1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/amba/bus.h> 10 #include <linux/device.h> 11 #include <linux/kernel.h> 12 #include <linux/bits.h> 13 #include <linux/bug.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/host1x_context_bus.h> 20 #include <linux/iommu.h> 21 #include <linux/idr.h> 22 #include <linux/err.h> 23 #include <linux/pci.h> 24 #include <linux/pci-ats.h> 25 #include <linux/bitops.h> 26 #include <linux/platform_device.h> 27 #include <linux/property.h> 28 #include <linux/fsl/mc.h> 29 #include <linux/module.h> 30 #include <linux/cc_platform.h> 31 #include <linux/cdx/cdx_bus.h> 32 #include <trace/events/iommu.h> 33 #include <linux/sched/mm.h> 34 #include <linux/msi.h> 35 36 #include "dma-iommu.h" 37 38 #include "iommu-sva.h" 39 40 static struct kset *iommu_group_kset; 41 static DEFINE_IDA(iommu_group_ida); 42 43 static unsigned int iommu_def_domain_type __read_mostly; 44 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT); 45 static u32 iommu_cmd_line __read_mostly; 46 47 struct iommu_group { 48 struct kobject kobj; 49 struct kobject *devices_kobj; 50 struct list_head devices; 51 struct xarray pasid_array; 52 struct mutex mutex; 53 void *iommu_data; 54 void (*iommu_data_release)(void *iommu_data); 55 char *name; 56 int id; 57 struct iommu_domain *default_domain; 58 struct iommu_domain *blocking_domain; 59 struct iommu_domain *domain; 60 struct list_head entry; 61 unsigned int owner_cnt; 62 void *owner; 63 }; 64 65 struct group_device { 66 struct list_head list; 67 struct device *dev; 68 char *name; 69 }; 70 71 struct iommu_group_attribute { 72 struct attribute attr; 73 ssize_t (*show)(struct iommu_group *group, char *buf); 74 ssize_t (*store)(struct iommu_group *group, 75 const char *buf, size_t count); 76 }; 77 78 static const char * const iommu_group_resv_type_string[] = { 79 [IOMMU_RESV_DIRECT] = "direct", 80 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 81 [IOMMU_RESV_RESERVED] = "reserved", 82 [IOMMU_RESV_MSI] = "msi", 83 [IOMMU_RESV_SW_MSI] = "msi", 84 }; 85 86 #define IOMMU_CMD_LINE_DMA_API BIT(0) 87 #define IOMMU_CMD_LINE_STRICT BIT(1) 88 89 static int iommu_bus_notifier(struct notifier_block *nb, 90 unsigned long action, void *data); 91 static void iommu_release_device(struct device *dev); 92 static int iommu_alloc_default_domain(struct iommu_group *group, 93 struct device *dev); 94 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus, 95 unsigned type); 96 static int __iommu_attach_device(struct iommu_domain *domain, 97 struct device *dev); 98 static int __iommu_attach_group(struct iommu_domain *domain, 99 struct iommu_group *group); 100 static int __iommu_group_set_domain(struct iommu_group *group, 101 struct iommu_domain *new_domain); 102 static int iommu_create_device_direct_mappings(struct iommu_group *group, 103 struct device *dev); 104 static struct iommu_group *iommu_group_get_for_dev(struct device *dev); 105 static ssize_t iommu_group_store_type(struct iommu_group *group, 106 const char *buf, size_t count); 107 108 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 109 struct iommu_group_attribute iommu_group_attr_##_name = \ 110 __ATTR(_name, _mode, _show, _store) 111 112 #define to_iommu_group_attr(_attr) \ 113 container_of(_attr, struct iommu_group_attribute, attr) 114 #define to_iommu_group(_kobj) \ 115 container_of(_kobj, struct iommu_group, kobj) 116 117 static LIST_HEAD(iommu_device_list); 118 static DEFINE_SPINLOCK(iommu_device_lock); 119 120 static struct bus_type * const iommu_buses[] = { 121 &platform_bus_type, 122 #ifdef CONFIG_PCI 123 &pci_bus_type, 124 #endif 125 #ifdef CONFIG_ARM_AMBA 126 &amba_bustype, 127 #endif 128 #ifdef CONFIG_FSL_MC_BUS 129 &fsl_mc_bus_type, 130 #endif 131 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS 132 &host1x_context_device_bus_type, 133 #endif 134 #ifdef CONFIG_CDX_BUS 135 &cdx_bus_type, 136 #endif 137 }; 138 139 /* 140 * Use a function instead of an array here because the domain-type is a 141 * bit-field, so an array would waste memory. 142 */ 143 static const char *iommu_domain_type_str(unsigned int t) 144 { 145 switch (t) { 146 case IOMMU_DOMAIN_BLOCKED: 147 return "Blocked"; 148 case IOMMU_DOMAIN_IDENTITY: 149 return "Passthrough"; 150 case IOMMU_DOMAIN_UNMANAGED: 151 return "Unmanaged"; 152 case IOMMU_DOMAIN_DMA: 153 case IOMMU_DOMAIN_DMA_FQ: 154 return "Translated"; 155 default: 156 return "Unknown"; 157 } 158 } 159 160 static int __init iommu_subsys_init(void) 161 { 162 struct notifier_block *nb; 163 164 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) { 165 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 166 iommu_set_default_passthrough(false); 167 else 168 iommu_set_default_translated(false); 169 170 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 171 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 172 iommu_set_default_translated(false); 173 } 174 } 175 176 if (!iommu_default_passthrough() && !iommu_dma_strict) 177 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ; 178 179 pr_info("Default domain type: %s%s\n", 180 iommu_domain_type_str(iommu_def_domain_type), 181 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ? 182 " (set via kernel command line)" : ""); 183 184 if (!iommu_default_passthrough()) 185 pr_info("DMA domain TLB invalidation policy: %s mode%s\n", 186 iommu_dma_strict ? "strict" : "lazy", 187 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ? 188 " (set via kernel command line)" : ""); 189 190 nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL); 191 if (!nb) 192 return -ENOMEM; 193 194 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) { 195 nb[i].notifier_call = iommu_bus_notifier; 196 bus_register_notifier(iommu_buses[i], &nb[i]); 197 } 198 199 return 0; 200 } 201 subsys_initcall(iommu_subsys_init); 202 203 static int remove_iommu_group(struct device *dev, void *data) 204 { 205 if (dev->iommu && dev->iommu->iommu_dev == data) 206 iommu_release_device(dev); 207 208 return 0; 209 } 210 211 /** 212 * iommu_device_register() - Register an IOMMU hardware instance 213 * @iommu: IOMMU handle for the instance 214 * @ops: IOMMU ops to associate with the instance 215 * @hwdev: (optional) actual instance device, used for fwnode lookup 216 * 217 * Return: 0 on success, or an error. 218 */ 219 int iommu_device_register(struct iommu_device *iommu, 220 const struct iommu_ops *ops, struct device *hwdev) 221 { 222 int err = 0; 223 224 /* We need to be able to take module references appropriately */ 225 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner)) 226 return -EINVAL; 227 /* 228 * Temporarily enforce global restriction to a single driver. This was 229 * already the de-facto behaviour, since any possible combination of 230 * existing drivers would compete for at least the PCI or platform bus. 231 */ 232 if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops) 233 return -EBUSY; 234 235 iommu->ops = ops; 236 if (hwdev) 237 iommu->fwnode = dev_fwnode(hwdev); 238 239 spin_lock(&iommu_device_lock); 240 list_add_tail(&iommu->list, &iommu_device_list); 241 spin_unlock(&iommu_device_lock); 242 243 for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) { 244 iommu_buses[i]->iommu_ops = ops; 245 err = bus_iommu_probe(iommu_buses[i]); 246 } 247 if (err) 248 iommu_device_unregister(iommu); 249 return err; 250 } 251 EXPORT_SYMBOL_GPL(iommu_device_register); 252 253 void iommu_device_unregister(struct iommu_device *iommu) 254 { 255 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) 256 bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group); 257 258 spin_lock(&iommu_device_lock); 259 list_del(&iommu->list); 260 spin_unlock(&iommu_device_lock); 261 } 262 EXPORT_SYMBOL_GPL(iommu_device_unregister); 263 264 static struct dev_iommu *dev_iommu_get(struct device *dev) 265 { 266 struct dev_iommu *param = dev->iommu; 267 268 if (param) 269 return param; 270 271 param = kzalloc(sizeof(*param), GFP_KERNEL); 272 if (!param) 273 return NULL; 274 275 mutex_init(¶m->lock); 276 dev->iommu = param; 277 return param; 278 } 279 280 static void dev_iommu_free(struct device *dev) 281 { 282 struct dev_iommu *param = dev->iommu; 283 284 dev->iommu = NULL; 285 if (param->fwspec) { 286 fwnode_handle_put(param->fwspec->iommu_fwnode); 287 kfree(param->fwspec); 288 } 289 kfree(param); 290 } 291 292 static u32 dev_iommu_get_max_pasids(struct device *dev) 293 { 294 u32 max_pasids = 0, bits = 0; 295 int ret; 296 297 if (dev_is_pci(dev)) { 298 ret = pci_max_pasids(to_pci_dev(dev)); 299 if (ret > 0) 300 max_pasids = ret; 301 } else { 302 ret = device_property_read_u32(dev, "pasid-num-bits", &bits); 303 if (!ret) 304 max_pasids = 1UL << bits; 305 } 306 307 return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids); 308 } 309 310 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 311 { 312 const struct iommu_ops *ops = dev->bus->iommu_ops; 313 struct iommu_device *iommu_dev; 314 struct iommu_group *group; 315 static DEFINE_MUTEX(iommu_probe_device_lock); 316 int ret; 317 318 if (!ops) 319 return -ENODEV; 320 /* 321 * Serialise to avoid races between IOMMU drivers registering in 322 * parallel and/or the "replay" calls from ACPI/OF code via client 323 * driver probe. Once the latter have been cleaned up we should 324 * probably be able to use device_lock() here to minimise the scope, 325 * but for now enforcing a simple global ordering is fine. 326 */ 327 mutex_lock(&iommu_probe_device_lock); 328 if (!dev_iommu_get(dev)) { 329 ret = -ENOMEM; 330 goto err_unlock; 331 } 332 333 if (!try_module_get(ops->owner)) { 334 ret = -EINVAL; 335 goto err_free; 336 } 337 338 iommu_dev = ops->probe_device(dev); 339 if (IS_ERR(iommu_dev)) { 340 ret = PTR_ERR(iommu_dev); 341 goto out_module_put; 342 } 343 344 dev->iommu->iommu_dev = iommu_dev; 345 dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev); 346 347 group = iommu_group_get_for_dev(dev); 348 if (IS_ERR(group)) { 349 ret = PTR_ERR(group); 350 goto out_release; 351 } 352 353 mutex_lock(&group->mutex); 354 if (group_list && !group->default_domain && list_empty(&group->entry)) 355 list_add_tail(&group->entry, group_list); 356 mutex_unlock(&group->mutex); 357 iommu_group_put(group); 358 359 mutex_unlock(&iommu_probe_device_lock); 360 iommu_device_link(iommu_dev, dev); 361 362 return 0; 363 364 out_release: 365 if (ops->release_device) 366 ops->release_device(dev); 367 368 out_module_put: 369 module_put(ops->owner); 370 371 err_free: 372 dev_iommu_free(dev); 373 374 err_unlock: 375 mutex_unlock(&iommu_probe_device_lock); 376 377 return ret; 378 } 379 380 static bool iommu_is_attach_deferred(struct device *dev) 381 { 382 const struct iommu_ops *ops = dev_iommu_ops(dev); 383 384 if (ops->is_attach_deferred) 385 return ops->is_attach_deferred(dev); 386 387 return false; 388 } 389 390 static int iommu_group_do_dma_first_attach(struct device *dev, void *data) 391 { 392 struct iommu_domain *domain = data; 393 394 lockdep_assert_held(&dev->iommu_group->mutex); 395 396 if (iommu_is_attach_deferred(dev)) { 397 dev->iommu->attach_deferred = 1; 398 return 0; 399 } 400 401 return __iommu_attach_device(domain, dev); 402 } 403 404 int iommu_probe_device(struct device *dev) 405 { 406 const struct iommu_ops *ops; 407 struct iommu_group *group; 408 int ret; 409 410 ret = __iommu_probe_device(dev, NULL); 411 if (ret) 412 goto err_out; 413 414 group = iommu_group_get(dev); 415 if (!group) { 416 ret = -ENODEV; 417 goto err_release; 418 } 419 420 /* 421 * Try to allocate a default domain - needs support from the 422 * IOMMU driver. There are still some drivers which don't 423 * support default domains, so the return value is not yet 424 * checked. 425 */ 426 mutex_lock(&group->mutex); 427 iommu_alloc_default_domain(group, dev); 428 429 /* 430 * If device joined an existing group which has been claimed, don't 431 * attach the default domain. 