(group); 3346 3347 return ret; 3348 } 3349 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid); 3350 3351 /* 3352 * iommu_detach_device_pasid() - Detach the domain from pasid of device 3353 * @domain: the iommu domain. 3354 * @dev: the attached device. 3355 * @pasid: the pasid of the device. 3356 * 3357 * The @domain must have been attached to @pasid of the @dev with 3358 * iommu_attach_device_pasid(). 3359 */ 3360 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev, 3361 ioasid_t pasid) 3362 { 3363 struct iommu_group *group = iommu_group_get(dev); 3364 3365 mutex_lock(&group->mutex); 3366 __iommu_remove_group_pasid(group, pasid); 3367 WARN_ON(xa_erase(&group->pasid_array, pasid) != domain); 3368 mutex_unlock(&group->mutex); 3369 3370 iommu_group_put(group); 3371 } 3372 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid); 3373 3374 /* 3375 * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev 3376 * @dev: the queried device 3377 * @pasid: the pasid of the device 3378 * @type: matched domain type, 0 for any match 3379 * 3380 * This is a variant of iommu_get_domain_for_dev(). It returns the existing 3381 * domain attached to pasid of a device. Callers must hold a lock around this 3382 * function, and both iommu_attach/detach_dev_pasid() whenever a domain of 3383 * type is being manipulated. This API does not internally resolve races with 3384 * attach/detach. 3385 * 3386 * Return: attached domain on success, NULL otherwise. 3387 */ 3388 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev, 3389 ioasid_t pasid, 3390 unsigned int type) 3391 { 3392 struct iommu_domain *domain; 3393 struct iommu_group *group; 3394 3395 group = iommu_group_get(dev); 3396 if (!group) 3397 return NULL; 3398 3399 xa_lock(&group->pasid_array); 3400 domain = xa_load(&group->pasid_array, pasid); 3401 if (type && domain && domain->type != type) 3402 domain = ERR_PTR(-EBUSY); 3403 xa_unlock(&group->pasid_array); 3404 iommu_group_put(group); 3405 3406 return domain; 3407 } 3408 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid); 3409 3410 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev, 3411 struct mm_struct *mm) 3412 { 3413 const struct iommu_ops *ops = dev_iommu_ops(dev); 3414 struct iommu_domain *domain; 3415 3416 domain = ops->domain_alloc(IOMMU_DOMAIN_SVA); 3417 if (!domain) 3418 return NULL; 3419 3420 domain->type = IOMMU_DOMAIN_SVA; 3421 mmgrab(mm); 3422 domain->mm = mm; 3423 domain->iopf_handler = iommu_sva_handle_iopf; 3424 domain->fault_data = mm; 3425 3426 return domain; 3427 } 3428