xref: /openbmc/linux/drivers/iommu/iommu.c (revision 3b7e2482)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/device.h>
10 #include <linux/dma-iommu.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/iommu.h>
20 #include <linux/idr.h>
21 #include <linux/err.h>
22 #include <linux/pci.h>
23 #include <linux/bitops.h>
24 #include <linux/property.h>
25 #include <linux/fsl/mc.h>
26 #include <linux/module.h>
27 #include <linux/cc_platform.h>
28 #include <trace/events/iommu.h>
29 
30 static struct kset *iommu_group_kset;
31 static DEFINE_IDA(iommu_group_ida);
32 
33 static unsigned int iommu_def_domain_type __read_mostly;
34 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
35 static u32 iommu_cmd_line __read_mostly;
36 
37 struct iommu_group {
38 	struct kobject kobj;
39 	struct kobject *devices_kobj;
40 	struct list_head devices;
41 	struct mutex mutex;
42 	void *iommu_data;
43 	void (*iommu_data_release)(void *iommu_data);
44 	char *name;
45 	int id;
46 	struct iommu_domain *default_domain;
47 	struct iommu_domain *blocking_domain;
48 	struct iommu_domain *domain;
49 	struct list_head entry;
50 	unsigned int owner_cnt;
51 	void *owner;
52 };
53 
54 struct group_device {
55 	struct list_head list;
56 	struct device *dev;
57 	char *name;
58 };
59 
60 struct iommu_group_attribute {
61 	struct attribute attr;
62 	ssize_t (*show)(struct iommu_group *group, char *buf);
63 	ssize_t (*store)(struct iommu_group *group,
64 			 const char *buf, size_t count);
65 };
66 
67 static const char * const iommu_group_resv_type_string[] = {
68 	[IOMMU_RESV_DIRECT]			= "direct",
69 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
70 	[IOMMU_RESV_RESERVED]			= "reserved",
71 	[IOMMU_RESV_MSI]			= "msi",
72 	[IOMMU_RESV_SW_MSI]			= "msi",
73 };
74 
75 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
76 #define IOMMU_CMD_LINE_STRICT		BIT(1)
77 
78 static int iommu_alloc_default_domain(struct iommu_group *group,
79 				      struct device *dev);
80 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
81 						 unsigned type);
82 static int __iommu_attach_device(struct iommu_domain *domain,
83 				 struct device *dev);
84 static int __iommu_attach_group(struct iommu_domain *domain,
85 				struct iommu_group *group);
86 static int __iommu_group_set_domain(struct iommu_group *group,
87 				    struct iommu_domain *new_domain);
88 static int iommu_create_device_direct_mappings(struct iommu_group *group,
89 					       struct device *dev);
90 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
91 static ssize_t iommu_group_store_type(struct iommu_group *group,
92 				      const char *buf, size_t count);
93 
94 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
95 struct iommu_group_attribute iommu_group_attr_##_name =		\
96 	__ATTR(_name, _mode, _show, _store)
97 
98 #define to_iommu_group_attr(_attr)	\
99 	container_of(_attr, struct iommu_group_attribute, attr)
100 #define to_iommu_group(_kobj)		\
101 	container_of(_kobj, struct iommu_group, kobj)
102 
103 static LIST_HEAD(iommu_device_list);
104 static DEFINE_SPINLOCK(iommu_device_lock);
105 
106 /*
107  * Use a function instead of an array here because the domain-type is a
108  * bit-field, so an array would waste memory.
109  */
110 static const char *iommu_domain_type_str(unsigned int t)
111 {
112 	switch (t) {
113 	case IOMMU_DOMAIN_BLOCKED:
114 		return "Blocked";
115 	case IOMMU_DOMAIN_IDENTITY:
116 		return "Passthrough";
117 	case IOMMU_DOMAIN_UNMANAGED:
118 		return "Unmanaged";
119 	case IOMMU_DOMAIN_DMA:
120 	case IOMMU_DOMAIN_DMA_FQ:
121 		return "Translated";
122 	default:
123 		return "Unknown";
124 	}
125 }
126 
127 static int __init iommu_subsys_init(void)
128 {
129 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
130 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
131 			iommu_set_default_passthrough(false);
132 		else
133 			iommu_set_default_translated(false);
134 
135 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
136 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
137 			iommu_set_default_translated(false);
138 		}
139 	}
140 
141 	if (!iommu_default_passthrough() && !iommu_dma_strict)
142 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
143 
144 	pr_info("Default domain type: %s %s\n",
145 		iommu_domain_type_str(iommu_def_domain_type),
146 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
147 			"(set via kernel command line)" : "");
148 
149 	if (!iommu_default_passthrough())
150 		pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
151 			iommu_dma_strict ? "strict" : "lazy",
152 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
153 				"(set via kernel command line)" : "");
154 
155 	return 0;
156 }
157 subsys_initcall(iommu_subsys_init);
158 
159 /**
160  * iommu_device_register() - Register an IOMMU hardware instance
161  * @iommu: IOMMU handle for the instance
162  * @ops:   IOMMU ops to associate with the instance
163  * @hwdev: (optional) actual instance device, used for fwnode lookup
164  *
165  * Return: 0 on success, or an error.
166  */
167 int iommu_device_register(struct iommu_device *iommu,
168 			  const struct iommu_ops *ops, struct device *hwdev)
169 {
170 	/* We need to be able to take module references appropriately */
171 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
172 		return -EINVAL;
173 
174 	iommu->ops = ops;
175 	if (hwdev)
176 		iommu->fwnode = hwdev->fwnode;
177 
178 	spin_lock(&iommu_device_lock);
179 	list_add_tail(&iommu->list, &iommu_device_list);
180 	spin_unlock(&iommu_device_lock);
181 	return 0;
182 }
183 EXPORT_SYMBOL_GPL(iommu_device_register);
184 
185 void iommu_device_unregister(struct iommu_device *iommu)
186 {
187 	spin_lock(&iommu_device_lock);
188 	list_del(&iommu->list);
189 	spin_unlock(&iommu_device_lock);
190 }
191 EXPORT_SYMBOL_GPL(iommu_device_unregister);
192 
193 static struct dev_iommu *dev_iommu_get(struct device *dev)
194 {
195 	struct dev_iommu *param = dev->iommu;
196 
197 	if (param)
198 		return param;
199 
200 	param = kzalloc(sizeof(*param), GFP_KERNEL);
201 	if (!param)
202 		return NULL;
203 
204 	mutex_init(&param->lock);
205 	dev->iommu = param;
206 	return param;
207 }
208 
209 static void dev_iommu_free(struct device *dev)
210 {
211 	struct dev_iommu *param = dev->iommu;
212 
213 	dev->iommu = NULL;
214 	if (param->fwspec) {
215 		fwnode_handle_put(param->fwspec->iommu_fwnode);
216 		kfree(param->fwspec);
217 	}
218 	kfree(param);
219 }
220 
221 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
222 {
223 	const struct iommu_ops *ops = dev->bus->iommu_ops;
224 	struct iommu_device *iommu_dev;
225 	struct iommu_group *group;
226 	int ret;
227 
228 	if (!ops)
229 		return -ENODEV;
230 
231 	if (!dev_iommu_get(dev))
232 		return -ENOMEM;
233 
234 	if (!try_module_get(ops->owner)) {
235 		ret = -EINVAL;
236 		goto err_free;
237 	}
238 
239 	iommu_dev = ops->probe_device(dev);
240 	if (IS_ERR(iommu_dev)) {
241 		ret = PTR_ERR(iommu_dev);
242 		goto out_module_put;
243 	}
244 
245 	dev->iommu->iommu_dev = iommu_dev;
246 
247 	group = iommu_group_get_for_dev(dev);
248 	if (IS_ERR(group)) {
249 		ret = PTR_ERR(group);
250 		goto out_release;
251 	}
252 	iommu_group_put(group);
253 
254 	if (group_list && !group->default_domain && list_empty(&group->entry))
255 		list_add_tail(&group->entry, group_list);
256 
257 	iommu_device_link(iommu_dev, dev);
258 
259 	return 0;
260 
261 out_release:
262 	ops->release_device(dev);
263 
264 out_module_put:
265 	module_put(ops->owner);
266 
267 err_free:
268 	dev_iommu_free(dev);
269 
270 	return ret;
271 }
272 
273 int iommu_probe_device(struct device *dev)
274 {
275 	const struct iommu_ops *ops = dev->bus->iommu_ops;
276 	struct iommu_group *group;
277 	int ret;
278 
279 	ret = __iommu_probe_device(dev, NULL);
280 	if (ret)
281 		goto err_out;
282 
283 	group = iommu_group_get(dev);
284 	if (!group) {
285 		ret = -ENODEV;
286 		goto err_release;
287 	}
288 
289 	/*
290 	 * Try to allocate a default domain - needs support from the
291 	 * IOMMU driver. There are still some drivers which don't
292 	 * support default domains, so the return value is not yet
293 	 * checked.
294 	 */
295 	mutex_lock(&group->mutex);
296 	iommu_alloc_default_domain(group, dev);
297 
298 	/*
299 	 * If device joined an existing group which has been claimed, don't
300 	 * attach the default domain.
301 	 */
302 	if (group->default_domain && !group->owner) {
303 		ret = __iommu_attach_device(group->default_domain, dev);
304 		if (ret) {
305 			mutex_unlock(&group->mutex);
306 			iommu_group_put(group);
307 			goto err_release;
308 		}
309 	}
310 
311 	iommu_create_device_direct_mappings(group, dev);
312 
313 	mutex_unlock(&group->mutex);
314 	iommu_group_put(group);
315 
316 	if (ops->probe_finalize)
317 		ops->probe_finalize(dev);
318 
319 	return 0;
320 
321 err_release:
322 	iommu_release_device(dev);
323 
324 err_out:
325 	return ret;
326 
327 }
328 
329 void iommu_release_device(struct device *dev)
330 {
331 	const struct iommu_ops *ops;
332 
333 	if (!dev->iommu)
334 		return;
335 
336 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
337 
338 	ops = dev_iommu_ops(dev);
339 	ops->release_device(dev);
340 
341 	iommu_group_remove_device(dev);
342 	module_put(ops->owner);
343 	dev_iommu_free(dev);
344 }
345 
346 static int __init iommu_set_def_domain_type(char *str)
347 {
348 	bool pt;
349 	int ret;
350 
351 	ret = kstrtobool(str, &pt);
352 	if (ret)
353 		return ret;
354 
355 	if (pt)
356 		iommu_set_default_passthrough(true);
357 	else
358 		iommu_set_default_translated(true);
359 
360 	return 0;
361 }
362 early_param("iommu.passthrough", iommu_set_def_domain_type);
363 
364 static int __init iommu_dma_setup(char *str)
365 {
366 	int ret = kstrtobool(str, &iommu_dma_strict);
367 
368 	if (!ret)
369 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
370 	return ret;
371 }
372 early_param("iommu.strict", iommu_dma_setup);
373 
374 void iommu_set_dma_strict(void)
375 {
376 	iommu_dma_strict = true;
377 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
378 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
379 }
380 
381 static ssize_t iommu_group_attr_show(struct kobject *kobj,
382 				     struct attribute *__attr, char *buf)
383 {
384 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
385 	struct iommu_group *group = to_iommu_group(kobj);
386 	ssize_t ret = -EIO;
387 
388 	if (attr->show)
389 		ret = attr->show(group, buf);
390 	return ret;
391 }
392 
393 static ssize_t iommu_group_attr_store(struct kobject *kobj,
394 				      struct attribute *__attr,
395 				      const char *buf, size_t count)
396 {
397 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
398 	struct iommu_group *group = to_iommu_group(kobj);
399 	ssize_t ret = -EIO;
400 
401 	if (attr->store)
402 		ret = attr->store(group, buf, count);
403 	return ret;
404 }
405 
406 static const struct sysfs_ops iommu_group_sysfs_ops = {
407 	.show = iommu_group_attr_show,
408 	.store = iommu_group_attr_store,
409 };
410 
411 static int iommu_group_create_file(struct iommu_group *group,
412 				   struct iommu_group_attribute *attr)
413 {
414 	return sysfs_create_file(&group->kobj, &attr->attr);
415 }
416 
417 static void iommu_group_remove_file(struct iommu_group *group,
418 				    struct iommu_group_attribute *attr)
419 {
420 	sysfs_remove_file(&group->kobj, &attr->attr);
421 }
422 
423 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
424 {
425 	return sprintf(buf, "%s\n", group->name);
426 }
427 
428 /**
429  * iommu_insert_resv_region - Insert a new region in the
430  * list of reserved regions.
