xref: /openbmc/linux/drivers/iommu/iommu.c (revision 1f012283)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  */
6 
7 #define pr_fmt(fmt)    "iommu: " fmt
8 
9 #include <linux/device.h>
10 #include <linux/dma-iommu.h>
11 #include <linux/kernel.h>
12 #include <linux/bits.h>
13 #include <linux/bug.h>
14 #include <linux/types.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/iommu.h>
20 #include <linux/idr.h>
21 #include <linux/notifier.h>
22 #include <linux/err.h>
23 #include <linux/pci.h>
24 #include <linux/bitops.h>
25 #include <linux/property.h>
26 #include <linux/fsl/mc.h>
27 #include <linux/module.h>
28 #include <linux/cc_platform.h>
29 #include <trace/events/iommu.h>
30 
31 static struct kset *iommu_group_kset;
32 static DEFINE_IDA(iommu_group_ida);
33 
34 static unsigned int iommu_def_domain_type __read_mostly;
35 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT);
36 static u32 iommu_cmd_line __read_mostly;
37 
38 struct iommu_group {
39 	struct kobject kobj;
40 	struct kobject *devices_kobj;
41 	struct list_head devices;
42 	struct mutex mutex;
43 	struct blocking_notifier_head notifier;
44 	void *iommu_data;
45 	void (*iommu_data_release)(void *iommu_data);
46 	char *name;
47 	int id;
48 	struct iommu_domain *default_domain;
49 	struct iommu_domain *domain;
50 	struct list_head entry;
51 };
52 
53 struct group_device {
54 	struct list_head list;
55 	struct device *dev;
56 	char *name;
57 };
58 
59 struct iommu_group_attribute {
60 	struct attribute attr;
61 	ssize_t (*show)(struct iommu_group *group, char *buf);
62 	ssize_t (*store)(struct iommu_group *group,
63 			 const char *buf, size_t count);
64 };
65 
66 static const char * const iommu_group_resv_type_string[] = {
67 	[IOMMU_RESV_DIRECT]			= "direct",
68 	[IOMMU_RESV_DIRECT_RELAXABLE]		= "direct-relaxable",
69 	[IOMMU_RESV_RESERVED]			= "reserved",
70 	[IOMMU_RESV_MSI]			= "msi",
71 	[IOMMU_RESV_SW_MSI]			= "msi",
72 };
73 
74 #define IOMMU_CMD_LINE_DMA_API		BIT(0)
75 #define IOMMU_CMD_LINE_STRICT		BIT(1)
76 
77 static int iommu_alloc_default_domain(struct iommu_group *group,
78 				      struct device *dev);
79 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
80 						 unsigned type);
81 static int __iommu_attach_device(struct iommu_domain *domain,
82 				 struct device *dev);
83 static int __iommu_attach_group(struct iommu_domain *domain,
84 				struct iommu_group *group);
85 static void __iommu_detach_group(struct iommu_domain *domain,
86 				 struct iommu_group *group);
87 static int iommu_create_device_direct_mappings(struct iommu_group *group,
88 					       struct device *dev);
89 static struct iommu_group *iommu_group_get_for_dev(struct device *dev);
90 static ssize_t iommu_group_store_type(struct iommu_group *group,
91 				      const char *buf, size_t count);
92 
93 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
94 struct iommu_group_attribute iommu_group_attr_##_name =		\
95 	__ATTR(_name, _mode, _show, _store)
96 
97 #define to_iommu_group_attr(_attr)	\
98 	container_of(_attr, struct iommu_group_attribute, attr)
99 #define to_iommu_group(_kobj)		\
100 	container_of(_kobj, struct iommu_group, kobj)
101 
102 static LIST_HEAD(iommu_device_list);
103 static DEFINE_SPINLOCK(iommu_device_lock);
104 
105 /*
106  * Use a function instead of an array here because the domain-type is a
107  * bit-field, so an array would waste memory.
108  */
109 static const char *iommu_domain_type_str(unsigned int t)
110 {
111 	switch (t) {
112 	case IOMMU_DOMAIN_BLOCKED:
113 		return "Blocked";
114 	case IOMMU_DOMAIN_IDENTITY:
115 		return "Passthrough";
116 	case IOMMU_DOMAIN_UNMANAGED:
117 		return "Unmanaged";
118 	case IOMMU_DOMAIN_DMA:
119 	case IOMMU_DOMAIN_DMA_FQ:
120 		return "Translated";
121 	default:
122 		return "Unknown";
123 	}
124 }
125 
126 static int __init iommu_subsys_init(void)
127 {
128 	if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) {
129 		if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH))
130 			iommu_set_default_passthrough(false);
131 		else
132 			iommu_set_default_translated(false);
133 
134 		if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
135 			pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n");
136 			iommu_set_default_translated(false);
137 		}
138 	}
139 
140 	if (!iommu_default_passthrough() && !iommu_dma_strict)
141 		iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ;
142 
143 	pr_info("Default domain type: %s %s\n",
144 		iommu_domain_type_str(iommu_def_domain_type),
145 		(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ?
146 			"(set via kernel command line)" : "");
147 
148 	if (!iommu_default_passthrough())
149 		pr_info("DMA domain TLB invalidation policy: %s mode %s\n",
150 			iommu_dma_strict ? "strict" : "lazy",
151 			(iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ?
152 				"(set via kernel command line)" : "");
153 
154 	return 0;
155 }
156 subsys_initcall(iommu_subsys_init);
157 
158 /**
159  * iommu_device_register() - Register an IOMMU hardware instance
160  * @iommu: IOMMU handle for the instance
161  * @ops:   IOMMU ops to associate with the instance
162  * @hwdev: (optional) actual instance device, used for fwnode lookup
163  *
164  * Return: 0 on success, or an error.
165  */
166 int iommu_device_register(struct iommu_device *iommu,
167 			  const struct iommu_ops *ops, struct device *hwdev)
168 {
169 	/* We need to be able to take module references appropriately */
170 	if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner))
171 		return -EINVAL;
172 
173 	iommu->ops = ops;
174 	if (hwdev)
175 		iommu->fwnode = hwdev->fwnode;
176 
177 	spin_lock(&iommu_device_lock);
178 	list_add_tail(&iommu->list, &iommu_device_list);
179 	spin_unlock(&iommu_device_lock);
180 	return 0;
181 }
182 EXPORT_SYMBOL_GPL(iommu_device_register);
183 
184 void iommu_device_unregister(struct iommu_device *iommu)
185 {
186 	spin_lock(&iommu_device_lock);
187 	list_del(&iommu->list);
188 	spin_unlock(&iommu_device_lock);
189 }
190 EXPORT_SYMBOL_GPL(iommu_device_unregister);
191 
192 static struct dev_iommu *dev_iommu_get(struct device *dev)
193 {
194 	struct dev_iommu *param = dev->iommu;
195 
196 	if (param)
197 		return param;
198 
199 	param = kzalloc(sizeof(*param), GFP_KERNEL);
200 	if (!param)
201 		return NULL;
202 
203 	mutex_init(&param->lock);
204 	dev->iommu = param;
205 	return param;
206 }
207 
208 static void dev_iommu_free(struct device *dev)
209 {
210 	iommu_fwspec_free(dev);
211 	kfree(dev->iommu);
212 	dev->iommu = NULL;
213 }
214 
215 static int __iommu_probe_device(struct device *dev, struct list_head *group_list)
216 {
217 	const struct iommu_ops *ops = dev->bus->iommu_ops;
218 	struct iommu_device *iommu_dev;
219 	struct iommu_group *group;
220 	int ret;
221 
222 	if (!ops)
223 		return -ENODEV;
224 
225 	if (!dev_iommu_get(dev))
226 		return -ENOMEM;
227 
228 	if (!try_module_get(ops->owner)) {
229 		ret = -EINVAL;
230 		goto err_free;
231 	}
232 
233 	iommu_dev = ops->probe_device(dev);
234 	if (IS_ERR(iommu_dev)) {
235 		ret = PTR_ERR(iommu_dev);
236 		goto out_module_put;
237 	}
238 
239 	dev->iommu->iommu_dev = iommu_dev;
240 
241 	group = iommu_group_get_for_dev(dev);
242 	if (IS_ERR(group)) {
243 		ret = PTR_ERR(group);
244 		goto out_release;
245 	}
246 	iommu_group_put(group);
247 
248 	if (group_list && !group->default_domain && list_empty(&group->entry))
249 		list_add_tail(&group->entry, group_list);
250 
251 	iommu_device_link(iommu_dev, dev);
252 
253 	return 0;
254 
255 out_release:
256 	ops->release_device(dev);
257 
258 out_module_put:
259 	module_put(ops->owner);
260 
261 err_free:
262 	dev_iommu_free(dev);
263 
264 	return ret;
265 }
266 
267 int iommu_probe_device(struct device *dev)
268 {
269 	const struct iommu_ops *ops = dev->bus->iommu_ops;
270 	struct iommu_group *group;
271 	int ret;
272 
273 	ret = __iommu_probe_device(dev, NULL);
274 	if (ret)
275 		goto err_out;
276 
277 	group = iommu_group_get(dev);
278 	if (!group) {
279 		ret = -ENODEV;
280 		goto err_release;
281 	}
282 
283 	/*
284 	 * Try to allocate a default domain - needs support from the
285 	 * IOMMU driver. There are still some drivers which don't
286 	 * support default domains, so the return value is not yet
287 	 * checked.
288 	 */
289 	mutex_lock(&group->mutex);
290 	iommu_alloc_default_domain(group, dev);
291 	mutex_unlock(&group->mutex);
292 
293 	if (group->default_domain) {
294 		ret = __iommu_attach_device(group->default_domain, dev);
295 		if (ret) {
296 			iommu_group_put(group);
297 			goto err_release;
298 		}
299 	}
300 
301 	iommu_create_device_direct_mappings(group, dev);
302 
303 	iommu_group_put(group);
304 
305 	if (ops->probe_finalize)
306 		ops->probe_finalize(dev);
307 
308 	return 0;
309 
310 err_release:
311 	iommu_release_device(dev);
312 
313 err_out:
314 	return ret;
315 
316 }
317 
318 void iommu_release_device(struct device *dev)
319 {
320 	const struct iommu_ops *ops = dev->bus->iommu_ops;
321 
322 	if (!dev->iommu)
323 		return;
324 
325 	iommu_device_unlink(dev->iommu->iommu_dev, dev);
326 
327 	ops->release_device(dev);
328 
329 	iommu_group_remove_device(dev);
330 	module_put(ops->owner);
331 	dev_iommu_free(dev);
332 }
333 
334 static int __init iommu_set_def_domain_type(char *str)
335 {
336 	bool pt;
337 	int ret;
338 
339 	ret = kstrtobool(str, &pt);
340 	if (ret)
341 		return ret;
342 
343 	if (pt)
344 		iommu_set_default_passthrough(true);
345 	else
346 		iommu_set_default_translated(true);
347 
348 	return 0;
349 }
350 early_param("iommu.passthrough", iommu_set_def_domain_type);
351 
352 static int __init iommu_dma_setup(char *str)
353 {
354 	int ret = kstrtobool(str, &iommu_dma_strict);
355 
356 	if (!ret)
357 		iommu_cmd_line |= IOMMU_CMD_LINE_STRICT;
358 	return ret;
359 }
360 early_param("iommu.strict", iommu_dma_setup);
361 
362 void iommu_set_dma_strict(void)
363 {
364 	iommu_dma_strict = true;
365 	if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ)
366 		iommu_def_domain_type = IOMMU_DOMAIN_DMA;
367 }
368 
369 static ssize_t iommu_group_attr_show(struct kobject *kobj,
370 				     struct attribute *__attr, char *buf)
371 {
372 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
373 	struct iommu_group *group = to_iommu_group(kobj);
374 	ssize_t ret = -EIO;
375 
376 	if (attr->show)
377 		ret = attr->show(group, buf);
378 	return ret;
379 }
380 
381 static ssize_t iommu_group_attr_store(struct kobject *kobj,
382 				      struct attribute *__attr,
383 				      const char *buf, size_t count)
384 {
385 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
386 	struct iommu_group *group = to_iommu_group(kobj);
387 	ssize_t ret = -EIO;
388 
389 	if (attr->store)
390 		ret = attr->store(group, buf, count);
391 	return ret;
392 }
393 
394 static const struct sysfs_ops iommu_group_sysfs_ops = {
395 	.show = iommu_group_attr_show,
396 	.store = iommu_group_attr_store,
397 };
398 
399 static int iommu_group_create_file(struct iommu_group *group,
400 				   struct iommu_group_attribute *attr)
401 {
402 	return sysfs_create_file(&group->kobj, &attr->attr);
403 }
404 
405 static void iommu_group_remove_file(struct iommu_group *group,
406 				    struct iommu_group_attribute *attr)
407 {
408 	sysfs_remove_file(&group->kobj, &attr->attr);
409 }
410 
411 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
412 {
413 	return sprintf(buf, "%s\n", group->name);
414 }
415 
416 /**
417  * iommu_insert_resv_region - Insert a new region in the
418  * list of reserved regions.
