xref: /openbmc/linux/drivers/iommu/iommu.c (revision 293f2564)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/amba/bus.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/host1x_context_bus.h>
20 #include <linux/iommu.h>
21 #include <linux/idr.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/pci-ats.h>
25 #include <linux/bitops.h>
26 #include <linux/platform_device.h>
27 #include <linux/property.h>
28 #include <linux/fsl/mc.h>
29 #include <linux/module.h>
30 #include <linux/cc_platform.h>
31 #include <trace/events/iommu.h>
32 #include <linux/sched/mm.h>
33 #include <linux/msi.h>
34 
35 #include "dma-iommu.h"
36 
37 #include "iommu-sva.h"
38 
39 static struct kset *iommu_group_kset;
40 static DEFINE_IDA(iommu_group_ida);
41 
42 static unsigned int iommu_def_domain_type __read_mostly;
43 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
44 static u32 iommu_cmd_line __read_mostly;
45 
46 struct iommu_group {
47 	struct kobject kobj;
48 	struct kobject *devices_kobj;
49 	struct list_head devices;
50 	struct xarray pasid_array;
51 	struct mutex mutex;
52 	void *iommu_data;
53 	void (*iommu_data_release)(void *iommu_data);
54 	char *name;
55 	int id;
56 	struct iommu_domain *default_domain;
57 	struct iommu_domain *blocking_domain;
58 	struct iommu_domain *domain;
59 	struct list_head entry;
60 	unsigned int owner_cnt;
61 	void *owner;
62 };
63 
64 struct group_device {
65 	struct list_head list;
66 	struct device *dev;
67 	char *name;
68 };
69 
70 struct iommu_group_attribute {
71 	struct attribute attr;
72 	ssize_t (*show)(struct iommu_group *group, char *buf);
73 	ssize_t (*store)(struct iommu_group *group,
74 			 const char *buf, size_t count);
75 };
76 
77 static const char * const iommu_group_resv_type_string[] = {
78 	[IOMMU_RESV_DIRECT]			= "direct",
79 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
80 	[IOMMU_RESV_RESERVED]			= "reserved",
81 	[IOMMU_RESV_MSI]			= "msi",
82 	[IOMMU_RESV_SW_MSI]			= "msi",
83 };
84 
85 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
86 #define IOMMU_CMD_LINE_STRICT		BIT(1)
87 
88 static int iommu_bus_notifier(struct notifier_block *nb,
89 			      unsigned long action, void *data);
90 static int iommu_alloc_default_domain(struct iommu_group *group,
91 				      struct device *dev);
92 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
93 						 unsigned type);
94 static int __iommu_attach_device(struct iommu_domain *domain,
95 				 struct device *dev);
96 static int __iommu_attach_group(struct iommu_domain *domain,
97 				struct iommu_group *group);
98 static int __iommu_group_set_domain(struct iommu_group *group,
99 				    struct iommu_domain *new_domain);
100 static int iommu_create_device_direct_mappings(struct iommu_group *group,
101 					       struct device *dev);
102 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
103 static ssize_t iommu_group_store_type(struct iommu_group *group,
104 				      const char *buf, size_t count);
105 
106 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
107 struct iommu_group_attribute iommu_group_attr_##_name =		\
108 	__ATTR(_name, _mode, _show, _store)
109 
110 #define to_iommu_group_attr(_attr)	\
111 	container_of(_attr, struct iommu_group_attribute, attr)
112 #define to_iommu_group(_kobj)		\
113 	container_of(_kobj, struct iommu_group, kobj)
114 
115 static LIST_HEAD(iommu_device_list);
116 static DEFINE_SPINLOCK(iommu_device_lock);
117 
118 static struct bus_type * const iommu_buses[] = {
119 	&platform_bus_type,
120 #ifdef CONFIG_PCI
121 	&pci_bus_type,
122 #endif
123 #ifdef CONFIG_ARM_AMBA
124 	&amba_bustype,
125 #endif
126 #ifdef CONFIG_FSL_MC_BUS
127 	&fsl_mc_bus_type,
128 #endif
129 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS
130 	&host1x_context_device_bus_type,
131 #endif
132 };
133 
134 /*
135  * Use a function instead of an array here because the domain-type is a
136  * bit-field, so an array would waste memory.
137  */
138 static const char *iommu_domain_type_str(unsigned int t)
139 {
140 	switch (t) {
141 	case IOMMU_DOMAIN_BLOCKED:
142 		return "Blocked";
143 	case IOMMU_DOMAIN_IDENTITY:
144 		return "Passthrough";
145 	case IOMMU_DOMAIN_UNMANAGED:
146 		return "Unmanaged";
147 	case IOMMU_DOMAIN_DMA:
148 	case IOMMU_DOMAIN_DMA_FQ:
149 		return "Translated";
150 	default:
151 		return "Unknown";
152 	}
153 }
154 
155 static int __init iommu_subsys_init(void)
156 {
157 	struct notifier_block *nb;
158 
159 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
160 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
161 			iommu_set_default_passthrough(false);
162 		else
163 			iommu_set_default_translated(false);
164 
165 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
166 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
167 			iommu_set_default_translated(false);
168 		}
169 	}
170 
171 	if (!iommu_default_passthrough() && !iommu_dma_strict)
172 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
173 
174 	pr_info("Default domain type: %s %s\n",
175 		iommu_domain_type_str(iommu_def_domain_type),
176 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
177 			"(set via kernel command line)" : "");
178 
179 	if (!iommu_default_passthrough())
180 		pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
181 			iommu_dma_strict ? "strict" : "lazy",
182 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
183 				"(set via kernel command line)" : "");
184 
185 	nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL);
186 	if (!nb)
187 		return -ENOMEM;
188 
189 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) {
190 		nb[i].notifier_call = iommu_bus_notifier;
191 		bus_register_notifier(iommu_buses[i], &nb[i]);
192 	}
193 
194 	return 0;
195 }
196 subsys_initcall(iommu_subsys_init);
197 
198 static int remove_iommu_group(struct device *dev, void *data)
199 {
200 	if (dev->iommu && dev->iommu->iommu_dev == data)
201 		iommu_release_device(dev);
202 
203 	return 0;
204 }
205 
206 /**
207  * iommu_device_register() - Register an IOMMU hardware instance
208  * @iommu: IOMMU handle for the instance
209  * @ops:   IOMMU ops to associate with the instance
210  * @hwdev: (optional) actual instance device, used for fwnode lookup
211  *
212  * Return: 0 on success, or an error.
213  */
214 int iommu_device_register(struct iommu_device *iommu,
215 			  const struct iommu_ops *ops, struct device *hwdev)
216 {
217 	int err = 0;
218 
219 	/* We need to be able to take module references appropriately */
220 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
221 		return -EINVAL;
222 	/*
223 	 * Temporarily enforce global restriction to a single driver. This was
224 	 * already the de-facto behaviour, since any possible combination of
225 	 * existing drivers would compete for at least the PCI or platform bus.
226 	 */
227 	if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops)
228 		return -EBUSY;
229 
230 	iommu->ops = ops;
231 	if (hwdev)
232 		iommu->fwnode = dev_fwnode(hwdev);
233 
234 	spin_lock(&iommu_device_lock);
235 	list_add_tail(&iommu->list, &iommu_device_list);
236 	spin_unlock(&iommu_device_lock);
237 
238 	for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) {
239 		iommu_buses[i]->iommu_ops = ops;
240 		err = bus_iommu_probe(iommu_buses[i]);
241 	}
242 	if (err)
243 		iommu_device_unregister(iommu);
244 	return err;
245 }
246 EXPORT_SYMBOL_GPL(iommu_device_register);
247 
248 void iommu_device_unregister(struct iommu_device *iommu)
249 {
250 	for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++)
251 		bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group);
252 
253 	spin_lock(&iommu_device_lock);
254 	list_del(&iommu->list);
255 	spin_unlock(&iommu_device_lock);
256 }
257 EXPORT_SYMBOL_GPL(iommu_device_unregister);
258 
259 static struct dev_iommu *dev_iommu_get(struct device *dev)
260 {
261 	struct dev_iommu *param = dev->iommu;
262 
263 	if (param)
264 		return param;
265 
266 	param = kzalloc(sizeof(*param), GFP_KERNEL);
267 	if (!param)
268 		return NULL;
269 
270 	mutex_init(&param->lock);
271 	dev->iommu = param;
272 	return param;
273 }
274 
275 static void dev_iommu_free(struct device *dev)
276 {
277 	struct dev_iommu *param = dev->iommu;
278 
279 	dev->iommu = NULL;
280 	if (param->fwspec) {
281 		fwnode_handle_put(param->fwspec->iommu_fwnode);
282 		kfree(param->fwspec);
283 	}
284 	kfree(param);
285 }
286 
287 static u32 dev_iommu_get_max_pasids(struct device *dev)
288 {
289 	u32 max_pasids = 0, bits = 0;
290 	int ret;
291 
292 	if (dev_is_pci(dev)) {
293 		ret = pci_max_pasids(to_pci_dev(dev));
294 		if (ret > 0)
295 			max_pasids = ret;
296 	} else {
297 		ret = device_property_read_u32(dev, "pasid-num-bits", &bits);
298 		if (!ret)
299 			max_pasids = 1UL << bits;
300 	}
301 
302 	return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids);
303 }
304 
305 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
306 {
307 	const struct iommu_ops *ops = dev->bus->iommu_ops;
308 	struct iommu_device *iommu_dev;
309 	struct iommu_group *group;
310 	static DEFINE_MUTEX(iommu_probe_device_lock);
311 	int ret;
312 
313 	if (!ops)
314 		return -ENODEV;
315 	/*
316 	 * Serialise to avoid races between IOMMU drivers registering in
317 	 * parallel and/or the "replay" calls from ACPI/OF code via client
318 	 * driver probe. Once the latter have been cleaned up we should
319 	 * probably be able to use device_lock() here to minimise the scope,
320 	 * but for now enforcing a simple global ordering is fine.
321 	 */
322 	mutex_lock(&iommu_probe_device_lock);
323 	if (!dev_iommu_get(dev)) {
324 		ret = -ENOMEM;
325 		goto err_unlock;
326 	}
327 
328 	if (!try_module_get(ops->owner)) {
329 		ret = -EINVAL;
330 		goto err_free;
331 	}
332 
333 	iommu_dev = ops->probe_device(dev);
334 	if (IS_ERR(iommu_dev)) {
335 		ret = PTR_ERR(iommu_dev);
336 		goto out_module_put;
337 	}
338 
339 	dev->iommu->iommu_dev = iommu_dev;
340 	dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev);
341 
342 	group = iommu_group_get_for_dev(dev);
343 	if (IS_ERR(group)) {
344 		ret = PTR_ERR(group);
345 		goto out_release;
346 	}
347 
348 	mutex_lock(&group->mutex);
349 	if (group_list && !group->default_domain && list_empty(&group->entry))
350 		list_add_tail(&group->entry, group_list);
351 	mutex_unlock(&group->mutex);
352 	iommu_group_put(group);
353 
354 	mutex_unlock(&iommu_probe_device_lock);
355 	iommu_device_link(iommu_dev, dev);
356 
357 	return 0;
358 
359 out_release:
360 	if (ops->release_device)
361 		ops->release_device(dev);
362 
363 out_module_put:
364 	module_put(ops->owner);
365 
366 err_free:
367 	dev_iommu_free(dev);
368 
369 err_unlock:
370 	mutex_unlock(&iommu_probe_device_lock);
371 
372 	return ret;
373 }
374 
375 static bool iommu_is_attach_deferred(struct device *dev)
376 {
377 	const struct iommu_ops *ops = dev_iommu_ops(dev);
378 
379 	if (ops->is_attach_deferred)
380 		return ops->is_attach_deferred(dev);
381 
382 	return false;
383 }
384 
385 static int iommu_group_do_dma_first_attach(struct device *dev, void *data)
386 {
387 	struct iommu_domain *domain = data;
388 
389 	lockdep_assert_held(&dev->iommu_group->mutex);
390 
391 	if (iommu_is_attach_deferred(dev)) {
392 		dev->iommu->attach_deferred = 1;
393 		return 0;
394 	}
395 
396 	return __iommu_attach_device(domain, dev);
397 }
398 
399 int iommu_probe_device(struct device *dev)
400 {
401 	const struct iommu_ops *ops;
402 	struct iommu_group *group;
403 	int ret;
404 
405 	ret = __iommu_probe_device(dev, NULL);
406 	if (ret)
407 		goto err_out;
408 
409 	group = iommu_group_get(dev);
410 	if (!group) {
411 		ret = -ENODEV;
412 		goto err_release;
413 	}
414 
415 	/*
416 	 * Try to allocate a default domain - needs support from the
417 	 * IOMMU driver. There are still some drivers which don't
418 	 * support default domains, so the return value is not yet
419 	 * checked.
420 	 */
421 	mutex_lock(&group->mutex);
422 	iommu_alloc_default_domain(group, dev);
423 
424 	/*
425 	 * If device joined an existing group which has been claimed, don't
426 	 * attach the default domain.