432 */ 433 if (group->default_domain && !group->owner) { 434 ret = iommu_group_do_dma_first_attach(dev, group->default_domain); 435 if (ret) { 436 mutex_unlock(&group->mutex); 437 iommu_group_put(group); 438 goto err_release; 439 } 440 } 441 442 iommu_create_device_direct_mappings(group, dev); 443 444 mutex_unlock(&group->mutex); 445 iommu_group_put(group); 446 447 ops = dev_iommu_ops(dev); 448 if (ops->probe_finalize) 449 ops->probe_finalize(dev); 450 451 return 0; 452 453 err_release: 454 iommu_release_device(dev); 455 456 err_out: 457 return ret; 458 459 } 460 461 /* 462 * Remove a device from a group's device list and return the group device 463 * if successful. 464 */ 465 static struct group_device * 466 __iommu_group_remove_device(struct iommu_group *group, struct device *dev) 467 { 468 struct group_device *device; 469 470 lockdep_assert_held(&group->mutex); 471 list_for_each_entry(device, &group->devices, list) { 472 if (device->dev == dev) { 473 list_del(&device->list); 474 return device; 475 } 476 } 477 478 return NULL; 479 } 480 481 /* 482 * Release a device from its group and decrements the iommu group reference 483 * count. 484 */ 485 static void __iommu_group_release_device(struct iommu_group *group, 486 struct group_device *grp_dev) 487 { 488 struct device *dev = grp_dev->dev; 489 490 sysfs_remove_link(group->devices_kobj, grp_dev->name); 491 sysfs_remove_link(&dev->kobj, "iommu_group"); 492 493 trace_remove_device_from_group(group->id, dev); 494 495 kfree(grp_dev->name); 496 kfree(grp_dev); 497 dev->iommu_group = NULL; 498 kobject_put(group->devices_kobj); 499 } 500 501 static void iommu_release_device(struct device *dev) 502 { 503 struct iommu_group *group = dev->iommu_group; 504 struct group_device *device; 505 const struct iommu_ops *ops; 506 507 if (!dev->iommu || !group) 508 return; 509 510 iommu_device_unlink(dev->iommu->iommu_dev, dev); 511 512 mutex_lock(&group->mutex); 513 device = __iommu_group_remove_device(group, dev); 514 515 /* 516 * If the group has become empty then ownership must have been released, 517 * and the current domain must be set back to NULL or the default 518 * domain. 519 */ 520 if (list_empty(&group->devices)) 521 WARN_ON(group->owner_cnt || 522 group->domain != group->default_domain); 523 524 /* 525 * release_device() must stop using any attached domain on the device. 526 * If there are still other devices in the group they are not effected 527 * by this callback. 528 * 529 * The IOMMU driver must set the device to either an identity or 530 * blocking translation and stop using any domain pointer, as it is 531 * going to be freed. 532 */ 533 ops = dev_iommu_ops(dev); 534 if (ops->release_device) 535 ops->release_device(dev); 536 mutex_unlock(&group->mutex); 537 538 if (device) 539 __iommu_group_release_device(group, device); 540 541 module_put(ops->owner); 542 dev_iommu_free(dev); 543 } 544 545 static int __init iommu_set_def_domain_type(char *str) 546 { 547 bool pt; 548 int ret; 549 550 ret = kstrtobool(str, &pt); 551 if (ret) 552 return ret; 553 554 if (pt) 555 iommu_set_default_passthrough(true); 556 else 557 iommu_set_default_translated(true); 558 559 return 0; 560 } 561 early_param("iommu.passthrough", iommu_set_def_domain_type); 562 563 static int __init iommu_dma_setup(char *str) 564 { 565 int ret = kstrtobool(str, &iommu_dma_strict); 566 567 if (!ret) 568 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT; 569 return ret; 570 } 571 early_param("iommu.strict", iommu_dma_setup); 572 573 void iommu_set_dma_strict(void) 574 { 575 iommu_dma_strict = true; 576 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ) 577 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 578 } 579 580 static ssize_t iommu_group_attr_show(struct kobject *kobj, 581 struct attribute *__attr, char *buf) 582 { 583 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 584 struct iommu_group *group = to_iommu_group(kobj); 585 ssize_t ret = -EIO; 586 587 if (attr->show) 588 ret = attr->show(group, buf); 589 return ret; 590 } 591 592 static ssize_t iommu_group_attr_store(struct kobject *kobj, 593 struct attribute *__attr, 594 const char *buf, size_t count) 595 { 596 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 597 struct iommu_group *group = to_iommu_group(kobj); 598 ssize_t ret = -EIO; 599 600 if (attr->store) 601 ret = attr->store(group, buf, count); 602 return ret; 603 } 604 605 static const struct sysfs_ops iommu_group_sysfs_ops = { 606 .show = iommu_group_attr_show, 607 .store = iommu_group_attr_store, 608 }; 609 610 static int iommu_group_create_file(struct iommu_group *group, 611 struct iommu_group_attribute *attr) 612 { 613 return sysfs_create_file(&group->kobj, &attr->attr); 614 } 615 616 static void iommu_group_remove_file(struct iommu_group *group, 617 struct iommu_group_attribute *attr) 618 { 619 sysfs_remove_file(&group->kobj, &attr->attr); 620 } 621 622 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 623 { 624 return sysfs_emit(buf, "%s\n", group->name); 625 } 626 627 /** 628 * iommu_insert_resv_region - Insert a new region in the 629 * list of reserved regions. 630 * @new: new region to insert 631 * @regions: list of regions 632 * 633 * Elements are sorted by start address and overlapping segments 634 * of the same type are merged. 635 */ 636 static int iommu_insert_resv_region(struct iommu_resv_region *new, 637 struct list_head *regions) 638 { 639 struct iommu_resv_region *iter, *tmp, *nr, *top; 640 LIST_HEAD(stack); 641 642 nr = iommu_alloc_resv_region(new->start, new->length, 643 new->prot, new->type, GFP_KERNEL); 644 if (!nr) 645 return -ENOMEM; 646 647 /* First add the new element based on start address sorting */ 648 list_for_each_entry(iter, regions, list) { 649 if (nr->start < iter->start || 650 (nr->start == iter->start && nr->type <= iter->type)) 651 break; 652 } 653 list_add_tail(&nr->list, &iter->list); 654 655 /* Merge overlapping segments of type nr->type in @regions, if any */ 656 list_for_each_entry_safe(iter, tmp, regions, list) { 657 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 658 659 /* no merge needed on elements of different types than @new */ 660 if (iter->type != new->type) { 661 list_move_tail(&iter->list, &stack); 662 continue; 663 } 664 665 /* look for the last stack element of same type as @iter */ 666 list_for_each_entry_reverse(top, &stack, list) 667 if (top->type == iter->type) 668 goto check_overlap; 669 670 list_move_tail(&iter->list, &stack); 671 continue; 672 673 check_overlap: 674 top_end = top->start + top->length - 1; 675 676 if (iter->start > top_end + 1) { 677 list_move_tail(&iter->list, &stack); 678 } else { 679 top->length = max(top_end, iter_end) - top->start + 1; 680 list_del(&iter->list); 681 kfree(iter); 682 } 683 } 684 list_splice(&stack, regions); 685 return 0; 686 } 687 688 static int 689 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 690 struct list_head *group_resv_regions) 691 { 692 struct iommu_resv_region *entry; 693 int ret = 0; 694 695 list_for_each_entry(entry, dev_resv_regions, list) { 696 ret = iommu_insert_resv_region(entry, group_resv_regions); 697 if (ret) 698 break; 699 } 700 return ret; 701 } 702 703 int iommu_get_group_resv_regions(struct iommu_group *group, 704 struct list_head *head) 705 { 706 struct group_device *device; 707 int ret = 0; 708 709 mutex_lock(&group->mutex); 710 list_for_each_entry(device, &group->devices, list) { 711 struct list_head dev_resv_regions; 712 713 /* 714 * Non-API groups still expose reserved_regions in sysfs, 715 * so filter out calls that get here that way. 716 */ 717 if (!device->dev->iommu) 718 break; 719 720 INIT_LIST_HEAD(&dev_resv_regions); 721 iommu_get_resv_regions(device->dev, &dev_resv_regions); 722 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 723 iommu_put_resv_regions(device->dev, &dev_resv_regions); 724 if (ret) 725 break; 726 } 727 mutex_unlock(&group->mutex); 728 return ret; 729 } 730 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 731 732 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 733 char *buf) 734 { 735 struct iommu_resv_region *region, *next; 736 struct list_head group_resv_regions; 737 int offset = 0; 738 739 INIT_LIST_HEAD(&group_resv_regions); 740 iommu_get_group_resv_regions(group, &group_resv_regions); 741 742 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 743 offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n", 744 (long long)region->start, 745 (long long)(region->start + 746 region->length - 1), 747 iommu_group_resv_type_string[region->type]); 748 kfree(region); 749 } 750 751 return offset; 752 } 753 754 static ssize_t iommu_group_show_type(struct iommu_group *group, 755 char *buf) 756 { 757 char *type = "unknown"; 758 759 mutex_lock(&group->mutex); 760 if (group->default_domain) { 761 switch (group->default_domain->type) { 762 case IOMMU_DOMAIN_BLOCKED: 763 type = "blocked"; 764 break; 765 case IOMMU_DOMAIN_IDENTITY: 766 type = "identity"; 767 break; 768 case IOMMU_DOMAIN_UNMANAGED: 769 type = "unmanaged"; 770 break; 771 case IOMMU_DOMAIN_DMA: 772 type = "DMA"; 773 break; 774 case IOMMU_DOMAIN_DMA_FQ: 775 type = "DMA-FQ"; 776 break; 777 } 778 } 779 mutex_unlock(&group->mutex); 780 781 return sysfs_emit(buf, "%s\n", type); 782 } 783 784 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 785 786 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 787 iommu_group_show_resv_regions, NULL); 788 789 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type, 790 iommu_group_store_type); 791 792 static void iommu_group_release(struct kobject *kobj) 793 { 794 struct iommu_group *group = to_iommu_group(kobj); 795 796 pr_debug("Releasing group %d\n", group->id); 797 798 if (group->iommu_data_release) 799 group->iommu_data_release(group->iommu_data); 800 801 ida_free(&iommu_group_ida, group->id); 802 803 if (group->default_domain) 804 iommu_domain_free(group->default_domain); 805 if (group->blocking_domain) 806 iommu_domain_free(group->blocking_domain); 807 808 kfree(group->name); 809 kfree(group); 810 } 811 812 static const struct kobj_type iommu_group_ktype = { 813 .sysfs_ops = &iommu_group_sysfs_ops, 814 .release = iommu_group_release, 815 }; 816 817 /** 818 * iommu_group_alloc - Allocate a new group 819 * 820 * This function is called by an iommu driver to allocate a new iommu 821 * group. The iommu group represents the minimum granularity of the iommu. 822 * Upon successful return, the caller holds a reference to the supplied 823 * group in order to hold the group until devices are added. Use 824 * iommu_group_put() to release this extra reference count, allowing the 825 * group to be automatically reclaimed once it has no devices or external 826 * references. 827 */ 828 struct iommu_group *iommu_group_alloc(void) 829 { 830 struct iommu_group *group; 831 int ret; 832 833 group = kzalloc(sizeof(*group), GFP_KERNEL); 834 if (!group) 835 return ERR_PTR(-ENOMEM); 836 837 group->kobj.kset = iommu_group_kset; 838 mutex_init(&group->mutex); 839 INIT_LIST_HEAD(&group->devices); 840 INIT_LIST_HEAD(&group->entry); 841 xa_init(&group->pasid_array); 842 843 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL); 844 if (ret < 0) { 845 kfree(group); 846 return ERR_PTR(ret); 847 } 848 group->id = ret; 849 850 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 851 NULL, "%d", group->id); 852 if (ret) { 853 kobject_put(&group->kobj); 854 return ERR_PTR(ret); 855 } 856 857 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 858 if (!group->devices_kobj) { 859 kobject_put(&group->kobj); /* triggers .release & free */ 860 return ERR_PTR(-ENOMEM); 861 } 862 863 /* 864 * The devices_kobj holds a reference on the group kobject, so 865 * as long as that exists so will the group. We can therefore 866 * use the devices_kobj for reference counting. 867 */ 868 kobject_put(&group->kobj); 869 870 ret = iommu_group_create_file(group, 871 &iommu_group_attr_reserved_regions); 872 if (ret) { 873 kobject_put(group->devices_kobj); 874 return ERR_PTR(ret); 875 } 876 877 ret = iommu_group_create_file(group, &iommu_group_attr_type); 878 if (ret) { 879 kobject_put(group->devices_kobj); 880 return ERR_PTR(ret); 881 } 882 883 pr_debug("Allocated group %d\n", group->id); 884 885 return group; 886 } 887 EXPORT_SYMBOL_GPL(iommu_group_alloc); 888 889 /** 890 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 891 * @group: the group 892 * 893 * iommu drivers can store data in the group for use when doing iommu 894 * operations. This function provides a way to retrieve it. Caller 895 * should hold a group reference. 