419  * @new: new region to insert
420  * @regions: list of regions
421  *
422  * Elements are sorted by start address and overlapping segments
423  * of the same type are merged.
424  */
425 static int iommu_insert_resv_region(struct iommu_resv_region *new,
426 				    struct list_head *regions)
427 {
428 	struct iommu_resv_region *iter, *tmp, *nr, *top;
429 	LIST_HEAD(stack);
430 
431 	nr = iommu_alloc_resv_region(new->start, new->length,
432 				     new->prot, new->type);
433 	if (!nr)
434 		return -ENOMEM;
435 
436 	/* First add the new element based on start address sorting */
437 	list_for_each_entry(iter, regions, list) {
438 		if (nr->start < iter->start ||
439 		    (nr->start == iter->start && nr->type <= iter->type))
440 			break;
441 	}
442 	list_add_tail(&nr->list, &iter->list);
443 
444 	/* Merge overlapping segments of type nr->type in @regions, if any */
445 	list_for_each_entry_safe(iter, tmp, regions, list) {
446 		phys_addr_t top_end, iter_end = iter->start + iter->length - 1;
447 
448 		/* no merge needed on elements of different types than @new */
449 		if (iter->type != new->type) {
450 			list_move_tail(&iter->list, &stack);
451 			continue;
452 		}
453 
454 		/* look for the last stack element of same type as @iter */
455 		list_for_each_entry_reverse(top, &stack, list)
456 			if (top->type == iter->type)
457 				goto check_overlap;
458 
459 		list_move_tail(&iter->list, &stack);
460 		continue;
461 
462 check_overlap:
463 		top_end = top->start + top->length - 1;
464 
465 		if (iter->start > top_end + 1) {
466 			list_move_tail(&iter->list, &stack);
467 		} else {
468 			top->length = max(top_end, iter_end) - top->start + 1;
469 			list_del(&iter->list);
470 			kfree(iter);
471 		}
472 	}
473 	list_splice(&stack, regions);
474 	return 0;
475 }
476 
477 static int
478 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
479 				 struct list_head *group_resv_regions)
480 {
481 	struct iommu_resv_region *entry;
482 	int ret = 0;
483 
484 	list_for_each_entry(entry, dev_resv_regions, list) {
485 		ret = iommu_insert_resv_region(entry, group_resv_regions);
486 		if (ret)
487 			break;
488 	}
489 	return ret;
490 }
491 
492 int iommu_get_group_resv_regions(struct iommu_group *group,
493 				 struct list_head *head)
494 {
495 	struct group_device *device;
496 	int ret = 0;
497 
498 	mutex_lock(&group->mutex);
499 	list_for_each_entry(device, &group->devices, list) {
500 		struct list_head dev_resv_regions;
501 
502 		INIT_LIST_HEAD(&dev_resv_regions);
503 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
504 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
505 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
506 		if (ret)
507 			break;
508 	}
509 	mutex_unlock(&group->mutex);
510 	return ret;
511 }
512 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
513 
514 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
515 					     char *buf)
516 {
517 	struct iommu_resv_region *region, *next;
518 	struct list_head group_resv_regions;
519 	char *str = buf;
520 
521 	INIT_LIST_HEAD(&group_resv_regions);
522 	iommu_get_group_resv_regions(group, &group_resv_regions);
523 
524 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
525 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
526 			       (long long int)region->start,
527 			       (long long int)(region->start +
528 						region->length - 1),
529 			       iommu_group_resv_type_string[region->type]);
530 		kfree(region);
531 	}
532 
533 	return (str - buf);
534 }
535 
536 static ssize_t iommu_group_show_type(struct iommu_group *group,
537 				     char *buf)
538 {
539 	char *type = "unknown\n";
540 
541 	mutex_lock(&group->mutex);
542 	if (group->default_domain) {
543 		switch (group->default_domain->type) {
544 		case IOMMU_DOMAIN_BLOCKED:
545 			type = "blocked\n";
546 			break;
547 		case IOMMU_DOMAIN_IDENTITY:
548 			type = "identity\n";
549 			break;
550 		case IOMMU_DOMAIN_UNMANAGED:
551 			type = "unmanaged\n";
552 			break;
553 		case IOMMU_DOMAIN_DMA:
554 			type = "DMA\n";
555 			break;
556 		case IOMMU_DOMAIN_DMA_FQ:
557 			type = "DMA-FQ\n";
558 			break;
559 		}
560 	}
561 	mutex_unlock(&group->mutex);
562 	strcpy(buf, type);
563 
564 	return strlen(type);
565 }
566 
567 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
568 
569 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
570 			iommu_group_show_resv_regions, NULL);
571 
572 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type,
573 			iommu_group_store_type);
574 
575 static void iommu_group_release(struct kobject *kobj)
576 {
577 	struct iommu_group *group = to_iommu_group(kobj);
578 
579 	pr_debug("Releasing group %d\n", group->id);
580 
581 	if (group->iommu_data_release)
582 		group->iommu_data_release(group->iommu_data);
583 
584 	ida_simple_remove(&iommu_group_ida, group->id);
585 
586 	if (group->default_domain)
587 		iommu_domain_free(group->default_domain);
588 
589 	kfree(group->name);
590 	kfree(group);
591 }
592 
593 static struct kobj_type iommu_group_ktype = {
594 	.sysfs_ops = &iommu_group_sysfs_ops,
595 	.release = iommu_group_release,
596 };
597 
598 /**
599  * iommu_group_alloc - Allocate a new group
600  *
601  * This function is called by an iommu driver to allocate a new iommu
602  * group.  The iommu group represents the minimum granularity of the iommu.
603  * Upon successful return, the caller holds a reference to the supplied
604  * group in order to hold the group until devices are added.  Use
605  * iommu_group_put() to release this extra reference count, allowing the
606  * group to be automatically reclaimed once it has no devices or external
607  * references.
608  */
609 struct iommu_group *iommu_group_alloc(void)
610 {
611 	struct iommu_group *group;
612 	int ret;
613 
614 	group = kzalloc(sizeof(*group), GFP_KERNEL);
615 	if (!group)
616 		return ERR_PTR(-ENOMEM);
617 
618 	group->kobj.kset = iommu_group_kset;
619 	mutex_init(&group->mutex);
620 	INIT_LIST_HEAD(&group->devices);
621 	INIT_LIST_HEAD(&group->entry);
622 	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
623 
624 	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
625 	if (ret < 0) {
626 		kfree(group);
627 		return ERR_PTR(ret);
628 	}
629 	group->id = ret;
630 
631 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
632 				   NULL, "%d", group->id);
633 	if (ret) {
634 		ida_simple_remove(&iommu_group_ida, group->id);
635 		kobject_put(&group->kobj);
636 		return ERR_PTR(ret);
637 	}
638 
639 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
640 	if (!group->devices_kobj) {
641 		kobject_put(&group->kobj); /* triggers .release & free */
642 		return ERR_PTR(-ENOMEM);
643 	}
644 
645 	/*
646 	 * The devices_kobj holds a reference on the group kobject, so
647 	 * as long as that exists so will the group.  We can therefore
648 	 * use the devices_kobj for reference counting.
649 	 */
650 	kobject_put(&group->kobj);
651 
652 	ret = iommu_group_create_file(group,
653 				      &iommu_group_attr_reserved_regions);
654 	if (ret)
655 		return ERR_PTR(ret);
656 
657 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
658 	if (ret)
659 		return ERR_PTR(ret);
660 
661 	pr_debug("Allocated group %d\n", group->id);
662 
663 	return group;
664 }
665 EXPORT_SYMBOL_GPL(iommu_group_alloc);
666 
667 struct iommu_group *iommu_group_get_by_id(int id)
668 {
669 	struct kobject *group_kobj;
670 	struct iommu_group *group;
671 	const char *name;
672 
673 	if (!iommu_group_kset)
674 		return NULL;
675 
676 	name = kasprintf(GFP_KERNEL, "%d", id);
677 	if (!name)
678 		return NULL;
679 
680 	group_kobj = kset_find_obj(iommu_group_kset, name);
681 	kfree(name);
682 
683 	if (!group_kobj)
684 		return NULL;
685 
686 	group = container_of(group_kobj, struct iommu_group, kobj);
687 	BUG_ON(group->id != id);
688 
689 	kobject_get(group->devices_kobj);
690 	kobject_put(&group->kobj);
691 
692 	return group;
693 }
694 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
695 
696 /**
697  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
698  * @group: the group
699  *
700  * iommu drivers can store data in the group for use when doing iommu
701  * operations.  This function provides a way to retrieve it.  Caller
702  * should hold a group reference.
703  */
704 void *iommu_group_get_iommudata(struct iommu_group *group)
705 {
706 	return group->iommu_data;
707 }
708 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
709 
710 /**
711  * iommu_group_set_iommudata - set iommu_data for a group
712  * @group: the group
713  * @iommu_data: new data
714  * @release: release function for iommu_data
715  *
716  * iommu drivers can store data in the group for use when doing iommu
717  * operations.  This function provides a way to set the data after
718  * the group has been allocated.  Caller should hold a group reference.
719  */
720 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
721 			       void (*release)(void *iommu_data))
722 {
723 	group->iommu_data = iommu_data;
724 	group->iommu_data_release = release;
725 }
726 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
727 
728 /**
729  * iommu_group_set_name - set name for a group
730  * @group: the group
731  * @name: name
732  *
733  * Allow iommu driver to set a name for a group.  When set it will
734  * appear in a name attribute file under the group in sysfs.
