1 /* 2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 3 * Author: Joerg Roedel <jroedel@suse.de> 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 as published 7 * by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19 #define pr_fmt(fmt) "iommu: " fmt 20 21 #include <linux/device.h> 22 #include <linux/kernel.h> 23 #include <linux/bug.h> 24 #include <linux/types.h> 25 #include <linux/module.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/iommu.h> 29 #include <linux/idr.h> 30 #include <linux/notifier.h> 31 #include <linux/err.h> 32 #include <linux/pci.h> 33 #include <linux/bitops.h> 34 #include <trace/events/iommu.h> 35 36 static struct kset *iommu_group_kset; 37 static struct ida iommu_group_ida; 38 static struct mutex iommu_group_mutex; 39 40 struct iommu_callback_data { 41 const struct iommu_ops *ops; 42 }; 43 44 struct iommu_group { 45 struct kobject kobj; 46 struct kobject *devices_kobj; 47 struct list_head devices; 48 struct mutex mutex; 49 struct blocking_notifier_head notifier; 50 void *iommu_data; 51 void (*iommu_data_release)(void *iommu_data); 52 char *name; 53 int id; 54 struct iommu_domain *default_domain; 55 struct iommu_domain *domain; 56 }; 57 58 struct iommu_device { 59 struct list_head list; 60 struct device *dev; 61 char *name; 62 }; 63 64 struct iommu_group_attribute { 65 struct attribute attr; 66 ssize_t (*show)(struct iommu_group *group, char *buf); 67 ssize_t (*store)(struct iommu_group *group, 68 const char *buf, size_t count); 69 }; 70 71 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 72 struct iommu_group_attribute iommu_group_attr_##_name = \ 73 __ATTR(_name, _mode, _show, _store) 74 75 #define to_iommu_group_attr(_attr) \ 76 container_of(_attr, struct iommu_group_attribute, attr) 77 #define to_iommu_group(_kobj) \ 78 container_of(_kobj, struct iommu_group, kobj) 79 80 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 81 unsigned type); 82 static int __iommu_attach_device(struct iommu_domain *domain, 83 struct device *dev); 84 static int __iommu_attach_group(struct iommu_domain *domain, 85 struct iommu_group *group); 86 static void __iommu_detach_group(struct iommu_domain *domain, 87 struct iommu_group *group); 88 89 static ssize_t iommu_group_attr_show(struct kobject *kobj, 90 struct attribute *__attr, char *buf) 91 { 92 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 93 struct iommu_group *group = to_iommu_group(kobj); 94 ssize_t ret = -EIO; 95 96 if (attr->show) 97 ret = attr->show(group, buf); 98 return ret; 99 } 100 101 static ssize_t iommu_group_attr_store(struct kobject *kobj, 102 struct attribute *__attr, 103 const char *buf, size_t count) 104 { 105 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 106 struct iommu_group *group = to_iommu_group(kobj); 107 ssize_t ret = -EIO; 108 109 if (attr->store) 110 ret = attr->store(group, buf, count); 111 return ret; 112 } 113 114 static const struct sysfs_ops iommu_group_sysfs_ops = { 115 .show = iommu_group_attr_show, 116 .store = iommu_group_attr_store, 117 }; 118 119 static int iommu_group_create_file(struct iommu_group *group, 120 struct iommu_group_attribute *attr) 121 { 122 return sysfs_create_file(&group->kobj, &attr->attr); 123 } 124 125 static void iommu_group_remove_file(struct iommu_group *group, 126 struct iommu_group_attribute *attr) 127 { 128 sysfs_remove_file(&group->kobj, &attr->attr); 129 } 130 131 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 132 { 133 return sprintf(buf, "%s\n", group->name); 134 } 135 136 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 137 138 static void iommu_group_release(struct kobject *kobj) 139 { 140 struct iommu_group *group = to_iommu_group(kobj); 141 142 pr_debug("Releasing group %d\n", group->id); 143 144 if (group->iommu_data_release) 145 group->iommu_data_release(group->iommu_data); 146 147 mutex_lock(&iommu_group_mutex); 148 ida_remove(&iommu_group_ida, group->id); 149 mutex_unlock(&iommu_group_mutex); 150 151 if (group->default_domain) 152 iommu_domain_free(group->default_domain); 153 154 kfree(group->name); 155 kfree(group); 156 } 157 158 static struct kobj_type iommu_group_ktype = { 159 .sysfs_ops = &iommu_group_sysfs_ops, 160 .release = iommu_group_release, 161 }; 162 163 /** 164 * iommu_group_alloc - Allocate a new group 165 * @name: Optional name to associate with group, visible in sysfs 166 * 167 * This function is called by an iommu driver to allocate a new iommu 168 * group. The iommu group represents the minimum granularity of the iommu. 169 * Upon successful return, the caller holds a reference to the supplied 170 * group in order to hold the group until devices are added. Use 171 * iommu_group_put() to release this extra reference count, allowing the 172 * group to be automatically reclaimed once it has no devices or external 173 * references. 174 */ 175 struct iommu_group *iommu_group_alloc(void) 176 { 177 struct iommu_group *group; 178 int ret; 179 180 group = kzalloc(sizeof(*group), GFP_KERNEL); 181 if (!group) 182 return ERR_PTR(-ENOMEM); 183 184 group->kobj.kset = iommu_group_kset; 185 mutex_init(&group->mutex); 186 INIT_LIST_HEAD(&group->devices); 187 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 188 189 mutex_lock(&iommu_group_mutex); 190 191 again: 192 if (unlikely(0 == ida_pre_get(&iommu_group_ida, GFP_KERNEL))) { 193 kfree(group); 194 mutex_unlock(&iommu_group_mutex); 195 return ERR_PTR(-ENOMEM); 196 } 197 198 if (-EAGAIN == ida_get_new(&iommu_group_ida, &group->id)) 199 goto again; 200 201 mutex_unlock(&iommu_group_mutex); 202 203 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 204 NULL, "%d", group->id); 205 if (ret) { 206 mutex_lock(&iommu_group_mutex); 207 ida_remove(&iommu_group_ida, group->id); 208 mutex_unlock(&iommu_group_mutex); 209 kfree(group); 210 return ERR_PTR(ret); 211 } 212 213 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 214 if (!group->devices_kobj) { 215 kobject_put(&group->kobj); /* triggers .release & free */ 216 return ERR_PTR(-ENOMEM); 217 } 218 219 /* 220 * The devices_kobj holds a reference on the group kobject, so 221 * as long as that exists so will the group. We can therefore 222 * use the devices_kobj for reference counting. 