431  * @new: new region to insert
432  * @regions: list of regions
433  *
434  * Elements are sorted by start address and overlapping segments
435  * of the same type are merged.
436  */
437 static int iommu_insert_resv_region(struct iommu_resv_region *new,
438 				    struct list_head *regions)
439 {
440 	struct iommu_resv_region *iter, *tmp, *nr, *top;
441 	LIST_HEAD(stack);
442 
443 	nr = iommu_alloc_resv_region(new->start, new->length,
444 				     new->prot, new->type);
445 	if (!nr)
446 		return -ENOMEM;
447 
448 	/* First add the new element based on start address sorting */
449 	list_for_each_entry(iter, regions, list) {
450 		if (nr->start < iter->start ||
451 		    (nr->start == iter->start && nr->type <= iter->type))
452 			break;
453 	}
454 	list_add_tail(&nr->list, &iter->list);
455 
456 	/* Merge overlapping segments of type nr->type in @regions, if any */
457 	list_for_each_entry_safe(iter, tmp, regions, list) {
458 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
459 
460 		/* no merge needed on elements of different types than @new */
461 		if (iter->type != new->type) {
462 			list_move_tail(&iter->list, &stack);
463 			continue;
464 		}
465 
466 		/* look for the last stack element of same type as @iter */
467 		list_for_each_entry_reverse(top, &stack, list)
468 			if (top->type == iter->type)
469 				goto check_overlap;
470 
471 		list_move_tail(&iter->list, &stack);
472 		continue;
473 
474 check_overlap:
475 		top_end = top->start + top->length - 1;
476 
477 		if (iter->start > top_end + 1) {
478 			list_move_tail(&iter->list, &stack);
479 		} else {
480 			top->length = max(top_end, iter_end) - top->start + 1;
481 			list_del(&iter->list);
482 			kfree(iter);
483 		}
484 	}
485 	list_splice(&stack, regions);
486 	return 0;
487 }
488 
489 static int
490 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
491 				 struct list_head *group_resv_regions)
492 {
493 	struct iommu_resv_region *entry;
494 	int ret = 0;
495 
496 	list_for_each_entry(entry, dev_resv_regions, list) {
497 		ret = iommu_insert_resv_region(entry, group_resv_regions);
498 		if (ret)
499 			break;
500 	}
501 	return ret;
502 }
503 
504 int iommu_get_group_resv_regions(struct iommu_group *group,
505 				 struct list_head *head)
506 {
507 	struct group_device *device;
508 	int ret = 0;
509 
510 	mutex_lock(&group->mutex);
511 	list_for_each_entry(device, &group->devices, list) {
512 		struct list_head dev_resv_regions;
513 
514 		/*
515 		 * Non-API groups still expose reserved_regions in sysfs,
516 		 * so filter out calls that get here that way.
517 		 */
518 		if (!device->dev->iommu)
519 			break;
520 
521 		INIT_LIST_HEAD(&dev_resv_regions);
522 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
523 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
524 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
525 		if (ret)
526 			break;
527 	}
528 	mutex_unlock(&group->mutex);
529 	return ret;
530 }
531 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
532 
533 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
534 					     char *buf)
535 {
536 	struct iommu_resv_region *region, *next;
537 	struct list_head group_resv_regions;
538 	char *str = buf;
539 
540 	INIT_LIST_HEAD(&group_resv_regions);
541 	iommu_get_group_resv_regions(group, &group_resv_regions);
542 
543 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
544 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
545 			       (long long int)region->start,
546 			       (long long int)(region->start +
547 						region->length - 1),
548 			       iommu_group_resv_type_string[region->type]);
549 		kfree(region);
550 	}
551 
552 	return (str - buf);
553 }
554 
555 static ssize_t iommu_group_show_type(struct iommu_group *group,
556 				     char *buf)
557 {
558 	char *type = "unknown\n";
559 
560 	mutex_lock(&group->mutex);
561 	if (group->default_domain) {
562 		switch (group->default_domain->type) {
563 		case IOMMU_DOMAIN_BLOCKED:
564 			type = "blocked\n";
565 			break;
566 		case IOMMU_DOMAIN_IDENTITY:
567 			type = "identity\n";
568 			break;
569 		case IOMMU_DOMAIN_UNMANAGED:
570 			type = "unmanaged\n";
571 			break;
572 		case IOMMU_DOMAIN_DMA:
573 			type = "DMA\n";
574 			break;
575 		case IOMMU_DOMAIN_DMA_FQ:
576 			type = "DMA-FQ\n";
577 			break;
578 		}
579 	}
580 	mutex_unlock(&group->mutex);
581 	strcpy(buf, type);
582 
583 	return strlen(type);
584 }
585 
586 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
587 
588 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
589 			iommu_group_show_resv_regions, NULL);
590 
591 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
592 			iommu_group_store_type);
593 
594 static void iommu_group_release(struct kobject *kobj)
595 {
596 	struct iommu_group *group = to_iommu_group(kobj);
597 
598 	pr_debug("Releasing group %d\n", group->id);
599 
600 	if (group->iommu_data_release)
601 		group->iommu_data_release(group->iommu_data);
602 
603 	ida_free(&iommu_group_ida, group->id);
604 
605 	if (group->default_domain)
606 		iommu_domain_free(group->default_domain);
607 	if (group->blocking_domain)
608 		iommu_domain_free(group->blocking_domain);
609 
610 	kfree(group->name);
611 	kfree(group);
612 }
613 
614 static struct kobj_type iommu_group_ktype = {
615 	.sysfs_ops = &iommu_group_sysfs_ops,
616 	.release = iommu_group_release,
617 };
618 
619 /**
620  * iommu_group_alloc - Allocate a new group
621  *
622  * This function is called by an iommu driver to allocate a new iommu
623  * group.  The iommu group represents the minimum granularity of the iommu.
624  * Upon successful return, the caller holds a reference to the supplied
625  * group in order to hold the group until devices are added.  Use
626  * iommu_group_put() to release this extra reference count, allowing the
627  * group to be automatically reclaimed once it has no devices or external
628  * references.
629  */
630 struct iommu_group *iommu_group_alloc(void)
631 {
632 	struct iommu_group *group;
633 	int ret;
634 
635 	group = kzalloc(sizeof(*group), GFP_KERNEL);
636 	if (!group)
637 		return ERR_PTR(-ENOMEM);
638 
639 	group->kobj.kset = iommu_group_kset;
640 	mutex_init(&group->mutex);
641 	INIT_LIST_HEAD(&group->devices);
642 	INIT_LIST_HEAD(&group->entry);
643 
644 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
645 	if (ret < 0) {
646 		kfree(group);
647 		return ERR_PTR(ret);
648 	}
649 	group->id = ret;
650 
651 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
652 				   NULL, "%d", group->id);
653 	if (ret) {
654 		ida_free(&iommu_group_ida, group->id);
655 		kobject_put(&group->kobj);
656 		return ERR_PTR(ret);
657 	}
658 
659 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
660 	if (!group->devices_kobj) {
661 		kobject_put(&group->kobj); /* triggers .release & free */
662 		return ERR_PTR(-ENOMEM);
663 	}
664 
665 	/*
666 	 * The devices_kobj holds a reference on the group kobject, so
667 	 * as long as that exists so will the group.  We can therefore
668 	 * use the devices_kobj for reference counting.
669 	 */
670 	kobject_put(&group->kobj);
671 
672 	ret = iommu_group_create_file(group,
673 				      &iommu_group_attr_reserved_regions);
674 	if (ret)
675 		return ERR_PTR(ret);
676 
677 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
678 	if (ret)
679 		return ERR_PTR(ret);
680 
681 	pr_debug("Allocated group %d\n", group->id);
682 
683 	return group;
684 }
685 EXPORT_SYMBOL_GPL(iommu_group_alloc);
686 
687 struct iommu_group *iommu_group_get_by_id(int id)
688 {
689 	struct kobject *group_kobj;
690 	struct iommu_group *group;
691 	const char *name;
692 
693 	if (!iommu_group_kset)
694 		return NULL;
695 
696 	name = kasprintf(GFP_KERNEL, "%d", id);
697 	if (!name)
698 		return NULL;
699 
700 	group_kobj = kset_find_obj(iommu_group_kset, name);
701 	kfree(name);
702 
703 	if (!group_kobj)
704 		return NULL;
705 
706 	group = container_of(group_kobj, struct iommu_group, kobj);
707 	BUG_ON(group->id != id);
708 
709 	kobject_get(group->devices_kobj);
710 	kobject_put(&group->kobj);
711 
712 	return group;
713 }
714 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
715 
716 /**
717  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
718  * @group: the group
719  *
720  * iommu drivers can store data in the group for use when doing iommu
721  * operations.  This function provides a way to retrieve it.  Caller
722  * should hold a group reference.
723  */
724 void *iommu_group_get_iommudata(struct iommu_group *group)
725 {
726 	return group->iommu_data;
727 }
728 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
729 
730 /**
731  * iommu_group_set_iommudata - set iommu_data for a group
732  * @group: the group
733  * @iommu_data: new data
734  * @release: release function for iommu_data
735  *
736  * iommu drivers can store data in the group for use when doing iommu
737  * operations.  This function provides a way to set the data after
738  * the group has been allocated.  Caller should hold a group reference.
739  */
740 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
741 			       void (*release)(void *iommu_data))
742 {
743 	group->iommu_data = iommu_data;
744 	group->iommu_data_release = release;
745 }
746 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
747 
748 /**
749  * iommu_group_set_name - set name for a group
750  * @group: the group
751  * @name: name
752  *
753  * Allow iommu driver to set a name for a group.  When set it will
754  * appear in a name attribute file under the group in sysfs.
755  */
756 int iommu_group_set_name(struct iommu_group *group, const char *name)
757 {
758 	int ret;
759 
760 	if (group->name) {
761 		iommu_group_remove_file(group, &iommu_group_attr_name);
762 		kfree(group->name);
763 		group->name = NULL;
764 		if (!name)
765 			return 0;
766 	}
767 
768 	group->name = kstrdup(name, GFP_KERNEL);
769 	if (!group->name)
770 		return -ENOMEM;
771 
772 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
773 	if (ret) {
774 		kfree(group->name);
775 		group->name = NULL;
776 		return ret;
777 	}
778 
779 	return 0;
780 }
781 EXPORT_SYMBOL_GPL(iommu_group_set_name);
782 
783 static int iommu_create_device_direct_mappings(struct iommu_group *group,
784 					       struct device *dev)
785 {
786 	struct iommu_domain *domain = group->default_domain;
787 	struct iommu_resv_region *entry;
788 	struct list_head mappings;
789 	unsigned long pg_size;
790 	int ret = 0;
791 
792 	if (!domain || !iommu_is_dma_domain(domain))
793 		return 0;
794 
795 	BUG_ON(!domain->pgsize_bitmap);
796 
797 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
798 	INIT_LIST_HEAD(&mappings);
799 
800 	iommu_get_resv_regions(dev, &mappings);
801 
802 	/* We need to consider overlapping regions for different devices */
803 	list_for_each_entry(entry, &mappings, list) {
804 		dma_addr_t start, end, addr;
805 		size_t map_size = 0;
806 
807 		start = ALIGN(entry->start, pg_size);
808 		end   = ALIGN(entry->start + entry->length, pg_size);
809 
810 		if (entry->type != IOMMU_RESV_DIRECT &&
811 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
812 			continue;
813 
814 		for (addr = start; addr <= end; addr += pg_size) {
815 			phys_addr_t phys_addr;
816 
817 			if (addr == end)
818 				goto map_end;
819 
820 			phys_addr = iommu_iova_to_phys(domain, addr);
821 			if (!phys_addr) {
822 				map_size += pg_size;
823 				continue;
824 			}
825 
826 map_end:
827 			if (map_size) {
828 				ret = iommu_map(domain, addr - map_size,
829 						addr - map_size, map_size,
830 						entry->prot);
831 				if (ret)
832 					goto out;
833 				map_size = 0;
834 			}
835 		}
836 
837 	}
838 
839 	iommu_flush_iotlb_all(domain);
840 
841 out:
842 	iommu_put_resv_regions(dev, &mappings);
843 
844 	return ret;
845 }
846 
847 static bool iommu_is_attach_deferred(struct device *dev)
848 {
849 	const struct iommu_ops *ops = dev_iommu_ops(dev);
850 
851 	if (ops->is_attach_deferred)
852 		return ops->is_attach_deferred(dev);
853 
854 	return false;
855 }
856 
857 /**
858  * iommu_group_add_device - add a device to an iommu group
859  * @group: the group into which to add the device (reference should be held)
860  * @dev: the device
861  *
862  * This function is called by an iommu driver to add a device into a
863  * group.  Adding a device increments the group reference count.