735  */
736 int iommu_group_set_name(struct iommu_group *group, const char *name)
737 {
738 	int ret;
739 
740 	if (group->name) {
741 		iommu_group_remove_file(group, &iommu_group_attr_name);
742 		kfree(group->name);
743 		group->name = NULL;
744 		if (!name)
745 			return 0;
746 	}
747 
748 	group->name = kstrdup(name, GFP_KERNEL);
749 	if (!group->name)
750 		return -ENOMEM;
751 
752 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
753 	if (ret) {
754 		kfree(group->name);
755 		group->name = NULL;
756 		return ret;
757 	}
758 
759 	return 0;
760 }
761 EXPORT_SYMBOL_GPL(iommu_group_set_name);
762 
763 static int iommu_create_device_direct_mappings(struct iommu_group *group,
764 					       struct device *dev)
765 {
766 	struct iommu_domain *domain = group->default_domain;
767 	struct iommu_resv_region *entry;
768 	struct list_head mappings;
769 	unsigned long pg_size;
770 	int ret = 0;
771 
772 	if (!domain || !iommu_is_dma_domain(domain))
773 		return 0;
774 
775 	BUG_ON(!domain->pgsize_bitmap);
776 
777 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
778 	INIT_LIST_HEAD(&mappings);
779 
780 	iommu_get_resv_regions(dev, &mappings);
781 
782 	/* We need to consider overlapping regions for different devices */
783 	list_for_each_entry(entry, &mappings, list) {
784 		dma_addr_t start, end, addr;
785 		size_t map_size = 0;
786 
787 		if (domain->ops->apply_resv_region)
788 			domain->ops->apply_resv_region(dev, domain, entry);
789 
790 		start = ALIGN(entry->start, pg_size);
791 		end   = ALIGN(entry->start + entry->length, pg_size);
792 
793 		if (entry->type != IOMMU_RESV_DIRECT &&
794 		    entry->type != IOMMU_RESV_DIRECT_RELAXABLE)
795 			continue;
796 
797 		for (addr = start; addr <= end; addr += pg_size) {
798 			phys_addr_t phys_addr;
799 
800 			if (addr == end)
801 				goto map_end;
802 
803 			phys_addr = iommu_iova_to_phys(domain, addr);
804 			if (!phys_addr) {
805 				map_size += pg_size;
806 				continue;
807 			}
808 
809 map_end:
810 			if (map_size) {
811 				ret = iommu_map(domain, addr - map_size,
812 						addr - map_size, map_size,
813 						entry->prot);
814 				if (ret)
815 					goto out;
816 				map_size = 0;
817 			}
818 		}
819 
820 	}
821 
822 	iommu_flush_iotlb_all(domain);
823 
824 out:
825 	iommu_put_resv_regions(dev, &mappings);
826 
827 	return ret;
828 }
829 
830 static bool iommu_is_attach_deferred(struct iommu_domain *domain,
831 				     struct device *dev)
832 {
833 	if (domain->ops->is_attach_deferred)
834 		return domain->ops->is_attach_deferred(domain, dev);
835 
836 	return false;
837 }
838 
839 /**
840  * iommu_group_add_device - add a device to an iommu group
841  * @group: the group into which to add the device (reference should be held)
842  * @dev: the device
843  *
844  * This function is called by an iommu driver to add a device into a
845  * group.  Adding a device increments the group reference count.
846  */
847 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
848 {
849 	int ret, i = 0;
850 	struct group_device *device;
851 
852 	device = kzalloc(sizeof(*device), GFP_KERNEL);
853 	if (!device)
854 		return -ENOMEM;
855 
856 	device->dev = dev;
857 
858 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
859 	if (ret)
860 		goto err_free_device;
861 
862 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
863 rename:
864 	if (!device->name) {
865 		ret = -ENOMEM;
866 		goto err_remove_link;
867 	}
868 
869 	ret = sysfs_create_link_nowarn(group->devices_kobj,
870 				       &dev->kobj, device->name);
871 	if (ret) {
872 		if (ret == -EEXIST && i >= 0) {
873 			/*
874 			 * Account for the slim chance of collision
875 			 * and append an instance to the name.
876 			 */
877 			kfree(device->name);
878 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
879 						 kobject_name(&dev->kobj), i++);
880 			goto rename;
881 		}
882 		goto err_free_name;
883 	}
884 
885 	kobject_get(group->devices_kobj);
886 
887 	dev->iommu_group = group;
888 
889 	mutex_lock(&group->mutex);
890 	list_add_tail(&device->list, &group->devices);
891 	if (group->domain  && !iommu_is_attach_deferred(group->domain, dev))
892 		ret = __iommu_attach_device(group->domain, dev);
893 	mutex_unlock(&group->mutex);
894 	if (ret)
895 		goto err_put_group;
896 
897 	/* Notify any listeners about change to group. */
898 	blocking_notifier_call_chain(&group->notifier,
899 				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
900 
901 	trace_add_device_to_group(group->id, dev);
902 
903 	dev_info(dev, "Adding to iommu group %d\n", group->id);
904 
905 	return 0;
906 
907 err_put_group:
908 	mutex_lock(&group->mutex);
909 	list_del(&device->list);
910 	mutex_unlock(&group->mutex);
911 	dev->iommu_group = NULL;
912 	kobject_put(group->devices_kobj);
913 	sysfs_remove_link(group->devices_kobj, device->name);
914 err_free_name:
915 	kfree(device->name);
916 err_remove_link:
917 	sysfs_remove_link(&dev->kobj, "iommu_group");
918 err_free_device:
919 	kfree(device);
920 	dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret);
921 	return ret;
922 }
923 EXPORT_SYMBOL_GPL(iommu_group_add_device);
924 
925 /**
926  * iommu_group_remove_device - remove a device from it's current group
927  * @dev: device to be removed
928  *
929  * This function is called by an iommu driver to remove the device from
930  * it's current group.  This decrements the iommu group reference count.
931  */
932 void iommu_group_remove_device(struct device *dev)
933 {
934 	struct iommu_group *group = dev->iommu_group;
935 	struct group_device *tmp_device, *device = NULL;
936 
937 	if (!group)
938 		return;
939 
940 	dev_info(dev, "Removing from iommu group %d\n", group->id);
941 
942 	/* Pre-notify listeners that a device is being removed. */
943 	blocking_notifier_call_chain(&group->notifier,
944 				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
945 
946 	mutex_lock(&group->mutex);
947 	list_for_each_entry(tmp_device, &group->devices, list) {
948 		if (tmp_device->dev == dev) {
949 			device = tmp_device;
950 			list_del(&device->list);
951 			break;
952 		}
953 	}
954 	mutex_unlock(&group->mutex);
955 
956 	if (!device)
957 		return;
958 
959 	sysfs_remove_link(group->devices_kobj, device->name);
960 	sysfs_remove_link(&dev->kobj, "iommu_group");
961 
962 	trace_remove_device_from_group(group->id, dev);
963 
964 	kfree(device->name);
965 	kfree(device);
966 	dev->iommu_group = NULL;
967 	kobject_put(group->devices_kobj);
968 }
969 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
970 
971 static int iommu_group_device_count(struct iommu_group *group)
972 {
973 	struct group_device *entry;
974 	int ret = 0;
975 
976 	list_for_each_entry(entry, &group->devices, list)
977 		ret++;
978 
979 	return ret;
980 }
981 
982 /**
983  * iommu_group_for_each_dev - iterate over each device in the group
984  * @group: the group
985  * @data: caller opaque data to be passed to callback function
986  * @fn: caller supplied callback function
987  *
988  * This function is called by group users to iterate over group devices.
989  * Callers should hold a reference count to the group during callback.
990  * The group->mutex is held across callbacks, which will block calls to
991  * iommu_group_add/remove_device.
992  */
993 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
994 				      int (*fn)(struct device *, void *))
995 {
996 	struct group_device *device;
997 	int ret = 0;
998 
999 	list_for_each_entry(device, &group->devices, list) {
1000 		ret = fn(device->dev, data);
1001 		if (ret)
1002 			break;
1003 	}
1004 	return ret;
1005 }
1006 
1007 
1008 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
1009 			     int (*fn)(struct device *, void *))
1010 {
1011 	int ret;
1012 
1013 	mutex_lock(&group->mutex);
1014 	ret = __iommu_group_for_each_dev(group, data, fn);
1015 	mutex_unlock(&group->mutex);
1016 
1017 	return ret;
1018 }
1019 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
1020 
1021 /**
1022  * iommu_group_get - Return the group for a device and increment reference
1023  * @dev: get the group that this device belongs to
1024  *
1025  * This function is called by iommu drivers and users to get the group
1026  * for the specified device.  If found, the group is returned and the group
1027  * reference in incremented, else NULL.
1028  */
1029 struct iommu_group *iommu_group_get(struct device *dev)
1030 {
1031 	struct iommu_group *group = dev->iommu_group;
1032 
1033 	if (group)
1034 		kobject_get(group->devices_kobj);
1035 
1036 	return group;
1037 }
1038 EXPORT_SYMBOL_GPL(iommu_group_get);
1039 
1040 /**
1041  * iommu_group_ref_get - Increment reference on a group
1042  * @group: the group to use, must not be NULL
1043  *
1044  * This function is called by iommu drivers to take additional references on an
1045  * existing group.  Returns the given group for convenience.
1046  */
1047 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
1048 {
1049 	kobject_get(group->devices_kobj);
1050 	return group;
1051 }
1052 EXPORT_SYMBOL_GPL(iommu_group_ref_get);
1053 
1054 /**
1055  * iommu_group_put - Decrement group reference
1056  * @group: the group to use
1057  *
1058  * This function is called by iommu drivers and users to release the
1059  * iommu group.  Once the reference count is zero, the group is released.
1060  */
1061 void iommu_group_put(struct iommu_group *group)
1062 {
1063 	if (group)
1064 		kobject_put(group->devices_kobj);
1065 }
1066 EXPORT_SYMBOL_GPL(iommu_group_put);
1067 
1068 /**
1069  * iommu_group_register_notifier - Register a notifier for group changes
1070  * @group: the group to watch
1071  * @nb: notifier block to signal
1072  *
1073  * This function allows iommu group users to track changes in a group.
1074  * See include/linux/iommu.h for actions sent via this notifier.  Caller
1075  * should hold a reference to the group throughout notifier registration.
1076  */
1077 int iommu_group_register_notifier(struct iommu_group *group,
1078 				  struct notifier_block *nb)
1079 {
1080 	return blocking_notifier_chain_register(&group->notifier, nb);
1081 }
1082 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
1083 
1084 /**
1085  * iommu_group_unregister_notifier - Unregister a notifier
1086  * @group: the group to watch
1087  * @nb: notifier block to signal
1088  *
1089  * Unregister a previously registered group notifier block.
1090  */
1091 int iommu_group_unregister_notifier(struct iommu_group *group,
1092 				    struct notifier_block *nb)
1093 {
1094 	return blocking_notifier_chain_unregister(&group->notifier, nb);
1095 }
1096 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
1097 
1098 /**
1099  * iommu_register_device_fault_handler() - Register a device fault handler
1100  * @dev: the device
1101  * @handler: the fault handler
1102  * @data: private data passed as argument to the handler
1103  *
1104  * When an IOMMU fault event is received, this handler gets called with the
1105  * fault event and data as argument. The handler should return 0 on success. If
1106  * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also
1107  * complete the fault by calling iommu_page_response() with one of the following
1108  * response code:
1109  * - IOMMU_PAGE_RESP_SUCCESS: retry the translation
1110  * - IOMMU_PAGE_RESP_INVALID: terminate the fault
1111  * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting
1112  *   page faults if possible.