427 	 */
428 	if (group->default_domain && !group->owner) {
429 		ret = iommu_group_do_dma_first_attach(dev, group->default_domain);
430 		if (ret) {
431 			mutex_unlock(&group->mutex);
432 			iommu_group_put(group);
433 			goto err_release;
434 		}
435 	}
436 
437 	iommu_create_device_direct_mappings(group, dev);
438 
439 	mutex_unlock(&group->mutex);
440 	iommu_group_put(group);
441 
442 	ops = dev_iommu_ops(dev);
443 	if (ops->probe_finalize)
444 		ops->probe_finalize(dev);
445 
446 	return 0;
447 
448 err_release:
449 	iommu_release_device(dev);
450 
451 err_out:
452 	return ret;
453 
454 }
455 
456 /*
457  * Remove a device from a group's device list and return the group device
458  * if successful.
459  */
460 static struct group_device *
461 __iommu_group_remove_device(struct iommu_group *group, struct device *dev)
462 {
463 	struct group_device *device;
464 
465 	lockdep_assert_held(&group->mutex);
466 	list_for_each_entry(device, &group->devices, list) {
467 		if (device->dev == dev) {
468 			list_del(&device->list);
469 			return device;
470 		}
471 	}
472 
473 	return NULL;
474 }
475 
476 /*
477  * Release a device from its group and decrements the iommu group reference
478  * count.
479  */
480 static void __iommu_group_release_device(struct iommu_group *group,
481 					 struct group_device *grp_dev)
482 {
483 	struct device *dev = grp_dev->dev;
484 
485 	sysfs_remove_link(group->devices_kobj, grp_dev->name);
486 	sysfs_remove_link(&dev->kobj, "iommu_group");
487 
488 	trace_remove_device_from_group(group->id, dev);
489 
490 	kfree(grp_dev->name);
491 	kfree(grp_dev);
492 	dev->iommu_group = NULL;
493 	kobject_put(group->devices_kobj);
494 }
495 
496 void iommu_release_device(struct device *dev)
497 {
498 	const struct iommu_ops *ops;
499 
500 	if (!dev->iommu)
501 		return;
502 
503 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
504 
505 	ops = dev_iommu_ops(dev);
506 	if (ops->release_device)
507 		ops->release_device(dev);
508 
509 	iommu_group_remove_device(dev);
510 	module_put(ops->owner);
511 	dev_iommu_free(dev);
512 }
513 
514 static int __init iommu_set_def_domain_type(char *str)
515 {
516 	bool pt;
517 	int ret;
518 
519 	ret = kstrtobool(str, &pt);
520 	if (ret)
521 		return ret;
522 
523 	if (pt)
524 		iommu_set_default_passthrough(true);
525 	else
526 		iommu_set_default_translated(true);
527 
528 	return 0;
529 }
530 early_param("iommu.passthrough", iommu_set_def_domain_type);
531 
532 static int __init iommu_dma_setup(char *str)
533 {
534 	int ret = kstrtobool(str, &iommu_dma_strict);
535 
536 	if (!ret)
537 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
538 	return ret;
539 }
540 early_param("iommu.strict", iommu_dma_setup);
541 
542 void iommu_set_dma_strict(void)
543 {
544 	iommu_dma_strict = true;
545 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
546 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
547 }
548 
549 static ssize_t iommu_group_attr_show(struct kobject *kobj,
550 				     struct attribute *__attr, char *buf)
551 {
552 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
553 	struct iommu_group *group = to_iommu_group(kobj);
554 	ssize_t ret = -EIO;
555 
556 	if (attr->show)
557 		ret = attr->show(group, buf);
558 	return ret;
559 }
560 
561 static ssize_t iommu_group_attr_store(struct kobject *kobj,
562 				      struct attribute *__attr,
563 				      const char *buf, size_t count)
564 {
565 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
566 	struct iommu_group *group = to_iommu_group(kobj);
567 	ssize_t ret = -EIO;
568 
569 	if (attr->store)
570 		ret = attr->store(group, buf, count);
571 	return ret;
572 }
573 
574 static const struct sysfs_ops iommu_group_sysfs_ops = {
575 	.show = iommu_group_attr_show,
576 	.store = iommu_group_attr_store,
577 };
578 
579 static int iommu_group_create_file(struct iommu_group *group,
580 				   struct iommu_group_attribute *attr)
581 {
582 	return sysfs_create_file(&group->kobj, &attr->attr);
583 }
584 
585 static void iommu_group_remove_file(struct iommu_group *group,
586 				    struct iommu_group_attribute *attr)
587 {
588 	sysfs_remove_file(&group->kobj, &attr->attr);
589 }
590 
591 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
592 {
593 	return sprintf(buf, "%s\n", group->name);
594 }
595 
596 /**
597  * iommu_insert_resv_region - Insert a new region in the
598  * list of reserved regions.
599  * @new: new region to insert
600  * @regions: list of regions
601  *
602  * Elements are sorted by start address and overlapping segments
603  * of the same type are merged.
604  */
605 static int iommu_insert_resv_region(struct iommu_resv_region *new,
606 				    struct list_head *regions)
607 {
608 	struct iommu_resv_region *iter, *tmp, *nr, *top;
609 	LIST_HEAD(stack);
610 
611 	nr = iommu_alloc_resv_region(new->start, new->length,
612 				     new->prot, new->type, GFP_KERNEL);
613 	if (!nr)
614 		return -ENOMEM;
615 
616 	/* First add the new element based on start address sorting */
617 	list_for_each_entry(iter, regions, list) {
618 		if (nr->start < iter->start ||
619 		    (nr->start == iter->start && nr->type <= iter->type))
620 			break;
621 	}
622 	list_add_tail(&nr->list, &iter->list);
623 
624 	/* Merge overlapping segments of type nr->type in @regions, if any */
625 	list_for_each_entry_safe(iter, tmp, regions, list) {
626 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
627 
628 		/* no merge needed on elements of different types than @new */
629 		if (iter->type != new->type) {
630 			list_move_tail(&iter->list, &stack);
631 			continue;
632 		}
633 
634 		/* look for the last stack element of same type as @iter */
635 		list_for_each_entry_reverse(top, &stack, list)
636 			if (top->type == iter->type)
637 				goto check_overlap;
638 
639 		list_move_tail(&iter->list, &stack);
640 		continue;
641 
642 check_overlap:
643 		top_end = top->start + top->length - 1;
644 
645 		if (iter->start > top_end + 1) {
646 			list_move_tail(&iter->list, &stack);
647 		} else {
648 			top->length = max(top_end, iter_end) - top->start + 1;
649 			list_del(&iter->list);
650 			kfree(iter);
651 		}
652 	}
653 	list_splice(&stack, regions);
654 	return 0;
655 }
656 
657 static int
658 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
659 				 struct list_head *group_resv_regions)
660 {
661 	struct iommu_resv_region *entry;
662 	int ret = 0;
663 
664 	list_for_each_entry(entry, dev_resv_regions, list) {
665 		ret = iommu_insert_resv_region(entry, group_resv_regions);
666 		if (ret)
667 			break;
668 	}
669 	return ret;
670 }
671 
672 int iommu_get_group_resv_regions(struct iommu_group *group,
673 				 struct list_head *head)
674 {
675 	struct group_device *device;
676 	int ret = 0;
677 
678 	mutex_lock(&group->mutex);
679 	list_for_each_entry(device, &group->devices, list) {
680 		struct list_head dev_resv_regions;
681 
682 		/*
683 		 * Non-API groups still expose reserved_regions in sysfs,
684 		 * so filter out calls that get here that way.
685 		 */
686 		if (!device->dev->iommu)
687 			break;
688 
689 		INIT_LIST_HEAD(&dev_resv_regions);
690 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
691 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
692 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
693 		if (ret)
694 			break;
695 	}
696 	mutex_unlock(&group->mutex);
697 	return ret;
698 }
699 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
700 
701 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
702 					     char *buf)
703 {
704 	struct iommu_resv_region *region, *next;
705 	struct list_head group_resv_regions;
706 	char *str = buf;
707 
708 	INIT_LIST_HEAD(&group_resv_regions);
709 	iommu_get_group_resv_regions(group, &group_resv_regions);
710 
711 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
712 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
713 			       (long long int)region->start,
714 			       (long long int)(region->start +
715 						region->length - 1),
716 			       iommu_group_resv_type_string[region->type]);
717 		kfree(region);
718 	}
719 
720 	return (str - buf);
721 }
722 
723 static ssize_t iommu_group_show_type(struct iommu_group *group,
724 				     char *buf)
725 {
726 	char *type = "unknown\n";
727 
728 	mutex_lock(&group->mutex);
729 	if (group->default_domain) {
730 		switch (group->default_domain->type) {
731 		case IOMMU_DOMAIN_BLOCKED:
732 			type = "blocked\n";
733 			break;
734 		case IOMMU_DOMAIN_IDENTITY:
735 			type = "identity\n";
736 			break;
737 		case IOMMU_DOMAIN_UNMANAGED:
738 			type = "unmanaged\n";
739 			break;
740 		case IOMMU_DOMAIN_DMA:
741 			type = "DMA\n";
742 			break;
743 		case IOMMU_DOMAIN_DMA_FQ:
744 			type = "DMA-FQ\n";
745 			break;
746 		}
747 	}
748 	mutex_unlock(&group->mutex);
749 	strcpy(buf, type);
750 
751 	return strlen(type);
752 }
753 
754 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
755 
756 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
757 			iommu_group_show_resv_regions, NULL);
758 
759 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
760 			iommu_group_store_type);
761 
762 static void iommu_group_release(struct kobject *kobj)
763 {
764 	struct iommu_group *group = to_iommu_group(kobj);
765 
766 	pr_debug("Releasing group %d\n", group->id);
767 
768 	if (group->iommu_data_release)
769 		group->iommu_data_release(group->iommu_data);
770 
771 	ida_free(&iommu_group_ida, group->id);
772 
773 	if (group->default_domain)
774 		iommu_domain_free(group->default_domain);
775 	if (group->blocking_domain)
776 		iommu_domain_free(group->blocking_domain);
777 
778 	kfree(group->name);
779 	kfree(group);
780 }
781 
782 static const struct kobj_type iommu_group_ktype = {
783 	.sysfs_ops = &iommu_group_sysfs_ops,
784 	.release = iommu_group_release,
785 };
786 
787 /**
788  * iommu_group_alloc - Allocate a new group
789  *
790  * This function is called by an iommu driver to allocate a new iommu
791  * group.  The iommu group represents the minimum granularity of the iommu.
792  * Upon successful return, the caller holds a reference to the supplied
793  * group in order to hold the group until devices are added.  Use
794  * iommu_group_put() to release this extra reference count, allowing the
795  * group to be automatically reclaimed once it has no devices or external
796  * references.
797  */
798 struct iommu_group *iommu_group_alloc(void)
799 {
800 	struct iommu_group *group;
801 	int ret;
802 
803 	group = kzalloc(sizeof(*group), GFP_KERNEL);
804 	if (!group)
805 		return ERR_PTR(-ENOMEM);
806 
807 	group->kobj.kset = iommu_group_kset;
808 	mutex_init(&group->mutex);
809 	INIT_LIST_HEAD(&group->devices);
810 	INIT_LIST_HEAD(&group->entry);
811 	xa_init(&group->pasid_array);
812 
813 	ret = ida_alloc(&iommu_group_ida, GFP_KERNEL);
814 	if (ret < 0) {
815 		kfree(group);
816 		return ERR_PTR(ret);
817 	}
818 	group->id = ret;
819 
820 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
821 				   NULL, "%d", group->id);
822 	if (ret) {
823 		kobject_put(&group->kobj);
824 		return ERR_PTR(ret);
825 	}
826 
827 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
828 	if (!group->devices_kobj) {
829 		kobject_put(&group->kobj); /* triggers .release & free */
830 		return ERR_PTR(-ENOMEM);
831 	}
832 
833 	/*
834 	 * The devices_kobj holds a reference on the group kobject, so
835 	 * as long as that exists so will the group.  We can therefore
836 	 * use the devices_kobj for reference counting.
837 	 */
838 	kobject_put(&group->kobj);
839 
840 	ret = iommu_group_create_file(group,
841 				      &iommu_group_attr_reserved_regions);
842 	if (ret) {
843 		kobject_put(group->devices_kobj);
844 		return ERR_PTR(ret);
845 	}
846 
847 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
848 	if (ret) {
849 		kobject_put(group->devices_kobj);
850 		return ERR_PTR(ret);
851 	}
852 
853 	pr_debug("Allocated group %d\n", group->id);
854 
855 	return group;
856 }
857 EXPORT_SYMBOL_GPL(iommu_group_alloc);
858 
859 struct iommu_group *iommu_group_get_by_id(int id)
860 {
861 	struct kobject *group_kobj;
862 	struct iommu_group *group;
863 	const char *name;
864 
865 	if (!iommu_group_kset)
866 		return NULL;
867 
868 	name = kasprintf(GFP_KERNEL, "%d", id);
869 	if (!name)
870 		return NULL;
871 
872 	group_kobj = kset_find_obj(iommu_group_kset, name);
873 	kfree(name);
874 
875 	if (!group_kobj)
876 		return NULL;
877 
878 	group = container_of(group_kobj, struct iommu_group, kobj);
879 	BUG_ON(group->id != id);
880 
881 	kobject_get(group->devices_kobj);
882 	kobject_put(&group->kobj);
883 
884 	return group;
885 }
886 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
887 
888 /**
889  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
890  * @group: the group
891  *
892  * iommu drivers can store data in the group for use when doing iommu
893  * operations.  This function provides a way to retrieve it.  Caller
894  * should hold a group reference.