864  */
865 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
866 {
867 	int ret, i = 0;
868 	struct group_device *device;
869 
870 	device = kzalloc(sizeof(*device), GFP_KERNEL);
871 	if (!device)
872 		return -ENOMEM;
873 
874 	device->dev = dev;
875 
876 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
877 	if (ret)
878 		goto err_free_device;
879 
880 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
881 rename:
882 	if (!device->name) {
883 		ret = -ENOMEM;
884 		goto err_remove_link;
885 	}
886 
887 	ret = sysfs_create_link_nowarn(group->devices_kobj,
888 				       &dev->kobj, device->name);
889 	if (ret) {
890 		if (ret == -EEXIST && i >= 0) {
891 			/*
892 			 * Account for the slim chance of collision
893 			 * and append an instance to the name.
894 			 */
895 			kfree(device->name);
896 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
897 						 kobject_name(&dev->kobj), i++);
898 			goto rename;
899 		}
900 		goto err_free_name;
901 	}
902 
903 	kobject_get(group->devices_kobj);
904 
905 	dev->iommu_group = group;
906 
907 	mutex_lock(&group->mutex);
908 	list_add_tail(&device->list, &group->devices);
909 	if (group->domain  && !iommu_is_attach_deferred(dev))
910 		ret = __iommu_attach_device(group->domain, dev);
911 	mutex_unlock(&group->mutex);
912 	if (ret)
913 		goto err_put_group;
914 
915 	trace_add_device_to_group(group->id, dev);
916 
917 	dev_info(dev, "Adding to iommu group %d\n", group->id);
918 
919 	return 0;
920 
921 err_put_group:
922 	mutex_lock(&group->mutex);
923 	list_del(&device->list);
924 	mutex_unlock(&group->mutex);
925 	dev->iommu_group = NULL;
926 	kobject_put(group->devices_kobj);
927 	sysfs_remove_link(group->devices_kobj, device->name);
928 err_free_name:
929 	kfree(device->name);
930 err_remove_link:
931 	sysfs_remove_link(&dev->kobj, "iommu_group");
932 err_free_device:
933 	kfree(device);
934 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
935 	return ret;
936 }
937 EXPORT_SYMBOL_GPL(iommu_group_add_device);
938 
939 /**
940  * iommu_group_remove_device - remove a device from it's current group
941  * @dev: device to be removed
942  *
943  * This function is called by an iommu driver to remove the device from
944  * it's current group.  This decrements the iommu group reference count.
945  */
946 void iommu_group_remove_device(struct device *dev)
947 {
948 	struct iommu_group *group = dev->iommu_group;
949 	struct group_device *tmp_device, *device = NULL;
950 
951 	if (!group)
952 		return;
953 
954 	dev_info(dev, "Removing from iommu group %d\n", group->id);
955 
956 	mutex_lock(&group->mutex);
957 	list_for_each_entry(tmp_device, &group->devices, list) {
958 		if (tmp_device->dev == dev) {
959 			device = tmp_device;
960 			list_del(&device->list);
961 			break;
962 		}
963 	}
964 	mutex_unlock(&group->mutex);
965 
966 	if (!device)
967 		return;
968 
969 	sysfs_remove_link(group->devices_kobj, device->name);
970 	sysfs_remove_link(&dev->kobj, "iommu_group");
971 
972 	trace_remove_device_from_group(group->id, dev);
973 
974 	kfree(device->name);
975 	kfree(device);
976 	dev->iommu_group = NULL;
977 	kobject_put(group->devices_kobj);
978 }
979 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
980 
981 static int iommu_group_device_count(struct iommu_group *group)
982 {
983 	struct group_device *entry;
984 	int ret = 0;
985 
986 	list_for_each_entry(entry, &group->devices, list)
987 		ret++;
988 
989 	return ret;
990 }
991 
992 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
993 				      int (*fn)(struct device *, void *))
994 {
995 	struct group_device *device;
996 	int ret = 0;
997 
998 	list_for_each_entry(device, &group->devices, list) {
999 		ret = fn(device->dev, data);
1000 		if (ret)
1001 			break;
1002 	}
1003 	return ret;
1004 }
1005 
1006 /**
1007  * iommu_group_for_each_dev - iterate over each device in the group
1008  * @group: the group
1009  * @data: caller opaque data to be passed to callback function
1010  * @fn: caller supplied callback function
1011  *
1012  * This function is called by group users to iterate over group devices.
1013  * Callers should hold a reference count to the group during callback.
1014  * The group->mutex is held across callbacks, which will block calls to
1015  * iommu_group_add/remove_device.
1016  */
1017 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1018 			     int (*fn)(struct device *, void *))
1019 {
1020 	int ret;
1021 
1022 	mutex_lock(&group->mutex);
1023 	ret = __iommu_group_for_each_dev(group, data, fn);
1024 	mutex_unlock(&group->mutex);
1025 
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1029 
1030 /**
1031  * iommu_group_get - Return the group for a device and increment reference
1032  * @dev: get the group that this device belongs to
1033  *
1034  * This function is called by iommu drivers and users to get the group
1035  * for the specified device.  If found, the group is returned and the group
1036  * reference in incremented, else NULL.
1037  */
1038 struct iommu_group *iommu_group_get(struct device *dev)
1039 {
1040 	struct iommu_group *group = dev->iommu_group;
1041 
1042 	if (group)
1043 		kobject_get(group->devices_kobj);
1044 
1045 	return group;
1046 }
1047 EXPORT_SYMBOL_GPL(iommu_group_get);
1048 
1049 /**
1050  * iommu_group_ref_get - Increment reference on a group
1051  * @group: the group to use, must not be NULL
1052  *
1053  * This function is called by iommu drivers to take additional references on an
1054  * existing group.  Returns the given group for convenience.
1055  */
1056 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1057 {
1058 	kobject_get(group->devices_kobj);
1059 	return group;
1060 }
1061 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1062 
1063 /**
1064  * iommu_group_put - Decrement group reference
1065  * @group: the group to use
1066  *
1067  * This function is called by iommu drivers and users to release the
1068  * iommu group.  Once the reference count is zero, the group is released.
1069  */
1070 void iommu_group_put(struct iommu_group *group)
1071 {
1072 	if (group)
1073 		kobject_put(group->devices_kobj);
1074 }
1075 EXPORT_SYMBOL_GPL(iommu_group_put);
1076 
1077 /**
1078  * iommu_register_device_fault_handler() - Register a device fault handler
1079  * @dev: the device
1080  * @handler: the fault handler
1081  * @data: private data passed as argument to the handler
1082  *
1083  * When an IOMMU fault event is received, this handler gets called with the
1084  * fault event and data as argument. The handler should return 0 on success. If
1085  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1086  * complete the fault by calling iommu_page_response() with one of the following
1087  * response code:
1088  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1089  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1090  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1091  *   page faults if possible.
1092  *
1093  * Return 0 if the fault handler was installed successfully, or an error.
1094  */
1095 int iommu_register_device_fault_handler(struct device *dev,
1096 					iommu_dev_fault_handler_t handler,
1097 					void *data)
1098 {
1099 	struct dev_iommu *param = dev->iommu;
1100 	int ret = 0;
1101 
1102 	if (!param)
1103 		return -EINVAL;
1104 
1105 	mutex_lock(&param->lock);
1106 	/* Only allow one fault handler registered for each device */
1107 	if (param->fault_param) {
1108 		ret = -EBUSY;
1109 		goto done_unlock;
1110 	}
1111 
1112 	get_device(dev);
1113 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1114 	if (!param->fault_param) {
1115 		put_device(dev);
1116 		ret = -ENOMEM;
1117 		goto done_unlock;
1118 	}
1119 	param->fault_param->handler = handler;
1120 	param->fault_param->data = data;
1121 	mutex_init(&param->fault_param->lock);
1122 	INIT_LIST_HEAD(&param->fault_param->faults);
1123 
1124 done_unlock:
1125 	mutex_unlock(&param->lock);
1126 
1127 	return ret;
1128 }
1129 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1130 
1131 /**
1132  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1133  * @dev: the device
1134  *
1135  * Remove the device fault handler installed with
1136  * iommu_register_device_fault_handler().
1137  *
1138  * Return 0 on success, or an error.
1139  */
1140 int iommu_unregister_device_fault_handler(struct device *dev)
1141 {
1142 	struct dev_iommu *param = dev->iommu;
1143 	int ret = 0;
1144 
1145 	if (!param)
1146 		return -EINVAL;
1147 
1148 	mutex_lock(&param->lock);
1149 
1150 	if (!param->fault_param)
1151 		goto unlock;
1152 
1153 	/* we cannot unregister handler if there are pending faults */
1154 	if (!list_empty(&param->fault_param->faults)) {
1155 		ret = -EBUSY;
1156 		goto unlock;
1157 	}
1158 
1159 	kfree(param->fault_param);
1160 	param->fault_param = NULL;
1161 	put_device(dev);
1162 unlock:
1163 	mutex_unlock(&param->lock);
1164 
1165 	return ret;
1166 }
1167 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1168 
1169 /**
1170  * iommu_report_device_fault() - Report fault event to device driver
1171  * @dev: the device
1172  * @evt: fault event data
1173  *
1174  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1175  * handler. When this function fails and the fault is recoverable, it is the
1176  * caller's responsibility to complete the fault.
1177  *
1178  * Return 0 on success, or an error.
1179  */
1180 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1181 {
1182 	struct dev_iommu *param = dev->iommu;
1183 	struct iommu_fault_event *evt_pending = NULL;
1184 	struct iommu_fault_param *fparam;
1185 	int ret = 0;
1186 
1187 	if (!param || !evt)
1188 		return -EINVAL;
1189 
1190 	/* we only report device fault if there is a handler registered */
1191 	mutex_lock(&param->lock);
1192 	fparam = param->fault_param;
1193 	if (!fparam || !fparam->handler) {
1194 		ret = -EINVAL;
1195 		goto done_unlock;
1196 	}
1197 
1198 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1199 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1200 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1201 				      GFP_KERNEL);
1202 		if (!evt_pending) {
1203 			ret = -ENOMEM;
1204 			goto done_unlock;
1205 		}
1206 		mutex_lock(&fparam->lock);
1207 		list_add_tail(&evt_pending->list, &fparam->faults);
1208 		mutex_unlock(&fparam->lock);
1209 	}
1210 
1211 	ret = fparam->handler(&evt->fault, fparam->data);
1212 	if (ret && evt_pending) {
1213 		mutex_lock(&fparam->lock);
1214 		list_del(&evt_pending->list);
1215 		mutex_unlock(&fparam->lock);
1216 		kfree(evt_pending);
1217 	}
1218 done_unlock:
1219 	mutex_unlock(&param->lock);
1220 	return ret;
1221 }
1222 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1223 
1224 int iommu_page_response(struct device *dev,
1225 			struct iommu_page_response *msg)
1226 {
1227 	bool needs_pasid;
1228 	int ret = -EINVAL;
1229 	struct iommu_fault_event *evt;
1230 	struct iommu_fault_page_request *prm;
1231 	struct dev_iommu *param = dev->iommu;
1232 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1233 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1234 
1235 	if (!ops->page_response)
1236 		return -ENODEV;
1237 
1238 	if (!param || !param->fault_param)
1239 		return -EINVAL;
1240 
1241 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1242 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1243 		return -EINVAL;
1244 
1245 	/* Only send response if there is a fault report pending */
1246 	mutex_lock(&param->fault_param->lock);
1247 	if (list_empty(&param->fault_param->faults)) {
1248 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1249 		goto done_unlock;
1250 	}
1251 	/*
1252 	 * Check if we have a matching page request pending to respond,
1253 	 * otherwise return -EINVAL
1254 	 */
1255 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1256 		prm = &evt->fault.prm;
1257 		if (prm->grpid != msg->grpid)
1258 			continue;
1259 
1260 		/*
1261 		 * If the PASID is required, the corresponding request is
1262 		 * matched using the group ID, the PASID valid bit and the PASID
1263 		 * value. Otherwise only the group ID matches request and
1264 		 * response.