1113  *
1114  * Return 0 if the fault handler was installed successfully, or an error.
1115  */
1116 int iommu_register_device_fault_handler(struct device *dev,
1117 					iommu_dev_fault_handler_t handler,
1118 					void *data)
1119 {
1120 	struct dev_iommu *param = dev->iommu;
1121 	int ret = 0;
1122 
1123 	if (!param)
1124 		return -EINVAL;
1125 
1126 	mutex_lock(&param->lock);
1127 	/* Only allow one fault handler registered for each device */
1128 	if (param->fault_param) {
1129 		ret = -EBUSY;
1130 		goto done_unlock;
1131 	}
1132 
1133 	get_device(dev);
1134 	param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL);
1135 	if (!param->fault_param) {
1136 		put_device(dev);
1137 		ret = -ENOMEM;
1138 		goto done_unlock;
1139 	}
1140 	param->fault_param->handler = handler;
1141 	param->fault_param->data = data;
1142 	mutex_init(&param->fault_param->lock);
1143 	INIT_LIST_HEAD(&param->fault_param->faults);
1144 
1145 done_unlock:
1146 	mutex_unlock(&param->lock);
1147 
1148 	return ret;
1149 }
1150 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler);
1151 
1152 /**
1153  * iommu_unregister_device_fault_handler() - Unregister the device fault handler
1154  * @dev: the device
1155  *
1156  * Remove the device fault handler installed with
1157  * iommu_register_device_fault_handler().
1158  *
1159  * Return 0 on success, or an error.
1160  */
1161 int iommu_unregister_device_fault_handler(struct device *dev)
1162 {
1163 	struct dev_iommu *param = dev->iommu;
1164 	int ret = 0;
1165 
1166 	if (!param)
1167 		return -EINVAL;
1168 
1169 	mutex_lock(&param->lock);
1170 
1171 	if (!param->fault_param)
1172 		goto unlock;
1173 
1174 	/* we cannot unregister handler if there are pending faults */
1175 	if (!list_empty(&param->fault_param->faults)) {
1176 		ret = -EBUSY;
1177 		goto unlock;
1178 	}
1179 
1180 	kfree(param->fault_param);
1181 	param->fault_param = NULL;
1182 	put_device(dev);
1183 unlock:
1184 	mutex_unlock(&param->lock);
1185 
1186 	return ret;
1187 }
1188 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler);
1189 
1190 /**
1191  * iommu_report_device_fault() - Report fault event to device driver
1192  * @dev: the device
1193  * @evt: fault event data
1194  *
1195  * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ
1196  * handler. When this function fails and the fault is recoverable, it is the
1197  * caller's responsibility to complete the fault.
1198  *
1199  * Return 0 on success, or an error.
1200  */
1201 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt)
1202 {
1203 	struct dev_iommu *param = dev->iommu;
1204 	struct iommu_fault_event *evt_pending = NULL;
1205 	struct iommu_fault_param *fparam;
1206 	int ret = 0;
1207 
1208 	if (!param || !evt)
1209 		return -EINVAL;
1210 
1211 	/* we only report device fault if there is a handler registered */
1212 	mutex_lock(&param->lock);
1213 	fparam = param->fault_param;
1214 	if (!fparam || !fparam->handler) {
1215 		ret = -EINVAL;
1216 		goto done_unlock;
1217 	}
1218 
1219 	if (evt->fault.type == IOMMU_FAULT_PAGE_REQ &&
1220 	    (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) {
1221 		evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event),
1222 				      GFP_KERNEL);
1223 		if (!evt_pending) {
1224 			ret = -ENOMEM;
1225 			goto done_unlock;
1226 		}
1227 		mutex_lock(&fparam->lock);
1228 		list_add_tail(&evt_pending->list, &fparam->faults);
1229 		mutex_unlock(&fparam->lock);
1230 	}
1231 
1232 	ret = fparam->handler(&evt->fault, fparam->data);
1233 	if (ret && evt_pending) {
1234 		mutex_lock(&fparam->lock);
1235 		list_del(&evt_pending->list);
1236 		mutex_unlock(&fparam->lock);
1237 		kfree(evt_pending);
1238 	}
1239 done_unlock:
1240 	mutex_unlock(&param->lock);
1241 	return ret;
1242 }
1243 EXPORT_SYMBOL_GPL(iommu_report_device_fault);
1244 
1245 int iommu_page_response(struct device *dev,
1246 			struct iommu_page_response *msg)
1247 {
1248 	bool needs_pasid;
1249 	int ret = -EINVAL;
1250 	struct iommu_fault_event *evt;
1251 	struct iommu_fault_page_request *prm;
1252 	struct dev_iommu *param = dev->iommu;
1253 	bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID;
1254 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1255 
1256 	if (!domain || !domain->ops->page_response)
1257 		return -ENODEV;
1258 
1259 	if (!param || !param->fault_param)
1260 		return -EINVAL;
1261 
1262 	if (msg->version != IOMMU_PAGE_RESP_VERSION_1 ||
1263 	    msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID)
1264 		return -EINVAL;
1265 
1266 	/* Only send response if there is a fault report pending */
1267 	mutex_lock(&param->fault_param->lock);
1268 	if (list_empty(&param->fault_param->faults)) {
1269 		dev_warn_ratelimited(dev, "no pending PRQ, drop response\n");
1270 		goto done_unlock;
1271 	}
1272 	/*
1273 	 * Check if we have a matching page request pending to respond,
1274 	 * otherwise return -EINVAL
1275 	 */
1276 	list_for_each_entry(evt, &param->fault_param->faults, list) {
1277 		prm = &evt->fault.prm;
1278 		if (prm->grpid != msg->grpid)
1279 			continue;
1280 
1281 		/*
1282 		 * If the PASID is required, the corresponding request is
1283 		 * matched using the group ID, the PASID valid bit and the PASID
1284 		 * value. Otherwise only the group ID matches request and
1285 		 * response.
1286 		 */
1287 		needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID;
1288 		if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid))
1289 			continue;
1290 
1291 		if (!needs_pasid && has_pasid) {
1292 			/* No big deal, just clear it. */
1293 			msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID;
1294 			msg->pasid = 0;
1295 		}
1296 
1297 		ret = domain->ops->page_response(dev, evt, msg);
1298 		list_del(&evt->list);
1299 		kfree(evt);
1300 		break;
1301 	}
1302 
1303 done_unlock:
1304 	mutex_unlock(&param->fault_param->lock);
1305 	return ret;
1306 }
1307 EXPORT_SYMBOL_GPL(iommu_page_response);
1308 
1309 /**
1310  * iommu_group_id - Return ID for a group
1311  * @group: the group to ID
1312  *
1313  * Return the unique ID for the group matching the sysfs group number.
1314  */
1315 int iommu_group_id(struct iommu_group *group)
1316 {
1317 	return group->id;
1318 }
1319 EXPORT_SYMBOL_GPL(iommu_group_id);
1320 
1321 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1322 					       unsigned long *devfns);
1323 
1324 /*
1325  * To consider a PCI device isolated, we require ACS to support Source
1326  * Validation, Request Redirection, Completer Redirection, and Upstream
1327  * Forwarding.  This effectively means that devices cannot spoof their
1328  * requester ID, requests and completions cannot be redirected, and all
1329  * transactions are forwarded upstream, even as it passes through a
1330  * bridge where the target device is downstream.
1331  */
1332 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
1333 
1334 /*
1335  * For multifunction devices which are not isolated from each other, find
1336  * all the other non-isolated functions and look for existing groups.  For
1337  * each function, we also need to look for aliases to or from other devices
1338  * that may already have a group.
1339  */
1340 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
1341 							unsigned long *devfns)
1342 {
1343 	struct pci_dev *tmp = NULL;
1344 	struct iommu_group *group;
1345 
1346 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
1347 		return NULL;
1348 
1349 	for_each_pci_dev(tmp) {
1350 		if (tmp == pdev || tmp->bus != pdev->bus ||
1351 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
1352 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
1353 			continue;
1354 
1355 		group = get_pci_alias_group(tmp, devfns);
1356 		if (group) {
1357 			pci_dev_put(tmp);
1358 			return group;
1359 		}
1360 	}
1361 
1362 	return NULL;
1363 }
1364 
1365 /*
1366  * Look for aliases to or from the given device for existing groups. DMA
1367  * aliases are only supported on the same bus, therefore the search
1368  * space is quite small (especially since we're really only looking at pcie
1369  * device, and therefore only expect multiple slots on the root complex or
1370  * downstream switch ports).  It's conceivable though that a pair of
1371  * multifunction devices could have aliases between them that would cause a
1372  * loop.  To prevent this, we use a bitmap to track where we've been.
1373  */
1374 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
1375 					       unsigned long *devfns)
1376 {
1377 	struct pci_dev *tmp = NULL;
1378 	struct iommu_group *group;
1379 
1380 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
1381 		return NULL;
1382 
1383 	group = iommu_group_get(&pdev->dev);
1384 	if (group)
1385 		return group;
1386 
1387 	for_each_pci_dev(tmp) {
1388 		if (tmp == pdev || tmp->bus != pdev->bus)
1389 			continue;
1390 
1391 		/* We alias them or they alias us */
1392 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
1393 			group = get_pci_alias_group(tmp, devfns);
1394 			if (group) {
1395 				pci_dev_put(tmp);
1396 				return group;
1397 			}
1398 
1399 			group = get_pci_function_alias_group(tmp, devfns);
1400 			if (group) {
1401 				pci_dev_put(tmp);
1402 				return group;
1403 			}
1404 		}
1405 	}
1406 
1407 	return NULL;
1408 }
1409 
1410 struct group_for_pci_data {
1411 	struct pci_dev *pdev;
1412 	struct iommu_group *group;
1413 };
1414 
1415 /*
1416  * DMA alias iterator callback, return the last seen device.  Stop and return
1417  * the IOMMU group if we find one along the way.
1418  */
1419 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
1420 {
1421 	struct group_for_pci_data *data = opaque;
1422 
1423 	data->pdev = pdev;
1424 	data->group = iommu_group_get(&pdev->dev);
1425 
1426 	return data->group != NULL;
1427 }
1428 
1429 /*
1430  * Generic device_group call-back function. It just allocates one
1431  * iommu-group per device.
1432  */
1433 struct iommu_group *generic_device_group(struct device *dev)
1434 {
1435 	return iommu_group_alloc();
1436 }
1437 EXPORT_SYMBOL_GPL(generic_device_group);
1438 
1439 /*
1440  * Use standard PCI bus topology, isolation features, and DMA alias quirks
1441  * to find or create an IOMMU group for a device.
1442  */
1443 struct iommu_group *pci_device_group(struct device *dev)
1444 {
1445 	struct pci_dev *pdev = to_pci_dev(dev);
1446 	struct group_for_pci_data data;
1447 	struct pci_bus *bus;
1448 	struct iommu_group *group = NULL;
1449 	u64 devfns[4] = { 0 };
1450 
1451 	if (WARN_ON(!dev_is_pci(dev)))
1452 		return ERR_PTR(-EINVAL);
1453 
1454 	/*
1455 	 * Find the upstream DMA alias for the device.  A device must not
1456 	 * be aliased due to topology in order to have its own IOMMU group.