895  */
896 void *iommu_group_get_iommudata(struct iommu_group *group)
897 {
898 	return group->iommu_data;
899 }
900 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
901 
902 /**
903  * iommu_group_set_iommudata - set iommu_data for a group
904  * @group: the group
905  * @iommu_data: new data
906  * @release: release function for iommu_data
907  *
908  * iommu drivers can store data in the group for use when doing iommu
909  * operations.  This function provides a way to set the data after
910  * the group has been allocated.  Caller should hold a group reference.
911  */
912 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
913 			       void (*release)(void *iommu_data))
914 {
915 	group->iommu_data = iommu_data;
916 	group->iommu_data_release = release;
917 }
918 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
919 
920 /**
921  * iommu_group_set_name - set name for a group
922  * @group: the group
923  * @name: name
924  *
925  * Allow iommu driver to set a name for a group.  When set it will
926  * appear in a name attribute file under the group in sysfs.
927  */
928 int iommu_group_set_name(struct iommu_group *group, const char *name)
929 {
930 	int ret;
931 
932 	if (group->name) {
933 		iommu_group_remove_file(group, &iommu_group_attr_name);
934 		kfree(group->name);
935 		group->name = NULL;
936 		if (!name)
937 			return 0;
938 	}
939 
940 	group->name = kstrdup(name, GFP_KERNEL);
941 	if (!group->name)
942 		return -ENOMEM;
943 
944 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
945 	if (ret) {
946 		kfree(group->name);
947 		group->name = NULL;
948 		return ret;
949 	}
950 
951 	return 0;
952 }
953 EXPORT_SYMBOL_GPL(iommu_group_set_name);
954 
955 static int iommu_create_device_direct_mappings(struct iommu_group *group,
956 					       struct device *dev)
957 {
958 	struct iommu_domain *domain = group->default_domain;
959 	struct iommu_resv_region *entry;
960 	struct list_head mappings;
961 	unsigned long pg_size;
962 	int ret = 0;
963 
964 	if (!domain || !iommu_is_dma_domain(domain))
965 		return 0;
966 
967 	BUG_ON(!domain->pgsize_bitmap);
968 
969 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
970 	INIT_LIST_HEAD(&mappings);
971 
972 	iommu_get_resv_regions(dev, &mappings);
973 
974 	/* We need to consider overlapping regions for different devices */
975 	list_for_each_entry(entry, &mappings, list) {
976 		dma_addr_t start, end, addr;
977 		size_t map_size = 0;
978 
979 		start = ALIGN(entry->start, pg_size);
980 		end   = ALIGN(entry->start + entry->length, pg_size);
981 
982 		if (entry->type != IOMMU_RESV_DIRECT &&
983 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
984 			continue;
985 
986 		for (addr = start; addr <= end; addr += pg_size) {
987 			phys_addr_t phys_addr;
988 
989 			if (addr == end)
990 				goto map_end;
991 
992 			phys_addr = iommu_iova_to_phys(domain, addr);
993 			if (!phys_addr) {
994 				map_size += pg_size;
995 				continue;
996 			}
997 
998 map_end:
999 			if (map_size) {
1000 				ret = iommu_map(domain, addr - map_size,
1001 						addr - map_size, map_size,
1002 						entry->prot, GFP_KERNEL);
1003 				if (ret)
1004 					goto out;
1005 				map_size = 0;
1006 			}
1007 		}
1008 
1009 	}
1010 
1011 	iommu_flush_iotlb_all(domain);
1012 
1013 out:
1014 	iommu_put_resv_regions(dev, &mappings);
1015 
1016 	return ret;
1017 }
1018 
1019 /**
1020  * iommu_group_add_device - add a device to an iommu group
1021  * @group: the group into which to add the device (reference should be held)
1022  * @dev: the device
1023  *
1024  * This function is called by an iommu driver to add a device into a
1025  * group.  Adding a device increments the group reference count.
1026  */
1027 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
1028 {
1029 	int ret, i = 0;
1030 	struct group_device *device;
1031 
1032 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1033 	if (!device)
1034 		return -ENOMEM;
1035 
1036 	device->dev = dev;
1037 
1038 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
1039 	if (ret)
1040 		goto err_free_device;
1041 
1042 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
1043 rename:
1044 	if (!device->name) {
1045 		ret = -ENOMEM;
1046 		goto err_remove_link;
1047 	}
1048 
1049 	ret = sysfs_create_link_nowarn(group->devices_kobj,
1050 				       &dev->kobj, device->name);
1051 	if (ret) {
1052 		if (ret == -EEXIST && i >= 0) {
1053 			/*
1054 			 * Account for the slim chance of collision
1055 			 * and append an instance to the name.
1056 			 */
1057 			kfree(device->name);
1058 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
1059 						 kobject_name(&dev->kobj), i++);
1060 			goto rename;
1061 		}
1062 		goto err_free_name;
1063 	}
1064 
1065 	kobject_get(group->devices_kobj);
1066 
1067 	dev->iommu_group = group;
1068 
1069 	mutex_lock(&group->mutex);
1070 	list_add_tail(&device->list, &group->devices);
1071 	if (group->domain)
1072 		ret = iommu_group_do_dma_first_attach(dev, group->domain);
1073 	mutex_unlock(&group->mutex);
1074 	if (ret)
1075 		goto err_put_group;
1076 
1077 	trace_add_device_to_group(group->id, dev);
1078 
1079 	dev_info(dev, "Adding to iommu group %d\n", group->id);
1080 
1081 	return 0;
1082 
1083 err_put_group:
1084 	mutex_lock(&group->mutex);
1085 	list_del(&device->list);
1086 	mutex_unlock(&group->mutex);
1087 	dev->iommu_group = NULL;
1088 	kobject_put(group->devices_kobj);
1089 	sysfs_remove_link(group->devices_kobj, device->name);
1090 err_free_name:
1091 	kfree(device->name);
1092 err_remove_link:
1093 	sysfs_remove_link(&dev->kobj, "iommu_group");
1094 err_free_device:
1095 	kfree(device);
1096 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(iommu_group_add_device);
1100 
1101 /**
1102  * iommu_group_remove_device - remove a device from it's current group
1103  * @dev: device to be removed
1104  *
1105  * This function is called by an iommu driver to remove the device from
1106  * it's current group.  This decrements the iommu group reference count.
1107  */
1108 void iommu_group_remove_device(struct device *dev)
1109 {
1110 	struct iommu_group *group = dev->iommu_group;
1111 	struct group_device *device;
1112 
1113 	if (!group)
1114 		return;
1115 
1116 	dev_info(dev, "Removing from iommu group %d\n", group->id);
1117 
1118 	mutex_lock(&group->mutex);
1119 	device = __iommu_group_remove_device(group, dev);
1120 	mutex_unlock(&group->mutex);
1121 
1122 	if (device)
1123 		__iommu_group_release_device(group, device);
1124 }
1125 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
1126 
1127 static int iommu_group_device_count(struct iommu_group *group)
1128 {
1129 	struct group_device *entry;
1130 	int ret = 0;
1131 
1132 	list_for_each_entry(entry, &group->devices, list)
1133 		ret++;
1134 
1135 	return ret;
1136 }
1137 
1138 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
1139 				      int (*fn)(struct device *, void *))
1140 {
1141 	struct group_device *device;
1142 	int ret = 0;
1143 
1144 	list_for_each_entry(device, &group->devices, list) {
1145 		ret = fn(device->dev, data);
1146 		if (ret)
1147 			break;
1148 	}
1149 	return ret;
1150 }
1151 
1152 /**
1153  * iommu_group_for_each_dev - iterate over each device in the group
1154  * @group: the group
1155  * @data: caller opaque data to be passed to callback function
1156  * @fn: caller supplied callback function
1157  *
1158  * This function is called by group users to iterate over group devices.
1159  * Callers should hold a reference count to the group during callback.
1160  * The group->mutex is held across callbacks, which will block calls to
1161  * iommu_group_add/remove_device.
1162  */
1163 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1164 			     int (*fn)(struct device *, void *))
1165 {
1166 	int ret;
1167 
1168 	mutex_lock(&group->mutex);
1169 	ret = __iommu_group_for_each_dev(group, data, fn);
1170 	mutex_unlock(&group->mutex);
1171 
1172 	return ret;
1173 }
1174 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1175 
1176 /**
1177  * iommu_group_get - Return the group for a device and increment reference
1178  * @dev: get the group that this device belongs to
1179  *
1180  * This function is called by iommu drivers and users to get the group
1181  * for the specified device.  If found, the group is returned and the group
1182  * reference in incremented, else NULL.
1183  */
1184 struct iommu_group *iommu_group_get(struct device *dev)
1185 {
1186 	struct iommu_group *group = dev->iommu_group;
1187 
1188 	if (group)
1189 		kobject_get(group->devices_kobj);
1190 
1191 	return group;
1192 }
1193 EXPORT_SYMBOL_GPL(iommu_group_get);
1194 
1195 /**
1196  * iommu_group_ref_get - Increment reference on a group
1197  * @group: the group to use, must not be NULL
1198  *
1199  * This function is called by iommu drivers to take additional references on an
1200  * existing group.  Returns the given group for convenience.
1201  */
1202 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1203 {
1204 	kobject_get(group->devices_kobj);
1205 	return group;
1206 }
1207 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1208 
1209 /**
1210  * iommu_group_put - Decrement group reference
1211  * @group: the group to use
1212  *
1213  * This function is called by iommu drivers and users to release the
1214  * iommu group.  Once the reference count is zero, the group is released.
1215  */
1216 void iommu_group_put(struct iommu_group *group)
1217 {
1218 	if (group)
1219 		kobject_put(group->devices_kobj);
1220 }
1221 EXPORT_SYMBOL_GPL(iommu_group_put);
1222 
1223 /**
1224  * iommu_register_device_fault_handler() - Register a device fault handler
1225  * @dev: the device
1226  * @handler: the fault handler
1227  * @data: private data passed as argument to the handler
1228  *
1229  * When an IOMMU fault event is received, this handler gets called with the
1230  * fault event and data as argument. The handler should return 0 on success. If
1231  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1232  * complete the fault by calling iommu_page_response() with one of the following
1233  * response code:
1234  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1235  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1236  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1237  *   page faults if possible.
1238  *
1239  * Return 0 if the fault handler was installed successfully, or an error.
1240  */
1241 int iommu_register_device_fault_handler(struct device *dev,
1242 					iommu_dev_fault_handler_t handler,
1243 					void *data)
1244 {
1245 	struct dev_iommu *param = dev->iommu;
1246 	int ret = 0;
1247 
1248 	if (!param)
1249 		return -EINVAL;
1250 
1251 	mutex_lock(&param->lock);
1252 	/* Only allow one fault handler registered for each device */
1253 	if (param->fault_param) {
1254 		ret = -EBUSY;
1255 		goto done_unlock;
1256 	}
1257 
1258 	get_device(dev);
1259 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1260 	if (!param->fault_param) {
1261 		put_device(dev);
1262 		ret = -ENOMEM;
1263 		goto done_unlock;
1264 	}
1265 	param->fault_param->handler = handler;
1266 	param->fault_param->data = data;
1267 	mutex_init(&param->fault_param->lock);
1268 	INIT_LIST_HEAD(&param->fault_param->faults);
1269 
1270 done_unlock:
1271 	mutex_unlock(&param->lock);
1272 
1273 	return ret;
1274 }
1275 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1276 
1277 /**
1278  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1279  * @dev: the device
1280  *
1281  * Remove the device fault handler installed with
1282  * iommu_register_device_fault_handler().
1283  *
1284  * Return 0 on success, or an error.
1285  */
1286 int iommu_unregister_device_fault_handler(struct device *dev)
1287 {
1288 	struct dev_iommu *param = dev->iommu;
1289 	int ret = 0;
1290 
1291 	if (!param)
1292 		return -EINVAL;
1293 
1294 	mutex_lock(&param->lock);
1295 
1296 	if (!param->fault_param)
1297 		goto unlock;
1298 
1299 	/* we cannot unregister handler if there are pending faults */
1300 	if (!list_empty(&param->fault_param->faults)) {
1301 		ret = -EBUSY;
1302 		goto unlock;
1303 	}
1304 
1305 	kfree(param->fault_param);
1306 	param->fault_param = NULL;
1307 	put_device(dev);
1308 unlock:
1309 	mutex_unlock(&param->lock);
1310 
1311 	return ret;
1312 }
1313 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1314 
1315 /**
1316  * iommu_report_device_fault() - Report fault event to device driver
1317  * @dev: the device
1318  * @evt: fault event data
1319  *
1320  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1321  * handler. When this function fails and the fault is recoverable, it is the
1322  * caller's responsibility to complete the fault.
1323  *
1324  * Return 0 on success, or an error.