896 */ 897 void *iommu_group_get_iommudata(struct iommu_group *group) 898 { 899 return group->iommu_data; 900 } 901 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 902 903 /** 904 * iommu_group_set_iommudata - set iommu_data for a group 905 * @group: the group 906 * @iommu_data: new data 907 * @release: release function for iommu_data 908 * 909 * iommu drivers can store data in the group for use when doing iommu 910 * operations. This function provides a way to set the data after 911 * the group has been allocated. Caller should hold a group reference. 912 */ 913 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 914 void (*release)(void *iommu_data)) 915 { 916 group->iommu_data = iommu_data; 917 group->iommu_data_release = release; 918 } 919 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 920 921 /** 922 * iommu_group_set_name - set name for a group 923 * @group: the group 924 * @name: name 925 * 926 * Allow iommu driver to set a name for a group. When set it will 927 * appear in a name attribute file under the group in sysfs. 928 */ 929 int iommu_group_set_name(struct iommu_group *group, const char *name) 930 { 931 int ret; 932 933 if (group->name) { 934 iommu_group_remove_file(group, &iommu_group_attr_name); 935 kfree(group->name); 936 group->name = NULL; 937 if (!name) 938 return 0; 939 } 940 941 group->name = kstrdup(name, GFP_KERNEL); 942 if (!group->name) 943 return -ENOMEM; 944 945 ret = iommu_group_create_file(group, &iommu_group_attr_name); 946 if (ret) { 947 kfree(group->name); 948 group->name = NULL; 949 return ret; 950 } 951 952 return 0; 953 } 954 EXPORT_SYMBOL_GPL(iommu_group_set_name); 955 956 static int iommu_create_device_direct_mappings(struct iommu_group *group, 957 struct device *dev) 958 { 959 struct iommu_domain *domain = group->default_domain; 960 struct iommu_resv_region *entry; 961 struct list_head mappings; 962 unsigned long pg_size; 963 int ret = 0; 964 965 if (!domain || !iommu_is_dma_domain(domain)) 966 return 0; 967 968 BUG_ON(!domain->pgsize_bitmap); 969 970 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 971 INIT_LIST_HEAD(&mappings); 972 973 iommu_get_resv_regions(dev, &mappings); 974 975 /* We need to consider overlapping regions for different devices */ 976 list_for_each_entry(entry, &mappings, list) { 977 dma_addr_t start, end, addr; 978 size_t map_size = 0; 979 980 start = ALIGN(entry->start, pg_size); 981 end = ALIGN(entry->start + entry->length, pg_size); 982 983 if (entry->type != IOMMU_RESV_DIRECT && 984 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 985 continue; 986 987 for (addr = start; addr <= end; addr += pg_size) { 988 phys_addr_t phys_addr; 989 990 if (addr == end) 991 goto map_end; 992 993 phys_addr = iommu_iova_to_phys(domain, addr); 994 if (!phys_addr) { 995 map_size += pg_size; 996 continue; 997 } 998 999 map_end: 1000 if (map_size) { 1001 ret = iommu_map(domain, addr - map_size, 1002 addr - map_size, map_size, 1003 entry->prot, GFP_KERNEL); 1004 if (ret) 1005 goto out; 1006 map_size = 0; 1007 } 1008 } 1009 1010 } 1011 1012 iommu_flush_iotlb_all(domain); 1013 1014 out: 1015 iommu_put_resv_regions(dev, &mappings); 1016 1017 return ret; 1018 } 1019 1020 /** 1021 * iommu_group_add_device - add a device to an iommu group 1022 * @group: the group into which to add the device (reference should be held) 1023 * @dev: the device 1024 * 1025 * This function is called by an iommu driver to add a device into a 1026 * group. Adding a device increments the group reference count. 1027 */ 1028 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 1029 { 1030 int ret, i = 0; 1031 struct group_device *device; 1032 1033 device = kzalloc(sizeof(*device), GFP_KERNEL); 1034 if (!device) 1035 return -ENOMEM; 1036 1037 device->dev = dev; 1038 1039 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 1040 if (ret) 1041 goto err_free_device; 1042 1043 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 1044 rename: 1045 if (!device->name) { 1046 ret = -ENOMEM; 1047 goto err_remove_link; 1048 } 1049 1050 ret = sysfs_create_link_nowarn(group->devices_kobj, 1051 &dev->kobj, device->name); 1052 if (ret) { 1053 if (ret == -EEXIST && i >= 0) { 1054 /* 1055 * Account for the slim chance of collision 1056 * and append an instance to the name. 1057 */ 1058 kfree(device->name); 1059 device->name = kasprintf(GFP_KERNEL, "%s.%d", 1060 kobject_name(&dev->kobj), i++); 1061 goto rename; 1062 } 1063 goto err_free_name; 1064 } 1065 1066 kobject_get(group->devices_kobj); 1067 1068 dev->iommu_group = group; 1069 1070 mutex_lock(&group->mutex); 1071 list_add_tail(&device->list, &group->devices); 1072 if (group->domain) 1073 ret = iommu_group_do_dma_first_attach(dev, group->domain); 1074 mutex_unlock(&group->mutex); 1075 if (ret) 1076 goto err_put_group; 1077 1078 trace_add_device_to_group(group->id, dev); 1079 1080 dev_info(dev, "Adding to iommu group %d\n", group->id); 1081 1082 return 0; 1083 1084 err_put_group: 1085 mutex_lock(&group->mutex); 1086 list_del(&device->list); 1087 mutex_unlock(&group->mutex); 1088 dev->iommu_group = NULL; 1089 kobject_put(group->devices_kobj); 1090 sysfs_remove_link(group->devices_kobj, device->name); 1091 err_free_name: 1092 kfree(device->name); 1093 err_remove_link: 1094 sysfs_remove_link(&dev->kobj, "iommu_group"); 1095 err_free_device: 1096 kfree(device); 1097 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 1098 return ret; 1099 } 1100 EXPORT_SYMBOL_GPL(iommu_group_add_device); 1101 1102 /** 1103 * iommu_group_remove_device - remove a device from it's current group 1104 * @dev: device to be removed 1105 * 1106 * This function is called by an iommu driver to remove the device from 1107 * it's current group. This decrements the iommu group reference count. 1108 */ 1109 void iommu_group_remove_device(struct device *dev) 1110 { 1111 struct iommu_group *group = dev->iommu_group; 1112 struct group_device *device; 1113 1114 if (!group) 1115 return; 1116 1117 dev_info(dev, "Removing from iommu group %d\n", group->id); 1118 1119 mutex_lock(&group->mutex); 1120 device = __iommu_group_remove_device(group, dev); 1121 mutex_unlock(&group->mutex); 1122 1123 if (device) 1124 __iommu_group_release_device(group, device); 1125 } 1126 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 1127 1128 static int iommu_group_device_count(struct iommu_group *group) 1129 { 1130 struct group_device *entry; 1131 int ret = 0; 1132 1133 list_for_each_entry(entry, &group->devices, list) 1134 ret++; 1135 1136 return ret; 1137 } 1138 1139 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 1140 int (*fn)(struct device *, void *)) 1141 { 1142 struct group_device *device; 1143 int ret = 0; 1144 1145 list_for_each_entry(device, &group->devices, list) { 1146 ret = fn(device->dev, data); 1147 if (ret) 1148 break; 1149 } 1150 return ret; 1151 } 1152 1153 /** 1154 * iommu_group_for_each_dev - iterate over each device in the group 1155 * @group: the group 1156 * @data: caller opaque data to be passed to callback function 1157 * @fn: caller supplied callback function 1158 * 1159 * This function is called by group users to iterate over group devices. 1160 * Callers should hold a reference count to the group during callback. 1161 * The group->mutex is held across callbacks, which will block calls to 1162 * iommu_group_add/remove_device. 1163 */ 1164 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 1165 int (*fn)(struct device *, void *)) 1166 { 1167 int ret; 1168 1169 mutex_lock(&group->mutex); 1170 ret = __iommu_group_for_each_dev(group, data, fn); 1171 mutex_unlock(&group->mutex); 1172 1173 return ret; 1174 } 1175 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 1176 1177 /** 1178 * iommu_group_get - Return the group for a device and increment reference 1179 * @dev: get the group that this device belongs to 1180 * 1181 * This function is called by iommu drivers and users to get the group 1182 * for the specified device. If found, the group is returned and the group 1183 * reference in incremented, else NULL. 1184 */ 1185 struct iommu_group *iommu_group_get(struct device *dev) 1186 { 1187 struct iommu_group *group = dev->iommu_group; 1188 1189 if (group) 1190 kobject_get(group->devices_kobj); 1191 1192 return group; 1193 } 1194 EXPORT_SYMBOL_GPL(iommu_group_get); 1195 1196 /** 1197 * iommu_group_ref_get - Increment reference on a group 1198 * @group: the group to use, must not be NULL 1199 * 1200 * This function is called by iommu drivers to take additional references on an 1201 * existing group. Returns the given group for convenience. 1202 */ 1203 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 1204 { 1205 kobject_get(group->devices_kobj); 1206 return group; 1207 } 1208 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 1209 1210 /** 1211 * iommu_group_put - Decrement group reference 1212 * @group: the group to use 1213 * 1214 * This function is called by iommu drivers and users to release the 1215 * iommu group. Once the reference count is zero, the group is released. 1216 */ 1217 void iommu_group_put(struct iommu_group *group) 1218 { 1219 if (group) 1220 kobject_put(group->devices_kobj); 1221 } 1222 EXPORT_SYMBOL_GPL(iommu_group_put); 1223 1224 /** 1225 * iommu_register_device_fault_handler() - Register a device fault handler 1226 * @dev: the device 1227 * @handler: the fault handler 1228 * @data: private data passed as argument to the handler 1229 * 1230 * When an IOMMU fault event is received, this handler gets called with the 1231 * fault event and data as argument. The handler should return 0 on success. If 1232 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 1233 * complete the fault by calling iommu_page_response() with one of the following 1234 * response code: 1235 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 1236 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 1237 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 1238 * page faults if possible. 1239 * 1240 * Return 0 if the fault handler was installed successfully, or an error. 1241 */ 1242 int iommu_register_device_fault_handler(struct device *dev, 1243 iommu_dev_fault_handler_t handler, 1244 void *data) 1245 { 1246 struct dev_iommu *param = dev->iommu; 1247 int ret = 0; 1248 1249 if (!param) 1250 return -EINVAL; 1251 1252 mutex_lock(¶m->lock); 1253 /* Only allow one fault handler registered for each device */ 1254 if (param->fault_param) { 1255 ret = -EBUSY; 1256 goto done_unlock; 1257 } 1258 1259 get_device(dev); 1260 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 1261 if (!param->fault_param) { 1262 put_device(dev); 1263 ret = -ENOMEM; 1264 goto done_unlock; 1265 } 1266 param->fault_param->handler = handler; 1267 param->fault_param->data = data; 1268 mutex_init(¶m->fault_param->lock); 1269 INIT_LIST_HEAD(¶m->fault_param->faults); 1270 1271 done_unlock: 1272 mutex_unlock(¶m->lock); 1273 1274 return ret; 1275 } 1276 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1277 1278 /** 1279 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1280 * @dev: the device 1281 * 1282 * Remove the device fault handler installed with 1283 * iommu_register_device_fault_handler(). 1284 * 1285 * Return 0 on success, or an error. 1286 */ 1287 int iommu_unregister_device_fault_handler(struct device *dev) 1288 { 1289 struct dev_iommu *param = dev->iommu; 1290 int ret = 0; 1291 1292 if (!param) 1293 return -EINVAL; 1294 1295 mutex_lock(¶m->lock); 1296 1297 if (!param->fault_param) 1298 goto unlock; 1299 1300 /* we cannot unregister handler if there are pending faults */ 1301 if (!list_empty(¶m->fault_param->faults)) { 1302 ret = -EBUSY; 1303 goto unlock; 1304 } 1305 1306 kfree(param->fault_param); 1307 param->fault_param = NULL; 1308 put_device(dev); 1309 unlock: 1310 mutex_unlock(¶m->lock); 1311 1312 return ret; 1313 } 1314 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1315 1316 /** 1317 * iommu_report_device_fault() - Report fault event to device driver 1318 * @dev: the device 1319 * @evt: fault event data 1320 * 1321 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1322 * handler. When this function fails and the fault is recoverable, it is the 1323 * caller's responsibility to complete the fault. 