223 */ 224 kobject_put(&group->kobj); 225 226 pr_debug("Allocated group %d\n", group->id); 227 228 return group; 229 } 230 EXPORT_SYMBOL_GPL(iommu_group_alloc); 231 232 struct iommu_group *iommu_group_get_by_id(int id) 233 { 234 struct kobject *group_kobj; 235 struct iommu_group *group; 236 const char *name; 237 238 if (!iommu_group_kset) 239 return NULL; 240 241 name = kasprintf(GFP_KERNEL, "%d", id); 242 if (!name) 243 return NULL; 244 245 group_kobj = kset_find_obj(iommu_group_kset, name); 246 kfree(name); 247 248 if (!group_kobj) 249 return NULL; 250 251 group = container_of(group_kobj, struct iommu_group, kobj); 252 BUG_ON(group->id != id); 253 254 kobject_get(group->devices_kobj); 255 kobject_put(&group->kobj); 256 257 return group; 258 } 259 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 260 261 /** 262 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 263 * @group: the group 264 * 265 * iommu drivers can store data in the group for use when doing iommu 266 * operations. This function provides a way to retrieve it. Caller 267 * should hold a group reference. 268 */ 269 void *iommu_group_get_iommudata(struct iommu_group *group) 270 { 271 return group->iommu_data; 272 } 273 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 274 275 /** 276 * iommu_group_set_iommudata - set iommu_data for a group 277 * @group: the group 278 * @iommu_data: new data 279 * @release: release function for iommu_data 280 * 281 * iommu drivers can store data in the group for use when doing iommu 282 * operations. This function provides a way to set the data after 283 * the group has been allocated. Caller should hold a group reference. 284 */ 285 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 286 void (*release)(void *iommu_data)) 287 { 288 group->iommu_data = iommu_data; 289 group->iommu_data_release = release; 290 } 291 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 292 293 /** 294 * iommu_group_set_name - set name for a group 295 * @group: the group 296 * @name: name 297 * 298 * Allow iommu driver to set a name for a group. When set it will 299 * appear in a name attribute file under the group in sysfs. 300 */ 301 int iommu_group_set_name(struct iommu_group *group, const char *name) 302 { 303 int ret; 304 305 if (group->name) { 306 iommu_group_remove_file(group, &iommu_group_attr_name); 307 kfree(group->name); 308 group->name = NULL; 309 if (!name) 310 return 0; 311 } 312 313 group->name = kstrdup(name, GFP_KERNEL); 314 if (!group->name) 315 return -ENOMEM; 316 317 ret = iommu_group_create_file(group, &iommu_group_attr_name); 318 if (ret) { 319 kfree(group->name); 320 group->name = NULL; 321 return ret; 322 } 323 324 return 0; 325 } 326 EXPORT_SYMBOL_GPL(iommu_group_set_name); 327 328 static int iommu_group_create_direct_mappings(struct iommu_group *group, 329 struct device *dev) 330 { 331 struct iommu_domain *domain = group->default_domain; 332 struct iommu_dm_region *entry; 333 struct list_head mappings; 334 unsigned long pg_size; 335 int ret = 0; 336 337 if (!domain || domain->type != IOMMU_DOMAIN_DMA) 338 return 0; 339 340 BUG_ON(!domain->pgsize_bitmap); 341 342 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 343 INIT_LIST_HEAD(&mappings); 344 345 iommu_get_dm_regions(dev, &mappings); 346 347 /* We need to consider overlapping regions for different devices */ 348 list_for_each_entry(entry, &mappings, list) { 349 dma_addr_t start, end, addr; 350 351 start = ALIGN(entry->start, pg_size); 352 end = ALIGN(entry->start + entry->length, pg_size); 353 354 for (addr = start; addr < end; addr += pg_size) { 355 phys_addr_t phys_addr; 356 357 phys_addr = iommu_iova_to_phys(domain, addr); 358 if (phys_addr) 359 continue; 360 361 ret = iommu_map(domain, addr, addr, pg_size, entry->prot); 362 if (ret) 363 goto out; 364 } 365 366 } 367 368 out: 369 iommu_put_dm_regions(dev, &mappings); 370 371 return ret; 372 } 373 374 /** 375 * iommu_group_add_device - add a device to an iommu group 376 * @group: the group into which to add the device (reference should be held) 377 * @dev: the device 378 * 379 * This function is called by an iommu driver to add a device into a 380 * group. Adding a device increments the group reference count. 381 */ 382 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 383 { 384 int ret, i = 0; 385 struct iommu_device *device; 386 387 device = kzalloc(sizeof(*device), GFP_KERNEL); 388 if (!device) 389 return -ENOMEM; 390 391 device->dev = dev; 392 393 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 394 if (ret) { 395 kfree(device); 396 return ret; 397 } 398 399 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 400 rename: 401 if (!device->name) { 402 sysfs_remove_link(&dev->kobj, "iommu_group"); 403 kfree(device); 404 return -ENOMEM; 405 } 406 407 ret = sysfs_create_link_nowarn(group->devices_kobj, 408 &dev->kobj, device->name); 409 if (ret) { 410 kfree(device->name); 411 if (ret == -EEXIST && i >= 0) { 412 /* 413 * Account for the slim chance of collision 414 * and append an instance to the name. 415 */ 416 device->name = kasprintf(GFP_KERNEL, "%s.