1265 		 */
1266 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1267 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1268 			continue;
1269 
1270 		if (!needs_pasid && has_pasid) {
1271 			/* No big deal, just clear it. */
1272 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1273 			msg->pasid = 0;
1274 		}
1275 
1276 		ret = ops->page_response(dev, evt, msg);
1277 		list_del(&evt->list);
1278 		kfree(evt);
1279 		break;
1280 	}
1281 
1282 done_unlock:
1283 	mutex_unlock(&param->fault_param->lock);
1284 	return ret;
1285 }
1286 EXPORT_SYMBOL_GPL(iommu_page_response);
1287 
1288 /**
1289  * iommu_group_id - Return ID for a group
1290  * @group: the group to ID
1291  *
1292  * Return the unique ID for the group matching the sysfs group number.
1293  */
1294 int iommu_group_id(struct iommu_group *group)
1295 {
1296 	return group->id;
1297 }
1298 EXPORT_SYMBOL_GPL(iommu_group_id);
1299 
1300 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1301 					       unsigned long *devfns);
1302 
1303 /*
1304  * To consider a PCI device isolated, we require ACS to support Source
1305  * Validation, Request Redirection, Completer Redirection, and Upstream
1306  * Forwarding.  This effectively means that devices cannot spoof their
1307  * requester ID, requests and completions cannot be redirected, and all
1308  * transactions are forwarded upstream, even as it passes through a
1309  * bridge where the target device is downstream.
1310  */
1311 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1312 
1313 /*
1314  * For multifunction devices which are not isolated from each other, find
1315  * all the other non-isolated functions and look for existing groups.  For
1316  * each function, we also need to look for aliases to or from other devices
1317  * that may already have a group.
1318  */
1319 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1320 							unsigned long *devfns)
1321 {
1322 	struct pci_dev *tmp = NULL;
1323 	struct iommu_group *group;
1324 
1325 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1326 		return NULL;
1327 
1328 	for_each_pci_dev(tmp) {
1329 		if (tmp == pdev || tmp->bus != pdev->bus ||
1330 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1331 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1332 			continue;
1333 
1334 		group = get_pci_alias_group(tmp, devfns);
1335 		if (group) {
1336 			pci_dev_put(tmp);
1337 			return group;
1338 		}
1339 	}
1340 
1341 	return NULL;
1342 }
1343 
1344 /*
1345  * Look for aliases to or from the given device for existing groups. DMA
1346  * aliases are only supported on the same bus, therefore the search
1347  * space is quite small (especially since we're really only looking at pcie
1348  * device, and therefore only expect multiple slots on the root complex or
1349  * downstream switch ports).  It's conceivable though that a pair of
1350  * multifunction devices could have aliases between them that would cause a
1351  * loop.  To prevent this, we use a bitmap to track where we've been.
1352  */
1353 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1354 					       unsigned long *devfns)
1355 {
1356 	struct pci_dev *tmp = NULL;
1357 	struct iommu_group *group;
1358 
1359 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1360 		return NULL;
1361 
1362 	group = iommu_group_get(&pdev->dev);
1363 	if (group)
1364 		return group;
1365 
1366 	for_each_pci_dev(tmp) {
1367 		if (tmp == pdev || tmp->bus != pdev->bus)
1368 			continue;
1369 
1370 		/* We alias them or they alias us */
1371 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1372 			group = get_pci_alias_group(tmp, devfns);
1373 			if (group) {
1374 				pci_dev_put(tmp);
1375 				return group;
1376 			}
1377 
1378 			group = get_pci_function_alias_group(tmp, devfns);
1379 			if (group) {
1380 				pci_dev_put(tmp);
1381 				return group;
1382 			}
1383 		}
1384 	}
1385 
1386 	return NULL;
1387 }
1388 
1389 struct group_for_pci_data {
1390 	struct pci_dev *pdev;
1391 	struct iommu_group *group;
1392 };
1393 
1394 /*
1395  * DMA alias iterator callback, return the last seen device.  Stop and return
1396  * the IOMMU group if we find one along the way.
1397  */
1398 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1399 {
1400 	struct group_for_pci_data *data = opaque;
1401 
1402 	data->pdev = pdev;
1403 	data->group = iommu_group_get(&pdev->dev);
1404 
1405 	return data->group != NULL;
1406 }
1407 
1408 /*
1409  * Generic device_group call-back function. It just allocates one
1410  * iommu-group per device.
1411  */
1412 struct iommu_group *generic_device_group(struct device *dev)
1413 {
1414 	return iommu_group_alloc();
1415 }
1416 EXPORT_SYMBOL_GPL(generic_device_group);
1417 
1418 /*
1419  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1420  * to find or create an IOMMU group for a device.
1421  */
1422 struct iommu_group *pci_device_group(struct device *dev)
1423 {
1424 	struct pci_dev *pdev = to_pci_dev(dev);
1425 	struct group_for_pci_data data;
1426 	struct pci_bus *bus;
1427 	struct iommu_group *group = NULL;
1428 	u64 devfns[4] = { 0 };
1429 
1430 	if (WARN_ON(!dev_is_pci(dev)))
1431 		return ERR_PTR(-EINVAL);
1432 
1433 	/*
1434 	 * Find the upstream DMA alias for the device.  A device must not
1435 	 * be aliased due to topology in order to have its own IOMMU group.
1436 	 * If we find an alias along the way that already belongs to a
1437 	 * group, use it.
1438 	 */
1439 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1440 		return data.group;
1441 
1442 	pdev = data.pdev;
1443 
1444 	/*
1445 	 * Continue upstream from the point of minimum IOMMU granularity
1446 	 * due to aliases to the point where devices are protected from
1447 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1448 	 * group, use it.
1449 	 */
1450 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1451 		if (!bus->self)
1452 			continue;
1453 
1454 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1455 			break;
1456 
1457 		pdev = bus->self;
1458 
1459 		group = iommu_group_get(&pdev->dev);
1460 		if (group)
1461 			return group;
1462 	}
1463 
1464 	/*
1465 	 * Look for existing groups on device aliases.  If we alias another
1466 	 * device or another device aliases us, use the same group.
1467 	 */
1468 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1469 	if (group)
1470 		return group;
1471 
1472 	/*
1473 	 * Look for existing groups on non-isolated functions on the same
1474 	 * slot and aliases of those funcions, if any.  No need to clear
1475 	 * the search bitmap, the tested devfns are still valid.
1476 	 */
1477 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1478 	if (group)
1479 		return group;
1480 
1481 	/* No shared group found, allocate new */
1482 	return iommu_group_alloc();
1483 }
1484 EXPORT_SYMBOL_GPL(pci_device_group);
1485 
1486 /* Get the IOMMU group for device on fsl-mc bus */
1487 struct iommu_group *fsl_mc_device_group(struct device *dev)
1488 {
1489 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1490 	struct iommu_group *group;
1491 
1492 	group = iommu_group_get(cont_dev);
1493 	if (!group)
1494 		group = iommu_group_alloc();
1495 	return group;
1496 }
1497 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1498 
1499 static int iommu_get_def_domain_type(struct device *dev)
1500 {
1501 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1502 
1503 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1504 		return IOMMU_DOMAIN_DMA;
1505 
1506 	if (ops->def_domain_type)
1507 		return ops->def_domain_type(dev);
1508 
1509 	return 0;
1510 }
1511 
1512 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1513 					    struct iommu_group *group,
1514 					    unsigned int type)
1515 {
1516 	struct iommu_domain *dom;
1517 
1518 	dom = __iommu_domain_alloc(bus, type);
1519 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1520 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1521 		if (dom)
1522 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1523 				type, group->name);
1524 	}
1525 
1526 	if (!dom)
1527 		return -ENOMEM;
1528 
1529 	group->default_domain = dom;
1530 	if (!group->domain)
1531 		group->domain = dom;
1532 	return 0;
1533 }
1534 
1535 static int iommu_alloc_default_domain(struct iommu_group *group,
1536 				      struct device *dev)
1537 {
1538 	unsigned int type;
1539 
1540 	if (group->default_domain)
1541 		return 0;
1542 
1543 	type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1544 
1545 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1546 }
1547 
1548 /**
1549  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1550  * @dev: target device
1551  *
1552  * This function is intended to be called by IOMMU drivers and extended to
1553  * support common, bus-defined algorithms when determining or creating the
1554  * IOMMU group for a device.  On success, the caller will hold a reference
1555  * to the returned IOMMU group, which will already include the provided
1556  * device.  The reference should be released with iommu_group_put().
1557  */
1558 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1559 {
1560 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1561 	struct iommu_group *group;
1562 	int ret;
1563 
1564 	group = iommu_group_get(dev);
1565 	if (group)
1566 		return group;
1567 
1568 	group = ops->device_group(dev);
1569 	if (WARN_ON_ONCE(group == NULL))
1570 		return ERR_PTR(-EINVAL);
1571 
1572 	if (IS_ERR(group))
1573 		return group;
1574 
1575 	ret = iommu_group_add_device(group, dev);
1576 	if (ret)
1577 		goto out_put_group;
1578 
1579 	return group;
1580 
1581 out_put_group:
1582 	iommu_group_put(group);
1583 
1584 	return ERR_PTR(ret);
1585 }
1586 
1587 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1588 {
1589 	return group->default_domain;
1590 }
1591 
1592 static int probe_iommu_group(struct device *dev, void *data)
1593 {
1594 	struct list_head *group_list = data;
1595 	struct iommu_group *group;
1596 	int ret;
1597 
1598 	/* Device is probed already if in a group */
1599 	group = iommu_group_get(dev);
1600 	if (group) {
1601 		iommu_group_put(group);
1602 		return 0;
1603 	}
1604 
1605 	ret = __iommu_probe_device(dev, group_list);
1606 	if (ret == -ENODEV)
1607 		ret = 0;
1608 
1609 	return ret;
1610 }
1611 
1612 static int remove_iommu_group(struct device *dev, void *data)
1613 {
1614 	iommu_release_device(dev);
1615 
1616 	return 0;
1617 }
1618 
1619 static int iommu_bus_notifier(struct notifier_block *nb,
1620 			      unsigned long action, void *data)
1621 {
1622 	struct device *dev = data;
1623 
1624 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1625 		int ret;
1626 
1627 		ret = iommu_probe_device(dev);
1628 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1629 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1630 		iommu_release_device(dev);
1631 		return NOTIFY_OK;
1632 	}
1633 
1634 	return 0;
1635 }
1636 
1637 struct __group_domain_type {
1638 	struct device *dev;
1639 	unsigned int type;
1640 };
1641 
1642 static int probe_get_default_domain_type(struct device *dev, void *data)
1643 {
1644 	struct __group_domain_type *gtype = data;
1645 	unsigned int type = iommu_get_def_domain_type(dev);
1646 
1647 	if (type) {
1648 		if (gtype->type && gtype->type != type) {
1649 			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1650 				 iommu_domain_type_str(type),
1651 				 dev_name(gtype->dev),
1652 				 iommu_domain_type_str(gtype->type));
1653 			gtype->type = 0;
1654 		}
1655 
1656 		if (!gtype->dev) {
1657 			gtype->dev  = dev;
1658 			gtype->type = type;
1659 		}
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 static void probe_alloc_default_domain(struct bus_type *bus,
1666 				       struct iommu_group *group)
1667 {
1668 	struct __group_domain_type gtype;
1669 
1670 	memset(&gtype, 0, sizeof(gtype));
1671 
1672 	/* Ask for default domain requirements of all devices in the group */
1673 	__iommu_group_for_each_dev(group, &gtype,
1674 				   probe_get_default_domain_type);
1675 
1676 	if (!gtype.type)
1677 		gtype.type = iommu_def_domain_type;
1678 
1679 	iommu_group_alloc_default_domain(bus, group, gtype.type);
1680 
1681 }
1682 
1683 static int iommu_group_do_dma_attach(struct device *dev, void *data)
1684 {
1685 	struct iommu_domain *domain = data;
1686 	int ret = 0;
1687 
1688 	if (!iommu_is_attach_deferred(dev))
1689 		ret = __iommu_attach_device(domain, dev);
1690 
1691 	return ret;
1692 }
1693 
1694 static int __iommu_group_dma_attach(struct iommu_group *group)
1695 {
1696 	return __iommu_group_for_each_dev(group, group->default_domain,
1697 					  iommu_group_do_dma_attach);
1698 }
1699 
1700 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1701 {
1702 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1703 
1704 	if (ops->probe_finalize)
1705 		ops->probe_finalize(dev);
1706 
1707 	return 0;
1708 }
1709 
1710 static void __iommu_group_dma_finalize(struct iommu_group *group)
1711 {
1712 	__iommu_group_for_each_dev(group, group->default_domain,
1713 				   iommu_group_do_probe_finalize);
1714 }
1715 
1716 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1717 {
1718 	struct iommu_group *group = data;
1719 
1720 	iommu_create_device_direct_mappings(group, dev);
1721 
1722 	return 0;
1723 }
1724 
1725 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1726 {
1727 	return __iommu_group_for_each_dev(group, group,
1728 					  iommu_do_create_direct_mappings);
1729 }
1730 
1731 int bus_iommu_probe(struct bus_type *bus)
1732 {
1733 	struct iommu_group *group, *next;
1734 	LIST_HEAD(group_list);
1735 	int ret;
1736 
1737 	/*
1738 	 * This code-path does not allocate the default domain when
1739 	 * creating the iommu group, so do it after the groups are
1740 	 * created.