1324 * 1325 * Return 0 on success, or an error. 1326 */ 1327 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1328 { 1329 struct dev_iommu *param = dev->iommu; 1330 struct iommu_fault_event *evt_pending = NULL; 1331 struct iommu_fault_param *fparam; 1332 int ret = 0; 1333 1334 if (!param || !evt) 1335 return -EINVAL; 1336 1337 /* we only report device fault if there is a handler registered */ 1338 mutex_lock(¶m->lock); 1339 fparam = param->fault_param; 1340 if (!fparam || !fparam->handler) { 1341 ret = -EINVAL; 1342 goto done_unlock; 1343 } 1344 1345 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1346 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1347 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1348 GFP_KERNEL); 1349 if (!evt_pending) { 1350 ret = -ENOMEM; 1351 goto done_unlock; 1352 } 1353 mutex_lock(&fparam->lock); 1354 list_add_tail(&evt_pending->list, &fparam->faults); 1355 mutex_unlock(&fparam->lock); 1356 } 1357 1358 ret = fparam->handler(&evt->fault, fparam->data); 1359 if (ret && evt_pending) { 1360 mutex_lock(&fparam->lock); 1361 list_del(&evt_pending->list); 1362 mutex_unlock(&fparam->lock); 1363 kfree(evt_pending); 1364 } 1365 done_unlock: 1366 mutex_unlock(¶m->lock); 1367 return ret; 1368 } 1369 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1370 1371 int iommu_page_response(struct device *dev, 1372 struct iommu_page_response *msg) 1373 { 1374 bool needs_pasid; 1375 int ret = -EINVAL; 1376 struct iommu_fault_event *evt; 1377 struct iommu_fault_page_request *prm; 1378 struct dev_iommu *param = dev->iommu; 1379 const struct iommu_ops *ops = dev_iommu_ops(dev); 1380 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID; 1381 1382 if (!ops->page_response) 1383 return -ENODEV; 1384 1385 if (!param || !param->fault_param) 1386 return -EINVAL; 1387 1388 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1389 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1390 return -EINVAL; 1391 1392 /* Only send response if there is a fault report pending */ 1393 mutex_lock(¶m->fault_param->lock); 1394 if (list_empty(¶m->fault_param->faults)) { 1395 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1396 goto done_unlock; 1397 } 1398 /* 1399 * Check if we have a matching page request pending to respond, 1400 * otherwise return -EINVAL 1401 */ 1402 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1403 prm = &evt->fault.prm; 1404 if (prm->grpid != msg->grpid) 1405 continue; 1406 1407 /* 1408 * If the PASID is required, the corresponding request is 1409 * matched using the group ID, the PASID valid bit and the PASID 1410 * value. Otherwise only the group ID matches request and 1411 * response. 1412 */ 1413 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; 1414 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid)) 1415 continue; 1416 1417 if (!needs_pasid && has_pasid) { 1418 /* No big deal, just clear it. */ 1419 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID; 1420 msg->pasid = 0; 1421 } 1422 1423 ret = ops->page_response(dev, evt, msg); 1424 list_del(&evt->list); 1425 kfree(evt); 1426 break; 1427 } 1428 1429 done_unlock: 1430 mutex_unlock(¶m->fault_param->lock); 1431 return ret; 1432 } 1433 EXPORT_SYMBOL_GPL(iommu_page_response); 1434 1435 /** 1436 * iommu_group_id - Return ID for a group 1437 * @group: the group to ID 1438 * 1439 * Return the unique ID for the group matching the sysfs group number. 1440 */ 1441 int iommu_group_id(struct iommu_group *group) 1442 { 1443 return group->id; 1444 } 1445 EXPORT_SYMBOL_GPL(iommu_group_id); 1446 1447 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1448 unsigned long *devfns); 1449 1450 /* 1451 * To consider a PCI device isolated, we require ACS to support Source 1452 * Validation, Request Redirection, Completer Redirection, and Upstream 1453 * Forwarding. This effectively means that devices cannot spoof their 1454 * requester ID, requests and completions cannot be redirected, and all 1455 * transactions are forwarded upstream, even as it passes through a 1456 * bridge where the target device is downstream. 1457 */ 1458 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1459 1460 /* 1461 * For multifunction devices which are not isolated from each other, find 1462 * all the other non-isolated functions and look for existing groups. For 1463 * each function, we also need to look for aliases to or from other devices 1464 * that may already have a group. 1465 */ 1466 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1467 unsigned long *devfns) 1468 { 1469 struct pci_dev *tmp = NULL; 1470 struct iommu_group *group; 1471 1472 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1473 return NULL; 1474 1475 for_each_pci_dev(tmp) { 1476 if (tmp == pdev || tmp->bus != pdev->bus || 1477 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1478 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1479 continue; 1480 1481 group = get_pci_alias_group(tmp, devfns); 1482 if (group) { 1483 pci_dev_put(tmp); 1484 return group; 1485 } 1486 } 1487 1488 return NULL; 1489 } 1490 1491 /* 1492 * Look for aliases to or from the given device for existing groups. DMA 1493 * aliases are only supported on the same bus, therefore the search 1494 * space is quite small (especially since we're really only looking at pcie 1495 * device, and therefore only expect multiple slots on the root complex or 1496 * downstream switch ports). It's conceivable though that a pair of 1497 * multifunction devices could have aliases between them that would cause a 1498 * loop. To prevent this, we use a bitmap to track where we've been. 1499 */ 1500 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1501 unsigned long *devfns) 1502 { 1503 struct pci_dev *tmp = NULL; 1504 struct iommu_group *group; 1505 1506 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1507 return NULL; 1508 1509 group = iommu_group_get(&pdev->dev); 1510 if (group) 1511 return group; 1512 1513 for_each_pci_dev(tmp) { 1514 if (tmp == pdev || tmp->bus != pdev->bus) 1515 continue; 1516 1517 /* We alias them or they alias us */ 1518 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1519 group = get_pci_alias_group(tmp, devfns); 1520 if (group) { 1521 pci_dev_put(tmp); 1522 return group; 1523 } 1524 1525 group = get_pci_function_alias_group(tmp, devfns); 1526 if (group) { 1527 pci_dev_put(tmp); 1528 return group; 1529 } 1530 } 1531 } 1532 1533 return NULL; 1534 } 1535 1536 struct group_for_pci_data { 1537 struct pci_dev *pdev; 1538 struct iommu_group *group; 1539 }; 1540 1541 /* 1542 * DMA alias iterator callback, return the last seen device. Stop and return 1543 * the IOMMU group if we find one along the way. 1544 */ 1545 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1546 { 1547 struct group_for_pci_data *data = opaque; 1548 1549 data->pdev = pdev; 1550 data->group = iommu_group_get(&pdev->dev); 1551 1552 return data->group != NULL; 1553 } 1554 1555 /* 1556 * Generic device_group call-back function. It just allocates one 1557 * iommu-group per device. 1558 */ 1559 struct iommu_group *generic_device_group(struct device *dev) 1560 { 1561 return iommu_group_alloc(); 1562 } 1563 EXPORT_SYMBOL_GPL(generic_device_group); 1564 1565 /* 1566 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1567 * to find or create an IOMMU group for a device. 1568 */ 1569 struct iommu_group *pci_device_group(struct device *dev) 1570 { 1571 struct pci_dev *pdev = to_pci_dev(dev); 1572 struct group_for_pci_data data; 1573 struct pci_bus *bus; 1574 struct iommu_group *group = NULL; 1575 u64 devfns[4] = { 0 }; 1576 1577 if (WARN_ON(!dev_is_pci(dev))) 1578 return ERR_PTR(-EINVAL); 1579 1580 /* 1581 * Find the upstream DMA alias for the device. A device must not 1582 * be aliased due to topology in order to have its own IOMMU group. 1583 * If we find an alias along the way that already belongs to a 1584 * group, use it. 1585 */ 1586 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1587 return data.group; 1588 1589 pdev = data.pdev; 1590 1591 /* 1592 * Continue upstream from the point of minimum IOMMU granularity 1593 * due to aliases to the point where devices are protected from 1594 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1595 * group, use it. 1596 */ 1597 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1598 if (!bus->self) 1599 continue; 1600 1601 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1602 break; 1603 1604 pdev = bus->self; 1605 1606 group = iommu_group_get(&pdev->dev); 1607 if (group) 1608 return group; 1609 } 1610 1611 /* 1612 * Look for existing groups on device aliases. If we alias another 1613 * device or another device aliases us, use the same group. 1614 */ 1615 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1616 if (group) 1617 return group; 1618 1619 /* 1620 * Look for existing groups on non-isolated functions on the same 1621 * slot and aliases of those funcions, if any. No need to clear 1622 * the search bitmap, the tested devfns are still valid. 1623 */ 1624 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1625 if (group) 1626 return group; 1627 1628 /* No shared group found, allocate new */ 1629 return iommu_group_alloc(); 1630 } 1631 EXPORT_SYMBOL_GPL(pci_device_group); 1632 1633 /* Get the IOMMU group for device on fsl-mc bus */ 1634 struct iommu_group *fsl_mc_device_group(struct device *dev) 1635 { 1636 struct device *cont_dev = fsl_mc_cont_dev(dev); 1637 struct iommu_group *group; 1638 1639 group = iommu_group_get(cont_dev); 1640 if (!group) 1641 group = iommu_group_alloc(); 1642 return group; 1643 } 1644 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1645 1646 static int iommu_get_def_domain_type(struct device *dev) 1647 { 1648 const struct iommu_ops *ops = dev_iommu_ops(dev); 1649 1650 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted) 1651 return IOMMU_DOMAIN_DMA; 1652 1653 if (ops->def_domain_type) 1654 return ops->def_domain_type(dev); 1655 1656 return 0; 1657 } 1658 1659 static int iommu_group_alloc_default_domain(const struct bus_type *bus, 1660 struct iommu_group *group, 1661 unsigned int type) 1662 { 1663 struct iommu_domain *dom; 1664 1665 dom = __iommu_domain_alloc(bus, type); 1666 if (!dom && type != IOMMU_DOMAIN_DMA) { 1667 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA); 1668 if (dom) 1669 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1670 type, group->name); 1671 } 1672 1673 if (!dom) 1674 return -ENOMEM; 1675 1676 group->default_domain = dom; 1677 if (!group->domain) 1678 group->domain = dom; 1679 return 0; 1680 } 1681 1682 static int iommu_alloc_default_domain(struct iommu_group *group, 1683 struct device *dev) 1684 { 1685 unsigned int type; 1686 1687 if (group->default_domain) 1688 return 0; 1689 1690 type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type; 1691 1692 return iommu_group_alloc_default_domain(dev->bus, group, type); 1693 } 1694 1695 /** 1696 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1697 * @dev: target device 1698 * 1699 * This function is intended to be called by IOMMU drivers and extended to 1700 * support common, bus-defined algorithms when determining or creating the 1701 * IOMMU group for a device. On success, the caller will hold a reference 1702 * to the returned IOMMU group, which will already include the provided 1703 * device. The reference should be released with iommu_group_put(). 