1457 	 * If we find an alias along the way that already belongs to a
1458 	 * group, use it.
1459 	 */
1460 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
1461 		return data.group;
1462 
1463 	pdev = data.pdev;
1464 
1465 	/*
1466 	 * Continue upstream from the point of minimum IOMMU granularity
1467 	 * due to aliases to the point where devices are protected from
1468 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
1469 	 * group, use it.
1470 	 */
1471 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1472 		if (!bus->self)
1473 			continue;
1474 
1475 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1476 			break;
1477 
1478 		pdev = bus->self;
1479 
1480 		group = iommu_group_get(&pdev->dev);
1481 		if (group)
1482 			return group;
1483 	}
1484 
1485 	/*
1486 	 * Look for existing groups on device aliases.  If we alias another
1487 	 * device or another device aliases us, use the same group.
1488 	 */
1489 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1490 	if (group)
1491 		return group;
1492 
1493 	/*
1494 	 * Look for existing groups on non-isolated functions on the same
1495 	 * slot and aliases of those funcions, if any.  No need to clear
1496 	 * the search bitmap, the tested devfns are still valid.
1497 	 */
1498 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1499 	if (group)
1500 		return group;
1501 
1502 	/* No shared group found, allocate new */
1503 	return iommu_group_alloc();
1504 }
1505 EXPORT_SYMBOL_GPL(pci_device_group);
1506 
1507 /* Get the IOMMU group for device on fsl-mc bus */
1508 struct iommu_group *fsl_mc_device_group(struct device *dev)
1509 {
1510 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1511 	struct iommu_group *group;
1512 
1513 	group = iommu_group_get(cont_dev);
1514 	if (!group)
1515 		group = iommu_group_alloc();
1516 	return group;
1517 }
1518 EXPORT_SYMBOL_GPL(fsl_mc_device_group);
1519 
1520 static int iommu_get_def_domain_type(struct device *dev)
1521 {
1522 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1523 
1524 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
1525 		return IOMMU_DOMAIN_DMA;
1526 
1527 	if (ops->def_domain_type)
1528 		return ops->def_domain_type(dev);
1529 
1530 	return 0;
1531 }
1532 
1533 static int iommu_group_alloc_default_domain(struct bus_type *bus,
1534 					    struct iommu_group *group,
1535 					    unsigned int type)
1536 {
1537 	struct iommu_domain *dom;
1538 
1539 	dom = __iommu_domain_alloc(bus, type);
1540 	if (!dom && type != IOMMU_DOMAIN_DMA) {
1541 		dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA);
1542 		if (dom)
1543 			pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA",
1544 				type, group->name);
1545 	}
1546 
1547 	if (!dom)
1548 		return -ENOMEM;
1549 
1550 	group->default_domain = dom;
1551 	if (!group->domain)
1552 		group->domain = dom;
1553 	return 0;
1554 }
1555 
1556 static int iommu_alloc_default_domain(struct iommu_group *group,
1557 				      struct device *dev)
1558 {
1559 	unsigned int type;
1560 
1561 	if (group->default_domain)
1562 		return 0;
1563 
1564 	type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type;
1565 
1566 	return iommu_group_alloc_default_domain(dev->bus, group, type);
1567 }
1568 
1569 /**
1570  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1571  * @dev: target device
1572  *
1573  * This function is intended to be called by IOMMU drivers and extended to
1574  * support common, bus-defined algorithms when determining or creating the
1575  * IOMMU group for a device.  On success, the caller will hold a reference
1576  * to the returned IOMMU group, which will already include the provided
1577  * device.  The reference should be released with iommu_group_put().
1578  */
1579 static struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1580 {
1581 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1582 	struct iommu_group *group;
1583 	int ret;
1584 
1585 	group = iommu_group_get(dev);
1586 	if (group)
1587 		return group;
1588 
1589 	if (!ops)
1590 		return ERR_PTR(-EINVAL);
1591 
1592 	group = ops->device_group(dev);
1593 	if (WARN_ON_ONCE(group == NULL))
1594 		return ERR_PTR(-EINVAL);
1595 
1596 	if (IS_ERR(group))
1597 		return group;
1598 
1599 	ret = iommu_group_add_device(group, dev);
1600 	if (ret)
1601 		goto out_put_group;
1602 
1603 	return group;
1604 
1605 out_put_group:
1606 	iommu_group_put(group);
1607 
1608 	return ERR_PTR(ret);
1609 }
1610 
1611 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1612 {
1613 	return group->default_domain;
1614 }
1615 
1616 static int probe_iommu_group(struct device *dev, void *data)
1617 {
1618 	struct list_head *group_list = data;
1619 	struct iommu_group *group;
1620 	int ret;
1621 
1622 	/* Device is probed already if in a group */
1623 	group = iommu_group_get(dev);
1624 	if (group) {
1625 		iommu_group_put(group);
1626 		return 0;
1627 	}
1628 
1629 	ret = __iommu_probe_device(dev, group_list);
1630 	if (ret == -ENODEV)
1631 		ret = 0;
1632 
1633 	return ret;
1634 }
1635 
1636 static int remove_iommu_group(struct device *dev, void *data)
1637 {
1638 	iommu_release_device(dev);
1639 
1640 	return 0;
1641 }
1642 
1643 static int iommu_bus_notifier(struct notifier_block *nb,
1644 			      unsigned long action, void *data)
1645 {
1646 	unsigned long group_action = 0;
1647 	struct device *dev = data;
1648 	struct iommu_group *group;
1649 
1650 	/*
1651 	 * ADD/DEL call into iommu driver ops if provided, which may
1652 	 * result in ADD/DEL notifiers to group->notifier
1653 	 */
1654 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1655 		int ret;
1656 
1657 		ret = iommu_probe_device(dev);
1658 		return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1659 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1660 		iommu_release_device(dev);
1661 		return NOTIFY_OK;
1662 	}
1663 
1664 	/*
1665 	 * Remaining BUS_NOTIFYs get filtered and republished to the
1666 	 * group, if anyone is listening
1667 	 */
1668 	group = iommu_group_get(dev);
1669 	if (!group)
1670 		return 0;
1671 
1672 	switch (action) {
1673 	case BUS_NOTIFY_BIND_DRIVER:
1674 		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1675 		break;
1676 	case BUS_NOTIFY_BOUND_DRIVER:
1677 		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1678 		break;
1679 	case BUS_NOTIFY_UNBIND_DRIVER:
1680 		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1681 		break;
1682 	case BUS_NOTIFY_UNBOUND_DRIVER:
1683 		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1684 		break;
1685 	}
1686 
1687 	if (group_action)
1688 		blocking_notifier_call_chain(&group->notifier,
1689 					     group_action, dev);
1690 
1691 	iommu_group_put(group);
1692 	return 0;
1693 }
1694 
1695 struct __group_domain_type {
1696 	struct device *dev;
1697 	unsigned int type;
1698 };
1699 
1700 static int probe_get_default_domain_type(struct device *dev, void *data)
1701 {
1702 	struct __group_domain_type *gtype = data;
1703 	unsigned int type = iommu_get_def_domain_type(dev);
1704 
1705 	if (type) {
1706 		if (gtype->type && gtype->type != type) {
1707 			dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n",
1708 				 iommu_domain_type_str(type),
1709 				 dev_name(gtype->dev),
1710 				 iommu_domain_type_str(gtype->type));
1711 			gtype->type = 0;
1712 		}
1713 
1714 		if (!gtype->dev) {
1715 			gtype->dev  = dev;
1716 			gtype->type = type;
1717 		}
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 static void probe_alloc_default_domain(struct bus_type *bus,
1724 				       struct iommu_group *group)
1725 {
1726 	struct __group_domain_type gtype;
1727 
1728 	memset(&gtype, 0, sizeof(gtype));
1729 
1730 	/* Ask for default domain requirements of all devices in the group */
1731 	__iommu_group_for_each_dev(group, &gtype,
1732 				   probe_get_default_domain_type);
1733 
1734 	if (!gtype.type)
1735 		gtype.type = iommu_def_domain_type;
1736 
1737 	iommu_group_alloc_default_domain(bus, group, gtype.type);
1738 
1739 }
1740 
1741 static int iommu_group_do_dma_attach(struct device *dev, void *data)
1742 {
1743 	struct iommu_domain *domain = data;
1744 	int ret = 0;
1745 
1746 	if (!iommu_is_attach_deferred(domain, dev))
1747 		ret = __iommu_attach_device(domain, dev);
1748 
1749 	return ret;
1750 }
1751 
1752 static int __iommu_group_dma_attach(struct iommu_group *group)
1753 {
1754 	return __iommu_group_for_each_dev(group, group->default_domain,
1755 					  iommu_group_do_dma_attach);
1756 }
1757 
1758 static int iommu_group_do_probe_finalize(struct device *dev, void *data)
1759 {
1760 	struct iommu_domain *domain = data;
1761 
1762 	if (domain->ops->probe_finalize)
1763 		domain->ops->probe_finalize(dev);
1764 
1765 	return 0;
1766 }
1767 
1768 static void __iommu_group_dma_finalize(struct iommu_group *group)
1769 {
1770 	__iommu_group_for_each_dev(group, group->default_domain,
1771 				   iommu_group_do_probe_finalize);
1772 }
1773 
1774 static int iommu_do_create_direct_mappings(struct device *dev, void *data)
1775 {
1776 	struct iommu_group *group = data;
1777 
1778 	iommu_create_device_direct_mappings(group, dev);
1779 
1780 	return 0;
1781 }
1782 
1783 static int iommu_group_create_direct_mappings(struct iommu_group *group)
1784 {
1785 	return __iommu_group_for_each_dev(group, group,
1786 					  iommu_do_create_direct_mappings);
1787 }
1788 
1789 int bus_iommu_probe(struct bus_type *bus)
1790 {
1791 	struct iommu_group *group, *next;
1792 	LIST_HEAD(group_list);
1793 	int ret;
1794 
1795 	/*
1796 	 * This code-path does not allocate the default domain when
1797 	 * creating the iommu group, so do it after the groups are
1798 	 * created.
1799 	 */
1800 	ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group);
1801 	if (ret)
1802 		return ret;
1803 
1804 	list_for_each_entry_safe(group, next, &group_list, entry) {
1805 		/* Remove item from the list */
1806 		list_del_init(&group->entry);
1807 
1808 		mutex_lock(&group->mutex);
1809 
1810 		/* Try to allocate default domain */
1811 		probe_alloc_default_domain(bus, group);
1812 
1813 		if (!group->default_domain) {
1814 			mutex_unlock(&group->mutex);
1815 			continue;
1816 		}
1817 
1818 		iommu_group_create_direct_mappings(group);
1819 
1820 		ret = __iommu_group_dma_attach(group);
1821 
1822 		mutex_unlock(&group->mutex);
1823 
1824 		if (ret)
1825 			break;
1826 
1827 		__iommu_group_dma_finalize(group);
1828 	}
1829 
1830 	return ret;
1831 }
1832 
1833 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1834 {
1835 	struct notifier_block *nb;
1836 	int err;
1837 
1838 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1839 	if (!nb)
1840 		return -ENOMEM;
1841 
1842 	nb->notifier_call = iommu_bus_notifier;
1843 
1844 	err = bus_register_notifier(bus, nb);
1845 	if (err)
1846 		goto out_free;
1847 
1848 	err = bus_iommu_probe(bus);
1849 	if (err)
1850 		goto out_err;
1851 
1852 
1853 	return 0;
1854 
1855 out_err:
1856 	/* Clean up */
1857 	bus_for_each_dev(bus, NULL, NULL, remove_iommu_group);
1858 	bus_unregister_notifier(bus, nb);
1859 
1860 out_free:
1861 	kfree(nb);
1862 
1863 	return err;
1864 }
1865 
1866 /**
1867  * bus_set_iommu - set iommu-callbacks for the bus
1868  * @bus: bus.