1741 	 */
1742 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1743 	if (ret)
1744 		return ret;
1745 
1746 	list_for_each_entry_safe(group, next, &group_list, entry) {
1747 		/* Remove item from the list */
1748 		list_del_init(&group->entry);
1749 
1750 		mutex_lock(&group->mutex);
1751 
1752 		/* Try to allocate default domain */
1753 		probe_alloc_default_domain(bus, group);
1754 
1755 		if (!group->default_domain) {
1756 			mutex_unlock(&group->mutex);
1757 			continue;
1758 		}
1759 
1760 		iommu_group_create_direct_mappings(group);
1761 
1762 		ret = __iommu_group_dma_attach(group);
1763 
1764 		mutex_unlock(&group->mutex);
1765 
1766 		if (ret)
1767 			break;
1768 
1769 		__iommu_group_dma_finalize(group);
1770 	}
1771 
1772 	return ret;
1773 }
1774 
1775 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1776 {
1777 	struct notifier_block *nb;
1778 	int err;
1779 
1780 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1781 	if (!nb)
1782 		return -ENOMEM;
1783 
1784 	nb->notifier_call = iommu_bus_notifier;
1785 
1786 	err = bus_register_notifier(bus, nb);
1787 	if (err)
1788 		goto out_free;
1789 
1790 	err = bus_iommu_probe(bus);
1791 	if (err)
1792 		goto out_err;
1793 
1794 
1795 	return 0;
1796 
1797 out_err:
1798 	/* Clean up */
1799 	bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1800 	bus_unregister_notifier(bus, nb);
1801 
1802 out_free:
1803 	kfree(nb);
1804 
1805 	return err;
1806 }
1807 
1808 /**
1809  * bus_set_iommu - set iommu-callbacks for the bus
1810  * @bus: bus.
1811  * @ops: the callbacks provided by the iommu-driver
1812  *
1813  * This function is called by an iommu driver to set the iommu methods
1814  * used for a particular bus. Drivers for devices on that bus can use
1815  * the iommu-api after these ops are registered.
1816  * This special function is needed because IOMMUs are usually devices on
1817  * the bus itself, so the iommu drivers are not initialized when the bus
1818  * is set up. With this function the iommu-driver can set the iommu-ops
1819  * afterwards.
1820  */
1821 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1822 {
1823 	int err;
1824 
1825 	if (ops == NULL) {
1826 		bus->iommu_ops = NULL;
1827 		return 0;
1828 	}
1829 
1830 	if (bus->iommu_ops != NULL)
1831 		return -EBUSY;
1832 
1833 	bus->iommu_ops = ops;
1834 
1835 	/* Do IOMMU specific setup for this bus-type */
1836 	err = iommu_bus_init(bus, ops);
1837 	if (err)
1838 		bus->iommu_ops = NULL;
1839 
1840 	return err;
1841 }
1842 EXPORT_SYMBOL_GPL(bus_set_iommu);
1843 
1844 bool iommu_present(struct bus_type *bus)
1845 {
1846 	return bus->iommu_ops != NULL;
1847 }
1848 EXPORT_SYMBOL_GPL(iommu_present);
1849 
1850 /**
1851  * device_iommu_capable() - check for a general IOMMU capability
1852  * @dev: device to which the capability would be relevant, if available
1853  * @cap: IOMMU capability
1854  *
1855  * Return: true if an IOMMU is present and supports the given capability
1856  * for the given device, otherwise false.
1857  */
1858 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1859 {
1860 	const struct iommu_ops *ops;
1861 
1862 	if (!dev->iommu || !dev->iommu->iommu_dev)
1863 		return false;
1864 
1865 	ops = dev_iommu_ops(dev);
1866 	if (!ops->capable)
1867 		return false;
1868 
1869 	return ops->capable(cap);
1870 }
1871 EXPORT_SYMBOL_GPL(device_iommu_capable);
1872 
1873 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1874 {
1875 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1876 		return false;
1877 
1878 	return bus->iommu_ops->capable(cap);
1879 }
1880 EXPORT_SYMBOL_GPL(iommu_capable);
1881 
1882 /**
1883  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1884  * @domain: iommu domain
1885  * @handler: fault handler
1886  * @token: user data, will be passed back to the fault handler
1887  *
1888  * This function should be used by IOMMU users which want to be notified
1889  * whenever an IOMMU fault happens.
1890  *
1891  * The fault handler itself should return 0 on success, and an appropriate
1892  * error code otherwise.
1893  */
1894 void iommu_set_fault_handler(struct iommu_domain *domain,
1895 					iommu_fault_handler_t handler,
1896 					void *token)
1897 {
1898 	BUG_ON(!domain);
1899 
1900 	domain->handler = handler;
1901 	domain->handler_token = token;
1902 }
1903 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1904 
1905 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1906 						 unsigned type)
1907 {
1908 	struct iommu_domain *domain;
1909 
1910 	if (bus == NULL || bus->iommu_ops == NULL)
1911 		return NULL;
1912 
1913 	domain = bus->iommu_ops->domain_alloc(type);
1914 	if (!domain)
1915 		return NULL;
1916 
1917 	domain->type = type;
1918 	/* Assume all sizes by default; the driver may override this later */
1919 	domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1920 	if (!domain->ops)
1921 		domain->ops = bus->iommu_ops->default_domain_ops;
1922 
1923 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1924 		iommu_domain_free(domain);
1925 		domain = NULL;
1926 	}
1927 	return domain;
1928 }
1929 
1930 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1931 {
1932 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1933 }
1934 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1935 
1936 void iommu_domain_free(struct iommu_domain *domain)
1937 {
1938 	iommu_put_dma_cookie(domain);
1939 	domain->ops->free(domain);
1940 }
1941 EXPORT_SYMBOL_GPL(iommu_domain_free);
1942 
1943 /*
1944  * Put the group's domain back to the appropriate core-owned domain - either the
1945  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
1946  */
1947 static void __iommu_group_set_core_domain(struct iommu_group *group)
1948 {
1949 	struct iommu_domain *new_domain;
1950 	int ret;
1951 
1952 	if (group->owner)
1953 		new_domain = group->blocking_domain;
1954 	else
1955 		new_domain = group->default_domain;
1956 
1957 	ret = __iommu_group_set_domain(group, new_domain);
1958 	WARN(ret, "iommu driver failed to attach the default/blocking domain");
1959 }
1960 
1961 static int __iommu_attach_device(struct iommu_domain *domain,
1962 				 struct device *dev)
1963 {
1964 	int ret;
1965 
1966 	if (unlikely(domain->ops->attach_dev == NULL))
1967 		return -ENODEV;
1968 
1969 	ret = domain->ops->attach_dev(domain, dev);
1970 	if (!ret)
1971 		trace_attach_device_to_domain(dev);
1972 	return ret;
1973 }
1974 
1975 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1976 {
1977 	struct iommu_group *group;
1978 	int ret;
1979 
1980 	group = iommu_group_get(dev);
1981 	if (!group)
1982 		return -ENODEV;
1983 
1984 	/*
1985 	 * Lock the group to make sure the device-count doesn't
1986 	 * change while we are attaching
1987 	 */
1988 	mutex_lock(&group->mutex);
1989 	ret = -EINVAL;
1990 	if (iommu_group_device_count(group) != 1)
1991 		goto out_unlock;
1992 
1993 	ret = __iommu_attach_group(domain, group);
1994 
1995 out_unlock:
1996 	mutex_unlock(&group->mutex);
1997 	iommu_group_put(group);
1998 
1999 	return ret;
2000 }
2001 EXPORT_SYMBOL_GPL(iommu_attach_device);
2002 
2003 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2004 {
2005 	if (iommu_is_attach_deferred(dev))
2006 		return __iommu_attach_device(domain, dev);
2007 
2008 	return 0;
2009 }
2010 
2011 static void __iommu_detach_device(struct iommu_domain *domain,
2012 				  struct device *dev)
2013 {
2014 	if (iommu_is_attach_deferred(dev))
2015 		return;
2016 
2017 	domain->ops->detach_dev(domain, dev);
2018 	trace_detach_device_from_domain(dev);
2019 }
2020 
2021 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2022 {
2023 	struct iommu_group *group;
2024 
2025 	group = iommu_group_get(dev);
2026 	if (!group)
2027 		return;
2028 
2029 	mutex_lock(&group->mutex);
2030 	if (WARN_ON(domain != group->domain) ||
2031 	    WARN_ON(iommu_group_device_count(group) != 1))
2032 		goto out_unlock;
2033 	__iommu_group_set_core_domain(group);
2034 
2035 out_unlock:
2036 	mutex_unlock(&group->mutex);
2037 	iommu_group_put(group);
2038 }
2039 EXPORT_SYMBOL_GPL(iommu_detach_device);
2040 
2041 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2042 {
2043 	struct iommu_domain *domain;
2044 	struct iommu_group *group;
2045 
2046 	group = iommu_group_get(dev);
2047 	if (!group)
2048 		return NULL;
2049 
2050 	domain = group->domain;
2051 
2052 	iommu_group_put(group);
2053 
2054 	return domain;
2055 }
2056 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2057 
2058 /*
2059  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2060  * guarantees that the group and its default domain are valid and correct.
2061  */
2062 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2063 {
2064 	return dev->iommu_group->default_domain;
2065 }
2066 
2067 /*
2068  * IOMMU groups are really the natural working unit of the IOMMU, but
2069  * the IOMMU API works on domains and devices.  Bridge that gap by
2070  * iterating over the devices in a group.  Ideally we'd have a single
2071  * device which represents the requestor ID of the group, but we also
2072  * allow IOMMU drivers to create policy defined minimum sets, where
2073  * the physical hardware may be able to distiguish members, but we
2074  * wish to group them at a higher level (ex. untrusted multi-function
2075  * PCI devices).  Thus we attach each device.