%d", 417 kobject_name(&dev->kobj), i++); 418 goto rename; 419 } 420 421 sysfs_remove_link(&dev->kobj, "iommu_group"); 422 kfree(device); 423 return ret; 424 } 425 426 kobject_get(group->devices_kobj); 427 428 dev->iommu_group = group; 429 430 iommu_group_create_direct_mappings(group, dev); 431 432 mutex_lock(&group->mutex); 433 list_add_tail(&device->list, &group->devices); 434 if (group->domain) 435 __iommu_attach_device(group->domain, dev); 436 mutex_unlock(&group->mutex); 437 438 /* Notify any listeners about change to group. */ 439 blocking_notifier_call_chain(&group->notifier, 440 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 441 442 trace_add_device_to_group(group->id, dev); 443 444 pr_info("Adding device %s to group %d\n", dev_name(dev), group->id); 445 446 return 0; 447 } 448 EXPORT_SYMBOL_GPL(iommu_group_add_device); 449 450 /** 451 * iommu_group_remove_device - remove a device from it's current group 452 * @dev: device to be removed 453 * 454 * This function is called by an iommu driver to remove the device from 455 * it's current group. This decrements the iommu group reference count. 456 */ 457 void iommu_group_remove_device(struct device *dev) 458 { 459 struct iommu_group *group = dev->iommu_group; 460 struct iommu_device *tmp_device, *device = NULL; 461 462 pr_info("Removing device %s from group %d\n", dev_name(dev), group->id); 463 464 /* Pre-notify listeners that a device is being removed. */ 465 blocking_notifier_call_chain(&group->notifier, 466 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 467 468 mutex_lock(&group->mutex); 469 list_for_each_entry(tmp_device, &group->devices, list) { 470 if (tmp_device->dev == dev) { 471 device = tmp_device; 472 list_del(&device->list); 473 break; 474 } 475 } 476 mutex_unlock(&group->mutex); 477 478 if (!device) 479 return; 480 481 sysfs_remove_link(group->devices_kobj, device->name); 482 sysfs_remove_link(&dev->kobj, "iommu_group"); 483 484 trace_remove_device_from_group(group->id, dev); 485 486 kfree(device->name); 487 kfree(device); 488 dev->iommu_group = NULL; 489 kobject_put(group->devices_kobj); 490 } 491 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 492 493 static int iommu_group_device_count(struct iommu_group *group) 494 { 495 struct iommu_device *entry; 496 int ret = 0; 497 498 list_for_each_entry(entry, &group->devices, list) 499 ret++; 500 501 return ret; 502 } 503 504 /** 505 * iommu_group_for_each_dev - iterate over each device in the group 506 * @group: the group 507 * @data: caller opaque data to be passed to callback function 508 * @fn: caller supplied callback function 509 * 510 * This function is called by group users to iterate over group devices. 511 * Callers should hold a reference count to the group during callback. 512 * The group->mutex is held across callbacks, which will block calls to 513 * iommu_group_add/remove_device. 514 */ 515 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 516 int (*fn)(struct device *, void *)) 517 { 518 struct iommu_device *device; 519 int ret = 0; 520 521 list_for_each_entry(device, &group->devices, list) { 522 ret = fn(device->dev, data); 523 if (ret) 524 break; 525 } 526 return ret; 527 } 528 529 530 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 531 int (*fn)(struct device *, void *)) 532 { 533 int ret; 534 535 mutex_lock(&group->mutex); 536 ret = __iommu_group_for_each_dev(group, data, fn); 537 mutex_unlock(&group->mutex); 538 539 return ret; 540 } 541 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 542 543 /** 544 * iommu_group_get - Return the group for a device and increment reference 545 * @dev: get the group that this device belongs to 546 * 547 * This function is called by iommu drivers and users to get the group 548 * for the specified device. If found, the group is returned and the group 549 * reference in incremented, else NULL. 550 */ 551 struct iommu_group *iommu_group_get(struct device *dev) 552 { 553 struct iommu_group *group = dev->iommu_group; 554 555 if (group) 556 kobject_get(group->devices_kobj); 557 558 return group; 559 } 560 EXPORT_SYMBOL_GPL(iommu_group_get); 561 562 /** 563 * iommu_group_put - Decrement group reference 564 * @group: the group to use 565 * 566 * This function is called by iommu drivers and users to release the 567 * iommu group. Once the reference count is zero, the group is released. 568 */ 569 void iommu_group_put(struct iommu_group *group) 570 { 571 if (group) 572 kobject_put(group->devices_kobj); 573 } 574 EXPORT_SYMBOL_GPL(iommu_group_put); 575 576 /** 577 * iommu_group_register_notifier - Register a notifier for group changes 578 * @group: the group to watch 579 * @nb: notifier block to signal 580 * 581 * This function allows iommu group users to track changes in a group. 582 * See include/linux/iommu.h for actions sent via this notifier. Caller 583 * should hold a reference to the group throughout notifier registration. 584 */ 585 int iommu_group_register_notifier(struct iommu_group *group, 586 struct notifier_block *nb) 587 { 588 return blocking_notifier_chain_register(&group->notifier, nb); 589 } 590 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 591 592 /** 593 * iommu_group_unregister_notifier - Unregister a notifier 594 * @group: the group to watch 595 * @nb: notifier block to signal 596 * 597 * Unregister a previously registered group notifier block. 