1704 */ 1705 static struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1706 { 1707 const struct iommu_ops *ops = dev_iommu_ops(dev); 1708 struct iommu_group *group; 1709 int ret; 1710 1711 group = iommu_group_get(dev); 1712 if (group) 1713 return group; 1714 1715 group = ops->device_group(dev); 1716 if (WARN_ON_ONCE(group == NULL)) 1717 return ERR_PTR(-EINVAL); 1718 1719 if (IS_ERR(group)) 1720 return group; 1721 1722 ret = iommu_group_add_device(group, dev); 1723 if (ret) 1724 goto out_put_group; 1725 1726 return group; 1727 1728 out_put_group: 1729 iommu_group_put(group); 1730 1731 return ERR_PTR(ret); 1732 } 1733 1734 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1735 { 1736 return group->default_domain; 1737 } 1738 1739 static int probe_iommu_group(struct device *dev, void *data) 1740 { 1741 struct list_head *group_list = data; 1742 struct iommu_group *group; 1743 int ret; 1744 1745 /* Device is probed already if in a group */ 1746 group = iommu_group_get(dev); 1747 if (group) { 1748 iommu_group_put(group); 1749 return 0; 1750 } 1751 1752 ret = __iommu_probe_device(dev, group_list); 1753 if (ret == -ENODEV) 1754 ret = 0; 1755 1756 return ret; 1757 } 1758 1759 static int iommu_bus_notifier(struct notifier_block *nb, 1760 unsigned long action, void *data) 1761 { 1762 struct device *dev = data; 1763 1764 if (action == BUS_NOTIFY_ADD_DEVICE) { 1765 int ret; 1766 1767 ret = iommu_probe_device(dev); 1768 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1769 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1770 iommu_release_device(dev); 1771 return NOTIFY_OK; 1772 } 1773 1774 return 0; 1775 } 1776 1777 struct __group_domain_type { 1778 struct device *dev; 1779 unsigned int type; 1780 }; 1781 1782 static int probe_get_default_domain_type(struct device *dev, void *data) 1783 { 1784 struct __group_domain_type *gtype = data; 1785 unsigned int type = iommu_get_def_domain_type(dev); 1786 1787 if (type) { 1788 if (gtype->type && gtype->type != type) { 1789 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n", 1790 iommu_domain_type_str(type), 1791 dev_name(gtype->dev), 1792 iommu_domain_type_str(gtype->type)); 1793 gtype->type = 0; 1794 } 1795 1796 if (!gtype->dev) { 1797 gtype->dev = dev; 1798 gtype->type = type; 1799 } 1800 } 1801 1802 return 0; 1803 } 1804 1805 static void probe_alloc_default_domain(const struct bus_type *bus, 1806 struct iommu_group *group) 1807 { 1808 struct __group_domain_type gtype; 1809 1810 memset(>ype, 0, sizeof(gtype)); 1811 1812 /* Ask for default domain requirements of all devices in the group */ 1813 __iommu_group_for_each_dev(group, >ype, 1814 probe_get_default_domain_type); 1815 1816 if (!gtype.type) 1817 gtype.type = iommu_def_domain_type; 1818 1819 iommu_group_alloc_default_domain(bus, group, gtype.type); 1820 1821 } 1822 1823 static int __iommu_group_dma_first_attach(struct iommu_group *group) 1824 { 1825 return __iommu_group_for_each_dev(group, group->default_domain, 1826 iommu_group_do_dma_first_attach); 1827 } 1828 1829 static int iommu_group_do_probe_finalize(struct device *dev, void *data) 1830 { 1831 const struct iommu_ops *ops = dev_iommu_ops(dev); 1832 1833 if (ops->probe_finalize) 1834 ops->probe_finalize(dev); 1835 1836 return 0; 1837 } 1838 1839 static void __iommu_group_dma_finalize(struct iommu_group *group) 1840 { 1841 __iommu_group_for_each_dev(group, group->default_domain, 1842 iommu_group_do_probe_finalize); 1843 } 1844 1845 static int iommu_do_create_direct_mappings(struct device *dev, void *data) 1846 { 1847 struct iommu_group *group = data; 1848 1849 iommu_create_device_direct_mappings(group, dev); 1850 1851 return 0; 1852 } 1853 1854 static int iommu_group_create_direct_mappings(struct iommu_group *group) 1855 { 1856 return __iommu_group_for_each_dev(group, group, 1857 iommu_do_create_direct_mappings); 1858 } 1859 1860 int bus_iommu_probe(const struct bus_type *bus) 1861 { 1862 struct iommu_group *group, *next; 1863 LIST_HEAD(group_list); 1864 int ret; 1865 1866 /* 1867 * This code-path does not allocate the default domain when 1868 * creating the iommu group, so do it after the groups are 1869 * created. 1870 */ 1871 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1872 if (ret) 1873 return ret; 1874 1875 list_for_each_entry_safe(group, next, &group_list, entry) { 1876 mutex_lock(&group->mutex); 1877 1878 /* Remove item from the list */ 1879 list_del_init(&group->entry); 1880 1881 /* Try to allocate default domain */ 1882 probe_alloc_default_domain(bus, group); 1883 1884 if (!group->default_domain) { 1885 mutex_unlock(&group->mutex); 1886 continue; 1887 } 1888 1889 iommu_group_create_direct_mappings(group); 1890 1891 ret = __iommu_group_dma_first_attach(group); 1892 1893 mutex_unlock(&group->mutex); 1894 1895 if (ret) 1896 break; 1897 1898 __iommu_group_dma_finalize(group); 1899 } 1900 1901 return ret; 1902 } 1903 1904 bool iommu_present(const struct bus_type *bus) 1905 { 1906 return bus->iommu_ops != NULL; 1907 } 1908 EXPORT_SYMBOL_GPL(iommu_present); 1909 1910 /** 1911 * device_iommu_capable() - check for a general IOMMU capability 1912 * @dev: device to which the capability would be relevant, if available 1913 * @cap: IOMMU capability 1914 * 1915 * Return: true if an IOMMU is present and supports the given capability 1916 * for the given device, otherwise false. 1917 */ 1918 bool device_iommu_capable(struct device *dev, enum iommu_cap cap) 1919 { 1920 const struct iommu_ops *ops; 1921 1922 if (!dev->iommu || !dev->iommu->iommu_dev) 1923 return false; 1924 1925 ops = dev_iommu_ops(dev); 1926 if (!ops->capable) 1927 return false; 1928 1929 return ops->capable(dev, cap); 1930 } 1931 EXPORT_SYMBOL_GPL(device_iommu_capable); 1932 1933 /** 1934 * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi() 1935 * for a group 1936 * @group: Group to query 1937 * 1938 * IOMMU groups should not have differing values of 1939 * msi_device_has_isolated_msi() for devices in a group. However nothing 1940 * directly prevents this, so ensure mistakes don't result in isolation failures 1941 * by checking that all the devices are the same. 1942 */ 1943 bool iommu_group_has_isolated_msi(struct iommu_group *group) 1944 { 1945 struct group_device *group_dev; 1946 bool ret = true; 1947 1948 mutex_lock(&group->mutex); 1949 list_for_each_entry(group_dev, &group->devices, list) 1950 ret &= msi_device_has_isolated_msi(group_dev->dev); 1951 mutex_unlock(&group->mutex); 1952 return ret; 1953 } 1954 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi); 1955 1956 /** 1957 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1958 * @domain: iommu domain 1959 * @handler: fault handler 1960 * @token: user data, will be passed back to the fault handler 1961 * 1962 * This function should be used by IOMMU users which want to be notified 1963 * whenever an IOMMU fault happens. 1964 * 1965 * The fault handler itself should return 0 on success, and an appropriate 1966 * error code otherwise. 1967 */ 1968 void iommu_set_fault_handler(struct iommu_domain *domain, 1969 iommu_fault_handler_t handler, 1970 void *token) 1971 { 1972 BUG_ON(!domain); 1973 1974 domain->handler = handler; 1975 domain->handler_token = token; 1976 } 1977 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1978 1979 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus, 1980 unsigned type) 1981 { 1982 struct iommu_domain *domain; 1983 unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS; 1984 1985 if (bus == NULL || bus->iommu_ops == NULL) 1986 return NULL; 1987 1988 domain = bus->iommu_ops->domain_alloc(alloc_type); 1989 if (!domain) 1990 return NULL; 1991 1992 domain->type = type; 1993 /* 1994 * If not already set, assume all sizes by default; the driver 1995 * may override this later 1996 */ 1997 if (!domain->pgsize_bitmap) 1998 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1999 2000 if (!domain->ops) 2001 domain->ops = bus->iommu_ops->default_domain_ops; 2002 2003 if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) { 2004 iommu_domain_free(domain); 2005 domain = NULL; 2006 } 2007 return domain; 2008 } 2009 2010 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus) 2011 { 2012 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 2013 } 2014 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 2015 2016 void iommu_domain_free(struct iommu_domain *domain) 2017 { 2018 if (domain->type == IOMMU_DOMAIN_SVA) 2019 mmdrop(domain->mm); 2020 iommu_put_dma_cookie(domain); 2021 domain->ops->free(domain); 2022 } 2023 EXPORT_SYMBOL_GPL(iommu_domain_free); 2024 2025 /* 2026 * Put the group's domain back to the appropriate core-owned domain - either the 2027 * standard kernel-mode DMA configuration or an all-DMA-blocked domain. 2028 */ 2029 static void __iommu_group_set_core_domain(struct iommu_group *group) 2030 { 2031 struct iommu_domain *new_domain; 2032 int ret; 2033 2034 if (group->owner) 2035 new_domain = group->blocking_domain; 2036 else 2037 new_domain = group->default_domain; 2038 2039 ret = __iommu_group_set_domain(group, new_domain); 2040 WARN(ret, "iommu driver failed to attach the default/blocking domain"); 2041 } 2042 2043 static int __iommu_attach_device(struct iommu_domain *domain, 2044 struct device *dev) 2045 { 2046 int ret; 2047 2048 if (unlikely(domain->ops->attach_dev == NULL)) 2049 return -ENODEV; 2050 2051 ret = domain->ops->attach_dev(domain, dev); 2052 if (ret) 2053 return ret; 2054 dev->iommu->attach_deferred = 0; 2055 trace_attach_device_to_domain(dev); 2056 return 0; 2057 } 2058 2059 /** 2060 * iommu_attach_device - Attach an IOMMU domain to a device 2061 * @domain: IOMMU domain to attach 2062 * @dev: Device that will be attached 2063 * 2064 * Returns 0 on success and error code on failure 2065 * 2066 * Note that EINVAL can be treated as a soft failure, indicating 2067 * that certain configuration of the domain is incompatible with 2068 * the device. In this case attaching a different domain to the 2069 * device may succeed. 2070 */ 2071 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 2072 { 2073 struct iommu_group *group; 2074 int ret; 2075 2076 group = iommu_group_get(dev); 2077 if (!group) 2078 return -ENODEV; 2079 2080 /* 2081 * Lock the group to make sure the device-count doesn't 2082 * change while we are attaching 2083 */ 2084 mutex_lock(&group->mutex); 2085 ret = -EINVAL; 2086 if (iommu_group_device_count(group) != 1) 2087 goto out_unlock; 2088 2089 ret = __iommu_attach_group(domain, group); 2090 2091 out_unlock: 2092 mutex_unlock(&group->mutex); 2093 iommu_group_put(group); 2094 2095 return ret; 2096 } 2097 EXPORT_SYMBOL_GPL(iommu_attach_device); 2098 2099 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain) 2100 { 2101 if (dev->iommu && dev->iommu->attach_deferred) 2102 return __iommu_attach_device(domain, dev); 2103 2104 return 0; 2105 } 2106 2107 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 2108 { 2109 struct iommu_group *group; 2110 2111 group = iommu_group_get(dev); 2112 if (!group) 2113 return; 2114 2115 mutex_lock(&group->mutex); 2116 if (WARN_ON(domain != group->domain) || 2117 WARN_ON(iommu_group_device_count(group) != 1)) 2118 goto out_unlock; 2119 __iommu_group_set_core_domain(group); 2120 2121 out_unlock: 2122 mutex_unlock(&group->mutex); 2123 iommu_group_put(group); 2124 } 2125 EXPORT_SYMBOL_GPL(iommu_detach_device); 2126 2127 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2128 { 2129 struct iommu_domain *domain; 2130 struct iommu_group *group; 2131 2132 group = iommu_group_get(dev); 2133 if (!group) 2134 return NULL; 2135 2136 domain = group->domain; 2137 2138 iommu_group_put(group); 2139 2140 return domain; 2141 } 2142 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2143 2144 /* 2145 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2146 * guarantees that the group and its default domain are valid and correct. 2147 */ 2148 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2149 { 2150 return dev->iommu_group->default_domain; 2151 } 2152 2153 /* 2154 * IOMMU groups are really the natural working unit of the IOMMU, but 2155 * the IOMMU API works on domains and devices. Bridge that gap by 2156 * iterating over the devices in a group. Ideally we'd have a single 2157 * device which represents the requestor ID of the group, but we also 2158 * allow IOMMU drivers to create policy defined minimum sets, where 2159 * the physical hardware may be able to distiguish members, but we 2160 * wish to group them at a higher level (ex. untrusted multi-function 2161 * PCI devices). Thus we attach each device. 