1325  */
1326 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1327 {
1328 	struct dev_iommu *param = dev->iommu;
1329 	struct iommu_fault_event *evt_pending = NULL;
1330 	struct iommu_fault_param *fparam;
1331 	int ret = 0;
1332 
1333 	if (!param || !evt)
1334 		return -EINVAL;
1335 
1336 	/* we only report device fault if there is a handler registered */
1337 	mutex_lock(&param->lock);
1338 	fparam = param->fault_param;
1339 	if (!fparam || !fparam->handler) {
1340 		ret = -EINVAL;
1341 		goto done_unlock;
1342 	}
1343 
1344 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1345 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1346 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1347 				      GFP_KERNEL);
1348 		if (!evt_pending) {
1349 			ret = -ENOMEM;
1350 			goto done_unlock;
1351 		}
1352 		mutex_lock(&fparam->lock);
1353 		list_add_tail(&evt_pending->list, &fparam->faults);
1354 		mutex_unlock(&fparam->lock);
1355 	}
1356 
1357 	ret = fparam->handler(&evt->fault, fparam->data);
1358 	if (ret && evt_pending) {
1359 		mutex_lock(&fparam->lock);
1360 		list_del(&evt_pending->list);
1361 		mutex_unlock(&fparam->lock);
1362 		kfree(evt_pending);
1363 	}
1364 done_unlock:
1365 	mutex_unlock(&param->lock);
1366 	return ret;
1367 }
1368 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1369 
1370 int iommu_page_response(struct device *dev,
1371 			struct iommu_page_response *msg)
1372 {
1373 	bool needs_pasid;
1374 	int ret = -EINVAL;
1375 	struct iommu_fault_event *evt;
1376 	struct iommu_fault_page_request *prm;
1377 	struct dev_iommu *param = dev->iommu;
1378 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1379 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1380 
1381 	if (!ops->page_response)
1382 		return -ENODEV;
1383 
1384 	if (!param || !param->fault_param)
1385 		return -EINVAL;
1386 
1387 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1388 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1389 		return -EINVAL;
1390 
1391 	/* Only send response if there is a fault report pending */
1392 	mutex_lock(&param->fault_param->lock);
1393 	if (list_empty(&param->fault_param->faults)) {
1394 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1395 		goto done_unlock;
1396 	}
1397 	/*
1398 	 * Check if we have a matching page request pending to respond,
1399 	 * otherwise return -EINVAL
1400 	 */
1401 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1402 		prm = &evt->fault.prm;
1403 		if (prm->grpid != msg->grpid)
1404 			continue;
1405 
1406 		/*
1407 		 * If the PASID is required, the corresponding request is
1408 		 * matched using the group ID, the PASID valid bit and the PASID
1409 		 * value. Otherwise only the group ID matches request and
1410 		 * response.
1411 		 */
1412 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1413 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1414 			continue;
1415 
1416 		if (!needs_pasid && has_pasid) {
1417 			/* No big deal, just clear it. */
1418 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1419 			msg->pasid = 0;
1420 		}
1421 
1422 		ret = ops->page_response(dev, evt, msg);
1423 		list_del(&evt->list);
1424 		kfree(evt);
1425 		break;
1426 	}
1427 
1428 done_unlock:
1429 	mutex_unlock(&param->fault_param->lock);
1430 	return ret;
1431 }
1432 EXPORT_SYMBOL_GPL(iommu_page_response);
1433 
1434 /**
1435  * iommu_group_id - Return ID for a group
1436  * @group: the group to ID
1437  *
1438  * Return the unique ID for the group matching the sysfs group number.
1439  */
1440 int iommu_group_id(struct iommu_group *group)
1441 {
1442 	return group->id;
1443 }
1444 EXPORT_SYMBOL_GPL(iommu_group_id);
1445 
1446 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1447 					       unsigned long *devfns);
1448 
1449 /*
1450  * To consider a PCI device isolated, we require ACS to support Source
1451  * Validation, Request Redirection, Completer Redirection, and Upstream
1452  * Forwarding.  This effectively means that devices cannot spoof their
1453  * requester ID, requests and completions cannot be redirected, and all
1454  * transactions are forwarded upstream, even as it passes through a
1455  * bridge where the target device is downstream.
1456  */
1457 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1458 
1459 /*
1460  * For multifunction devices which are not isolated from each other, find
1461  * all the other non-isolated functions and look for existing groups.  For
1462  * each function, we also need to look for aliases to or from other devices
1463  * that may already have a group.
1464  */
1465 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1466 							unsigned long *devfns)
1467 {
1468 	struct pci_dev *tmp = NULL;
1469 	struct iommu_group *group;
1470 
1471 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1472 		return NULL;
1473 
1474 	for_each_pci_dev(tmp) {
1475 		if (tmp == pdev || tmp->bus != pdev->bus ||
1476 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1477 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1478 			continue;
1479 
1480 		group = get_pci_alias_group(tmp, devfns);
1481 		if (group) {
1482 			pci_dev_put(tmp);
1483 			return group;
1484 		}
1485 	}
1486 
1487 	return NULL;
1488 }
1489 
1490 /*
1491  * Look for aliases to or from the given device for existing groups. DMA
1492  * aliases are only supported on the same bus, therefore the search
1493  * space is quite small (especially since we're really only looking at pcie
1494  * device, and therefore only expect multiple slots on the root complex or
1495  * downstream switch ports).  It's conceivable though that a pair of
1496  * multifunction devices could have aliases between them that would cause a
1497  * loop.  To prevent this, we use a bitmap to track where we've been.
1498  */
1499 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1500 					       unsigned long *devfns)
1501 {
1502 	struct pci_dev *tmp = NULL;
1503 	struct iommu_group *group;
1504 
1505 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1506 		return NULL;
1507 
1508 	group = iommu_group_get(&pdev->dev);
1509 	if (group)
1510 		return group;
1511 
1512 	for_each_pci_dev(tmp) {
1513 		if (tmp == pdev || tmp->bus != pdev->bus)
1514 			continue;
1515 
1516 		/* We alias them or they alias us */
1517 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1518 			group = get_pci_alias_group(tmp, devfns);
1519 			if (group) {
1520 				pci_dev_put(tmp);
1521 				return group;
1522 			}
1523 
1524 			group = get_pci_function_alias_group(tmp, devfns);
1525 			if (group) {
1526 				pci_dev_put(tmp);
1527 				return group;
1528 			}
1529 		}
1530 	}
1531 
1532 	return NULL;
1533 }
1534 
1535 struct group_for_pci_data {
1536 	struct pci_dev *pdev;
1537 	struct iommu_group *group;
1538 };
1539 
1540 /*
1541  * DMA alias iterator callback, return the last seen device.  Stop and return
1542  * the IOMMU group if we find one along the way.
1543  */
1544 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1545 {
1546 	struct group_for_pci_data *data = opaque;
1547 
1548 	data->pdev = pdev;
1549 	data->group = iommu_group_get(&pdev->dev);
1550 
1551 	return data->group != NULL;
1552 }
1553 
1554 /*
1555  * Generic device_group call-back function. It just allocates one
1556  * iommu-group per device.
1557  */
1558 struct iommu_group *generic_device_group(struct device *dev)
1559 {
1560 	return iommu_group_alloc();
1561 }
1562 EXPORT_SYMBOL_GPL(generic_device_group);
1563 
1564 /*
1565  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1566  * to find or create an IOMMU group for a device.
1567  */
1568 struct iommu_group *pci_device_group(struct device *dev)
1569 {
1570 	struct pci_dev *pdev = to_pci_dev(dev);
1571 	struct group_for_pci_data data;
1572 	struct pci_bus *bus;
1573 	struct iommu_group *group = NULL;
1574 	u64 devfns[4] = { 0 };
1575 
1576 	if (WARN_ON(!dev_is_pci(dev)))
1577 		return ERR_PTR(-EINVAL);
1578 
1579 	/*
1580 	 * Find the upstream DMA alias for the device.  A device must not
1581 	 * be aliased due to topology in order to have its own IOMMU group.
1582 	 * If we find an alias along the way that already belongs to a
1583 	 * group, use it.
1584 	 */
1585 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1586 		return data.group;
1587 
1588 	pdev = data.pdev;
1589 
1590 	/*
1591 	 * Continue upstream from the point of minimum IOMMU granularity
1592 	 * due to aliases to the point where devices are protected from
1593 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1594 	 * group, use it.
1595 	 */
1596 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1597 		if (!bus->self)
1598 			continue;
1599 
1600 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1601 			break;
1602 
1603 		pdev = bus->self;
1604 
1605 		group = iommu_group_get(&pdev->dev);
1606 		if (group)
1607 			return group;
1608 	}
1609 
1610 	/*
1611 	 * Look for existing groups on device aliases.  If we alias another
1612 	 * device or another device aliases us, use the same group.
1613 	 */
1614 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1615 	if (group)
1616 		return group;
1617 
1618 	/*
1619 	 * Look for existing groups on non-isolated functions on the same
1620 	 * slot and aliases of those funcions, if any.  No need to clear
1621 	 * the search bitmap, the tested devfns are still valid.
1622 	 */
1623 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1624 	if (group)
1625 		return group;
1626 
1627 	/* No shared group found, allocate new */
1628 	return iommu_group_alloc();
1629 }
1630 EXPORT_SYMBOL_GPL(pci_device_group);
1631 
1632 /* Get the IOMMU group for device on fsl-mc bus */
1633 struct iommu_group *fsl_mc_device_group(struct device *dev)
1634 {
1635 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1636 	struct iommu_group *group;
1637 
1638 	group = iommu_group_get(cont_dev);
1639 	if (!group)
1640 		group = iommu_group_alloc();
1641 	return group;
1642 }
1643 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1644 
1645 static int iommu_get_def_domain_type(struct device *dev)
1646 {
1647 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1648 
1649 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1650 		return IOMMU_DOMAIN_DMA;
1651 
1652 	if (ops->def_domain_type)
1653 		return ops->def_domain_type(dev);
1654 
1655 	return 0;
1656 }
1657 
1658 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1659 					    struct iommu_group *group,
1660 					    unsigned int type)
1661 {
1662 	struct iommu_domain *dom;
1663 
1664 	dom = __iommu_domain_alloc(bus, type);
1665 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1666 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1667 		if (dom)
1668 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1669 				type, group->name);
1670 	}
1671 
1672 	if (!dom)
1673 		return -ENOMEM;
1674 
1675 	group->default_domain = dom;
1676 	if (!group->domain)
1677 		group->domain = dom;
1678 	return 0;
1679 }
1680 
1681 static int iommu_alloc_default_domain(struct iommu_group *group,
1682 				      struct device *dev)
1683 {
1684 	unsigned int type;
1685 
1686 	if (group->default_domain)
1687 		return 0;
1688 
1689 	type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1690 
1691 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1692 }
1693 
1694 /**
1695  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1696  * @dev: target device
1697  *
1698  * This function is intended to be called by IOMMU drivers and extended to
1699  * support common, bus-defined algorithms when determining or creating the
1700  * IOMMU group for a device.  On success, the caller will hold a reference
1701  * to the returned IOMMU group, which will already include the provided
1702  * device.  The reference should be released with iommu_group_put().
1703  */
1704 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1705 {
1706 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1707 	struct iommu_group *group;
1708 	int ret;
1709 
1710 	group = iommu_group_get(dev);
1711 	if (group)
1712 		return group;
1713 
1714 	group = ops->device_group(dev);
1715 	if (WARN_ON_ONCE(group == NULL))
1716 		return ERR_PTR(-EINVAL);
1717 
1718 	if (IS_ERR(group))
1719 		return group;
1720 
1721 	ret = iommu_group_add_device(group, dev);
1722 	if (ret)
1723 		goto out_put_group;
1724 
1725 	return group;
1726 
1727 out_put_group:
1728 	iommu_group_put(group);
1729 
1730 	return ERR_PTR(ret);
1731 }
1732 
1733 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1734 {
1735 	return group->default_domain;
1736 }
1737 
1738 static int probe_iommu_group(struct device *dev, void *data)
1739 {
1740 	struct list_head *group_list = data;
1741 	struct iommu_group *group;
1742 	int ret;
1743 
1744 	/* Device is probed already if in a group */
1745 	group = iommu_group_get(dev);
1746 	if (group) {
1747 		iommu_group_put(group);
1748 		return 0;
1749 	}
1750 
1751 	ret = __iommu_probe_device(dev, group_list);
1752 	if (ret == -ENODEV)
1753 		ret = 0;
1754 
1755 	return ret;
1756 }
1757 
1758 static int iommu_bus_notifier(struct notifier_block *nb,
1759 			      unsigned long action, void *data)
1760 {
1761 	struct device *dev = data;
1762 
1763 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1764 		int ret;
1765 
1766 		ret = iommu_probe_device(dev);
1767 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1768 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1769 		iommu_release_device(dev);
1770 		return NOTIFY_OK;
1771 	}
1772 
1773 	return 0;
1774 }
1775 
1776 struct __group_domain_type {
1777 	struct device *dev;
1778 	unsigned int type;
1779 };
1780 
1781 static int probe_get_default_domain_type(struct device *dev, void *data)
1782 {
1783 	struct __group_domain_type *gtype = data;
1784 	unsigned int type = iommu_get_def_domain_type(dev);
1785 
1786 	if (type) {
1787 		if (gtype->type && gtype->type != type) {
1788 			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1789 				 iommu_domain_type_str(type),
1790 				 dev_name(gtype->dev),
1791 				 iommu_domain_type_str(gtype->type));
1792 			gtype->type = 0;
1793 		}
1794 
1795 		if (!gtype->dev) {
1796 			gtype->dev  = dev;
1797 			gtype->type = type;
1798 		}
1799 	}
1800 
1801 	return 0;
1802 }
1803 
1804 static void probe_alloc_default_domain(struct bus_type *bus,
1805 				       struct iommu_group *group)
1806 {
1807 	struct __group_domain_type gtype;
1808 
1809 	memset(&gtype, 0, sizeof(gtype));
1810 
1811 	/* Ask for default domain requirements of all devices in the group */
1812 	__iommu_group_for_each_dev(group, &gtype,
1813 				   probe_get_default_domain_type);
1814 
1815 	if (!gtype.type)
1816 		gtype.type = iommu_def_domain_type;
1817 
1818 	iommu_group_alloc_default_domain(bus, group, gtype.type);
1819 
1820 }
1821 
1822 static int __iommu_group_dma_first_attach(struct iommu_group *group)
1823 {
1824 	return __iommu_group_for_each_dev(group, group->default_domain,
1825 					  iommu_group_do_dma_first_attach);
1826 }
1827 
1828 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1829 {
1830 	const struct iommu_ops *ops = dev_iommu_ops(dev);
1831 
1832 	if (ops->probe_finalize)
1833 		ops->probe_finalize(dev);
1834 
1835 	return 0;
1836 }
1837 
1838 static void __iommu_group_dma_finalize(struct iommu_group *group)
1839 {
1840 	__iommu_group_for_each_dev(group, group->default_domain,
1841 				   iommu_group_do_probe_finalize);
1842 }
1843 
1844 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1845 {
1846 	struct iommu_group *group = data;
1847 
1848 	iommu_create_device_direct_mappings(group, dev);
1849 
1850 	return 0;
1851 }
1852 
1853 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1854 {
1855 	return __iommu_group_for_each_dev(group, group,
1856 					  iommu_do_create_direct_mappings);
1857 }
1858 
1859 int bus_iommu_probe(struct bus_type *bus)
1860 {
1861 	struct iommu_group *group, *next;
1862 	LIST_HEAD(group_list);
1863 	int ret;
1864 
1865 	/*
1866 	 * This code-path does not allocate the default domain when
1867 	 * creating the iommu group, so do it after the groups are
1868 	 * created.