598 */ 599 int iommu_group_unregister_notifier(struct iommu_group *group, 600 struct notifier_block *nb) 601 { 602 return blocking_notifier_chain_unregister(&group->notifier, nb); 603 } 604 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 605 606 /** 607 * iommu_group_id - Return ID for a group 608 * @group: the group to ID 609 * 610 * Return the unique ID for the group matching the sysfs group number. 611 */ 612 int iommu_group_id(struct iommu_group *group) 613 { 614 return group->id; 615 } 616 EXPORT_SYMBOL_GPL(iommu_group_id); 617 618 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 619 unsigned long *devfns); 620 621 /* 622 * To consider a PCI device isolated, we require ACS to support Source 623 * Validation, Request Redirection, Completer Redirection, and Upstream 624 * Forwarding. This effectively means that devices cannot spoof their 625 * requester ID, requests and completions cannot be redirected, and all 626 * transactions are forwarded upstream, even as it passes through a 627 * bridge where the target device is downstream. 628 */ 629 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 630 631 /* 632 * For multifunction devices which are not isolated from each other, find 633 * all the other non-isolated functions and look for existing groups. For 634 * each function, we also need to look for aliases to or from other devices 635 * that may already have a group. 636 */ 637 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 638 unsigned long *devfns) 639 { 640 struct pci_dev *tmp = NULL; 641 struct iommu_group *group; 642 643 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 644 return NULL; 645 646 for_each_pci_dev(tmp) { 647 if (tmp == pdev || tmp->bus != pdev->bus || 648 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 649 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 650 continue; 651 652 group = get_pci_alias_group(tmp, devfns); 653 if (group) { 654 pci_dev_put(tmp); 655 return group; 656 } 657 } 658 659 return NULL; 660 } 661 662 /* 663 * Look for aliases to or from the given device for existing groups. DMA 664 * aliases are only supported on the same bus, therefore the search 665 * space is quite small (especially since we're really only looking at pcie 666 * device, and therefore only expect multiple slots on the root complex or 667 * downstream switch ports). It's conceivable though that a pair of 668 * multifunction devices could have aliases between them that would cause a 669 * loop. To prevent this, we use a bitmap to track where we've been. 670 */ 671 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 672 unsigned long *devfns) 673 { 674 struct pci_dev *tmp = NULL; 675 struct iommu_group *group; 676 677 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 678 return NULL; 679 680 group = iommu_group_get(&pdev->dev); 681 if (group) 682 return group; 683 684 for_each_pci_dev(tmp) { 685 if (tmp == pdev || tmp->bus != pdev->bus) 686 continue; 687 688 /* We alias them or they alias us */ 689 if (pci_devs_are_dma_aliases(pdev, tmp)) { 690 group = get_pci_alias_group(tmp, devfns); 691 if (group) { 692 pci_dev_put(tmp); 693 return group; 694 } 695 696 group = get_pci_function_alias_group(tmp, devfns); 697 if (group) { 698 pci_dev_put(tmp); 699 return group; 700 } 701 } 702 } 703 704 return NULL; 705 } 706 707 struct group_for_pci_data { 708 struct pci_dev *pdev; 709 struct iommu_group *group; 710 }; 711 712 /* 713 * DMA alias iterator callback, return the last seen device. Stop and return 714 * the IOMMU group if we find one along the way. 715 */ 716 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 717 { 718 struct group_for_pci_data *data = opaque; 719 720 data->pdev = pdev; 721 data->group = iommu_group_get(&pdev->dev); 722 723 return data->group != NULL; 724 } 725 726 /* 727 * Generic device_group call-back function. It just allocates one 728 * iommu-group per device. 729 */ 730 struct iommu_group *generic_device_group(struct device *dev) 731 { 732 struct iommu_group *group; 733 734 group = iommu_group_alloc(); 735 if (IS_ERR(group)) 736 return NULL; 737 738 return group; 739 } 740 741 /* 742 * Use standard PCI bus topology, isolation features, and DMA alias quirks 743 * to find or create an IOMMU group for a device. 744 */ 745 struct iommu_group *pci_device_group(struct device *dev) 746 { 747 struct pci_dev *pdev = to_pci_dev(dev); 748 struct group_for_pci_data data; 749 struct pci_bus *bus; 750 struct iommu_group *group = NULL; 751 u64 devfns[4] = { 0 }; 752 753 if (WARN_ON(!dev_is_pci(dev))) 754 return ERR_PTR(-EINVAL); 755 756 /* 757 * Find the upstream DMA alias for the device. A device must not 758 * be aliased due to topology in order to have its own IOMMU group. 759 * If we find an alias along the way that already belongs to a 760 * group, use it. 761 */ 762 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 763 return data.group; 764 765 pdev = data.pdev; 766 767 /* 768 * Continue upstream from the point of minimum IOMMU granularity 769 * due to aliases to the point where devices are protected from 770 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 771 * group, use it. 772 */ 773 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 774 if (!bus->self) 775 continue; 776 777 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 778 break; 779 780 pdev = bus->self; 781 782 group = iommu_group_get(&pdev->dev); 783 if (group) 784 return group; 785 } 786 787 /* 788 * Look for existing groups on device aliases. If we alias another 789 * device or another device aliases us, use the same group. 790 */ 791 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 792 if (group) 793 return group; 794 795 /* 796 * Look for existing groups on non-isolated functions on the same 797 * slot and aliases of those funcions, if any. No need to clear 798 * the search bitmap, the tested devfns are still valid. 