2162 */ 2163 static int iommu_group_do_attach_device(struct device *dev, void *data) 2164 { 2165 struct iommu_domain *domain = data; 2166 2167 return __iommu_attach_device(domain, dev); 2168 } 2169 2170 static int __iommu_attach_group(struct iommu_domain *domain, 2171 struct iommu_group *group) 2172 { 2173 int ret; 2174 2175 if (group->domain && group->domain != group->default_domain && 2176 group->domain != group->blocking_domain) 2177 return -EBUSY; 2178 2179 ret = __iommu_group_for_each_dev(group, domain, 2180 iommu_group_do_attach_device); 2181 if (ret == 0) { 2182 group->domain = domain; 2183 } else { 2184 /* 2185 * To recover from the case when certain device within the 2186 * group fails to attach to the new domain, we need force 2187 * attaching all devices back to the old domain. The old 2188 * domain is compatible for all devices in the group, 2189 * hence the iommu driver should always return success. 2190 */ 2191 struct iommu_domain *old_domain = group->domain; 2192 2193 group->domain = NULL; 2194 WARN(__iommu_group_set_domain(group, old_domain), 2195 "iommu driver failed to attach a compatible domain"); 2196 } 2197 2198 return ret; 2199 } 2200 2201 /** 2202 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group 2203 * @domain: IOMMU domain to attach 2204 * @group: IOMMU group that will be attached 2205 * 2206 * Returns 0 on success and error code on failure 2207 * 2208 * Note that EINVAL can be treated as a soft failure, indicating 2209 * that certain configuration of the domain is incompatible with 2210 * the group. In this case attaching a different domain to the 2211 * group may succeed. 2212 */ 2213 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2214 { 2215 int ret; 2216 2217 mutex_lock(&group->mutex); 2218 ret = __iommu_attach_group(domain, group); 2219 mutex_unlock(&group->mutex); 2220 2221 return ret; 2222 } 2223 EXPORT_SYMBOL_GPL(iommu_attach_group); 2224 2225 static int iommu_group_do_set_platform_dma(struct device *dev, void *data) 2226 { 2227 const struct iommu_ops *ops = dev_iommu_ops(dev); 2228 2229 if (!WARN_ON(!ops->set_platform_dma_ops)) 2230 ops->set_platform_dma_ops(dev); 2231 2232 return 0; 2233 } 2234 2235 static int __iommu_group_set_domain(struct iommu_group *group, 2236 struct iommu_domain *new_domain) 2237 { 2238 int ret; 2239 2240 if (group->domain == new_domain) 2241 return 0; 2242 2243 /* 2244 * New drivers should support default domains, so set_platform_dma() 2245 * op will never be called. Otherwise the NULL domain represents some 2246 * platform specific behavior. 2247 */ 2248 if (!new_domain) { 2249 __iommu_group_for_each_dev(group, NULL, 2250 iommu_group_do_set_platform_dma); 2251 group->domain = NULL; 2252 return 0; 2253 } 2254 2255 /* 2256 * Changing the domain is done by calling attach_dev() on the new 2257 * domain. This switch does not have to be atomic and DMA can be 2258 * discarded during the transition. DMA must only be able to access 2259 * either new_domain or group->domain, never something else. 2260 * 2261 * Note that this is called in error unwind paths, attaching to a 2262 * domain that has already been attached cannot fail. 2263 */ 2264 ret = __iommu_group_for_each_dev(group, new_domain, 2265 iommu_group_do_attach_device); 2266 if (ret) 2267 return ret; 2268 group->domain = new_domain; 2269 return 0; 2270 } 2271 2272 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2273 { 2274 mutex_lock(&group->mutex); 2275 __iommu_group_set_core_domain(group); 2276 mutex_unlock(&group->mutex); 2277 } 2278 EXPORT_SYMBOL_GPL(iommu_detach_group); 2279 2280 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2281 { 2282 if (domain->type == IOMMU_DOMAIN_IDENTITY) 2283 return iova; 2284 2285 if (domain->type == IOMMU_DOMAIN_BLOCKED) 2286 return 0; 2287 2288 return domain->ops->iova_to_phys(domain, iova); 2289 } 2290 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2291 2292 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova, 2293 phys_addr_t paddr, size_t size, size_t *count) 2294 { 2295 unsigned int pgsize_idx, pgsize_idx_next; 2296 unsigned long pgsizes; 2297 size_t offset, pgsize, pgsize_next; 2298 unsigned long addr_merge = paddr | iova; 2299 2300 /* Page sizes supported by the hardware and small enough for @size */ 2301 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0); 2302 2303 /* Constrain the page sizes further based on the maximum alignment */ 2304 if (likely(addr_merge)) 2305 pgsizes &= GENMASK(__ffs(addr_merge), 0); 2306 2307 /* Make sure we have at least one suitable page size */ 2308 BUG_ON(!pgsizes); 2309 2310 /* Pick the biggest page size remaining */ 2311 pgsize_idx = __fls(pgsizes); 2312 pgsize = BIT(pgsize_idx); 2313 if (!count) 2314 return pgsize; 2315 2316 /* Find the next biggest support page size, if it exists */ 2317 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0); 2318 if (!pgsizes) 2319 goto out_set_count; 2320 2321 pgsize_idx_next = __ffs(pgsizes); 2322 pgsize_next = BIT(pgsize_idx_next); 2323 2324 /* 2325 * There's no point trying a bigger page size unless the virtual 2326 * and physical addresses are similarly offset within the larger page. 2327 */ 2328 if ((iova ^ paddr) & (pgsize_next - 1)) 2329 goto out_set_count; 2330 2331 /* Calculate the offset to the next page size alignment boundary */ 2332 offset = pgsize_next - (addr_merge & (pgsize_next - 1)); 2333 2334 /* 2335 * If size is big enough to accommodate the larger page, reduce 2336 * the number of smaller pages. 2337 */ 2338 if (offset + pgsize_next <= size) 2339 size = offset; 2340 2341 out_set_count: 2342 *count = size >> pgsize_idx; 2343 return pgsize; 2344 } 2345 2346 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova, 2347 phys_addr_t paddr, size_t size, int prot, 2348 gfp_t gfp, size_t *mapped) 2349 { 2350 const struct iommu_domain_ops *ops = domain->ops; 2351 size_t pgsize, count; 2352 int ret; 2353 2354 pgsize = iommu_pgsize(domain, iova, paddr, size, &count); 2355 2356 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n", 2357 iova, &paddr, pgsize, count); 2358 2359 if (ops->map_pages) { 2360 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot, 2361 gfp, mapped); 2362 } else { 2363 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 2364 *mapped = ret ? 0 : pgsize; 2365 } 2366 2367 return ret; 2368 } 2369 2370 static int __iommu_map(struct iommu_domain *domain, unsigned long iova, 2371 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2372 { 2373 const struct iommu_domain_ops *ops = domain->ops; 2374 unsigned long orig_iova = iova; 2375 unsigned int min_pagesz; 2376 size_t orig_size = size; 2377 phys_addr_t orig_paddr = paddr; 2378 int ret = 0; 2379 2380 if (unlikely(!(ops->map || ops->map_pages) || 2381 domain->pgsize_bitmap == 0UL)) 2382 return -ENODEV; 2383 2384 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2385 return -EINVAL; 2386 2387 /* find out the minimum page size supported */ 2388 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2389 2390 /* 2391 * both the virtual address and the physical one, as well as 2392 * the size of the mapping, must be aligned (at least) to the 2393 * size of the smallest page supported by the hardware 2394 */ 2395 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2396 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2397 iova, &paddr, size, min_pagesz); 2398 return -EINVAL; 2399 } 2400 2401 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2402 2403 while (size) { 2404 size_t mapped = 0; 2405 2406 ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp, 2407 &mapped); 2408 /* 2409 * Some pages may have been mapped, even if an error occurred, 2410 * so we should account for those so they can be unmapped. 2411 */ 2412 size -= mapped; 2413 2414 if (ret) 2415 break; 2416 2417 iova += mapped; 2418 paddr += mapped; 2419 } 2420 2421 /* unroll mapping in case something went wrong */ 2422 if (ret) 2423 iommu_unmap(domain, orig_iova, orig_size - size); 2424 else 2425 trace_map(orig_iova, orig_paddr, orig_size); 2426 2427 return ret; 2428 } 2429 2430 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2431 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2432 { 2433 const struct iommu_domain_ops *ops = domain->ops; 2434 int ret; 2435 2436 might_sleep_if(gfpflags_allow_blocking(gfp)); 2437 2438 /* Discourage passing strange GFP flags */ 2439 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | 2440 __GFP_HIGHMEM))) 2441 return -EINVAL; 2442 2443 ret = __iommu_map(domain, iova, paddr, size, prot, gfp); 2444 if (ret == 0 && ops->iotlb_sync_map) 2445 ops->iotlb_sync_map(domain, iova, size); 2446 2447 return ret; 2448 } 2449 EXPORT_SYMBOL_GPL(iommu_map); 2450 2451 static size_t __iommu_unmap_pages(struct iommu_domain *domain, 2452 unsigned long iova, size_t size, 2453 struct iommu_iotlb_gather *iotlb_gather) 2454 { 2455 const struct iommu_domain_ops *ops = domain->ops; 2456 size_t pgsize, count; 2457 2458 pgsize = iommu_pgsize(domain, iova, iova, size, &count); 2459 return ops->unmap_pages ? 2460 ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) : 2461 ops->unmap(domain, iova, pgsize, iotlb_gather); 2462 } 2463 2464 static size_t __iommu_unmap(struct iommu_domain *domain, 2465 unsigned long iova, size_t size, 2466 struct iommu_iotlb_gather *iotlb_gather) 2467 { 2468 const struct iommu_domain_ops *ops = domain->ops; 2469 size_t unmapped_page, unmapped = 0; 2470 unsigned long orig_iova = iova; 2471 unsigned int min_pagesz; 2472 2473 if (unlikely(!(ops->unmap || ops->unmap_pages) || 2474 domain->pgsize_bitmap == 0UL)) 2475 return 0; 2476 2477 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2478 return 0; 2479 2480 /* find out the minimum page size supported */ 2481 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2482 2483 /* 2484 * The virtual address, as well as the size of the mapping, must be 2485 * aligned (at least) to the size of the smallest page supported 2486 * by the hardware 2487 */ 2488 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2489 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2490 iova, size, min_pagesz); 2491 return 0; 2492 } 2493 2494 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2495 2496 /* 2497 * Keep iterating until we either unmap 'size' bytes (or more) 2498 * or we hit an area that isn't mapped. 2499 */ 2500 while (unmapped < size) { 2501 unmapped_page = __iommu_unmap_pages(domain, iova, 2502 size - unmapped, 2503 iotlb_gather); 2504 if (!unmapped_page) 2505 break; 2506 2507 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2508 iova, unmapped_page); 2509 2510 iova += unmapped_page; 2511 unmapped += unmapped_page; 2512 } 2513 2514 trace_unmap(orig_iova, size, unmapped); 2515 return unmapped; 2516 } 2517 2518 size_t iommu_unmap(struct iommu_domain *domain, 2519 unsigned long iova, size_t size) 2520 { 2521 struct iommu_iotlb_gather iotlb_gather; 2522 size_t ret; 2523 2524 iommu_iotlb_gather_init(&iotlb_gather); 2525 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2526 iommu_iotlb_sync(domain, &iotlb_gather); 2527 2528 return ret; 2529 } 2530 EXPORT_SYMBOL_GPL(iommu_unmap); 2531 2532 size_t iommu_unmap_fast(struct iommu_domain *domain, 2533 unsigned long iova, size_t size, 2534 struct iommu_iotlb_gather *iotlb_gather) 2535 { 2536 return __iommu_unmap(domain, iova, size, iotlb_gather); 2537 } 2538 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2539 2540 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2541 struct scatterlist *sg, unsigned int nents, int prot, 2542 gfp_t gfp) 2543 { 2544 const struct iommu_domain_ops *ops = domain->ops; 2545 size_t len = 0, mapped = 0; 2546 phys_addr_t start; 2547 unsigned int i = 0; 2548 int ret; 2549 2550 might_sleep_if(gfpflags_allow_blocking(gfp)); 2551 2552 /* Discourage passing strange GFP flags */ 2553 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | 2554 __GFP_HIGHMEM))) 2555 return -EINVAL; 2556 2557 while (i <= nents) { 2558 phys_addr_t s_phys = sg_phys(sg); 2559 2560 if (len && s_phys != start + len) { 2561 ret = __iommu_map(domain, iova + mapped, start, 2562 len, prot, gfp); 2563 2564 if (ret) 2565 goto out_err; 2566 2567 mapped += len; 2568 len = 0; 2569 } 2570 2571 if (sg_is_dma_bus_address(sg)) 2572 goto next; 2573 2574 if (len) { 2575 len += sg->length; 2576 } else { 2577 len = sg->length; 2578 start = s_phys; 2579 } 2580 2581 next: 2582 if (++i < nents) 2583 sg = sg_next(sg); 2584 } 2585 2586 if (ops->iotlb_sync_map) 2587 ops->iotlb_sync_map(domain, iova, mapped); 2588 return mapped; 2589 2590 out_err: 2591 /* undo mappings already done */ 2592 iommu_unmap(domain, iova, mapped); 2593 2594 return ret; 2595 } 2596 EXPORT_SYMBOL_GPL(iommu_map_sg); 2597 2598 /** 2599 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2600 * @domain: the iommu domain where the fault has happened 2601 * @dev: the device where the fault has happened 2602 * @iova: the faulting address 2603 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2604 * 2605 * This function should be called by the low-level IOMMU implementations 2606 * whenever IOMMU faults happen, to allow high-level users, that are 2607 * interested in such events, to know about them. 2608 * 2609 * This event may be useful for several possible use cases: 2610 * - mere logging of the event 2611 * - dynamic TLB/PTE loading 2612 * - if restarting of the faulting device is required 2613 * 2614 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2615 * PTE/TLB loading will one day be supported, implementations will be able 2616 * to tell whether it succeeded or not according to this return value). 