1869 	 */
1870 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1871 	if (ret)
1872 		return ret;
1873 
1874 	list_for_each_entry_safe(group, next, &group_list, entry) {
1875 		mutex_lock(&group->mutex);
1876 
1877 		/* Remove item from the list */
1878 		list_del_init(&group->entry);
1879 
1880 		/* Try to allocate default domain */
1881 		probe_alloc_default_domain(bus, group);
1882 
1883 		if (!group->default_domain) {
1884 			mutex_unlock(&group->mutex);
1885 			continue;
1886 		}
1887 
1888 		iommu_group_create_direct_mappings(group);
1889 
1890 		ret = __iommu_group_dma_first_attach(group);
1891 
1892 		mutex_unlock(&group->mutex);
1893 
1894 		if (ret)
1895 			break;
1896 
1897 		__iommu_group_dma_finalize(group);
1898 	}
1899 
1900 	return ret;
1901 }
1902 
1903 bool iommu_present(struct bus_type *bus)
1904 {
1905 	return bus->iommu_ops != NULL;
1906 }
1907 EXPORT_SYMBOL_GPL(iommu_present);
1908 
1909 /**
1910  * device_iommu_capable() - check for a general IOMMU capability
1911  * @dev: device to which the capability would be relevant, if available
1912  * @cap: IOMMU capability
1913  *
1914  * Return: true if an IOMMU is present and supports the given capability
1915  * for the given device, otherwise false.
1916  */
1917 bool device_iommu_capable(struct device *dev, enum iommu_cap cap)
1918 {
1919 	const struct iommu_ops *ops;
1920 
1921 	if (!dev->iommu || !dev->iommu->iommu_dev)
1922 		return false;
1923 
1924 	ops = dev_iommu_ops(dev);
1925 	if (!ops->capable)
1926 		return false;
1927 
1928 	return ops->capable(dev, cap);
1929 }
1930 EXPORT_SYMBOL_GPL(device_iommu_capable);
1931 
1932 /**
1933  * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi()
1934  *       for a group
1935  * @group: Group to query
1936  *
1937  * IOMMU groups should not have differing values of
1938  * msi_device_has_isolated_msi() for devices in a group. However nothing
1939  * directly prevents this, so ensure mistakes don't result in isolation failures
1940  * by checking that all the devices are the same.
1941  */
1942 bool iommu_group_has_isolated_msi(struct iommu_group *group)
1943 {
1944 	struct group_device *group_dev;
1945 	bool ret = true;
1946 
1947 	mutex_lock(&group->mutex);
1948 	list_for_each_entry(group_dev, &group->devices, list)
1949 		ret &= msi_device_has_isolated_msi(group_dev->dev);
1950 	mutex_unlock(&group->mutex);
1951 	return ret;
1952 }
1953 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi);
1954 
1955 /**
1956  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1957  * @domain: iommu domain
1958  * @handler: fault handler
1959  * @token: user data, will be passed back to the fault handler
1960  *
1961  * This function should be used by IOMMU users which want to be notified
1962  * whenever an IOMMU fault happens.
1963  *
1964  * The fault handler itself should return 0 on success, and an appropriate
1965  * error code otherwise.
1966  */
1967 void iommu_set_fault_handler(struct iommu_domain *domain,
1968 					iommu_fault_handler_t handler,
1969 					void *token)
1970 {
1971 	BUG_ON(!domain);
1972 
1973 	domain->handler = handler;
1974 	domain->handler_token = token;
1975 }
1976 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1977 
1978 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1979 						 unsigned type)
1980 {
1981 	struct iommu_domain *domain;
1982 
1983 	if (bus == NULL || bus->iommu_ops == NULL)
1984 		return NULL;
1985 
1986 	domain = bus->iommu_ops->domain_alloc(type);
1987 	if (!domain)
1988 		return NULL;
1989 
1990 	domain->type = type;
1991 	/* Assume all sizes by default; the driver may override this later */
1992 	domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap;
1993 	if (!domain->ops)
1994 		domain->ops = bus->iommu_ops->default_domain_ops;
1995 
1996 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1997 		iommu_domain_free(domain);
1998 		domain = NULL;
1999 	}
2000 	return domain;
2001 }
2002 
2003 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
2004 {
2005 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
2006 }
2007 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
2008 
2009 void iommu_domain_free(struct iommu_domain *domain)
2010 {
2011 	if (domain->type == IOMMU_DOMAIN_SVA)
2012 		mmdrop(domain->mm);
2013 	iommu_put_dma_cookie(domain);
2014 	domain->ops->free(domain);
2015 }
2016 EXPORT_SYMBOL_GPL(iommu_domain_free);
2017 
2018 /*
2019  * Put the group's domain back to the appropriate core-owned domain - either the
2020  * standard kernel-mode DMA configuration or an all-DMA-blocked domain.
2021  */
2022 static void __iommu_group_set_core_domain(struct iommu_group *group)
2023 {
2024 	struct iommu_domain *new_domain;
2025 	int ret;
2026 
2027 	if (group->owner)
2028 		new_domain = group->blocking_domain;
2029 	else
2030 		new_domain = group->default_domain;
2031 
2032 	ret = __iommu_group_set_domain(group, new_domain);
2033 	WARN(ret, "iommu driver failed to attach the default/blocking domain");
2034 }
2035 
2036 static int __iommu_attach_device(struct iommu_domain *domain,
2037 				 struct device *dev)
2038 {
2039 	int ret;
2040 
2041 	if (unlikely(domain->ops->attach_dev == NULL))
2042 		return -ENODEV;
2043 
2044 	ret = domain->ops->attach_dev(domain, dev);
2045 	if (ret)
2046 		return ret;
2047 	dev->iommu->attach_deferred = 0;
2048 	trace_attach_device_to_domain(dev);
2049 	return 0;
2050 }
2051 
2052 /**
2053  * iommu_attach_device - Attach an IOMMU domain to a device
2054  * @domain: IOMMU domain to attach
2055  * @dev: Device that will be attached
2056  *
2057  * Returns 0 on success and error code on failure
2058  *
2059  * Note that EINVAL can be treated as a soft failure, indicating
2060  * that certain configuration of the domain is incompatible with
2061  * the device. In this case attaching a different domain to the
2062  * device may succeed.
2063  */
2064 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
2065 {
2066 	struct iommu_group *group;
2067 	int ret;
2068 
2069 	group = iommu_group_get(dev);
2070 	if (!group)
2071 		return -ENODEV;
2072 
2073 	/*
2074 	 * Lock the group to make sure the device-count doesn't
2075 	 * change while we are attaching
2076 	 */
2077 	mutex_lock(&group->mutex);
2078 	ret = -EINVAL;
2079 	if (iommu_group_device_count(group) != 1)
2080 		goto out_unlock;
2081 
2082 	ret = __iommu_attach_group(domain, group);
2083 
2084 out_unlock:
2085 	mutex_unlock(&group->mutex);
2086 	iommu_group_put(group);
2087 
2088 	return ret;
2089 }
2090 EXPORT_SYMBOL_GPL(iommu_attach_device);
2091 
2092 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2093 {
2094 	if (dev->iommu && dev->iommu->attach_deferred)
2095 		return __iommu_attach_device(domain, dev);
2096 
2097 	return 0;
2098 }
2099 
2100 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2101 {
2102 	struct iommu_group *group;
2103 
2104 	group = iommu_group_get(dev);
2105 	if (!group)
2106 		return;
2107 
2108 	mutex_lock(&group->mutex);
2109 	if (WARN_ON(domain != group->domain) ||
2110 	    WARN_ON(iommu_group_device_count(group) != 1))
2111 		goto out_unlock;
2112 	__iommu_group_set_core_domain(group);
2113 
2114 out_unlock:
2115 	mutex_unlock(&group->mutex);
2116 	iommu_group_put(group);
2117 }
2118 EXPORT_SYMBOL_GPL(iommu_detach_device);
2119 
2120 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2121 {
2122 	struct iommu_domain *domain;
2123 	struct iommu_group *group;
2124 
2125 	group = iommu_group_get(dev);
2126 	if (!group)
2127 		return NULL;
2128 
2129 	domain = group->domain;
2130 
2131 	iommu_group_put(group);
2132 
2133 	return domain;
2134 }
2135 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2136 
2137 /*
2138  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2139  * guarantees that the group and its default domain are valid and correct.
2140  */
2141 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2142 {
2143 	return dev->iommu_group->default_domain;
2144 }
2145 
2146 /*
2147  * IOMMU groups are really the natural working unit of the IOMMU, but
2148  * the IOMMU API works on domains and devices.  Bridge that gap by
2149  * iterating over the devices in a group.  Ideally we'd have a single
2150  * device which represents the requestor ID of the group, but we also
2151  * allow IOMMU drivers to create policy defined minimum sets, where
2152  * the physical hardware may be able to distiguish members, but we
2153  * wish to group them at a higher level (ex. untrusted multi-function
2154  * PCI devices).  Thus we attach each device.
2155  */
2156 static int iommu_group_do_attach_device(struct device *dev, void *data)
2157 {
2158 	struct iommu_domain *domain = data;
2159 
2160 	return __iommu_attach_device(domain, dev);
2161 }
2162 
2163 static int __iommu_attach_group(struct iommu_domain *domain,
2164 				struct iommu_group *group)
2165 {
2166 	int ret;
2167 
2168 	if (group->domain && group->domain != group->default_domain &&
2169 	    group->domain != group->blocking_domain)
2170 		return -EBUSY;
2171 
2172 	ret = __iommu_group_for_each_dev(group, domain,
2173 					 iommu_group_do_attach_device);
2174 	if (ret == 0) {
2175 		group->domain = domain;
2176 	} else {
2177 		/*
2178 		 * To recover from the case when certain device within the
2179 		 * group fails to attach to the new domain, we need force
2180 		 * attaching all devices back to the old domain. The old
2181 		 * domain is compatible for all devices in the group,
2182 		 * hence the iommu driver should always return success.
2183 		 */
2184 		struct iommu_domain *old_domain = group->domain;
2185 
2186 		group->domain = NULL;
2187 		WARN(__iommu_group_set_domain(group, old_domain),
2188 		     "iommu driver failed to attach a compatible domain");
2189 	}
2190 
2191 	return ret;
2192 }
2193 
2194 /**
2195  * iommu_attach_group - Attach an IOMMU domain to an IOMMU group
2196  * @domain: IOMMU domain to attach
2197  * @group: IOMMU group that will be attached
2198  *
2199  * Returns 0 on success and error code on failure
2200  *
2201  * Note that EINVAL can be treated as a soft failure, indicating
2202  * that certain configuration of the domain is incompatible with
2203  * the group. In this case attaching a different domain to the
2204  * group may succeed.
2205  */
2206 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2207 {
2208 	int ret;
2209 
2210 	mutex_lock(&group->mutex);
2211 	ret = __iommu_attach_group(domain, group);
2212 	mutex_unlock(&group->mutex);
2213 
2214 	return ret;
2215 }
2216 EXPORT_SYMBOL_GPL(iommu_attach_group);
2217 
2218 static int iommu_group_do_set_platform_dma(struct device *dev, void *data)
2219 {
2220 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2221 
2222 	if (!WARN_ON(!ops->set_platform_dma_ops))
2223 		ops->set_platform_dma_ops(dev);
2224 
2225 	return 0;
2226 }
2227 
2228 static int __iommu_group_set_domain(struct iommu_group *group,
2229 				    struct iommu_domain *new_domain)
2230 {
2231 	int ret;
2232 
2233 	if (group->domain == new_domain)
2234 		return 0;
2235 
2236 	/*
2237 	 * New drivers should support default domains, so set_platform_dma()
2238 	 * op will never be called. Otherwise the NULL domain represents some
2239 	 * platform specific behavior.