2076  */
2077 static int iommu_group_do_attach_device(struct device *dev, void *data)
2078 {
2079 	struct iommu_domain *domain = data;
2080 
2081 	return __iommu_attach_device(domain, dev);
2082 }
2083 
2084 static int __iommu_attach_group(struct iommu_domain *domain,
2085 				struct iommu_group *group)
2086 {
2087 	int ret;
2088 
2089 	if (group->domain && group->domain != group->default_domain &&
2090 	    group->domain != group->blocking_domain)
2091 		return -EBUSY;
2092 
2093 	ret = __iommu_group_for_each_dev(group, domain,
2094 					 iommu_group_do_attach_device);
2095 	if (ret == 0)
2096 		group->domain = domain;
2097 
2098 	return ret;
2099 }
2100 
2101 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2102 {
2103 	int ret;
2104 
2105 	mutex_lock(&group->mutex);
2106 	ret = __iommu_attach_group(domain, group);
2107 	mutex_unlock(&group->mutex);
2108 
2109 	return ret;
2110 }
2111 EXPORT_SYMBOL_GPL(iommu_attach_group);
2112 
2113 static int iommu_group_do_detach_device(struct device *dev, void *data)
2114 {
2115 	struct iommu_domain *domain = data;
2116 
2117 	__iommu_detach_device(domain, dev);
2118 
2119 	return 0;
2120 }
2121 
2122 static int __iommu_group_set_domain(struct iommu_group *group,
2123 				    struct iommu_domain *new_domain)
2124 {
2125 	int ret;
2126 
2127 	if (group->domain == new_domain)
2128 		return 0;
2129 
2130 	/*
2131 	 * New drivers should support default domains and so the detach_dev() op
2132 	 * will never be called. Otherwise the NULL domain represents some
2133 	 * platform specific behavior.
2134 	 */
2135 	if (!new_domain) {
2136 		if (WARN_ON(!group->domain->ops->detach_dev))
2137 			return -EINVAL;
2138 		__iommu_group_for_each_dev(group, group->domain,
2139 					   iommu_group_do_detach_device);
2140 		group->domain = NULL;
2141 		return 0;
2142 	}
2143 
2144 	/*
2145 	 * Changing the domain is done by calling attach_dev() on the new
2146 	 * domain. This switch does not have to be atomic and DMA can be
2147 	 * discarded during the transition. DMA must only be able to access
2148 	 * either new_domain or group->domain, never something else.
2149 	 *
2150 	 * Note that this is called in error unwind paths, attaching to a
2151 	 * domain that has already been attached cannot fail.
2152 	 */
2153 	ret = __iommu_group_for_each_dev(group, new_domain,
2154 					 iommu_group_do_attach_device);
2155 	if (ret)
2156 		return ret;
2157 	group->domain = new_domain;
2158 	return 0;
2159 }
2160 
2161 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2162 {
2163 	mutex_lock(&group->mutex);
2164 	__iommu_group_set_core_domain(group);
2165 	mutex_unlock(&group->mutex);
2166 }
2167 EXPORT_SYMBOL_GPL(iommu_detach_group);
2168 
2169 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2170 {
2171 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2172 		return iova;
2173 
2174 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2175 		return 0;
2176 
2177 	return domain->ops->iova_to_phys(domain, iova);
2178 }
2179 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2180 
2181 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2182 			   phys_addr_t paddr, size_t size, size_t *count)
2183 {
2184 	unsigned int pgsize_idx, pgsize_idx_next;
2185 	unsigned long pgsizes;
2186 	size_t offset, pgsize, pgsize_next;
2187 	unsigned long addr_merge = paddr | iova;
2188 
2189 	/* Page sizes supported by the hardware and small enough for @size */
2190 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2191 
2192 	/* Constrain the page sizes further based on the maximum alignment */
2193 	if (likely(addr_merge))
2194 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2195 
2196 	/* Make sure we have at least one suitable page size */
2197 	BUG_ON(!pgsizes);
2198 
2199 	/* Pick the biggest page size remaining */
2200 	pgsize_idx = __fls(pgsizes);
2201 	pgsize = BIT(pgsize_idx);
2202 	if (!count)
2203 		return pgsize;
2204 
2205 	/* Find the next biggest support page size, if it exists */
2206 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2207 	if (!pgsizes)
2208 		goto out_set_count;
2209 
2210 	pgsize_idx_next = __ffs(pgsizes);
2211 	pgsize_next = BIT(pgsize_idx_next);
2212 
2213 	/*
2214 	 * There's no point trying a bigger page size unless the virtual
2215 	 * and physical addresses are similarly offset within the larger page.
2216 	 */
2217 	if ((iova ^ paddr) & (pgsize_next - 1))
2218 		goto out_set_count;
2219 
2220 	/* Calculate the offset to the next page size alignment boundary */
2221 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2222 
2223 	/*
2224 	 * If size is big enough to accommodate the larger page, reduce
2225 	 * the number of smaller pages.
2226 	 */
2227 	if (offset + pgsize_next <= size)
2228 		size = offset;
2229 
2230 out_set_count:
2231 	*count = size >> pgsize_idx;
2232 	return pgsize;
2233 }
2234 
2235 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2236 			     phys_addr_t paddr, size_t size, int prot,
2237 			     gfp_t gfp, size_t *mapped)
2238 {
2239 	const struct iommu_domain_ops *ops = domain->ops;
2240 	size_t pgsize, count;
2241 	int ret;
2242 
2243 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2244 
2245 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2246 		 iova, &paddr, pgsize, count);
2247 
2248 	if (ops->map_pages) {
2249 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2250 				     gfp, mapped);
2251 	} else {
2252 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2253 		*mapped = ret ? 0 : pgsize;
2254 	}
2255 
2256 	return ret;
2257 }
2258 
2259 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2260 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2261 {
2262 	const struct iommu_domain_ops *ops = domain->ops;
2263 	unsigned long orig_iova = iova;
2264 	unsigned int min_pagesz;
2265 	size_t orig_size = size;
2266 	phys_addr_t orig_paddr = paddr;
2267 	int ret = 0;
2268 
2269 	if (unlikely(!(ops->map || ops->map_pages) ||
2270 		     domain->pgsize_bitmap == 0UL))
2271 		return -ENODEV;
2272 
2273 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2274 		return -EINVAL;
2275 
2276 	/* find out the minimum page size supported */
2277 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2278 
2279 	/*
2280 	 * both the virtual address and the physical one, as well as
2281 	 * the size of the mapping, must be aligned (at least) to the
2282 	 * size of the smallest page supported by the hardware
2283 	 */
2284 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2285 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2286 		       iova, &paddr, size, min_pagesz);
2287 		return -EINVAL;
2288 	}
2289 
2290 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2291 
2292 	while (size) {
2293 		size_t mapped = 0;
2294 
2295 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2296 					&mapped);
2297 		/*
2298 		 * Some pages may have been mapped, even if an error occurred,
2299 		 * so we should account for those so they can be unmapped.
2300 		 */
2301 		size -= mapped;
2302 
2303 		if (ret)
2304 			break;
2305 
2306 		iova += mapped;
2307 		paddr += mapped;
2308 	}
2309 
2310 	/* unroll mapping in case something went wrong */
2311 	if (ret)
2312 		iommu_unmap(domain, orig_iova, orig_size - size);
2313 	else
2314 		trace_map(orig_iova, orig_paddr, orig_size);
2315 
2316 	return ret;
2317 }
2318 
2319 static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
2320 		      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2321 {
2322 	const struct iommu_domain_ops *ops = domain->ops;
2323 	int ret;
2324 
2325 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2326 	if (ret == 0 && ops->iotlb_sync_map)
2327 		ops->iotlb_sync_map(domain, iova, size);
2328 
2329 	return ret;
2330 }
2331 
2332 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2333 	      phys_addr_t paddr, size_t size, int prot)
2334 {
2335 	might_sleep();
2336 	return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2337 }
2338 EXPORT_SYMBOL_GPL(iommu_map);
2339 
2340 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2341 	      phys_addr_t paddr, size_t size, int prot)
2342 {
2343 	return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2344 }
2345 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2346 
2347 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2348 				  unsigned long iova, size_t size,
2349 				  struct iommu_iotlb_gather *iotlb_gather)
2350 {
2351 	const struct iommu_domain_ops *ops = domain->ops;
2352 	size_t pgsize, count;
2353 
2354 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2355 	return ops->unmap_pages ?
2356 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2357 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2358 }
2359 
2360 static size_t __iommu_unmap(struct iommu_domain *domain,
2361 			    unsigned long iova, size_t size,
2362 			    struct iommu_iotlb_gather *iotlb_gather)
2363 {
2364 	const struct iommu_domain_ops *ops = domain->ops;
2365 	size_t unmapped_page, unmapped = 0;
2366 	unsigned long orig_iova = iova;
2367 	unsigned int min_pagesz;
2368 
2369 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2370 		     domain->pgsize_bitmap == 0UL))
2371 		return 0;
2372 
2373 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2374 		return 0;
2375 
2376 	/* find out the minimum page size supported */
2377 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2378 
2379 	/*
2380 	 * The virtual address, as well as the size of the mapping, must be
2381 	 * aligned (at least) to the size of the smallest page supported
2382 	 * by the hardware
2383 	 */
2384 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2385 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2386 		       iova, size, min_pagesz);
2387 		return 0;
2388 	}
2389 
2390 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2391 
2392 	/*
2393 	 * Keep iterating until we either unmap 'size' bytes (or more)
2394 	 * or we hit an area that isn't mapped.
2395 	 */
2396 	while (unmapped < size) {
2397 		unmapped_page = __iommu_unmap_pages(domain, iova,
2398 						    size - unmapped,
2399 						    iotlb_gather);
2400 		if (!unmapped_page)
2401 			break;
2402 
2403 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2404 			 iova, unmapped_page);
2405 
2406 		iova += unmapped_page;
2407 		unmapped += unmapped_page;
2408 	}
2409 
2410 	trace_unmap(orig_iova, size, unmapped);
2411 	return unmapped;
2412 }
2413 
2414 size_t iommu_unmap(struct iommu_domain *domain,
2415 		   unsigned long iova, size_t size)
2416 {
2417 	struct iommu_iotlb_gather iotlb_gather;
2418 	size_t ret;
2419 
2420 	iommu_iotlb_gather_init(&iotlb_gather);
2421 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2422 	iommu_iotlb_sync(domain, &iotlb_gather);
2423 
2424 	return ret;
2425 }
2426 EXPORT_SYMBOL_GPL(iommu_unmap);
2427 
2428 size_t iommu_unmap_fast(struct iommu_domain *domain,
2429 			unsigned long iova, size_t size,
2430 			struct iommu_iotlb_gather *iotlb_gather)
2431 {
2432 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2433 }
2434 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2435 
2436 static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2437 		struct scatterlist *sg, unsigned int nents, int prot,
2438 		gfp_t gfp)
2439 {
2440 	const struct iommu_domain_ops *ops = domain->ops;
2441 	size_t len = 0, mapped = 0;
2442 	phys_addr_t start;
2443 	unsigned int i = 0;
2444 	int ret;
2445 
2446 	while (i <= nents) {
2447 		phys_addr_t s_phys = sg_phys(sg);
2448 
2449 		if (len && s_phys != start + len) {
2450 			ret = __iommu_map(domain, iova + mapped, start,
2451 					len, prot, gfp);
2452 
2453 			if (ret)
2454 				goto out_err;
2455 
2456 			mapped += len;
2457 			len = 0;
2458 		}
2459 
2460 		if (len) {
2461 			len += sg->length;
2462 		} else {
2463 			len = sg->length;
2464 			start = s_phys;
2465 		}
2466 
2467 		if (++i < nents)
2468 			sg = sg_next(sg);
2469 	}
2470 
2471 	if (ops->iotlb_sync_map)
2472 		ops->iotlb_sync_map(domain, iova, mapped);
2473 	return mapped;
2474 
2475 out_err:
2476 	/* undo mappings already done */
2477 	iommu_unmap(domain, iova, mapped);
2478 
2479 	return ret;
2480 }
2481 
2482 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2483 		     struct scatterlist *sg, unsigned int nents, int prot)
2484 {
2485 	might_sleep();
2486 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2487 }
2488 EXPORT_SYMBOL_GPL(iommu_map_sg);
2489 
2490 ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2491 		    struct scatterlist *sg, unsigned int nents, int prot)
2492 {
2493 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2494 }
2495 
2496 /**
2497  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2498  * @domain: the iommu domain where the fault has happened
2499  * @dev: the device where the fault has happened
2500  * @iova: the faulting address
2501  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2502  *
2503  * This function should be called by the low-level IOMMU implementations
2504  * whenever IOMMU faults happen, to allow high-level users, that are
2505  * interested in such events, to know about them.