2617 * 2618 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2619 * (though fault handlers can also return -ENOSYS, in case they want to 2620 * elicit the default behavior of the IOMMU drivers). 2621 */ 2622 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2623 unsigned long iova, int flags) 2624 { 2625 int ret = -ENOSYS; 2626 2627 /* 2628 * if upper layers showed interest and installed a fault handler, 2629 * invoke it. 2630 */ 2631 if (domain->handler) 2632 ret = domain->handler(domain, dev, iova, flags, 2633 domain->handler_token); 2634 2635 trace_io_page_fault(dev, iova, flags); 2636 return ret; 2637 } 2638 EXPORT_SYMBOL_GPL(report_iommu_fault); 2639 2640 static int __init iommu_init(void) 2641 { 2642 iommu_group_kset = kset_create_and_add("iommu_groups", 2643 NULL, kernel_kobj); 2644 BUG_ON(!iommu_group_kset); 2645 2646 iommu_debugfs_setup(); 2647 2648 return 0; 2649 } 2650 core_initcall(iommu_init); 2651 2652 int iommu_enable_nesting(struct iommu_domain *domain) 2653 { 2654 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2655 return -EINVAL; 2656 if (!domain->ops->enable_nesting) 2657 return -EINVAL; 2658 return domain->ops->enable_nesting(domain); 2659 } 2660 EXPORT_SYMBOL_GPL(iommu_enable_nesting); 2661 2662 int iommu_set_pgtable_quirks(struct iommu_domain *domain, 2663 unsigned long quirk) 2664 { 2665 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2666 return -EINVAL; 2667 if (!domain->ops->set_pgtable_quirks) 2668 return -EINVAL; 2669 return domain->ops->set_pgtable_quirks(domain, quirk); 2670 } 2671 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks); 2672 2673 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2674 { 2675 const struct iommu_ops *ops = dev_iommu_ops(dev); 2676 2677 if (ops->get_resv_regions) 2678 ops->get_resv_regions(dev, list); 2679 } 2680 2681 /** 2682 * iommu_put_resv_regions - release resered regions 2683 * @dev: device for which to free reserved regions 2684 * @list: reserved region list for device 2685 * 2686 * This releases a reserved region list acquired by iommu_get_resv_regions(). 2687 */ 2688 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2689 { 2690 struct iommu_resv_region *entry, *next; 2691 2692 list_for_each_entry_safe(entry, next, list, list) { 2693 if (entry->free) 2694 entry->free(dev, entry); 2695 else 2696 kfree(entry); 2697 } 2698 } 2699 EXPORT_SYMBOL(iommu_put_resv_regions); 2700 2701 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2702 size_t length, int prot, 2703 enum iommu_resv_type type, 2704 gfp_t gfp) 2705 { 2706 struct iommu_resv_region *region; 2707 2708 region = kzalloc(sizeof(*region), gfp); 2709 if (!region) 2710 return NULL; 2711 2712 INIT_LIST_HEAD(®ion->list); 2713 region->start = start; 2714 region->length = length; 2715 region->prot = prot; 2716 region->type = type; 2717 return region; 2718 } 2719 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2720 2721 void iommu_set_default_passthrough(bool cmd_line) 2722 { 2723 if (cmd_line) 2724 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2725 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2726 } 2727 2728 void iommu_set_default_translated(bool cmd_line) 2729 { 2730 if (cmd_line) 2731 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2732 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2733 } 2734 2735 bool iommu_default_passthrough(void) 2736 { 2737 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2738 } 2739 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2740 2741 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2742 { 2743 const struct iommu_ops *ops = NULL; 2744 struct iommu_device *iommu; 2745 2746 spin_lock(&iommu_device_lock); 2747 list_for_each_entry(iommu, &iommu_device_list, list) 2748 if (iommu->fwnode == fwnode) { 2749 ops = iommu->ops; 2750 break; 2751 } 2752 spin_unlock(&iommu_device_lock); 2753 return ops; 2754 } 2755 2756 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2757 const struct iommu_ops *ops) 2758 { 2759 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2760 2761 if (fwspec) 2762 return ops == fwspec->ops ? 0 : -EINVAL; 2763 2764 if (!dev_iommu_get(dev)) 2765 return -ENOMEM; 2766 2767 /* Preallocate for the overwhelmingly common case of 1 ID */ 2768 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2769 if (!fwspec) 2770 return -ENOMEM; 2771 2772 of_node_get(to_of_node(iommu_fwnode)); 2773 fwspec->iommu_fwnode = iommu_fwnode; 2774 fwspec->ops = ops; 2775 dev_iommu_fwspec_set(dev, fwspec); 2776 return 0; 2777 } 2778 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2779 2780 void iommu_fwspec_free(struct device *dev) 2781 { 2782 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2783 2784 if (fwspec) { 2785 fwnode_handle_put(fwspec->iommu_fwnode); 2786 kfree(fwspec); 2787 dev_iommu_fwspec_set(dev, NULL); 2788 } 2789 } 2790 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2791 2792 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2793 { 2794 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2795 int i, new_num; 2796 2797 if (!fwspec) 2798 return -EINVAL; 2799 2800 new_num = fwspec->num_ids + num_ids; 2801 if (new_num > 1) { 2802 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2803 GFP_KERNEL); 2804 if (!fwspec) 2805 return -ENOMEM; 2806 2807 dev_iommu_fwspec_set(dev, fwspec); 2808 } 2809 2810 for (i = 0; i < num_ids; i++) 2811 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2812 2813 fwspec->num_ids = new_num; 2814 return 0; 2815 } 2816 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2817 2818 /* 2819 * Per device IOMMU features. 2820 */ 2821 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2822 { 2823 if (dev->iommu && dev->iommu->iommu_dev) { 2824 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2825 2826 if (ops->dev_enable_feat) 2827 return ops->dev_enable_feat(dev, feat); 2828 } 2829 2830 return -ENODEV; 2831 } 2832 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2833 2834 /* 2835 * The device drivers should do the necessary cleanups before calling this. 2836 */ 2837 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2838 { 2839 if (dev->iommu && dev->iommu->iommu_dev) { 2840 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2841 2842 if (ops->dev_disable_feat) 2843 return ops->dev_disable_feat(dev, feat); 2844 } 2845 2846 return -EBUSY; 2847 } 2848 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2849 2850 /* 2851 * Changes the default domain of an iommu group 2852 * 2853 * @group: The group for which the default domain should be changed 2854 * @dev: The first device in the group 2855 * @type: The type of the new default domain that gets associated with the group 2856 * 2857 * Returns 0 on success and error code on failure 2858 * 2859 * Note: 2860 * 1. Presently, this function is called only when user requests to change the 2861 * group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type 2862 * Please take a closer look if intended to use for other purposes. 2863 */ 2864 static int iommu_change_dev_def_domain(struct iommu_group *group, 2865 struct device *dev, int type) 2866 { 2867 struct __group_domain_type gtype = {NULL, 0}; 2868 struct iommu_domain *prev_dom; 2869 int ret; 2870 2871 lockdep_assert_held(&group->mutex); 2872 2873 prev_dom = group->default_domain; 2874 __iommu_group_for_each_dev(group, >ype, 2875 probe_get_default_domain_type); 2876 if (!type) { 2877 /* 2878 * If the user hasn't requested any specific type of domain and 2879 * if the device supports both the domains, then default to the 2880 * domain the device was booted with 2881 */ 2882 type = gtype.type ? : iommu_def_domain_type; 2883 } else if (gtype.type && type != gtype.type) { 2884 dev_err_ratelimited(dev, "Device cannot be in %s domain\n", 2885 iommu_domain_type_str(type)); 2886 return -EINVAL; 2887 } 2888 2889 /* 2890 * Switch to a new domain only if the requested domain type is different 2891 * from the existing default domain type 2892 */ 2893 if (prev_dom->type == type) 2894 return 0; 2895 2896 group->default_domain = NULL; 2897 group->domain = NULL; 2898 2899 /* Sets group->default_domain to the newly allocated domain */ 2900 ret = iommu_group_alloc_default_domain(dev->bus, group, type); 2901 if (ret) 2902 goto restore_old_domain; 2903 2904 ret = iommu_group_create_direct_mappings(group); 2905 if (ret) 2906 goto free_new_domain; 2907 2908 ret = __iommu_attach_group(group->default_domain, group); 2909 if (ret) 2910 goto free_new_domain; 2911 2912 iommu_domain_free(prev_dom); 2913 2914 return 0; 2915 2916 free_new_domain: 2917 iommu_domain_free(group->default_domain); 2918 restore_old_domain: 2919 group->default_domain = prev_dom; 2920 group->domain = prev_dom; 2921 2922 return ret; 2923 } 2924 2925 /* 2926 * Changing the default domain through sysfs requires the users to unbind the 2927 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ 2928 * transition. Return failure if this isn't met. 2929 * 2930 * We need to consider the race between this and the device release path. 2931 * group->mutex is used here to guarantee that the device release path 2932 * will not be entered at the same time. 2933 */ 2934 static ssize_t iommu_group_store_type(struct iommu_group *group, 2935 const char *buf, size_t count) 2936 { 2937 struct group_device *grp_dev; 2938 struct device *dev; 2939 int ret, req_type; 2940 2941 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 2942 return -EACCES; 2943 2944 if (WARN_ON(!group) || !group->default_domain) 2945 return -EINVAL; 2946 2947 if (sysfs_streq(buf, "identity")) 2948 req_type = IOMMU_DOMAIN_IDENTITY; 2949 else if (sysfs_streq(buf, "DMA")) 2950 req_type = IOMMU_DOMAIN_DMA; 2951 else if (sysfs_streq(buf, "DMA-FQ")) 2952 req_type = IOMMU_DOMAIN_DMA_FQ; 2953 else if (sysfs_streq(buf, "auto")) 2954 req_type = 0; 2955 else 2956 return -EINVAL; 2957 2958 mutex_lock(&group->mutex); 2959 /* We can bring up a flush queue without tearing down the domain. */ 2960 if (req_type == IOMMU_DOMAIN_DMA_FQ && 2961 group->default_domain->type == IOMMU_DOMAIN_DMA) { 2962 ret = iommu_dma_init_fq(group->default_domain); 2963 if (!ret) 2964 group->default_domain->type = IOMMU_DOMAIN_DMA_FQ; 2965 mutex_unlock(&group->mutex); 2966 2967 return ret ?: count; 2968 } 2969 2970 /* Otherwise, ensure that device exists and no driver is bound. */ 2971 if (list_empty(&group->devices) || group->owner_cnt) { 2972 mutex_unlock(&group->mutex); 2973 return -EPERM; 2974 } 2975 2976 grp_dev = list_first_entry(&group->devices, struct group_device, list); 2977 dev = grp_dev->dev; 2978 2979 ret = iommu_change_dev_def_domain(group, dev, req_type); 2980 2981 /* 2982 * Release the mutex here because ops->probe_finalize() call-back of 2983 * some vendor IOMMU drivers calls arm_iommu_attach_device() which 2984 * in-turn might call back into IOMMU core code, where it tries to take 2985 * group->mutex, resulting in a deadlock. 