799 */ 800 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 801 if (group) 802 return group; 803 804 /* No shared group found, allocate new */ 805 group = iommu_group_alloc(); 806 if (IS_ERR(group)) 807 return NULL; 808 809 return group; 810 } 811 812 /** 813 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 814 * @dev: target device 815 * 816 * This function is intended to be called by IOMMU drivers and extended to 817 * support common, bus-defined algorithms when determining or creating the 818 * IOMMU group for a device. On success, the caller will hold a reference 819 * to the returned IOMMU group, which will already include the provided 820 * device. The reference should be released with iommu_group_put(). 821 */ 822 struct iommu_group *iommu_group_get_for_dev(struct device *dev) 823 { 824 const struct iommu_ops *ops = dev->bus->iommu_ops; 825 struct iommu_group *group; 826 int ret; 827 828 group = iommu_group_get(dev); 829 if (group) 830 return group; 831 832 group = ERR_PTR(-EINVAL); 833 834 if (ops && ops->device_group) 835 group = ops->device_group(dev); 836 837 if (IS_ERR(group)) 838 return group; 839 840 /* 841 * Try to allocate a default domain - needs support from the 842 * IOMMU driver. 843 */ 844 if (!group->default_domain) { 845 group->default_domain = __iommu_domain_alloc(dev->bus, 846 IOMMU_DOMAIN_DMA); 847 if (!group->domain) 848 group->domain = group->default_domain; 849 } 850 851 ret = iommu_group_add_device(group, dev); 852 if (ret) { 853 iommu_group_put(group); 854 return ERR_PTR(ret); 855 } 856 857 return group; 858 } 859 860 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 861 { 862 return group->default_domain; 863 } 864 865 static int add_iommu_group(struct device *dev, void *data) 866 { 867 struct iommu_callback_data *cb = data; 868 const struct iommu_ops *ops = cb->ops; 869 int ret; 870 871 if (!ops->add_device) 872 return 0; 873 874 WARN_ON(dev->iommu_group); 875 876 ret = ops->add_device(dev); 877 878 /* 879 * We ignore -ENODEV errors for now, as they just mean that the 880 * device is not translated by an IOMMU. We still care about 881 * other errors and fail to initialize when they happen. 882 */ 883 if (ret == -ENODEV) 884 ret = 0; 885 886 return ret; 887 } 888 889 static int remove_iommu_group(struct device *dev, void *data) 890 { 891 struct iommu_callback_data *cb = data; 892 const struct iommu_ops *ops = cb->ops; 893 894 if (ops->remove_device && dev->iommu_group) 895 ops->remove_device(dev); 896 897 return 0; 898 } 899 900 static int iommu_bus_notifier(struct notifier_block *nb, 901 unsigned long action, void *data) 902 { 903 struct device *dev = data; 904 const struct iommu_ops *ops = dev->bus->iommu_ops; 905 struct iommu_group *group; 906 unsigned long group_action = 0; 907 908 /* 909 * ADD/DEL call into iommu driver ops if provided, which may 910 * result in ADD/DEL notifiers to group->notifier 911 */ 912 if (action == BUS_NOTIFY_ADD_DEVICE) { 913 if (ops->add_device) 914 return ops->add_device(dev); 915 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 916 if (ops->remove_device && dev->iommu_group) { 917 ops->remove_device(dev); 918 return 0; 919 } 920 } 921 922 /* 923 * Remaining BUS_NOTIFYs get filtered and republished to the 924 * group, if anyone is listening 925 */ 926 group = iommu_group_get(dev); 927 if (!group) 928 return 0; 929 930 switch (action) { 931 case BUS_NOTIFY_BIND_DRIVER: 932 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 933 break; 934 case BUS_NOTIFY_BOUND_DRIVER: 935 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 936 break; 937 case BUS_NOTIFY_UNBIND_DRIVER: 938 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 939 break; 940 case BUS_NOTIFY_UNBOUND_DRIVER: 941 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 942 break; 943 } 944 945 if (group_action) 946 blocking_notifier_call_chain(&group->notifier, 947 group_action, dev); 948 949 iommu_group_put(group); 950 return 0; 951 } 952 953 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 954 { 955 int err; 956 struct notifier_block *nb; 957 struct iommu_callback_data cb = { 958 .ops = ops, 959 }; 960 961 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 962 if (!nb) 963 return -ENOMEM; 964 965 nb->notifier_call = iommu_bus_notifier; 966 967 err = bus_register_notifier(bus, nb); 968 if (err) 969 goto out_free; 970 971 err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group); 972 if (err) 973 goto out_err; 974 975 976 return 0; 977 978 out_err: 979 /* Clean up */ 980 bus_for_each_dev(bus, NULL, &cb, remove_iommu_group); 981 bus_unregister_notifier(bus, nb); 982 983 out_free: 984 kfree(nb); 985 986 return err; 987 } 988 989 /** 990 * bus_set_iommu - set iommu-callbacks for the bus 991 * @bus: bus. 992 * @ops: the callbacks provided by the iommu-driver 993 * 994 * This function is called by an iommu driver to set the iommu methods 995 * used for a particular bus. Drivers for devices on that bus can use 996 * the iommu-api after these ops are registered. 997 * This special function is needed because IOMMUs are usually devices on 998 * the bus itself, so the iommu drivers are not initialized when the bus 999 * is set up. With this function the iommu-driver can set the iommu-ops 1000 * afterwards. 