2506  *
2507  * This event may be useful for several possible use cases:
2508  * - mere logging of the event
2509  * - dynamic TLB/PTE loading
2510  * - if restarting of the faulting device is required
2511  *
2512  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2513  * PTE/TLB loading will one day be supported, implementations will be able
2514  * to tell whether it succeeded or not according to this return value).
2515  *
2516  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2517  * (though fault handlers can also return -ENOSYS, in case they want to
2518  * elicit the default behavior of the IOMMU drivers).
2519  */
2520 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2521 		       unsigned long iova, int flags)
2522 {
2523 	int ret = -ENOSYS;
2524 
2525 	/*
2526 	 * if upper layers showed interest and installed a fault handler,
2527 	 * invoke it.
2528 	 */
2529 	if (domain->handler)
2530 		ret = domain->handler(domain, dev, iova, flags,
2531 						domain->handler_token);
2532 
2533 	trace_io_page_fault(dev, iova, flags);
2534 	return ret;
2535 }
2536 EXPORT_SYMBOL_GPL(report_iommu_fault);
2537 
2538 static int __init iommu_init(void)
2539 {
2540 	iommu_group_kset = kset_create_and_add("iommu_groups",
2541 					       NULL, kernel_kobj);
2542 	BUG_ON(!iommu_group_kset);
2543 
2544 	iommu_debugfs_setup();
2545 
2546 	return 0;
2547 }
2548 core_initcall(iommu_init);
2549 
2550 int iommu_enable_nesting(struct iommu_domain *domain)
2551 {
2552 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2553 		return -EINVAL;
2554 	if (!domain->ops->enable_nesting)
2555 		return -EINVAL;
2556 	return domain->ops->enable_nesting(domain);
2557 }
2558 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2559 
2560 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2561 		unsigned long quirk)
2562 {
2563 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2564 		return -EINVAL;
2565 	if (!domain->ops->set_pgtable_quirks)
2566 		return -EINVAL;
2567 	return domain->ops->set_pgtable_quirks(domain, quirk);
2568 }
2569 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2570 
2571 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2572 {
2573 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2574 
2575 	if (ops->get_resv_regions)
2576 		ops->get_resv_regions(dev, list);
2577 }
2578 
2579 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2580 {
2581 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2582 
2583 	if (ops->put_resv_regions)
2584 		ops->put_resv_regions(dev, list);
2585 }
2586 
2587 /**
2588  * generic_iommu_put_resv_regions - Reserved region driver helper
2589  * @dev: device for which to free reserved regions
2590  * @list: reserved region list for device
2591  *
2592  * IOMMU drivers can use this to implement their .put_resv_regions() callback
2593  * for simple reservations. If a per region callback is provided that will be
2594  * used to free all memory allocations associated with the reserved region or
2595  * else just free up the memory for the regions. If an IOMMU driver allocates
2596  * additional resources per region, it is going to have to implement a custom
2597  * callback.
2598  */
2599 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list)
2600 {
2601 	struct iommu_resv_region *entry, *next;
2602 
2603 	list_for_each_entry_safe(entry, next, list, list) {
2604 		if (entry->free)
2605 			entry->free(dev, entry);
2606 		else
2607 			kfree(entry);
2608 	}
2609 }
2610 EXPORT_SYMBOL(generic_iommu_put_resv_regions);
2611 
2612 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2613 						  size_t length, int prot,
2614 						  enum iommu_resv_type type)
2615 {
2616 	struct iommu_resv_region *region;
2617 
2618 	region = kzalloc(sizeof(*region), GFP_KERNEL);
2619 	if (!region)
2620 		return NULL;
2621 
2622 	INIT_LIST_HEAD(&region->list);
2623 	region->start = start;
2624 	region->length = length;
2625 	region->prot = prot;
2626 	region->type = type;
2627 	return region;
2628 }
2629 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2630 
2631 void iommu_set_default_passthrough(bool cmd_line)
2632 {
2633 	if (cmd_line)
2634 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2635 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2636 }
2637 
2638 void iommu_set_default_translated(bool cmd_line)
2639 {
2640 	if (cmd_line)
2641 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2642 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2643 }
2644 
2645 bool iommu_default_passthrough(void)
2646 {
2647 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2648 }
2649 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2650 
2651 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2652 {
2653 	const struct iommu_ops *ops = NULL;
2654 	struct iommu_device *iommu;
2655 
2656 	spin_lock(&iommu_device_lock);
2657 	list_for_each_entry(iommu, &iommu_device_list, list)
2658 		if (iommu->fwnode == fwnode) {
2659 			ops = iommu->ops;
2660 			break;
2661 		}
2662 	spin_unlock(&iommu_device_lock);
2663 	return ops;
2664 }
2665 
2666 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2667 		      const struct iommu_ops *ops)
2668 {
2669 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2670 
2671 	if (fwspec)
2672 		return ops == fwspec->ops ? 0 : -EINVAL;
2673 
2674 	if (!dev_iommu_get(dev))
2675 		return -ENOMEM;
2676 
2677 	/* Preallocate for the overwhelmingly common case of 1 ID */
2678 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2679 	if (!fwspec)
2680 		return -ENOMEM;
2681 
2682 	of_node_get(to_of_node(iommu_fwnode));
2683 	fwspec->iommu_fwnode = iommu_fwnode;
2684 	fwspec->ops = ops;
2685 	dev_iommu_fwspec_set(dev, fwspec);
2686 	return 0;
2687 }
2688 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2689 
2690 void iommu_fwspec_free(struct device *dev)
2691 {
2692 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2693 
2694 	if (fwspec) {
2695 		fwnode_handle_put(fwspec->iommu_fwnode);
2696 		kfree(fwspec);
2697 		dev_iommu_fwspec_set(dev, NULL);
2698 	}
2699 }
2700 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2701 
2702 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2703 {
2704 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2705 	int i, new_num;
2706 
2707 	if (!fwspec)
2708 		return -EINVAL;
2709 
2710 	new_num = fwspec->num_ids + num_ids;
2711 	if (new_num > 1) {
2712 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2713 				  GFP_KERNEL);
2714 		if (!fwspec)
2715 			return -ENOMEM;
2716 
2717 		dev_iommu_fwspec_set(dev, fwspec);
2718 	}
2719 
2720 	for (i = 0; i < num_ids; i++)
2721 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2722 
2723 	fwspec->num_ids = new_num;
2724 	return 0;
2725 }
2726 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2727 
2728 /*
2729  * Per device IOMMU features.
2730  */
2731 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2732 {
2733 	if (dev->iommu && dev->iommu->iommu_dev) {
2734 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2735 
2736 		if (ops->dev_enable_feat)
2737 			return ops->dev_enable_feat(dev, feat);
2738 	}
2739 
2740 	return -ENODEV;
2741 }
2742 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2743 
2744 /*
2745  * The device drivers should do the necessary cleanups before calling this.
2746  */
2747 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2748 {
2749 	if (dev->iommu && dev->iommu->iommu_dev) {
2750 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2751 
2752 		if (ops->dev_disable_feat)
2753 			return ops->dev_disable_feat(dev, feat);
2754 	}
2755 
2756 	return -EBUSY;
2757 }
2758 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2759 
2760 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2761 {
2762 	if (dev->iommu && dev->iommu->iommu_dev) {
2763 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2764 
2765 		if (ops->dev_feat_enabled)
2766 			return ops->dev_feat_enabled(dev, feat);
2767 	}
2768 
2769 	return false;
2770 }
2771 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2772 
2773 /**
2774  * iommu_sva_bind_device() - Bind a process address space to a device
2775  * @dev: the device
2776  * @mm: the mm to bind, caller must hold a reference to it
2777  * @drvdata: opaque data pointer to pass to bind callback
2778  *
2779  * Create a bond between device and address space, allowing the device to access
2780  * the mm using the returned PASID. If a bond already exists between @device and
2781  * @mm, it is returned and an additional reference is taken. Caller must call
2782  * iommu_sva_unbind_device() to release each reference.
2783  *
2784  * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
2785  * initialize the required SVA features.
2786  *
2787  * On error, returns an ERR_PTR value.
2788  */
2789 struct iommu_sva *
2790 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
2791 {
2792 	struct iommu_group *group;
2793 	struct iommu_sva *handle = ERR_PTR(-EINVAL);
2794 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2795 
2796 	if (!ops->sva_bind)
2797 		return ERR_PTR(-ENODEV);
2798 
2799 	group = iommu_group_get(dev);
2800 	if (!group)
2801 		return ERR_PTR(-ENODEV);
2802 
2803 	/* Ensure device count and domain don't change while we're binding */
2804 	mutex_lock(&group->mutex);
2805 
2806 	/*
2807 	 * To keep things simple, SVA currently doesn't support IOMMU groups
2808 	 * with more than one device. Existing SVA-capable systems are not
2809 	 * affected by the problems that required IOMMU groups (lack of ACS
2810 	 * isolation, device ID aliasing and other hardware issues).
2811 	 */
2812 	if (iommu_group_device_count(group) != 1)
2813 		goto out_unlock;
2814 
2815 	handle = ops->sva_bind(dev, mm, drvdata);
2816 
2817 out_unlock:
2818 	mutex_unlock(&group->mutex);
2819 	iommu_group_put(group);
2820 
2821 	return handle;
2822 }
2823 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
2824 
2825 /**
2826  * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
2827  * @handle: the handle returned by iommu_sva_bind_device()
2828  *
2829  * Put reference to a bond between device and address space. The device should
2830  * not be issuing any more transaction for this PASID. All outstanding page
2831  * requests for this PASID must have been flushed to the IOMMU.
2832  */
2833 void iommu_sva_unbind_device(struct iommu_sva *handle)
2834 {
2835 	struct iommu_group *group;
2836 	struct device *dev = handle->dev;
2837 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2838 
2839 	if (!ops->sva_unbind)
2840 		return;
2841 
2842 	group = iommu_group_get(dev);
2843 	if (!group)
2844 		return;
2845 
2846 	mutex_lock(&group->mutex);
2847 	ops->sva_unbind(handle);
2848 	mutex_unlock(&group->mutex);
2849 
2850 	iommu_group_put(group);
2851 }
2852 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
2853 
2854 u32 iommu_sva_get_pasid(struct iommu_sva *handle)
2855 {
2856 	const struct iommu_ops *ops = dev_iommu_ops(handle->dev);
2857 
2858 	if (!ops->sva_get_pasid)
2859 		return IOMMU_PASID_INVALID;
2860 
2861 	return ops->sva_get_pasid(handle);
2862 }
2863 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
2864 
2865 /*
2866  * Changes the default domain of an iommu group that has *only* one device
2867  *
2868  * @group: The group for which the default domain should be changed
2869  * @prev_dev: The device in the group (this is used to make sure that the device
2870  *	 hasn't changed after the caller has called this function)
2871  * @type: The type of the new default domain that gets associated with the group
2872  *
2873  * Returns 0 on success and error code on failure
2874  *
2875  * Note:
2876  * 1. Presently, this function is called only when user requests to change the
2877  *    group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
2878  *    Please take a closer look if intended to use for other purposes.
2879  */
2880 static int iommu_change_dev_def_domain(struct iommu_group *group,
2881 				       struct device *prev_dev, int type)
2882 {
2883 	struct iommu_domain *prev_dom;
2884 	struct group_device *grp_dev;
2885 	int ret, dev_def_dom;
2886 	struct device *dev;
2887 
2888 	mutex_lock(&group->mutex);
2889 
2890 	if (group->default_domain != group->domain) {
2891 		dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
2892 		ret = -EBUSY;
2893 		goto out;
2894 	}
2895 
2896 	/*
2897 	 * iommu group wasn't locked while acquiring device lock in
2898 	 * iommu_group_store_type(). So, make sure that the device count hasn't
2899 	 * changed while acquiring device lock.