2986 */ 2987 mutex_unlock(&group->mutex); 2988 2989 /* Make sure dma_ops is appropriatley set */ 2990 if (!ret) 2991 __iommu_group_dma_finalize(group); 2992 2993 return ret ?: count; 2994 } 2995 2996 static bool iommu_is_default_domain(struct iommu_group *group) 2997 { 2998 if (group->domain == group->default_domain) 2999 return true; 3000 3001 /* 3002 * If the default domain was set to identity and it is still an identity 3003 * domain then we consider this a pass. This happens because of 3004 * amd_iommu_init_device() replacing the default idenytity domain with an 3005 * identity domain that has a different configuration for AMDGPU. 3006 */ 3007 if (group->default_domain && 3008 group->default_domain->type == IOMMU_DOMAIN_IDENTITY && 3009 group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY) 3010 return true; 3011 return false; 3012 } 3013 3014 /** 3015 * iommu_device_use_default_domain() - Device driver wants to handle device 3016 * DMA through the kernel DMA API. 3017 * @dev: The device. 3018 * 3019 * The device driver about to bind @dev wants to do DMA through the kernel 3020 * DMA API. Return 0 if it is allowed, otherwise an error. 3021 */ 3022 int iommu_device_use_default_domain(struct device *dev) 3023 { 3024 struct iommu_group *group = iommu_group_get(dev); 3025 int ret = 0; 3026 3027 if (!group) 3028 return 0; 3029 3030 mutex_lock(&group->mutex); 3031 if (group->owner_cnt) { 3032 if (group->owner || !iommu_is_default_domain(group) || 3033 !xa_empty(&group->pasid_array)) { 3034 ret = -EBUSY; 3035 goto unlock_out; 3036 } 3037 } 3038 3039 group->owner_cnt++; 3040 3041 unlock_out: 3042 mutex_unlock(&group->mutex); 3043 iommu_group_put(group); 3044 3045 return ret; 3046 } 3047 3048 /** 3049 * iommu_device_unuse_default_domain() - Device driver stops handling device 3050 * DMA through the kernel DMA API. 3051 * @dev: The device. 3052 * 3053 * The device driver doesn't want to do DMA through kernel DMA API anymore. 3054 * It must be called after iommu_device_use_default_domain(). 3055 */ 3056 void iommu_device_unuse_default_domain(struct device *dev) 3057 { 3058 struct iommu_group *group = iommu_group_get(dev); 3059 3060 if (!group) 3061 return; 3062 3063 mutex_lock(&group->mutex); 3064 if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array))) 3065 group->owner_cnt--; 3066 3067 mutex_unlock(&group->mutex); 3068 iommu_group_put(group); 3069 } 3070 3071 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group) 3072 { 3073 struct group_device *dev = 3074 list_first_entry(&group->devices, struct group_device, list); 3075 3076 if (group->blocking_domain) 3077 return 0; 3078 3079 group->blocking_domain = 3080 __iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED); 3081 if (!group->blocking_domain) { 3082 /* 3083 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED 3084 * create an empty domain instead. 3085 */ 3086 group->blocking_domain = __iommu_domain_alloc( 3087 dev->dev->bus, IOMMU_DOMAIN_UNMANAGED); 3088 if (!group->blocking_domain) 3089 return -EINVAL; 3090 } 3091 return 0; 3092 } 3093 3094 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner) 3095 { 3096 int ret; 3097 3098 if ((group->domain && group->domain != group->default_domain) || 3099 !xa_empty(&group->pasid_array)) 3100 return -EBUSY; 3101 3102 ret = __iommu_group_alloc_blocking_domain(group); 3103 if (ret) 3104 return ret; 3105 ret = __iommu_group_set_domain(group, group->blocking_domain); 3106 if (ret) 3107 return ret; 3108 3109 group->owner = owner; 3110 group->owner_cnt++; 3111 return 0; 3112 } 3113 3114 /** 3115 * iommu_group_claim_dma_owner() - Set DMA ownership of a group 3116 * @group: The group. 3117 * @owner: Caller specified pointer. Used for exclusive ownership. 3118 * 3119 * This is to support backward compatibility for vfio which manages the dma 3120 * ownership in iommu_group level. New invocations on this interface should be 3121 * prohibited. Only a single owner may exist for a group. 3122 */ 3123 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner) 3124 { 3125 int ret = 0; 3126 3127 if (WARN_ON(!owner)) 3128 return -EINVAL; 3129 3130 mutex_lock(&group->mutex); 3131 if (group->owner_cnt) { 3132 ret = -EPERM; 3133 goto unlock_out; 3134 } 3135 3136 ret = __iommu_take_dma_ownership(group, owner); 3137 unlock_out: 3138 mutex_unlock(&group->mutex); 3139 3140 return ret; 3141 } 3142 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner); 3143 3144 /** 3145 * iommu_device_claim_dma_owner() - Set DMA ownership of a device 3146 * @dev: The device. 3147 * @owner: Caller specified pointer. Used for exclusive ownership. 3148 * 3149 * Claim the DMA ownership of a device. Multiple devices in the same group may 3150 * concurrently claim ownership if they present the same owner value. Returns 0 3151 * on success and error code on failure 3152 */ 3153 int iommu_device_claim_dma_owner(struct device *dev, void *owner) 3154 { 3155 struct iommu_group *group; 3156 int ret = 0; 3157 3158 if (WARN_ON(!owner)) 3159 return -EINVAL; 3160 3161 group = iommu_group_get(dev); 3162 if (!group) 3163 return -ENODEV; 3164 3165 mutex_lock(&group->mutex); 3166 if (group->owner_cnt) { 3167 if (group->owner != owner) { 3168 ret = -EPERM; 3169 goto unlock_out; 3170 } 3171 group->owner_cnt++; 3172 goto unlock_out; 3173 } 3174 3175 ret = __iommu_take_dma_ownership(group, owner); 3176 unlock_out: 3177 mutex_unlock(&group->mutex); 3178 iommu_group_put(group); 3179 3180 return ret; 3181 } 3182 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner); 3183 3184 static void __iommu_release_dma_ownership(struct iommu_group *group) 3185 { 3186 int ret; 3187 3188 if (WARN_ON(!group->owner_cnt || !group->owner || 3189 !xa_empty(&group->pasid_array))) 3190 return; 3191 3192 group->owner_cnt = 0; 3193 group->owner = NULL; 3194 ret = __iommu_group_set_domain(group, group->default_domain); 3195 WARN(ret, "iommu driver failed to attach the default domain"); 3196 } 3197 3198 /** 3199 * iommu_group_release_dma_owner() - Release DMA ownership of a group 3200 * @dev: The device 3201 * 3202 * Release the DMA ownership claimed by iommu_group_claim_dma_owner(). 3203 */ 3204 void iommu_group_release_dma_owner(struct iommu_group *group) 3205 { 3206 mutex_lock(&group->mutex); 3207 __iommu_release_dma_ownership(group); 3208 mutex_unlock(&group->mutex); 3209 } 3210 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner); 3211 3212 /** 3213 * iommu_device_release_dma_owner() - Release DMA ownership of a device 3214 * @group: The device. 3215 * 3216 * Release the DMA ownership claimed by iommu_device_claim_dma_owner(). 3217 */ 3218 void iommu_device_release_dma_owner(struct device *dev) 3219 { 3220 struct iommu_group *group = iommu_group_get(dev); 3221 3222 mutex_lock(&group->mutex); 3223 if (group->owner_cnt > 1) 3224 group->owner_cnt--; 3225 else 3226 __iommu_release_dma_ownership(group); 3227 mutex_unlock(&group->mutex); 3228 iommu_group_put(group); 3229 } 3230 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner); 3231 3232 /** 3233 * iommu_group_dma_owner_claimed() - Query group dma ownership status 3234 * @group: The group. 3235 * 3236 * This provides status query on a given group. It is racy and only for 3237 * non-binding status reporting. 3238 */ 3239 bool iommu_group_dma_owner_claimed(struct iommu_group *group) 3240 { 3241 unsigned int user; 3242 3243 mutex_lock(&group->mutex); 3244 user = group->owner_cnt; 3245 mutex_unlock(&group->mutex); 3246 3247 return user; 3248 } 3249 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed); 3250 3251 static int __iommu_set_group_pasid(struct iommu_domain *domain, 3252 struct iommu_group *group, ioasid_t pasid) 3253 { 3254 struct group_device *device; 3255 int ret = 0; 3256 3257 list_for_each_entry(device, &group->devices, list) { 3258 ret = domain->ops->set_dev_pasid(domain, device->dev, pasid); 3259 if (ret) 3260 break; 3261 } 3262 3263 return ret; 3264 } 3265 3266 static void __iommu_remove_group_pasid(struct iommu_group *group, 3267 ioasid_t pasid) 3268 { 3269 struct group_device *device; 3270 const struct iommu_ops *ops; 3271 3272 list_for_each_entry(device, &group->devices, list) { 3273 ops = dev_iommu_ops(device->dev); 3274 ops->remove_dev_pasid(device->dev, pasid); 3275 } 3276 } 3277 3278 /* 3279 * iommu_attach_device_pasid() - Attach a domain to pasid of device 3280 * @domain: the iommu domain. 3281 * @dev: the attached device. 3282 * @pasid: the pasid of the device. 3283 * 3284 * Return: 0 on success, or an error. 3285 */ 3286 int iommu_attach_device_pasid(struct iommu_domain *domain, 3287 struct device *dev, ioasid_t pasid) 3288 { 3289 struct iommu_group *group; 3290 void *curr; 3291 int ret; 3292 3293 if (!domain->ops->set_dev_pasid) 3294 return -EOPNOTSUPP; 3295 3296 group = iommu_group_get(dev); 3297 if (!group) 3298 return -ENODEV; 3299 3300 mutex_lock(&group->mutex); 3301 curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL); 3302 if (curr) { 3303 ret = xa_err(curr) ? : -EBUSY; 3304 goto out_unlock; 3305 } 3306 3307 ret = __iommu_set_group_pasid(domain, group, pasid); 3308 if (ret) { 3309 __iommu_remove_group_pasid(group, pasid); 3310 xa_erase(&group->pasid_array, pasid); 3311 } 3312 out_unlock: 3313 mutex_unlock(&group->mutex); 3314 iommu_group_put(group); 3315 3316 return ret; 3317 } 3318 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid); 3319 3320 /* 3321 * iommu_detach_device_pasid() - Detach the domain from pasid of device 3322 * @domain: the iommu domain. 3323 * @dev: the attached device. 3324 * @pasid: the pasid of the device. 3325 * 3326 * The @domain must have been attached to @pasid of the @dev with 3327 * iommu_attach_device_pasid(). 3328 */ 3329 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev, 3330 ioasid_t pasid) 3331 { 3332 struct iommu_group *group = iommu_group_get(dev); 3333 3334 mutex_lock(&group->mutex); 3335 __iommu_remove_group_pasid(group, pasid); 3336 WARN_ON(xa_erase(&group->pasid_array, pasid) != domain); 3337 mutex_unlock(&group->mutex); 3338 3339 iommu_group_put(group); 3340 } 3341 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid); 3342 3343 /* 3344 * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev 3345 * @dev: the queried device 3346 * @pasid: the pasid of the device 3347 * @type: matched domain type, 0 for any match 3348 * 3349 * This is a variant of iommu_get_domain_for_dev(). It returns the existing 3350 * domain attached to pasid of a device. Callers must hold a lock around this 3351 * function, and both iommu_attach/detach_dev_pasid() whenever a domain of 3352 * type is being manipulated. This API does not internally resolve races with 3353 * attach/detach. 3354 * 3355 * Return: attached domain on success, NULL otherwise. 3356 */ 3357 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev, 3358 ioasid_t pasid, 3359 unsigned int type) 3360 { 3361 struct iommu_domain *domain; 3362 struct iommu_group *group; 3363 3364 group = iommu_group_get(dev); 3365 if (!group) 3366 return NULL; 3367 3368 xa_lock(&group->pasid_array); 3369 domain = xa_load(&group->pasid_array, pasid); 3370 if (type && domain && domain->type != type) 3371 domain = ERR_PTR(-EBUSY); 3372 xa_unlock(&group->pasid_array); 3373 iommu_group_put(group); 3374 3375 return domain; 3376 } 3377 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid); 3378 3379 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev, 3380 struct mm_struct *mm) 3381 { 3382 const struct iommu_ops *ops = dev_iommu_ops(dev); 3383 struct iommu_domain *domain; 3384 3385 domain = ops->domain_alloc(IOMMU_DOMAIN_SVA); 3386 if (!domain) 3387 return NULL; 3388 3389 domain->type = IOMMU_DOMAIN_SVA; 3390 mmgrab(mm); 3391 domain->mm = mm; 3392 domain->iopf_handler = iommu_sva_handle_iopf; 3393 domain->fault_data = mm; 3394 3395 return domain; 3396 } 3397