1869  * @ops: the callbacks provided by the iommu-driver
1870  *
1871  * This function is called by an iommu driver to set the iommu methods
1872  * used for a particular bus. Drivers for devices on that bus can use
1873  * the iommu-api after these ops are registered.
1874  * This special function is needed because IOMMUs are usually devices on
1875  * the bus itself, so the iommu drivers are not initialized when the bus
1876  * is set up. With this function the iommu-driver can set the iommu-ops
1877  * afterwards.
1878  */
1879 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1880 {
1881 	int err;
1882 
1883 	if (ops == NULL) {
1884 		bus->iommu_ops = NULL;
1885 		return 0;
1886 	}
1887 
1888 	if (bus->iommu_ops != NULL)
1889 		return -EBUSY;
1890 
1891 	bus->iommu_ops = ops;
1892 
1893 	/* Do IOMMU specific setup for this bus-type */
1894 	err = iommu_bus_init(bus, ops);
1895 	if (err)
1896 		bus->iommu_ops = NULL;
1897 
1898 	return err;
1899 }
1900 EXPORT_SYMBOL_GPL(bus_set_iommu);
1901 
1902 bool iommu_present(struct bus_type *bus)
1903 {
1904 	return bus->iommu_ops != NULL;
1905 }
1906 EXPORT_SYMBOL_GPL(iommu_present);
1907 
1908 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1909 {
1910 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1911 		return false;
1912 
1913 	return bus->iommu_ops->capable(cap);
1914 }
1915 EXPORT_SYMBOL_GPL(iommu_capable);
1916 
1917 /**
1918  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1919  * @domain: iommu domain
1920  * @handler: fault handler
1921  * @token: user data, will be passed back to the fault handler
1922  *
1923  * This function should be used by IOMMU users which want to be notified
1924  * whenever an IOMMU fault happens.
1925  *
1926  * The fault handler itself should return 0 on success, and an appropriate
1927  * error code otherwise.
1928  */
1929 void iommu_set_fault_handler(struct iommu_domain *domain,
1930 					iommu_fault_handler_t handler,
1931 					void *token)
1932 {
1933 	BUG_ON(!domain);
1934 
1935 	domain->handler = handler;
1936 	domain->handler_token = token;
1937 }
1938 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1939 
1940 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1941 						 unsigned type)
1942 {
1943 	struct iommu_domain *domain;
1944 
1945 	if (bus == NULL || bus->iommu_ops == NULL)
1946 		return NULL;
1947 
1948 	domain = bus->iommu_ops->domain_alloc(type);
1949 	if (!domain)
1950 		return NULL;
1951 
1952 	domain->ops  = bus->iommu_ops;
1953 	domain->type = type;
1954 	/* Assume all sizes by default; the driver may override this later */
1955 	domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
1956 
1957 	if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) {
1958 		iommu_domain_free(domain);
1959 		domain = NULL;
1960 	}
1961 	return domain;
1962 }
1963 
1964 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1965 {
1966 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1967 }
1968 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1969 
1970 void iommu_domain_free(struct iommu_domain *domain)
1971 {
1972 	iommu_put_dma_cookie(domain);
1973 	domain->ops->domain_free(domain);
1974 }
1975 EXPORT_SYMBOL_GPL(iommu_domain_free);
1976 
1977 static int __iommu_attach_device(struct iommu_domain *domain,
1978 				 struct device *dev)
1979 {
1980 	int ret;
1981 
1982 	if (unlikely(domain->ops->attach_dev == NULL))
1983 		return -ENODEV;
1984 
1985 	ret = domain->ops->attach_dev(domain, dev);
1986 	if (!ret)
1987 		trace_attach_device_to_domain(dev);
1988 	return ret;
1989 }
1990 
1991 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1992 {
1993 	struct iommu_group *group;
1994 	int ret;
1995 
1996 	group = iommu_group_get(dev);
1997 	if (!group)
1998 		return -ENODEV;
1999 
2000 	/*
2001 	 * Lock the group to make sure the device-count doesn't
2002 	 * change while we are attaching
2003 	 */
2004 	mutex_lock(&group->mutex);
2005 	ret = -EINVAL;
2006 	if (iommu_group_device_count(group) != 1)
2007 		goto out_unlock;
2008 
2009 	ret = __iommu_attach_group(domain, group);
2010 
2011 out_unlock:
2012 	mutex_unlock(&group->mutex);
2013 	iommu_group_put(group);
2014 
2015 	return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(iommu_attach_device);
2018 
2019 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain)
2020 {
2021 	const struct iommu_ops *ops = domain->ops;
2022 
2023 	if (ops->is_attach_deferred && ops->is_attach_deferred(domain, dev))
2024 		return __iommu_attach_device(domain, dev);
2025 
2026 	return 0;
2027 }
2028 
2029 /*
2030  * Check flags and other user provided data for valid combinations. We also
2031  * make sure no reserved fields or unused flags are set. This is to ensure
2032  * not breaking userspace in the future when these fields or flags are used.
2033  */
2034 static int iommu_check_cache_invl_data(struct iommu_cache_invalidate_info *info)
2035 {
2036 	u32 mask;
2037 	int i;
2038 
2039 	if (info->version != IOMMU_CACHE_INVALIDATE_INFO_VERSION_1)
2040 		return -EINVAL;
2041 
2042 	mask = (1 << IOMMU_CACHE_INV_TYPE_NR) - 1;
2043 	if (info->cache & ~mask)
2044 		return -EINVAL;
2045 
2046 	if (info->granularity >= IOMMU_INV_GRANU_NR)
2047 		return -EINVAL;
2048 
2049 	switch (info->granularity) {
2050 	case IOMMU_INV_GRANU_ADDR:
2051 		if (info->cache & IOMMU_CACHE_INV_TYPE_PASID)
2052 			return -EINVAL;
2053 
2054 		mask = IOMMU_INV_ADDR_FLAGS_PASID |
2055 			IOMMU_INV_ADDR_FLAGS_ARCHID |
2056 			IOMMU_INV_ADDR_FLAGS_LEAF;
2057 
2058 		if (info->granu.addr_info.flags & ~mask)
2059 			return -EINVAL;
2060 		break;
2061 	case IOMMU_INV_GRANU_PASID:
2062 		mask = IOMMU_INV_PASID_FLAGS_PASID |
2063 			IOMMU_INV_PASID_FLAGS_ARCHID;
2064 		if (info->granu.pasid_info.flags & ~mask)
2065 			return -EINVAL;
2066 
2067 		break;
2068 	case IOMMU_INV_GRANU_DOMAIN:
2069 		if (info->cache & IOMMU_CACHE_INV_TYPE_DEV_IOTLB)
2070 			return -EINVAL;
2071 		break;
2072 	default:
2073 		return -EINVAL;
2074 	}
2075 
2076 	/* Check reserved padding fields */
2077 	for (i = 0; i < sizeof(info->padding); i++) {
2078 		if (info->padding[i])
2079 			return -EINVAL;
2080 	}
2081 
2082 	return 0;
2083 }
2084 
2085 int iommu_uapi_cache_invalidate(struct iommu_domain *domain, struct device *dev,
2086 				void __user *uinfo)
2087 {
2088 	struct iommu_cache_invalidate_info inv_info = { 0 };
2089 	u32 minsz;
2090 	int ret;
2091 
2092 	if (unlikely(!domain->ops->cache_invalidate))
2093 		return -ENODEV;
2094 
2095 	/*
2096 	 * No new spaces can be added before the variable sized union, the
2097 	 * minimum size is the offset to the union.
2098 	 */
2099 	minsz = offsetof(struct iommu_cache_invalidate_info, granu);
2100 
2101 	/* Copy minsz from user to get flags and argsz */
2102 	if (copy_from_user(&inv_info, uinfo, minsz))
2103 		return -EFAULT;
2104 
2105 	/* Fields before the variable size union are mandatory */
2106 	if (inv_info.argsz < minsz)
2107 		return -EINVAL;
2108 
2109 	/* PASID and address granu require additional info beyond minsz */
2110 	if (inv_info.granularity == IOMMU_INV_GRANU_PASID &&
2111 	    inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.pasid_info))
2112 		return -EINVAL;
2113 
2114 	if (inv_info.granularity == IOMMU_INV_GRANU_ADDR &&
2115 	    inv_info.argsz < offsetofend(struct iommu_cache_invalidate_info, granu.addr_info))
2116 		return -EINVAL;
2117 
2118 	/*
2119 	 * User might be using a newer UAPI header which has a larger data
2120 	 * size, we shall support the existing flags within the current
2121 	 * size. Copy the remaining user data _after_ minsz but not more
2122 	 * than the current kernel supported size.
2123 	 */
2124 	if (copy_from_user((void *)&inv_info + minsz, uinfo + minsz,
2125 			   min_t(u32, inv_info.argsz, sizeof(inv_info)) - minsz))
2126 		return -EFAULT;
2127 
2128 	/* Now the argsz is validated, check the content */
2129 	ret = iommu_check_cache_invl_data(&inv_info);
2130 	if (ret)
2131 		return ret;
2132 
2133 	return domain->ops->cache_invalidate(domain, dev, &inv_info);
2134 }
2135 EXPORT_SYMBOL_GPL(iommu_uapi_cache_invalidate);
2136 
2137 static int iommu_check_bind_data(struct iommu_gpasid_bind_data *data)
2138 {
2139 	u64 mask;
2140 	int i;
2141 
2142 	if (data->version != IOMMU_GPASID_BIND_VERSION_1)
2143 		return -EINVAL;
2144 
2145 	/* Check the range of supported formats */
2146 	if (data->format >= IOMMU_PASID_FORMAT_LAST)
2147 		return -EINVAL;
2148 
2149 	/* Check all flags */
2150 	mask = IOMMU_SVA_GPASID_VAL;
2151 	if (data->flags & ~mask)
2152 		return -EINVAL;
2153 
2154 	/* Check reserved padding fields */
2155 	for (i = 0; i < sizeof(data->padding); i++) {
2156 		if (data->padding[i])
2157 			return -EINVAL;
2158 	}
2159 
2160 	return 0;
2161 }
2162 
2163 static int iommu_sva_prepare_bind_data(void __user *udata,
2164 				       struct iommu_gpasid_bind_data *data)
2165 {
2166 	u32 minsz;
2167 
2168 	/*
2169 	 * No new spaces can be added before the variable sized union, the
2170 	 * minimum size is the offset to the union.