2900 	 *
2901 	 * Changing default domain of an iommu group with two or more devices
2902 	 * isn't supported because there could be a potential deadlock. Consider
2903 	 * the following scenario. T1 is trying to acquire device locks of all
2904 	 * the devices in the group and before it could acquire all of them,
2905 	 * there could be another thread T2 (from different sub-system and use
2906 	 * case) that has already acquired some of the device locks and might be
2907 	 * waiting for T1 to release other device locks.
2908 	 */
2909 	if (iommu_group_device_count(group) != 1) {
2910 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
2911 		ret = -EINVAL;
2912 		goto out;
2913 	}
2914 
2915 	/* Since group has only one device */
2916 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
2917 	dev = grp_dev->dev;
2918 
2919 	if (prev_dev != dev) {
2920 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
2921 		ret = -EBUSY;
2922 		goto out;
2923 	}
2924 
2925 	prev_dom = group->default_domain;
2926 	if (!prev_dom) {
2927 		ret = -EINVAL;
2928 		goto out;
2929 	}
2930 
2931 	dev_def_dom = iommu_get_def_domain_type(dev);
2932 	if (!type) {
2933 		/*
2934 		 * If the user hasn't requested any specific type of domain and
2935 		 * if the device supports both the domains, then default to the
2936 		 * domain the device was booted with
2937 		 */
2938 		type = dev_def_dom ? : iommu_def_domain_type;
2939 	} else if (dev_def_dom && type != dev_def_dom) {
2940 		dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
2941 				    iommu_domain_type_str(type));
2942 		ret = -EINVAL;
2943 		goto out;
2944 	}
2945 
2946 	/*
2947 	 * Switch to a new domain only if the requested domain type is different
2948 	 * from the existing default domain type
2949 	 */
2950 	if (prev_dom->type == type) {
2951 		ret = 0;
2952 		goto out;
2953 	}
2954 
2955 	/* We can bring up a flush queue without tearing down the domain */
2956 	if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) {
2957 		ret = iommu_dma_init_fq(prev_dom);
2958 		if (!ret)
2959 			prev_dom->type = IOMMU_DOMAIN_DMA_FQ;
2960 		goto out;
2961 	}
2962 
2963 	/* Sets group->default_domain to the newly allocated domain */
2964 	ret = iommu_group_alloc_default_domain(dev->bus, group, type);
2965 	if (ret)
2966 		goto out;
2967 
2968 	ret = iommu_create_device_direct_mappings(group, dev);
2969 	if (ret)
2970 		goto free_new_domain;
2971 
2972 	ret = __iommu_attach_device(group->default_domain, dev);
2973 	if (ret)
2974 		goto free_new_domain;
2975 
2976 	group->domain = group->default_domain;
2977 
2978 	/*
2979 	 * Release the mutex here because ops->probe_finalize() call-back of
2980 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
2981 	 * in-turn might call back into IOMMU core code, where it tries to take
2982 	 * group->mutex, resulting in a deadlock.
2983 	 */
2984 	mutex_unlock(&group->mutex);
2985 
2986 	/* Make sure dma_ops is appropriatley set */
2987 	iommu_group_do_probe_finalize(dev, group->default_domain);
2988 	iommu_domain_free(prev_dom);
2989 	return 0;
2990 
2991 free_new_domain:
2992 	iommu_domain_free(group->default_domain);
2993 	group->default_domain = prev_dom;
2994 	group->domain = prev_dom;
2995 
2996 out:
2997 	mutex_unlock(&group->mutex);
2998 
2999 	return ret;
3000 }
3001 
3002 /*
3003  * Changing the default domain through sysfs requires the users to unbind the
3004  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3005  * transition. Return failure if this isn't met.
3006  *
3007  * We need to consider the race between this and the device release path.
3008  * device_lock(dev) is used here to guarantee that the device release path
3009  * will not be entered at the same time.
3010  */
3011 static ssize_t iommu_group_store_type(struct iommu_group *group,
3012 				      const char *buf, size_t count)
3013 {
3014 	struct group_device *grp_dev;
3015 	struct device *dev;
3016 	int ret, req_type;
3017 
3018 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3019 		return -EACCES;
3020 
3021 	if (WARN_ON(!group) || !group->default_domain)
3022 		return -EINVAL;
3023 
3024 	if (sysfs_streq(buf, "identity"))
3025 		req_type = IOMMU_DOMAIN_IDENTITY;
3026 	else if (sysfs_streq(buf, "DMA"))
3027 		req_type = IOMMU_DOMAIN_DMA;
3028 	else if (sysfs_streq(buf, "DMA-FQ"))
3029 		req_type = IOMMU_DOMAIN_DMA_FQ;
3030 	else if (sysfs_streq(buf, "auto"))
3031 		req_type = 0;
3032 	else
3033 		return -EINVAL;
3034 
3035 	/*
3036 	 * Lock/Unlock the group mutex here before device lock to
3037 	 * 1. Make sure that the iommu group has only one device (this is a
3038 	 *    prerequisite for step 2)
3039 	 * 2. Get struct *dev which is needed to lock device
3040 	 */
3041 	mutex_lock(&group->mutex);
3042 	if (iommu_group_device_count(group) != 1) {
3043 		mutex_unlock(&group->mutex);
3044 		pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
3045 		return -EINVAL;
3046 	}
3047 
3048 	/* Since group has only one device */
3049 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3050 	dev = grp_dev->dev;
3051 	get_device(dev);
3052 
3053 	/*
3054 	 * Don't hold the group mutex because taking group mutex first and then
3055 	 * the device lock could potentially cause a deadlock as below. Assume
3056 	 * two threads T1 and T2. T1 is trying to change default domain of an
3057 	 * iommu group and T2 is trying to hot unplug a device or release [1] VF
3058 	 * of a PCIe device which is in the same iommu group. T1 takes group
3059 	 * mutex and before it could take device lock assume T2 has taken device
3060 	 * lock and is yet to take group mutex. Now, both the threads will be
3061 	 * waiting for the other thread to release lock. Below, lock order was
3062 	 * suggested.
3063 	 * device_lock(dev);
3064 	 *	mutex_lock(&group->mutex);
3065 	 *		iommu_change_dev_def_domain();
3066 	 *	mutex_unlock(&group->mutex);
3067 	 * device_unlock(dev);
3068 	 *
3069 	 * [1] Typical device release path
3070 	 * device_lock() from device/driver core code
3071 	 *  -> bus_notifier()
3072 	 *   -> iommu_bus_notifier()
3073 	 *    -> iommu_release_device()
3074 	 *     -> ops->release_device() vendor driver calls back iommu core code
3075 	 *      -> mutex_lock() from iommu core code
3076 	 */
3077 	mutex_unlock(&group->mutex);
3078 
3079 	/* Check if the device in the group still has a driver bound to it */
3080 	device_lock(dev);
3081 	if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ &&
3082 	    group->default_domain->type == IOMMU_DOMAIN_DMA)) {
3083 		pr_err_ratelimited("Device is still bound to driver\n");
3084 		ret = -EBUSY;
3085 		goto out;
3086 	}
3087 
3088 	ret = iommu_change_dev_def_domain(group, dev, req_type);
3089 	ret = ret ?: count;
3090 
3091 out:
3092 	device_unlock(dev);
3093 	put_device(dev);
3094 
3095 	return ret;
3096 }
3097 
3098 /**
3099  * iommu_device_use_default_domain() - Device driver wants to handle device
3100  *                                     DMA through the kernel DMA API.
3101  * @dev: The device.
3102  *
3103  * The device driver about to bind @dev wants to do DMA through the kernel
3104  * DMA API. Return 0 if it is allowed, otherwise an error.
3105  */
3106 int iommu_device_use_default_domain(struct device *dev)
3107 {
3108 	struct iommu_group *group = iommu_group_get(dev);
3109 	int ret = 0;
3110 
3111 	if (!group)
3112 		return 0;
3113 
3114 	mutex_lock(&group->mutex);
3115 	if (group->owner_cnt) {
3116 		if (group->domain != group->default_domain ||
3117 		    group->owner) {
3118 			ret = -EBUSY;
3119 			goto unlock_out;
3120 		}
3121 	}
3122 
3123 	group->owner_cnt++;
3124 
3125 unlock_out:
3126 	mutex_unlock(&group->mutex);
3127 	iommu_group_put(group);
3128 
3129 	return ret;
3130 }
3131 
3132 /**
3133  * iommu_device_unuse_default_domain() - Device driver stops handling device
3134  *                                       DMA through the kernel DMA API.
3135  * @dev: The device.
3136  *
3137  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3138  * It must be called after iommu_device_use_default_domain().
3139  */
3140 void iommu_device_unuse_default_domain(struct device *dev)
3141 {
3142 	struct iommu_group *group = iommu_group_get(dev);
3143 
3144 	if (!group)
3145 		return;
3146 
3147 	mutex_lock(&group->mutex);
3148 	if (!WARN_ON(!group->owner_cnt))
3149 		group->owner_cnt--;
3150 
3151 	mutex_unlock(&group->mutex);
3152 	iommu_group_put(group);
3153 }
3154 
3155 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3156 {
3157 	struct group_device *dev =
3158 		list_first_entry(&group->devices, struct group_device, list);
3159 
3160 	if (group->blocking_domain)
3161 		return 0;
3162 
3163 	group->blocking_domain =
3164 		__iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3165 	if (!group->blocking_domain) {
3166 		/*
3167 		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3168 		 * create an empty domain instead.
3169 		 */
3170 		group->blocking_domain = __iommu_domain_alloc(
3171 			dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3172 		if (!group->blocking_domain)
3173 			return -EINVAL;
3174 	}
3175 	return 0;
3176 }
3177 
3178 /**
3179  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3180  * @group: The group.
3181  * @owner: Caller specified pointer. Used for exclusive ownership.
3182  *
3183  * This is to support backward compatibility for vfio which manages
3184  * the dma ownership in iommu_group level. New invocations on this
3185  * interface should be prohibited.
3186  */
3187 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3188 {
3189 	int ret = 0;
3190 
3191 	mutex_lock(&group->mutex);
3192 	if (group->owner_cnt) {
3193 		ret = -EPERM;
3194 		goto unlock_out;
3195 	} else {
3196 		if (group->domain && group->domain != group->default_domain) {
3197 			ret = -EBUSY;
3198 			goto unlock_out;
3199 		}
3200 
3201 		ret = __iommu_group_alloc_blocking_domain(group);
3202 		if (ret)
3203 			goto unlock_out;
3204 
3205 		ret = __iommu_group_set_domain(group, group->blocking_domain);
3206 		if (ret)
3207 			goto unlock_out;
3208 		group->owner = owner;
3209 	}
3210 
3211 	group->owner_cnt++;
3212 unlock_out:
3213 	mutex_unlock(&group->mutex);
3214 
3215 	return ret;
3216 }
3217 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3218 
3219 /**
3220  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3221  * @group: The group.
3222  *
3223  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3224  */
3225 void iommu_group_release_dma_owner(struct iommu_group *group)
3226 {
3227 	int ret;
3228 
3229 	mutex_lock(&group->mutex);
3230 	if (WARN_ON(!group->owner_cnt || !group->owner))
3231 		goto unlock_out;
3232 
3233 	group->owner_cnt = 0;
3234 	group->owner = NULL;
3235 	ret = __iommu_group_set_domain(group, group->default_domain);
3236 	WARN(ret, "iommu driver failed to attach the default domain");
3237 
3238 unlock_out:
3239 	mutex_unlock(&group->mutex);
3240 }
3241 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3242 
3243 /**
3244  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3245  * @group: The group.
3246  *
3247  * This provides status query on a given group. It is racy and only for
3248  * non-binding status reporting.
3249  */
3250 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3251 {
3252 	unsigned int user;
3253 
3254 	mutex_lock(&group->mutex);
3255 	user = group->owner_cnt;
3256 	mutex_unlock(&group->mutex);
3257 
3258 	return user;
3259 }
3260 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3261