2240 	 */
2241 	if (!new_domain) {
2242 		__iommu_group_for_each_dev(group, NULL,
2243 					   iommu_group_do_set_platform_dma);
2244 		group->domain = NULL;
2245 		return 0;
2246 	}
2247 
2248 	/*
2249 	 * Changing the domain is done by calling attach_dev() on the new
2250 	 * domain. This switch does not have to be atomic and DMA can be
2251 	 * discarded during the transition. DMA must only be able to access
2252 	 * either new_domain or group->domain, never something else.
2253 	 *
2254 	 * Note that this is called in error unwind paths, attaching to a
2255 	 * domain that has already been attached cannot fail.
2256 	 */
2257 	ret = __iommu_group_for_each_dev(group, new_domain,
2258 					 iommu_group_do_attach_device);
2259 	if (ret)
2260 		return ret;
2261 	group->domain = new_domain;
2262 	return 0;
2263 }
2264 
2265 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2266 {
2267 	mutex_lock(&group->mutex);
2268 	__iommu_group_set_core_domain(group);
2269 	mutex_unlock(&group->mutex);
2270 }
2271 EXPORT_SYMBOL_GPL(iommu_detach_group);
2272 
2273 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2274 {
2275 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2276 		return iova;
2277 
2278 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2279 		return 0;
2280 
2281 	return domain->ops->iova_to_phys(domain, iova);
2282 }
2283 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2284 
2285 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2286 			   phys_addr_t paddr, size_t size, size_t *count)
2287 {
2288 	unsigned int pgsize_idx, pgsize_idx_next;
2289 	unsigned long pgsizes;
2290 	size_t offset, pgsize, pgsize_next;
2291 	unsigned long addr_merge = paddr | iova;
2292 
2293 	/* Page sizes supported by the hardware and small enough for @size */
2294 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2295 
2296 	/* Constrain the page sizes further based on the maximum alignment */
2297 	if (likely(addr_merge))
2298 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2299 
2300 	/* Make sure we have at least one suitable page size */
2301 	BUG_ON(!pgsizes);
2302 
2303 	/* Pick the biggest page size remaining */
2304 	pgsize_idx = __fls(pgsizes);
2305 	pgsize = BIT(pgsize_idx);
2306 	if (!count)
2307 		return pgsize;
2308 
2309 	/* Find the next biggest support page size, if it exists */
2310 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2311 	if (!pgsizes)
2312 		goto out_set_count;
2313 
2314 	pgsize_idx_next = __ffs(pgsizes);
2315 	pgsize_next = BIT(pgsize_idx_next);
2316 
2317 	/*
2318 	 * There's no point trying a bigger page size unless the virtual
2319 	 * and physical addresses are similarly offset within the larger page.
2320 	 */
2321 	if ((iova ^ paddr) & (pgsize_next - 1))
2322 		goto out_set_count;
2323 
2324 	/* Calculate the offset to the next page size alignment boundary */
2325 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2326 
2327 	/*
2328 	 * If size is big enough to accommodate the larger page, reduce
2329 	 * the number of smaller pages.
2330 	 */
2331 	if (offset + pgsize_next <= size)
2332 		size = offset;
2333 
2334 out_set_count:
2335 	*count = size >> pgsize_idx;
2336 	return pgsize;
2337 }
2338 
2339 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2340 			     phys_addr_t paddr, size_t size, int prot,
2341 			     gfp_t gfp, size_t *mapped)
2342 {
2343 	const struct iommu_domain_ops *ops = domain->ops;
2344 	size_t pgsize, count;
2345 	int ret;
2346 
2347 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2348 
2349 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2350 		 iova, &paddr, pgsize, count);
2351 
2352 	if (ops->map_pages) {
2353 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2354 				     gfp, mapped);
2355 	} else {
2356 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2357 		*mapped = ret ? 0 : pgsize;
2358 	}
2359 
2360 	return ret;
2361 }
2362 
2363 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2364 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2365 {
2366 	const struct iommu_domain_ops *ops = domain->ops;
2367 	unsigned long orig_iova = iova;
2368 	unsigned int min_pagesz;
2369 	size_t orig_size = size;
2370 	phys_addr_t orig_paddr = paddr;
2371 	int ret = 0;
2372 
2373 	if (unlikely(!(ops->map || ops->map_pages) ||
2374 		     domain->pgsize_bitmap == 0UL))
2375 		return -ENODEV;
2376 
2377 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2378 		return -EINVAL;
2379 
2380 	/* find out the minimum page size supported */
2381 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2382 
2383 	/*
2384 	 * both the virtual address and the physical one, as well as
2385 	 * the size of the mapping, must be aligned (at least) to the
2386 	 * size of the smallest page supported by the hardware
2387 	 */
2388 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2389 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2390 		       iova, &paddr, size, min_pagesz);
2391 		return -EINVAL;
2392 	}
2393 
2394 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2395 
2396 	while (size) {
2397 		size_t mapped = 0;
2398 
2399 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2400 					&mapped);
2401 		/*
2402 		 * Some pages may have been mapped, even if an error occurred,
2403 		 * so we should account for those so they can be unmapped.
2404 		 */
2405 		size -= mapped;
2406 
2407 		if (ret)
2408 			break;
2409 
2410 		iova += mapped;
2411 		paddr += mapped;
2412 	}
2413 
2414 	/* unroll mapping in case something went wrong */
2415 	if (ret)
2416 		iommu_unmap(domain, orig_iova, orig_size - size);
2417 	else
2418 		trace_map(orig_iova, orig_paddr, orig_size);
2419 
2420 	return ret;
2421 }
2422 
2423 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2424 	      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2425 {
2426 	const struct iommu_domain_ops *ops = domain->ops;
2427 	int ret;
2428 
2429 	might_sleep_if(gfpflags_allow_blocking(gfp));
2430 
2431 	/* Discourage passing strange GFP flags */
2432 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2433 				__GFP_HIGHMEM)))
2434 		return -EINVAL;
2435 
2436 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2437 	if (ret == 0 && ops->iotlb_sync_map)
2438 		ops->iotlb_sync_map(domain, iova, size);
2439 
2440 	return ret;
2441 }
2442 EXPORT_SYMBOL_GPL(iommu_map);
2443 
2444 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2445 				  unsigned long iova, size_t size,
2446 				  struct iommu_iotlb_gather *iotlb_gather)
2447 {
2448 	const struct iommu_domain_ops *ops = domain->ops;
2449 	size_t pgsize, count;
2450 
2451 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2452 	return ops->unmap_pages ?
2453 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2454 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2455 }
2456 
2457 static size_t __iommu_unmap(struct iommu_domain *domain,
2458 			    unsigned long iova, size_t size,
2459 			    struct iommu_iotlb_gather *iotlb_gather)
2460 {
2461 	const struct iommu_domain_ops *ops = domain->ops;
2462 	size_t unmapped_page, unmapped = 0;
2463 	unsigned long orig_iova = iova;
2464 	unsigned int min_pagesz;
2465 
2466 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2467 		     domain->pgsize_bitmap == 0UL))
2468 		return 0;
2469 
2470 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2471 		return 0;
2472 
2473 	/* find out the minimum page size supported */
2474 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2475 
2476 	/*
2477 	 * The virtual address, as well as the size of the mapping, must be
2478 	 * aligned (at least) to the size of the smallest page supported
2479 	 * by the hardware
2480 	 */
2481 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2482 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2483 		       iova, size, min_pagesz);
2484 		return 0;
2485 	}
2486 
2487 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2488 
2489 	/*
2490 	 * Keep iterating until we either unmap 'size' bytes (or more)
2491 	 * or we hit an area that isn't mapped.
2492 	 */
2493 	while (unmapped < size) {
2494 		unmapped_page = __iommu_unmap_pages(domain, iova,
2495 						    size - unmapped,
2496 						    iotlb_gather);
2497 		if (!unmapped_page)
2498 			break;
2499 
2500 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2501 			 iova, unmapped_page);
2502 
2503 		iova += unmapped_page;
2504 		unmapped += unmapped_page;
2505 	}
2506 
2507 	trace_unmap(orig_iova, size, unmapped);
2508 	return unmapped;
2509 }
2510 
2511 size_t iommu_unmap(struct iommu_domain *domain,
2512 		   unsigned long iova, size_t size)
2513 {
2514 	struct iommu_iotlb_gather iotlb_gather;
2515 	size_t ret;
2516 
2517 	iommu_iotlb_gather_init(&iotlb_gather);
2518 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2519 	iommu_iotlb_sync(domain, &iotlb_gather);
2520 
2521 	return ret;
2522 }
2523 EXPORT_SYMBOL_GPL(iommu_unmap);
2524 
2525 size_t iommu_unmap_fast(struct iommu_domain *domain,
2526 			unsigned long iova, size_t size,
2527 			struct iommu_iotlb_gather *iotlb_gather)
2528 {
2529 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2530 }
2531 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2532 
2533 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2534 		     struct scatterlist *sg, unsigned int nents, int prot,
2535 		     gfp_t gfp)
2536 {
2537 	const struct iommu_domain_ops *ops = domain->ops;
2538 	size_t len = 0, mapped = 0;
2539 	phys_addr_t start;
2540 	unsigned int i = 0;
2541 	int ret;
2542 
2543 	might_sleep_if(gfpflags_allow_blocking(gfp));
2544 
2545 	/* Discourage passing strange GFP flags */
2546 	if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 |
2547 				__GFP_HIGHMEM)))
2548 		return -EINVAL;
2549 
2550 	while (i <= nents) {
2551 		phys_addr_t s_phys = sg_phys(sg);
2552 
2553 		if (len && s_phys != start + len) {
2554 			ret = __iommu_map(domain, iova + mapped, start,
2555 					len, prot, gfp);
2556 
2557 			if (ret)
2558 				goto out_err;
2559 
2560 			mapped += len;
2561 			len = 0;
2562 		}
2563 
2564 		if (sg_is_dma_bus_address(sg))
2565 			goto next;
2566 
2567 		if (len) {
2568 			len += sg->length;
2569 		} else {
2570 			len = sg->length;
2571 			start = s_phys;
2572 		}
2573 
2574 next:
2575 		if (++i < nents)
2576 			sg = sg_next(sg);
2577 	}
2578 
2579 	if (ops->iotlb_sync_map)
2580 		ops->iotlb_sync_map(domain, iova, mapped);
2581 	return mapped;
2582 
2583 out_err:
2584 	/* undo mappings already done */
2585 	iommu_unmap(domain, iova, mapped);
2586 
2587 	return ret;
2588 }
2589 EXPORT_SYMBOL_GPL(iommu_map_sg);
2590 
2591 /**
2592  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2593  * @domain: the iommu domain where the fault has happened
2594  * @dev: the device where the fault has happened
2595  * @iova: the faulting address
2596  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2597  *
2598  * This function should be called by the low-level IOMMU implementations
2599  * whenever IOMMU faults happen, to allow high-level users, that are
2600  * interested in such events, to know about them.
2601  *
2602  * This event may be useful for several possible use cases:
2603  * - mere logging of the event
2604  * - dynamic TLB/PTE loading
2605  * - if restarting of the faulting device is required
2606  *
2607  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2608  * PTE/TLB loading will one day be supported, implementations will be able
2609  * to tell whether it succeeded or not according to this return value).
2610  *
2611  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2612  * (though fault handlers can also return -ENOSYS, in case they want to
2613  * elicit the default behavior of the IOMMU drivers).
2614  */
2615 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2616 		       unsigned long iova, int flags)
2617 {
2618 	int ret = -ENOSYS;
2619 
2620 	/*
2621 	 * if upper layers showed interest and installed a fault handler,
2622 	 * invoke it.
2623 	 */
2624 	if (domain->handler)
2625 		ret = domain->handler(domain, dev, iova, flags,
2626 						domain->handler_token);
2627 
2628 	trace_io_page_fault(dev, iova, flags);
2629 	return ret;
2630 }
2631 EXPORT_SYMBOL_GPL(report_iommu_fault);
2632 
2633 static int __init iommu_init(void)
2634 {
2635 	iommu_group_kset = kset_create_and_add("iommu_groups",
2636 					       NULL, kernel_kobj);
2637 	BUG_ON(!iommu_group_kset);
2638 
2639 	iommu_debugfs_setup();
2640 
2641 	return 0;
2642 }
2643 core_initcall(iommu_init);
2644 
2645 int iommu_enable_nesting(struct iommu_domain *domain)
2646 {
2647 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2648 		return -EINVAL;
2649 	if (!domain->ops->enable_nesting)
2650 		return -EINVAL;
2651 	return domain->ops->enable_nesting(domain);
2652 }
2653 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2654 
2655 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2656 		unsigned long quirk)
2657 {
2658 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2659 		return -EINVAL;
2660 	if (!domain->ops->set_pgtable_quirks)
2661 		return -EINVAL;
2662 	return domain->ops->set_pgtable_quirks(domain, quirk);
2663 }
2664 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2665 
2666 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2667 {
2668 	const struct iommu_ops *ops = dev_iommu_ops(dev);
2669 
2670 	if (ops->get_resv_regions)
2671 		ops->get_resv_regions(dev, list);
2672 }
2673 
2674 /**
2675  * iommu_put_resv_regions - release resered regions
2676  * @dev: device for which to free reserved regions
2677  * @list: reserved region list for device
2678  *
2679  * This releases a reserved region list acquired by iommu_get_resv_regions().