2171 	 */
2172 	minsz = offsetof(struct iommu_gpasid_bind_data, vendor);
2173 
2174 	/* Copy minsz from user to get flags and argsz */
2175 	if (copy_from_user(data, udata, minsz))
2176 		return -EFAULT;
2177 
2178 	/* Fields before the variable size union are mandatory */
2179 	if (data->argsz < minsz)
2180 		return -EINVAL;
2181 	/*
2182 	 * User might be using a newer UAPI header, we shall let IOMMU vendor
2183 	 * driver decide on what size it needs. Since the guest PASID bind data
2184 	 * can be vendor specific, larger argsz could be the result of extension
2185 	 * for one vendor but it should not affect another vendor.
2186 	 * Copy the remaining user data _after_ minsz
2187 	 */
2188 	if (copy_from_user((void *)data + minsz, udata + minsz,
2189 			   min_t(u32, data->argsz, sizeof(*data)) - minsz))
2190 		return -EFAULT;
2191 
2192 	return iommu_check_bind_data(data);
2193 }
2194 
2195 int iommu_uapi_sva_bind_gpasid(struct iommu_domain *domain, struct device *dev,
2196 			       void __user *udata)
2197 {
2198 	struct iommu_gpasid_bind_data data = { 0 };
2199 	int ret;
2200 
2201 	if (unlikely(!domain->ops->sva_bind_gpasid))
2202 		return -ENODEV;
2203 
2204 	ret = iommu_sva_prepare_bind_data(udata, &data);
2205 	if (ret)
2206 		return ret;
2207 
2208 	return domain->ops->sva_bind_gpasid(domain, dev, &data);
2209 }
2210 EXPORT_SYMBOL_GPL(iommu_uapi_sva_bind_gpasid);
2211 
2212 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2213 			     ioasid_t pasid)
2214 {
2215 	if (unlikely(!domain->ops->sva_unbind_gpasid))
2216 		return -ENODEV;
2217 
2218 	return domain->ops->sva_unbind_gpasid(dev, pasid);
2219 }
2220 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid);
2221 
2222 int iommu_uapi_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev,
2223 				 void __user *udata)
2224 {
2225 	struct iommu_gpasid_bind_data data = { 0 };
2226 	int ret;
2227 
2228 	if (unlikely(!domain->ops->sva_bind_gpasid))
2229 		return -ENODEV;
2230 
2231 	ret = iommu_sva_prepare_bind_data(udata, &data);
2232 	if (ret)
2233 		return ret;
2234 
2235 	return iommu_sva_unbind_gpasid(domain, dev, data.hpasid);
2236 }
2237 EXPORT_SYMBOL_GPL(iommu_uapi_sva_unbind_gpasid);
2238 
2239 static void __iommu_detach_device(struct iommu_domain *domain,
2240 				  struct device *dev)
2241 {
2242 	if (iommu_is_attach_deferred(domain, dev))
2243 		return;
2244 
2245 	if (unlikely(domain->ops->detach_dev == NULL))
2246 		return;
2247 
2248 	domain->ops->detach_dev(domain, dev);
2249 	trace_detach_device_from_domain(dev);
2250 }
2251 
2252 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
2253 {
2254 	struct iommu_group *group;
2255 
2256 	group = iommu_group_get(dev);
2257 	if (!group)
2258 		return;
2259 
2260 	mutex_lock(&group->mutex);
2261 	if (iommu_group_device_count(group) != 1) {
2262 		WARN_ON(1);
2263 		goto out_unlock;
2264 	}
2265 
2266 	__iommu_detach_group(domain, group);
2267 
2268 out_unlock:
2269 	mutex_unlock(&group->mutex);
2270 	iommu_group_put(group);
2271 }
2272 EXPORT_SYMBOL_GPL(iommu_detach_device);
2273 
2274 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
2275 {
2276 	struct iommu_domain *domain;
2277 	struct iommu_group *group;
2278 
2279 	group = iommu_group_get(dev);
2280 	if (!group)
2281 		return NULL;
2282 
2283 	domain = group->domain;
2284 
2285 	iommu_group_put(group);
2286 
2287 	return domain;
2288 }
2289 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
2290 
2291 /*
2292  * For IOMMU_DOMAIN_DMA implementations which already provide their own
2293  * guarantees that the group and its default domain are valid and correct.
2294  */
2295 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
2296 {
2297 	return dev->iommu_group->default_domain;
2298 }
2299 
2300 /*
2301  * IOMMU groups are really the natural working unit of the IOMMU, but
2302  * the IOMMU API works on domains and devices.  Bridge that gap by
2303  * iterating over the devices in a group.  Ideally we'd have a single
2304  * device which represents the requestor ID of the group, but we also
2305  * allow IOMMU drivers to create policy defined minimum sets, where
2306  * the physical hardware may be able to distiguish members, but we
2307  * wish to group them at a higher level (ex. untrusted multi-function
2308  * PCI devices).  Thus we attach each device.
2309  */
2310 static int iommu_group_do_attach_device(struct device *dev, void *data)
2311 {
2312 	struct iommu_domain *domain = data;
2313 
2314 	return __iommu_attach_device(domain, dev);
2315 }
2316 
2317 static int __iommu_attach_group(struct iommu_domain *domain,
2318 				struct iommu_group *group)
2319 {
2320 	int ret;
2321 
2322 	if (group->default_domain && group->domain != group->default_domain)
2323 		return -EBUSY;
2324 
2325 	ret = __iommu_group_for_each_dev(group, domain,
2326 					 iommu_group_do_attach_device);
2327 	if (ret == 0)
2328 		group->domain = domain;
2329 
2330 	return ret;
2331 }
2332 
2333 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
2334 {
2335 	int ret;
2336 
2337 	mutex_lock(&group->mutex);
2338 	ret = __iommu_attach_group(domain, group);
2339 	mutex_unlock(&group->mutex);
2340 
2341 	return ret;
2342 }
2343 EXPORT_SYMBOL_GPL(iommu_attach_group);
2344 
2345 static int iommu_group_do_detach_device(struct device *dev, void *data)
2346 {
2347 	struct iommu_domain *domain = data;
2348 
2349 	__iommu_detach_device(domain, dev);
2350 
2351 	return 0;
2352 }
2353 
2354 static void __iommu_detach_group(struct iommu_domain *domain,
2355 				 struct iommu_group *group)
2356 {
2357 	int ret;
2358 
2359 	if (!group->default_domain) {
2360 		__iommu_group_for_each_dev(group, domain,
2361 					   iommu_group_do_detach_device);
2362 		group->domain = NULL;
2363 		return;
2364 	}
2365 
2366 	if (group->domain == group->default_domain)
2367 		return;
2368 
2369 	/* Detach by re-attaching to the default domain */
2370 	ret = __iommu_group_for_each_dev(group, group->default_domain,
2371 					 iommu_group_do_attach_device);
2372 	if (ret != 0)
2373 		WARN_ON(1);
2374 	else
2375 		group->domain = group->default_domain;
2376 }
2377 
2378 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
2379 {
2380 	mutex_lock(&group->mutex);
2381 	__iommu_detach_group(domain, group);
2382 	mutex_unlock(&group->mutex);
2383 }
2384 EXPORT_SYMBOL_GPL(iommu_detach_group);
2385 
2386 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
2387 {
2388 	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2389 		return iova;
2390 
2391 	if (domain->type == IOMMU_DOMAIN_BLOCKED)
2392 		return 0;
2393 
2394 	return domain->ops->iova_to_phys(domain, iova);
2395 }
2396 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
2397 
2398 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova,
2399 			   phys_addr_t paddr, size_t size, size_t *count)
2400 {
2401 	unsigned int pgsize_idx, pgsize_idx_next;
2402 	unsigned long pgsizes;
2403 	size_t offset, pgsize, pgsize_next;
2404 	unsigned long addr_merge = paddr | iova;
2405 
2406 	/* Page sizes supported by the hardware and small enough for @size */
2407 	pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0);
2408 
2409 	/* Constrain the page sizes further based on the maximum alignment */
2410 	if (likely(addr_merge))
2411 		pgsizes &= GENMASK(__ffs(addr_merge), 0);
2412 
2413 	/* Make sure we have at least one suitable page size */
2414 	BUG_ON(!pgsizes);
2415 
2416 	/* Pick the biggest page size remaining */
2417 	pgsize_idx = __fls(pgsizes);
2418 	pgsize = BIT(pgsize_idx);
2419 	if (!count)
2420 		return pgsize;
2421 
2422 	/* Find the next biggest support page size, if it exists */
2423 	pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0);
2424 	if (!pgsizes)
2425 		goto out_set_count;
2426 
2427 	pgsize_idx_next = __ffs(pgsizes);
2428 	pgsize_next = BIT(pgsize_idx_next);
2429 
2430 	/*
2431 	 * There's no point trying a bigger page size unless the virtual
2432 	 * and physical addresses are similarly offset within the larger page.
2433 	 */
2434 	if ((iova ^ paddr) & (pgsize_next - 1))
2435 		goto out_set_count;
2436 
2437 	/* Calculate the offset to the next page size alignment boundary */
2438 	offset = pgsize_next - (addr_merge & (pgsize_next - 1));
2439 
2440 	/*
2441 	 * If size is big enough to accommodate the larger page, reduce
2442 	 * the number of smaller pages.
2443 	 */
2444 	if (offset + pgsize_next <= size)
2445 		size = offset;
2446 
2447 out_set_count:
2448 	*count = size >> pgsize_idx;
2449 	return pgsize;
2450 }
2451 
2452 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova,
2453 			     phys_addr_t paddr, size_t size, int prot,
2454 			     gfp_t gfp, size_t *mapped)
2455 {
2456 	const struct iommu_ops *ops = domain->ops;
2457 	size_t pgsize, count;
2458 	int ret;
2459 
2460 	pgsize = iommu_pgsize(domain, iova, paddr, size, &count);
2461 
2462 	pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n",
2463 		 iova, &paddr, pgsize, count);
2464 
2465 	if (ops->map_pages) {
2466 		ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot,
2467 				     gfp, mapped);
2468 	} else {
2469 		ret = ops->map(domain, iova, paddr, pgsize, prot, gfp);
2470 		*mapped = ret ? 0 : pgsize;
2471 	}
2472 
2473 	return ret;
2474 }
2475 
2476 static int __iommu_map(struct iommu_domain *domain, unsigned long iova,
2477 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2478 {
2479 	const struct iommu_ops *ops = domain->ops;
2480 	unsigned long orig_iova = iova;
2481 	unsigned int min_pagesz;
2482 	size_t orig_size = size;
2483 	phys_addr_t orig_paddr = paddr;
2484 	int ret = 0;
2485 
2486 	if (unlikely(!(ops->map || ops->map_pages) ||
2487 		     domain->pgsize_bitmap == 0UL))
2488 		return -ENODEV;
2489 
2490 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2491 		return -EINVAL;
2492 
2493 	/* find out the minimum page size supported */
2494 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2495 
2496 	/*
2497 	 * both the virtual address and the physical one, as well as
2498 	 * the size of the mapping, must be aligned (at least) to the
2499 	 * size of the smallest page supported by the hardware
2500 	 */
2501 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
2502 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
2503 		       iova, &paddr, size, min_pagesz);
2504 		return -EINVAL;
2505 	}
2506 
2507 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
2508 
2509 	while (size) {
2510 		size_t mapped = 0;
2511 
2512 		ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp,
2513 					&mapped);
2514 		/*
2515 		 * Some pages may have been mapped, even if an error occurred,
2516 		 * so we should account for those so they can be unmapped.