1001 */ 1002 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1003 { 1004 int err; 1005 1006 if (bus->iommu_ops != NULL) 1007 return -EBUSY; 1008 1009 bus->iommu_ops = ops; 1010 1011 /* Do IOMMU specific setup for this bus-type */ 1012 err = iommu_bus_init(bus, ops); 1013 if (err) 1014 bus->iommu_ops = NULL; 1015 1016 return err; 1017 } 1018 EXPORT_SYMBOL_GPL(bus_set_iommu); 1019 1020 bool iommu_present(struct bus_type *bus) 1021 { 1022 return bus->iommu_ops != NULL; 1023 } 1024 EXPORT_SYMBOL_GPL(iommu_present); 1025 1026 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1027 { 1028 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1029 return false; 1030 1031 return bus->iommu_ops->capable(cap); 1032 } 1033 EXPORT_SYMBOL_GPL(iommu_capable); 1034 1035 /** 1036 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1037 * @domain: iommu domain 1038 * @handler: fault handler 1039 * @token: user data, will be passed back to the fault handler 1040 * 1041 * This function should be used by IOMMU users which want to be notified 1042 * whenever an IOMMU fault happens. 1043 * 1044 * The fault handler itself should return 0 on success, and an appropriate 1045 * error code otherwise. 1046 */ 1047 void iommu_set_fault_handler(struct iommu_domain *domain, 1048 iommu_fault_handler_t handler, 1049 void *token) 1050 { 1051 BUG_ON(!domain); 1052 1053 domain->handler = handler; 1054 domain->handler_token = token; 1055 } 1056 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1057 1058 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1059 unsigned type) 1060 { 1061 struct iommu_domain *domain; 1062 1063 if (bus == NULL || bus->iommu_ops == NULL) 1064 return NULL; 1065 1066 domain = bus->iommu_ops->domain_alloc(type); 1067 if (!domain) 1068 return NULL; 1069 1070 domain->ops = bus->iommu_ops; 1071 domain->type = type; 1072 /* Assume all sizes by default; the driver may override this later */ 1073 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1074 1075 return domain; 1076 } 1077 1078 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1079 { 1080 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1081 } 1082 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1083 1084 void iommu_domain_free(struct iommu_domain *domain) 1085 { 1086 domain->ops->domain_free(domain); 1087 } 1088 EXPORT_SYMBOL_GPL(iommu_domain_free); 1089 1090 static int __iommu_attach_device(struct iommu_domain *domain, 1091 struct device *dev) 1092 { 1093 int ret; 1094 if (unlikely(domain->ops->attach_dev == NULL)) 1095 return -ENODEV; 1096 1097 ret = domain->ops->attach_dev(domain, dev); 1098 if (!ret) 1099 trace_attach_device_to_domain(dev); 1100 return ret; 1101 } 1102 1103 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1104 { 1105 struct iommu_group *group; 1106 int ret; 1107 1108 group = iommu_group_get(dev); 1109 /* FIXME: Remove this when groups a mandatory for iommu drivers */ 1110 if (group == NULL) 1111 return __iommu_attach_device(domain, dev); 1112 1113 /* 1114 * We have a group - lock it to make sure the device-count doesn't 1115 * change while we are attaching 1116 */ 1117 mutex_lock(&group->mutex); 1118 ret = -EINVAL; 1119 if (iommu_group_device_count(group) != 1) 1120 goto out_unlock; 1121 1122 ret = __iommu_attach_group(domain, group); 1123 1124 out_unlock: 1125 mutex_unlock(&group->mutex); 1126 iommu_group_put(group); 1127 1128 return ret; 1129 } 1130 EXPORT_SYMBOL_GPL(iommu_attach_device); 1131 1132 static void __iommu_detach_device(struct iommu_domain *domain, 1133 struct device *dev) 1134 { 1135 if (unlikely(domain->ops->detach_dev == NULL)) 1136 return; 1137 1138 domain->ops->detach_dev(domain, dev); 1139 trace_detach_device_from_domain(dev); 1140 } 1141 1142 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 1143 { 1144 struct iommu_group *group; 1145 1146 group = iommu_group_get(dev); 1147 /* FIXME: Remove this when groups a mandatory for iommu drivers */ 1148 if (group == NULL) 1149 return __iommu_detach_device(domain, dev); 1150 1151 mutex_lock(&group->mutex); 1152 if (iommu_group_device_count(group) != 1) { 1153 WARN_ON(1); 1154 goto out_unlock; 1155 } 1156 1157 __iommu_detach_group(domain, group); 1158 1159 out_unlock: 1160 mutex_unlock(&group->mutex); 1161 iommu_group_put(group); 1162 } 1163 EXPORT_SYMBOL_GPL(iommu_detach_device); 1164 1165 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 1166 { 1167 struct iommu_domain *domain; 1168 struct iommu_group *group; 1169 1170 group = iommu_group_get(dev); 1171 /* FIXME: Remove this when groups a mandatory for iommu drivers */ 1172 if (group == NULL) 1173 return NULL; 1174 1175 domain = group->domain; 1176 1177 iommu_group_put(group); 1178 1179 return domain; 1180 } 1181 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 1182 1183 /* 1184 * IOMMU groups are really the natrual working unit of the IOMMU, but 1185 * the IOMMU API works on domains and devices. Bridge that gap by 1186 * iterating over the devices in a group. Ideally we'd have a single 1187 * device which represents the requestor ID of the group, but we also 1188 * allow IOMMU drivers to create policy defined minimum sets, where 1189 * the physical hardware may be able to distiguish members, but we 1190 * wish to group them at a higher level (ex. untrusted multi-function 1191 * PCI devices). Thus we attach each device. 