2680  */
2681 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2682 {
2683 	struct iommu_resv_region *entry, *next;
2684 
2685 	list_for_each_entry_safe(entry, next, list, list) {
2686 		if (entry->free)
2687 			entry->free(dev, entry);
2688 		else
2689 			kfree(entry);
2690 	}
2691 }
2692 EXPORT_SYMBOL(iommu_put_resv_regions);
2693 
2694 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2695 						  size_t length, int prot,
2696 						  enum iommu_resv_type type,
2697 						  gfp_t gfp)
2698 {
2699 	struct iommu_resv_region *region;
2700 
2701 	region = kzalloc(sizeof(*region), gfp);
2702 	if (!region)
2703 		return NULL;
2704 
2705 	INIT_LIST_HEAD(&region->list);
2706 	region->start = start;
2707 	region->length = length;
2708 	region->prot = prot;
2709 	region->type = type;
2710 	return region;
2711 }
2712 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2713 
2714 void iommu_set_default_passthrough(bool cmd_line)
2715 {
2716 	if (cmd_line)
2717 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2718 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2719 }
2720 
2721 void iommu_set_default_translated(bool cmd_line)
2722 {
2723 	if (cmd_line)
2724 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2725 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2726 }
2727 
2728 bool iommu_default_passthrough(void)
2729 {
2730 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2731 }
2732 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2733 
2734 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2735 {
2736 	const struct iommu_ops *ops = NULL;
2737 	struct iommu_device *iommu;
2738 
2739 	spin_lock(&iommu_device_lock);
2740 	list_for_each_entry(iommu, &iommu_device_list, list)
2741 		if (iommu->fwnode == fwnode) {
2742 			ops = iommu->ops;
2743 			break;
2744 		}
2745 	spin_unlock(&iommu_device_lock);
2746 	return ops;
2747 }
2748 
2749 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2750 		      const struct iommu_ops *ops)
2751 {
2752 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2753 
2754 	if (fwspec)
2755 		return ops == fwspec->ops ? 0 : -EINVAL;
2756 
2757 	if (!dev_iommu_get(dev))
2758 		return -ENOMEM;
2759 
2760 	/* Preallocate for the overwhelmingly common case of 1 ID */
2761 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2762 	if (!fwspec)
2763 		return -ENOMEM;
2764 
2765 	of_node_get(to_of_node(iommu_fwnode));
2766 	fwspec->iommu_fwnode = iommu_fwnode;
2767 	fwspec->ops = ops;
2768 	dev_iommu_fwspec_set(dev, fwspec);
2769 	return 0;
2770 }
2771 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2772 
2773 void iommu_fwspec_free(struct device *dev)
2774 {
2775 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2776 
2777 	if (fwspec) {
2778 		fwnode_handle_put(fwspec->iommu_fwnode);
2779 		kfree(fwspec);
2780 		dev_iommu_fwspec_set(dev, NULL);
2781 	}
2782 }
2783 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2784 
2785 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2786 {
2787 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2788 	int i, new_num;
2789 
2790 	if (!fwspec)
2791 		return -EINVAL;
2792 
2793 	new_num = fwspec->num_ids + num_ids;
2794 	if (new_num > 1) {
2795 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2796 				  GFP_KERNEL);
2797 		if (!fwspec)
2798 			return -ENOMEM;
2799 
2800 		dev_iommu_fwspec_set(dev, fwspec);
2801 	}
2802 
2803 	for (i = 0; i < num_ids; i++)
2804 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2805 
2806 	fwspec->num_ids = new_num;
2807 	return 0;
2808 }
2809 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2810 
2811 /*
2812  * Per device IOMMU features.
2813  */
2814 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2815 {
2816 	if (dev->iommu && dev->iommu->iommu_dev) {
2817 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2818 
2819 		if (ops->dev_enable_feat)
2820 			return ops->dev_enable_feat(dev, feat);
2821 	}
2822 
2823 	return -ENODEV;
2824 }
2825 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2826 
2827 /*
2828  * The device drivers should do the necessary cleanups before calling this.
2829  */
2830 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2831 {
2832 	if (dev->iommu && dev->iommu->iommu_dev) {
2833 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2834 
2835 		if (ops->dev_disable_feat)
2836 			return ops->dev_disable_feat(dev, feat);
2837 	}
2838 
2839 	return -EBUSY;
2840 }
2841 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2842 
2843 /*
2844  * Changes the default domain of an iommu group that has *only* one device
2845  *
2846  * @group: The group for which the default domain should be changed
2847  * @prev_dev: The device in the group (this is used to make sure that the device
2848  *	 hasn't changed after the caller has called this function)
2849  * @type: The type of the new default domain that gets associated with the group
2850  *
2851  * Returns 0 on success and error code on failure
2852  *
2853  * Note:
2854  * 1. Presently, this function is called only when user requests to change the
2855  *    group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
2856  *    Please take a closer look if intended to use for other purposes.
2857  */
2858 static int iommu_change_dev_def_domain(struct iommu_group *group,
2859 				       struct device *prev_dev, int type)
2860 {
2861 	struct iommu_domain *prev_dom;
2862 	struct group_device *grp_dev;
2863 	int ret, dev_def_dom;
2864 	struct device *dev;
2865 
2866 	mutex_lock(&group->mutex);
2867 
2868 	if (group->default_domain != group->domain) {
2869 		dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
2870 		ret = -EBUSY;
2871 		goto out;
2872 	}
2873 
2874 	/*
2875 	 * iommu group wasn't locked while acquiring device lock in
2876 	 * iommu_group_store_type(). So, make sure that the device count hasn't
2877 	 * changed while acquiring device lock.
2878 	 *
2879 	 * Changing default domain of an iommu group with two or more devices
2880 	 * isn't supported because there could be a potential deadlock. Consider
2881 	 * the following scenario. T1 is trying to acquire device locks of all
2882 	 * the devices in the group and before it could acquire all of them,
2883 	 * there could be another thread T2 (from different sub-system and use
2884 	 * case) that has already acquired some of the device locks and might be
2885 	 * waiting for T1 to release other device locks.
2886 	 */
2887 	if (iommu_group_device_count(group) != 1) {
2888 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
2889 		ret = -EINVAL;
2890 		goto out;
2891 	}
2892 
2893 	/* Since group has only one device */
2894 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
2895 	dev = grp_dev->dev;
2896 
2897 	if (prev_dev != dev) {
2898 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
2899 		ret = -EBUSY;
2900 		goto out;
2901 	}
2902 
2903 	prev_dom = group->default_domain;
2904 	if (!prev_dom) {
2905 		ret = -EINVAL;
2906 		goto out;
2907 	}
2908 
2909 	dev_def_dom = iommu_get_def_domain_type(dev);
2910 	if (!type) {
2911 		/*
2912 		 * If the user hasn't requested any specific type of domain and
2913 		 * if the device supports both the domains, then default to the
2914 		 * domain the device was booted with
2915 		 */
2916 		type = dev_def_dom ? : iommu_def_domain_type;
2917 	} else if (dev_def_dom && type != dev_def_dom) {
2918 		dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
2919 				    iommu_domain_type_str(type));
2920 		ret = -EINVAL;
2921 		goto out;
2922 	}
2923 
2924 	/*
2925 	 * Switch to a new domain only if the requested domain type is different
2926 	 * from the existing default domain type
2927 	 */
2928 	if (prev_dom->type == type) {
2929 		ret = 0;
2930 		goto out;
2931 	}
2932 
2933 	/* We can bring up a flush queue without tearing down the domain */
2934 	if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) {
2935 		ret = iommu_dma_init_fq(prev_dom);
2936 		if (!ret)
2937 			prev_dom->type = IOMMU_DOMAIN_DMA_FQ;
2938 		goto out;
2939 	}
2940 
2941 	/* Sets group->default_domain to the newly allocated domain */
2942 	ret = iommu_group_alloc_default_domain(dev->bus, group, type);
2943 	if (ret)
2944 		goto out;
2945 
2946 	ret = iommu_create_device_direct_mappings(group, dev);
2947 	if (ret)
2948 		goto free_new_domain;
2949 
2950 	ret = __iommu_attach_device(group->default_domain, dev);
2951 	if (ret)
2952 		goto free_new_domain;
2953 
2954 	group->domain = group->default_domain;
2955 
2956 	/*
2957 	 * Release the mutex here because ops->probe_finalize() call-back of
2958 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
2959 	 * in-turn might call back into IOMMU core code, where it tries to take
2960 	 * group->mutex, resulting in a deadlock.
2961 	 */
2962 	mutex_unlock(&group->mutex);
2963 
2964 	/* Make sure dma_ops is appropriatley set */
2965 	iommu_group_do_probe_finalize(dev, group->default_domain);
2966 	iommu_domain_free(prev_dom);
2967 	return 0;
2968 
2969 free_new_domain:
2970 	iommu_domain_free(group->default_domain);
2971 	group->default_domain = prev_dom;
2972 	group->domain = prev_dom;
2973 
2974 out:
2975 	mutex_unlock(&group->mutex);
2976 
2977 	return ret;
2978 }
2979 
2980 /*
2981  * Changing the default domain through sysfs requires the users to unbind the
2982  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
2983  * transition. Return failure if this isn't met.
2984  *
2985  * We need to consider the race between this and the device release path.
2986  * device_lock(dev) is used here to guarantee that the device release path
2987  * will not be entered at the same time.
2988  */
2989 static ssize_t iommu_group_store_type(struct iommu_group *group,
2990 				      const char *buf, size_t count)
2991 {
2992 	struct group_device *grp_dev;
2993 	struct device *dev;
2994 	int ret, req_type;
2995 
2996 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
2997 		return -EACCES;
2998 
2999 	if (WARN_ON(!group) || !group->default_domain)
3000 		return -EINVAL;
3001 
3002 	if (sysfs_streq(buf, "identity"))
3003 		req_type = IOMMU_DOMAIN_IDENTITY;
3004 	else if (sysfs_streq(buf, "DMA"))
3005 		req_type = IOMMU_DOMAIN_DMA;
3006 	else if (sysfs_streq(buf, "DMA-FQ"))
3007 		req_type = IOMMU_DOMAIN_DMA_FQ;
3008 	else if (sysfs_streq(buf, "auto"))
3009 		req_type = 0;
3010 	else
3011 		return -EINVAL;
3012 
3013 	/*
3014 	 * Lock/Unlock the group mutex here before device lock to
3015 	 * 1. Make sure that the iommu group has only one device (this is a
3016 	 *    prerequisite for step 2)
3017 	 * 2. Get struct *dev which is needed to lock device
3018 	 */
3019 	mutex_lock(&group->mutex);
3020 	if (iommu_group_device_count(group) != 1) {
3021 		mutex_unlock(&group->mutex);
3022 		pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
3023 		return -EINVAL;
3024 	}
3025 
3026 	/* Since group has only one device */
3027 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3028 	dev = grp_dev->dev;
3029 	get_device(dev);
3030 
3031 	/*
3032 	 * Don't hold the group mutex because taking group mutex first and then
3033 	 * the device lock could potentially cause a deadlock as below. Assume
3034 	 * two threads T1 and T2. T1 is trying to change default domain of an
3035 	 * iommu group and T2 is trying to hot unplug a device or release [1] VF
3036 	 * of a PCIe device which is in the same iommu group. T1 takes group
3037 	 * mutex and before it could take device lock assume T2 has taken device
3038 	 * lock and is yet to take group mutex. Now, both the threads will be
3039 	 * waiting for the other thread to release lock. Below, lock order was
3040 	 * suggested.
3041 	 * device_lock(dev);
3042 	 *	mutex_lock(&group->mutex);
3043 	 *		iommu_change_dev_def_domain();
3044 	 *	mutex_unlock(&group->mutex);
3045 	 * device_unlock(dev);
3046 	 *
3047 	 * [1] Typical device release path
3048 	 * device_lock() from device/driver core code
3049 	 *  -> bus_notifier()
3050 	 *   -> iommu_bus_notifier()
3051 	 *    -> iommu_release_device()
3052 	 *     -> ops->release_device() vendor driver calls back iommu core code
3053 	 *      -> mutex_lock() from iommu core code
3054 	 */
3055 	mutex_unlock(&group->mutex);
3056 
3057 	/* Check if the device in the group still has a driver bound to it */
3058 	device_lock(dev);
3059 	if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ &&
3060 	    group->default_domain->type == IOMMU_DOMAIN_DMA)) {
3061 		pr_err_ratelimited("Device is still bound to driver\n");
3062 		ret = -EBUSY;
3063 		goto out;
3064 	}
3065 
3066 	ret = iommu_change_dev_def_domain(group, dev, req_type);
3067 	ret = ret ?: count;
3068 
3069 out:
3070 	device_unlock(dev);
3071 	put_device(dev);
3072 
3073 	return ret;
3074 }
3075 
3076 static bool iommu_is_default_domain(struct iommu_group *group)
3077 {
3078 	if (group->domain == group->default_domain)
3079 		return true;
3080 
3081 	/*
3082 	 * If the default domain was set to identity and it is still an identity
3083 	 * domain then we consider this a pass. This happens because of
3084 	 * amd_iommu_init_device() replacing the default idenytity domain with an
3085 	 * identity domain that has a different configuration for AMDGPU.
3086 	 */
3087 	if (group->default_domain &&
3088 	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY &&
3089 	    group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY)
3090 		return true;
3091 	return false;
3092 }
3093 
3094 /**
3095  * iommu_device_use_default_domain() - Device driver wants to handle device
3096  *                                     DMA through the kernel DMA API.
3097  * @dev: The device.
3098  *
3099  * The device driver about to bind @dev wants to do DMA through the kernel
3100  * DMA API. Return 0 if it is allowed, otherwise an error.
3101  */
3102 int iommu_device_use_default_domain(struct device *dev)
3103 {
3104 	struct iommu_group *group = iommu_group_get(dev);
3105 	int ret = 0;
3106 
3107 	if (!group)
3108 		return 0;
3109 
3110 	mutex_lock(&group->mutex);
3111 	if (group->owner_cnt) {
3112 		if (group->owner || !iommu_is_default_domain(group) ||
3113 		    !xa_empty(&group->pasid_array)) {
3114 			ret = -EBUSY;
3115 			goto unlock_out;
3116 		}
3117 	}
3118 
3119 	group->owner_cnt++;
3120 
3121 unlock_out:
3122 	mutex_unlock(&group->mutex);
3123 	iommu_group_put(group);
3124 
3125 	return ret;
3126 }
3127 
3128 /**
3129  * iommu_device_unuse_default_domain() - Device driver stops handling device
3130  *                                       DMA through the kernel DMA API.
3131  * @dev: The device.
3132  *
3133  * The device driver doesn't want to do DMA through kernel DMA API anymore.
3134  * It must be called after iommu_device_use_default_domain().
3135  */
3136 void iommu_device_unuse_default_domain(struct device *dev)
3137 {
3138 	struct iommu_group *group = iommu_group_get(dev);
3139 
3140 	if (!group)
3141 		return;
3142 
3143 	mutex_lock(&group->mutex);
3144 	if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array)))
3145 		group->owner_cnt--;
3146 
3147 	mutex_unlock(&group->mutex);
3148 	iommu_group_put(group);
3149 }
3150 
3151 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group)
3152 {
3153 	struct group_device *dev =
3154 		list_first_entry(&group->devices, struct group_device, list);
3155 
3156 	if (group->blocking_domain)
3157 		return 0;
3158 
3159 	group->blocking_domain =
3160 		__iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED);
3161 	if (!group->blocking_domain) {
3162 		/*
3163 		 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED
3164 		 * create an empty domain instead.
3165 		 */
3166 		group->blocking_domain = __iommu_domain_alloc(
3167 			dev->dev->bus, IOMMU_DOMAIN_UNMANAGED);
3168 		if (!group->blocking_domain)
3169 			return -EINVAL;
3170 	}
3171 	return 0;
3172 }
3173 
3174 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner)
3175 {
3176 	int ret;
3177 
3178 	if ((group->domain && group->domain != group->default_domain) ||
3179 	    !xa_empty(&group->pasid_array))
3180 		return -EBUSY;
3181 
3182 	ret = __iommu_group_alloc_blocking_domain(group);
3183 	if (ret)
3184 		return ret;
3185 	ret = __iommu_group_set_domain(group, group->blocking_domain);
3186 	if (ret)
3187 		return ret;
3188 
3189 	group->owner = owner;
3190 	group->owner_cnt++;
3191 	return 0;
3192 }
3193 
3194 /**
3195  * iommu_group_claim_dma_owner() - Set DMA ownership of a group
3196  * @group: The group.
3197  * @owner: Caller specified pointer. Used for exclusive ownership.
3198  *
3199  * This is to support backward compatibility for vfio which manages the dma
3200  * ownership in iommu_group level. New invocations on this interface should be
3201  * prohibited. Only a single owner may exist for a group.
3202  */
3203 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner)
3204 {
3205 	int ret = 0;
3206 
3207 	if (WARN_ON(!owner))
3208 		return -EINVAL;
3209 
3210 	mutex_lock(&group->mutex);
3211 	if (group->owner_cnt) {
3212 		ret = -EPERM;
3213 		goto unlock_out;
3214 	}
3215 
3216 	ret = __iommu_take_dma_ownership(group, owner);
3217 unlock_out:
3218 	mutex_unlock(&group->mutex);
3219 
3220 	return ret;
3221 }
3222 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner);
3223 
3224 /**
3225  * iommu_device_claim_dma_owner() - Set DMA ownership of a device
3226  * @dev: The device.
3227  * @owner: Caller specified pointer. Used for exclusive ownership.
3228  *
3229  * Claim the DMA ownership of a device. Multiple devices in the same group may
3230  * concurrently claim ownership if they present the same owner value. Returns 0
3231  * on success and error code on failure
3232  */
3233 int iommu_device_claim_dma_owner(struct device *dev, void *owner)
3234 {
3235 	struct iommu_group *group;
3236 	int ret = 0;
3237 
3238 	if (WARN_ON(!owner))
3239 		return -EINVAL;
3240 
3241 	group = iommu_group_get(dev);
3242 	if (!group)
3243 		return -ENODEV;
3244 
3245 	mutex_lock(&group->mutex);
3246 	if (group->owner_cnt) {
3247 		if (group->owner != owner) {
3248 			ret = -EPERM;
3249 			goto unlock_out;
3250 		}
3251 		group->owner_cnt++;
3252 		goto unlock_out;
3253 	}
3254 
3255 	ret = __iommu_take_dma_ownership(group, owner);
3256 unlock_out:
3257 	mutex_unlock(&group->mutex);
3258 	iommu_group_put(group);
3259 
3260 	return ret;
3261 }
3262 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner);
3263 
3264 static void __iommu_release_dma_ownership(struct iommu_group *group)
3265 {
3266 	int ret;
3267 
3268 	if (WARN_ON(!group->owner_cnt || !group->owner ||
3269 		    !xa_empty(&group->pasid_array)))
3270 		return;
3271 
3272 	group->owner_cnt = 0;
3273 	group->owner = NULL;
3274 	ret = __iommu_group_set_domain(group, group->default_domain);
3275 	WARN(ret, "iommu driver failed to attach the default domain");
3276 }
3277 
3278 /**
3279  * iommu_group_release_dma_owner() - Release DMA ownership of a group
3280  * @dev: The device
3281  *
3282  * Release the DMA ownership claimed by iommu_group_claim_dma_owner().
3283  */
3284 void iommu_group_release_dma_owner(struct iommu_group *group)
3285 {
3286 	mutex_lock(&group->mutex);
3287 	__iommu_release_dma_ownership(group);
3288 	mutex_unlock(&group->mutex);
3289 }
3290 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner);
3291 
3292 /**
3293  * iommu_device_release_dma_owner() - Release DMA ownership of a device
3294  * @group: The device.
3295  *
3296  * Release the DMA ownership claimed by iommu_device_claim_dma_owner().
3297  */
3298 void iommu_device_release_dma_owner(struct device *dev)
3299 {
3300 	struct iommu_group *group = iommu_group_get(dev);
3301 
3302 	mutex_lock(&group->mutex);
3303 	if (group->owner_cnt > 1)
3304 		group->owner_cnt--;
3305 	else
3306 		__iommu_release_dma_ownership(group);
3307 	mutex_unlock(&group->mutex);
3308 	iommu_group_put(group);
3309 }
3310 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner);
3311 
3312 /**
3313  * iommu_group_dma_owner_claimed() - Query group dma ownership status
3314  * @group: The group.
3315  *
3316  * This provides status query on a given group. It is racy and only for
3317  * non-binding status reporting.
3318  */
3319 bool iommu_group_dma_owner_claimed(struct iommu_group *group)
3320 {
3321 	unsigned int user;
3322 
3323 	mutex_lock(&group->mutex);
3324 	user = group->owner_cnt;
3325 	mutex_unlock(&group->mutex);
3326 
3327 	return user;
3328 }
3329 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed);
3330 
3331 static int __iommu_set_group_pasid(struct iommu_domain *domain,
3332 				   struct iommu_group *group, ioasid_t pasid)
3333 {
3334 	struct group_device *device;
3335 	int ret = 0;
3336 
3337 	list_for_each_entry(device, &group->devices, list) {
3338 		ret = domain->ops->set_dev_pasid(domain, device->dev, pasid);
3339 		if (ret)
3340 			break;
3341 	}
3342 
3343 	return ret;
3344 }
3345 
3346 static void __iommu_remove_group_pasid(struct iommu_group *group,
3347 				       ioasid_t pasid)
3348 {
3349 	struct group_device *device;
3350 	const struct iommu_ops *ops;
3351 
3352 	list_for_each_entry(device, &group->devices, list) {
3353 		ops = dev_iommu_ops(device->dev);
3354 		ops->remove_dev_pasid(device->dev, pasid);
3355 	}
3356 }
3357 
3358 /*
3359  * iommu_attach_device_pasid() - Attach a domain to pasid of device
3360  * @domain: the iommu domain.
3361  * @dev: the attached device.
3362  * @pasid: the pasid of the device.
3363  *
3364  * Return: 0 on success, or an error.
3365  */
3366 int iommu_attach_device_pasid(struct iommu_domain *domain,
3367 			      struct device *dev, ioasid_t pasid)
3368 {
3369 	struct iommu_group *group;
3370 	void *curr;
3371 	int ret;
3372 
3373 	if (!domain->ops->set_dev_pasid)
3374 		return -EOPNOTSUPP;
3375 
3376 	group = iommu_group_get(dev);
3377 	if (!group)
3378 		return -ENODEV;
3379 
3380 	mutex_lock(&group->mutex);
3381 	curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL);
3382 	if (curr) {
3383 		ret = xa_err(curr) ? : -EBUSY;
3384 		goto out_unlock;
3385 	}
3386 
3387 	ret = __iommu_set_group_pasid(domain, group, pasid);
3388 	if (ret) {
3389 		__iommu_remove_group_pasid(group, pasid);
3390 		xa_erase(&group->pasid_array, pasid);
3391 	}
3392 out_unlock:
3393 	mutex_unlock(&group->mutex);
3394 	iommu_group_put(group);
3395 
3396 	return ret;
3397 }
3398 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid);
3399 
3400 /*
3401  * iommu_detach_device_pasid() - Detach the domain from pasid of device
3402  * @domain: the iommu domain.
3403  * @dev: the attached device.
3404  * @pasid: the pasid of the device.
3405  *
3406  * The @domain must have been attached to @pasid of the @dev with
3407  * iommu_attach_device_pasid().
3408  */
3409 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev,
3410 			       ioasid_t pasid)
3411 {
3412 	struct iommu_group *group = iommu_group_get(dev);
3413 
3414 	mutex_lock(&group->mutex);
3415 	__iommu_remove_group_pasid(group, pasid);
3416 	WARN_ON(xa_erase(&group->pasid_array, pasid) != domain);
3417 	mutex_unlock(&group->mutex);
3418 
3419 	iommu_group_put(group);
3420 }
3421 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid);
3422 
3423 /*
3424  * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev
3425  * @dev: the queried device
3426  * @pasid: the pasid of the device
3427  * @type: matched domain type, 0 for any match
3428  *
3429  * This is a variant of iommu_get_domain_for_dev(). It returns the existing
3430  * domain attached to pasid of a device. Callers must hold a lock around this
3431  * function, and both iommu_attach/detach_dev_pasid() whenever a domain of
3432  * type is being manipulated. This API does not internally resolve races with
3433  * attach/detach.
3434  *
3435  * Return: attached domain on success, NULL otherwise.
3436  */
3437 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev,
3438 						    ioasid_t pasid,
3439 						    unsigned int type)
3440 {
3441 	struct iommu_domain *domain;
3442 	struct iommu_group *group;
3443 
3444 	group = iommu_group_get(dev);
3445 	if (!group)
3446 		return NULL;
3447 
3448 	xa_lock(&group->pasid_array);
3449 	domain = xa_load(&group->pasid_array, pasid);
3450 	if (type && domain && domain->type != type)
3451 		domain = ERR_PTR(-EBUSY);
3452 	xa_unlock(&group->pasid_array);
3453 	iommu_group_put(group);
3454 
3455 	return domain;
3456 }
3457 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid);
3458 
3459 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev,
3460 					    struct mm_struct *mm)
3461 {
3462 	const struct iommu_ops *ops = dev_iommu_ops(dev);
3463 	struct iommu_domain *domain;
3464 
3465 	domain = ops->domain_alloc(IOMMU_DOMAIN_SVA);
3466 	if (!domain)
3467 		return NULL;
3468 
3469 	domain->type = IOMMU_DOMAIN_SVA;
3470 	mmgrab(mm);
3471 	domain->mm = mm;
3472 	domain->iopf_handler = iommu_sva_handle_iopf;
3473 	domain->fault_data = mm;
3474 
3475 	return domain;
3476 }
3477