1192 */ 1193 static int iommu_group_do_attach_device(struct device *dev, void *data) 1194 { 1195 struct iommu_domain *domain = data; 1196 1197 return __iommu_attach_device(domain, dev); 1198 } 1199 1200 static int __iommu_attach_group(struct iommu_domain *domain, 1201 struct iommu_group *group) 1202 { 1203 int ret; 1204 1205 if (group->default_domain && group->domain != group->default_domain) 1206 return -EBUSY; 1207 1208 ret = __iommu_group_for_each_dev(group, domain, 1209 iommu_group_do_attach_device); 1210 if (ret == 0) 1211 group->domain = domain; 1212 1213 return ret; 1214 } 1215 1216 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 1217 { 1218 int ret; 1219 1220 mutex_lock(&group->mutex); 1221 ret = __iommu_attach_group(domain, group); 1222 mutex_unlock(&group->mutex); 1223 1224 return ret; 1225 } 1226 EXPORT_SYMBOL_GPL(iommu_attach_group); 1227 1228 static int iommu_group_do_detach_device(struct device *dev, void *data) 1229 { 1230 struct iommu_domain *domain = data; 1231 1232 __iommu_detach_device(domain, dev); 1233 1234 return 0; 1235 } 1236 1237 static void __iommu_detach_group(struct iommu_domain *domain, 1238 struct iommu_group *group) 1239 { 1240 int ret; 1241 1242 if (!group->default_domain) { 1243 __iommu_group_for_each_dev(group, domain, 1244 iommu_group_do_detach_device); 1245 group->domain = NULL; 1246 return; 1247 } 1248 1249 if (group->domain == group->default_domain) 1250 return; 1251 1252 /* Detach by re-attaching to the default domain */ 1253 ret = __iommu_group_for_each_dev(group, group->default_domain, 1254 iommu_group_do_attach_device); 1255 if (ret != 0) 1256 WARN_ON(1); 1257 else 1258 group->domain = group->default_domain; 1259 } 1260 1261 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 1262 { 1263 mutex_lock(&group->mutex); 1264 __iommu_detach_group(domain, group); 1265 mutex_unlock(&group->mutex); 1266 } 1267 EXPORT_SYMBOL_GPL(iommu_detach_group); 1268 1269 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 1270 { 1271 if (unlikely(domain->ops->iova_to_phys == NULL)) 1272 return 0; 1273 1274 return domain->ops->iova_to_phys(domain, iova); 1275 } 1276 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 1277 1278 static size_t iommu_pgsize(struct iommu_domain *domain, 1279 unsigned long addr_merge, size_t size) 1280 { 1281 unsigned int pgsize_idx; 1282 size_t pgsize; 1283 1284 /* Max page size that still fits into 'size' */ 1285 pgsize_idx = __fls(size); 1286 1287 /* need to consider alignment requirements ? */ 1288 if (likely(addr_merge)) { 1289 /* Max page size allowed by address */ 1290 unsigned int align_pgsize_idx = __ffs(addr_merge); 1291 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 1292 } 1293 1294 /* build a mask of acceptable page sizes */ 1295 pgsize = (1UL << (pgsize_idx + 1)) - 1; 1296 1297 /* throw away page sizes not supported by the hardware */ 1298 pgsize &= domain->pgsize_bitmap; 1299 1300 /* make sure we're still sane */ 1301 BUG_ON(!pgsize); 1302 1303 /* pick the biggest page */ 1304 pgsize_idx = __fls(pgsize); 1305 pgsize = 1UL << pgsize_idx; 1306 1307 return pgsize; 1308 } 1309 1310 int iommu_map(struct iommu_domain *domain, unsigned long iova, 1311 phys_addr_t paddr, size_t size, int prot) 1312 { 1313 unsigned long orig_iova = iova; 1314 unsigned int min_pagesz; 1315 size_t orig_size = size; 1316 phys_addr_t orig_paddr = paddr; 1317 int ret = 0; 1318 1319 if (unlikely(domain->ops->map == NULL || 1320 domain->pgsize_bitmap == 0UL)) 1321 return -ENODEV; 1322 1323 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1324 return -EINVAL; 1325 1326 /* find out the minimum page size supported */ 1327 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1328 1329 /* 1330 * both the virtual address and the physical one, as well as 1331 * the size of the mapping, must be aligned (at least) to the 1332 * size of the smallest page supported by the hardware 1333 */ 1334 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 1335 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 1336 iova, &paddr, size, min_pagesz); 1337 return -EINVAL; 1338 } 1339 1340 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 1341 1342 while (size) { 1343 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 1344 1345 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 1346 iova, &paddr, pgsize); 1347 1348 ret = domain->ops->map(domain, iova, paddr, pgsize, prot); 1349 if (ret) 1350 break; 1351 1352 iova += pgsize; 1353 paddr += pgsize; 1354 size -= pgsize; 1355 } 1356 1357 /* unroll mapping in case something went wrong */ 1358 if (ret) 1359 iommu_unmap(domain, orig_iova, orig_size - size); 1360 else 1361 trace_map(orig_iova, orig_paddr, orig_size); 1362 1363 return ret; 1364 } 1365 EXPORT_SYMBOL_GPL(iommu_map); 1366 1367 size_t iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size) 1368 { 1369 size_t unmapped_page, unmapped = 0; 1370 unsigned int min_pagesz; 1371 unsigned long orig_iova = iova; 1372 1373 if (unlikely(domain->ops->unmap == NULL || 1374 domain->pgsize_bitmap == 0UL)) 1375 return -ENODEV; 1376 1377 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1378 return -EINVAL; 1379 1380 /* find out the minimum page size supported */ 1381 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1382 1383 /* 1384 * The virtual address, as well as the size of the mapping, must be 1385 * aligned (at least) to the size of the smallest page supported 1386 * by the hardware 1387 */ 1388 if (!IS_ALIGNED(iova | size, min_pagesz)) { 1389 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 1390 iova, size, min_pagesz); 1391 return -EINVAL; 1392 } 1393 1394 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 1395 1396 /* 1397 * Keep iterating until we either unmap 'size' bytes (or more) 1398 * or we hit an area that isn't mapped. 1399 */ 1400 while (unmapped < size) { 1401 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 1402 1403 unmapped_page = domain->ops->unmap(domain, iova, pgsize); 1404 if (!unmapped_page) 1405 break; 1406 1407 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 1408 iova, unmapped_page); 1409 1410 iova += unmapped_page; 1411 unmapped += unmapped_page; 1412 } 1413 1414 trace_unmap(orig_iova, size, unmapped); 1415 return unmapped; 1416 } 1417 EXPORT_SYMBOL_GPL(iommu_unmap); 1418 1419 size_t default_iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 1420 struct scatterlist *sg, unsigned int nents, int prot) 1421 { 1422 struct scatterlist *s; 1423 size_t mapped = 0; 1424 unsigned int i, min_pagesz; 1425 int ret; 1426 1427 if (unlikely(domain->pgsize_bitmap == 0UL)) 1428 return 0; 1429 1430 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1431 1432 for_each_sg(sg, s, nents, i) { 1433 phys_addr_t phys = page_to_phys(sg_page(s)) + s->offset; 1434 1435 /* 1436 * We are mapping on IOMMU page boundaries, so offset within 1437 * the page must be 0. However, the IOMMU may support pages 1438 * smaller than PAGE_SIZE, so s->offset may still represent 1439 * an offset of that boundary within the CPU page. 1440 */ 1441 if (!IS_ALIGNED(s->offset, min_pagesz)) 1442 goto out_err; 1443 1444 ret = iommu_map(domain, iova + mapped, phys, s->length, prot); 1445 if (ret) 1446 goto out_err; 1447 1448 mapped += s->length; 1449 } 1450 1451 return mapped; 1452 1453 out_err: 1454 /* undo mappings already done */ 1455 iommu_unmap(domain, iova, mapped); 1456 1457 return 0; 1458 1459 } 1460 EXPORT_SYMBOL_GPL(default_iommu_map_sg); 1461 1462 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, 1463 phys_addr_t paddr, u64 size, int prot) 1464 { 1465 if (unlikely(domain->ops->domain_window_enable == NULL)) 1466 return -ENODEV; 1467 1468 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, 1469 prot); 1470 } 1471 EXPORT_SYMBOL_GPL(iommu_domain_window_enable); 1472 1473 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) 1474 { 1475 if (unlikely(domain->ops->domain_window_disable == NULL)) 1476 return; 1477 1478 return domain->ops->domain_window_disable(domain, wnd_nr); 1479 } 1480 EXPORT_SYMBOL_GPL(iommu_domain_window_disable); 1481 1482 static int __init iommu_init(void) 1483 { 1484 iommu_group_kset = kset_create_and_add("iommu_groups", 1485 NULL, kernel_kobj); 1486 ida_init(&iommu_group_ida); 1487 mutex_init(&iommu_group_mutex); 1488 1489 BUG_ON(!iommu_group_kset); 1490 1491 return 0; 1492 } 1493 core_initcall(iommu_init); 1494 1495 int iommu_domain_get_attr(struct iommu_domain *domain, 1496 enum iommu_attr attr, void *data) 1497 { 1498 struct iommu_domain_geometry *geometry; 1499 bool *paging; 1500 int ret = 0; 1501 u32 *count; 1502 1503 switch (attr) { 1504 case DOMAIN_ATTR_GEOMETRY: 1505 geometry = data; 1506 *geometry = domain->geometry; 1507 1508 break; 1509 case DOMAIN_ATTR_PAGING: 1510 paging = data; 1511 *paging = (domain->pgsize_bitmap != 0UL); 1512 break; 1513 case DOMAIN_ATTR_WINDOWS: 1514 count = data; 1515 1516 if (domain->ops->domain_get_windows != NULL) 1517 *count = domain->ops->domain_get_windows(domain); 1518 else 1519 ret = -ENODEV; 1520 1521 break; 1522 default: 1523 if (!domain->ops->domain_get_attr) 1524 return -EINVAL; 1525 1526 ret = domain->ops->domain_get_attr(domain, attr, data); 1527 } 1528 1529 return ret; 1530 } 1531 EXPORT_SYMBOL_GPL(iommu_domain_get_attr); 1532 1533 int iommu_domain_set_attr(struct iommu_domain *domain, 1534 enum iommu_attr attr, void *data) 1535 { 1536 int ret = 0; 1537 u32 *count; 1538 1539 switch (attr) { 1540 case DOMAIN_ATTR_WINDOWS: 1541 count = data; 1542 1543 if (domain->ops->domain_set_windows != NULL) 1544 ret = domain->ops->domain_set_windows(domain, *count); 1545 else 1546 ret = -ENODEV; 1547 1548 break; 1549 default: 1550 if (domain->ops->domain_set_attr == NULL) 1551 return -EINVAL; 1552 1553 ret = domain->ops->domain_set_attr(domain, attr, data); 1554 } 1555 1556 return ret; 1557 } 1558 EXPORT_SYMBOL_GPL(iommu_domain_set_attr); 1559 1560 void iommu_get_dm_regions(struct device *dev, struct list_head *list) 1561 { 1562 const struct iommu_ops *ops = dev->bus->iommu_ops; 1563 1564 if (ops && ops->get_dm_regions) 1565 ops->get_dm_regions(dev, list); 1566 } 1567 1568 void iommu_put_dm_regions(struct device *dev, struct list_head *list) 1569 { 1570 const struct iommu_ops *ops = dev->bus->iommu_ops; 1571 1572 if (ops && ops->put_dm_regions) 1573 ops->put_dm_regions(dev, list); 1574 } 1575 1576 /* Request that a device is direct mapped by the IOMMU */ 1577 int iommu_request_dm_for_dev(struct device *dev) 1578 { 1579 struct iommu_domain *dm_domain; 1580 struct iommu_group *group; 1581 int ret; 1582 1583 /* Device must already be in a group before calling this function */ 1584 group = iommu_group_get_for_dev(dev); 1585 if (IS_ERR(group)) 1586 return PTR_ERR(group); 1587 1588 mutex_lock(&group->mutex); 1589 1590 /* Check if the default domain is already direct mapped */ 1591 ret = 0; 1592 if (group->default_domain && 1593 group->default_domain->type == IOMMU_DOMAIN_IDENTITY) 1594 goto out; 1595 1596 /* Don't change mappings of existing devices */ 1597 ret = -EBUSY; 1598 if (iommu_group_device_count(group) != 1) 1599 goto out; 1600 1601 /* Allocate a direct mapped domain */ 1602 ret = -ENOMEM; 1603 dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY); 1604 if (!dm_domain) 1605 goto out; 1606 1607 /* Attach the device to the domain */ 1608 ret = __iommu_attach_group(dm_domain, group); 1609 if (ret) { 1610 iommu_domain_free(dm_domain); 1611 goto out; 1612 } 1613 1614 /* Make the direct mapped domain the default for this group */ 1615 if (group->default_domain) 1616 iommu_domain_free(group->default_domain); 1617 group->default_domain = dm_domain; 1618 1619 pr_info("Using direct mapping for device %s\n", dev_name(dev)); 1620 1621 ret = 0; 1622 out: 1623 mutex_unlock(&group->mutex); 1624 iommu_group_put(group); 1625 1626 return ret; 1627 } 1628