2517 		 */
2518 		size -= mapped;
2519 
2520 		if (ret)
2521 			break;
2522 
2523 		iova += mapped;
2524 		paddr += mapped;
2525 	}
2526 
2527 	/* unroll mapping in case something went wrong */
2528 	if (ret)
2529 		iommu_unmap(domain, orig_iova, orig_size - size);
2530 	else
2531 		trace_map(orig_iova, orig_paddr, orig_size);
2532 
2533 	return ret;
2534 }
2535 
2536 static int _iommu_map(struct iommu_domain *domain, unsigned long iova,
2537 		      phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2538 {
2539 	const struct iommu_ops *ops = domain->ops;
2540 	int ret;
2541 
2542 	ret = __iommu_map(domain, iova, paddr, size, prot, gfp);
2543 	if (ret == 0 && ops->iotlb_sync_map)
2544 		ops->iotlb_sync_map(domain, iova, size);
2545 
2546 	return ret;
2547 }
2548 
2549 int iommu_map(struct iommu_domain *domain, unsigned long iova,
2550 	      phys_addr_t paddr, size_t size, int prot)
2551 {
2552 	might_sleep();
2553 	return _iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL);
2554 }
2555 EXPORT_SYMBOL_GPL(iommu_map);
2556 
2557 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova,
2558 	      phys_addr_t paddr, size_t size, int prot)
2559 {
2560 	return _iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC);
2561 }
2562 EXPORT_SYMBOL_GPL(iommu_map_atomic);
2563 
2564 static size_t __iommu_unmap_pages(struct iommu_domain *domain,
2565 				  unsigned long iova, size_t size,
2566 				  struct iommu_iotlb_gather *iotlb_gather)
2567 {
2568 	const struct iommu_ops *ops = domain->ops;
2569 	size_t pgsize, count;
2570 
2571 	pgsize = iommu_pgsize(domain, iova, iova, size, &count);
2572 	return ops->unmap_pages ?
2573 	       ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) :
2574 	       ops->unmap(domain, iova, pgsize, iotlb_gather);
2575 }
2576 
2577 static size_t __iommu_unmap(struct iommu_domain *domain,
2578 			    unsigned long iova, size_t size,
2579 			    struct iommu_iotlb_gather *iotlb_gather)
2580 {
2581 	const struct iommu_ops *ops = domain->ops;
2582 	size_t unmapped_page, unmapped = 0;
2583 	unsigned long orig_iova = iova;
2584 	unsigned int min_pagesz;
2585 
2586 	if (unlikely(!(ops->unmap || ops->unmap_pages) ||
2587 		     domain->pgsize_bitmap == 0UL))
2588 		return 0;
2589 
2590 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
2591 		return 0;
2592 
2593 	/* find out the minimum page size supported */
2594 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
2595 
2596 	/*
2597 	 * The virtual address, as well as the size of the mapping, must be
2598 	 * aligned (at least) to the size of the smallest page supported
2599 	 * by the hardware
2600 	 */
2601 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
2602 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
2603 		       iova, size, min_pagesz);
2604 		return 0;
2605 	}
2606 
2607 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
2608 
2609 	/*
2610 	 * Keep iterating until we either unmap 'size' bytes (or more)
2611 	 * or we hit an area that isn't mapped.
2612 	 */
2613 	while (unmapped < size) {
2614 		unmapped_page = __iommu_unmap_pages(domain, iova,
2615 						    size - unmapped,
2616 						    iotlb_gather);
2617 		if (!unmapped_page)
2618 			break;
2619 
2620 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
2621 			 iova, unmapped_page);
2622 
2623 		iova += unmapped_page;
2624 		unmapped += unmapped_page;
2625 	}
2626 
2627 	trace_unmap(orig_iova, size, unmapped);
2628 	return unmapped;
2629 }
2630 
2631 size_t iommu_unmap(struct iommu_domain *domain,
2632 		   unsigned long iova, size_t size)
2633 {
2634 	struct iommu_iotlb_gather iotlb_gather;
2635 	size_t ret;
2636 
2637 	iommu_iotlb_gather_init(&iotlb_gather);
2638 	ret = __iommu_unmap(domain, iova, size, &iotlb_gather);
2639 	iommu_iotlb_sync(domain, &iotlb_gather);
2640 
2641 	return ret;
2642 }
2643 EXPORT_SYMBOL_GPL(iommu_unmap);
2644 
2645 size_t iommu_unmap_fast(struct iommu_domain *domain,
2646 			unsigned long iova, size_t size,
2647 			struct iommu_iotlb_gather *iotlb_gather)
2648 {
2649 	return __iommu_unmap(domain, iova, size, iotlb_gather);
2650 }
2651 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
2652 
2653 static ssize_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2654 		struct scatterlist *sg, unsigned int nents, int prot,
2655 		gfp_t gfp)
2656 {
2657 	const struct iommu_ops *ops = domain->ops;
2658 	size_t len = 0, mapped = 0;
2659 	phys_addr_t start;
2660 	unsigned int i = 0;
2661 	int ret;
2662 
2663 	while (i <= nents) {
2664 		phys_addr_t s_phys = sg_phys(sg);
2665 
2666 		if (len && s_phys != start + len) {
2667 			ret = __iommu_map(domain, iova + mapped, start,
2668 					len, prot, gfp);
2669 
2670 			if (ret)
2671 				goto out_err;
2672 
2673 			mapped += len;
2674 			len = 0;
2675 		}
2676 
2677 		if (len) {
2678 			len += sg->length;
2679 		} else {
2680 			len = sg->length;
2681 			start = s_phys;
2682 		}
2683 
2684 		if (++i < nents)
2685 			sg = sg_next(sg);
2686 	}
2687 
2688 	if (ops->iotlb_sync_map)
2689 		ops->iotlb_sync_map(domain, iova, mapped);
2690 	return mapped;
2691 
2692 out_err:
2693 	/* undo mappings already done */
2694 	iommu_unmap(domain, iova, mapped);
2695 
2696 	return ret;
2697 }
2698 
2699 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
2700 		     struct scatterlist *sg, unsigned int nents, int prot)
2701 {
2702 	might_sleep();
2703 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL);
2704 }
2705 EXPORT_SYMBOL_GPL(iommu_map_sg);
2706 
2707 ssize_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova,
2708 		    struct scatterlist *sg, unsigned int nents, int prot)
2709 {
2710 	return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
2711 }
2712 
2713 /**
2714  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
2715  * @domain: the iommu domain where the fault has happened
2716  * @dev: the device where the fault has happened
2717  * @iova: the faulting address
2718  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
2719  *
2720  * This function should be called by the low-level IOMMU implementations
2721  * whenever IOMMU faults happen, to allow high-level users, that are
2722  * interested in such events, to know about them.
2723  *
2724  * This event may be useful for several possible use cases:
2725  * - mere logging of the event
2726  * - dynamic TLB/PTE loading
2727  * - if restarting of the faulting device is required
2728  *
2729  * Returns 0 on success and an appropriate error code otherwise (if dynamic
2730  * PTE/TLB loading will one day be supported, implementations will be able
2731  * to tell whether it succeeded or not according to this return value).
2732  *
2733  * Specifically, -ENOSYS is returned if a fault handler isn't installed
2734  * (though fault handlers can also return -ENOSYS, in case they want to
2735  * elicit the default behavior of the IOMMU drivers).
2736  */
2737 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
2738 		       unsigned long iova, int flags)
2739 {
2740 	int ret = -ENOSYS;
2741 
2742 	/*
2743 	 * if upper layers showed interest and installed a fault handler,
2744 	 * invoke it.
2745 	 */
2746 	if (domain->handler)
2747 		ret = domain->handler(domain, dev, iova, flags,
2748 						domain->handler_token);
2749 
2750 	trace_io_page_fault(dev, iova, flags);
2751 	return ret;
2752 }
2753 EXPORT_SYMBOL_GPL(report_iommu_fault);
2754 
2755 static int __init iommu_init(void)
2756 {
2757 	iommu_group_kset = kset_create_and_add("iommu_groups",
2758 					       NULL, kernel_kobj);
2759 	BUG_ON(!iommu_group_kset);
2760 
2761 	iommu_debugfs_setup();
2762 
2763 	return 0;
2764 }
2765 core_initcall(iommu_init);
2766 
2767 int iommu_enable_nesting(struct iommu_domain *domain)
2768 {
2769 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2770 		return -EINVAL;
2771 	if (!domain->ops->enable_nesting)
2772 		return -EINVAL;
2773 	return domain->ops->enable_nesting(domain);
2774 }
2775 EXPORT_SYMBOL_GPL(iommu_enable_nesting);
2776 
2777 int iommu_set_pgtable_quirks(struct iommu_domain *domain,
2778 		unsigned long quirk)
2779 {
2780 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
2781 		return -EINVAL;
2782 	if (!domain->ops->set_pgtable_quirks)
2783 		return -EINVAL;
2784 	return domain->ops->set_pgtable_quirks(domain, quirk);
2785 }
2786 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks);
2787 
2788 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
2789 {
2790 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2791 
2792 	if (ops && ops->get_resv_regions)
2793 		ops->get_resv_regions(dev, list);
2794 }
2795 
2796 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
2797 {
2798 	const struct iommu_ops *ops = dev->bus->iommu_ops;
2799 
2800 	if (ops && ops->put_resv_regions)
2801 		ops->put_resv_regions(dev, list);
2802 }
2803 
2804 /**
2805  * generic_iommu_put_resv_regions - Reserved region driver helper
2806  * @dev: device for which to free reserved regions
2807  * @list: reserved region list for device
2808  *
2809  * IOMMU drivers can use this to implement their .put_resv_regions() callback
2810  * for simple reservations. Memory allocated for each reserved region will be
2811  * freed. If an IOMMU driver allocates additional resources per region, it is
2812  * going to have to implement a custom callback.
2813  */
2814 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list)
2815 {
2816 	struct iommu_resv_region *entry, *next;
2817 
2818 	list_for_each_entry_safe(entry, next, list, list)
2819 		kfree(entry);
2820 }
2821 EXPORT_SYMBOL(generic_iommu_put_resv_regions);
2822 
2823 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
2824 						  size_t length, int prot,
2825 						  enum iommu_resv_type type)
2826 {
2827 	struct iommu_resv_region *region;
2828 
2829 	region = kzalloc(sizeof(*region), GFP_KERNEL);
2830 	if (!region)
2831 		return NULL;
2832 
2833 	INIT_LIST_HEAD(&region->list);
2834 	region->start = start;
2835 	region->length = length;
2836 	region->prot = prot;
2837 	region->type = type;
2838 	return region;
2839 }
2840 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region);
2841 
2842 void iommu_set_default_passthrough(bool cmd_line)
2843 {
2844 	if (cmd_line)
2845 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2846 	iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
2847 }
2848 
2849 void iommu_set_default_translated(bool cmd_line)
2850 {
2851 	if (cmd_line)
2852 		iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API;
2853 	iommu_def_domain_type = IOMMU_DOMAIN_DMA;
2854 }
2855 
2856 bool iommu_default_passthrough(void)
2857 {
2858 	return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY;
2859 }
2860 EXPORT_SYMBOL_GPL(iommu_default_passthrough);
2861 
2862 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
2863 {
2864 	const struct iommu_ops *ops = NULL;
2865 	struct iommu_device *iommu;
2866 
2867 	spin_lock(&iommu_device_lock);
2868 	list_for_each_entry(iommu, &iommu_device_list, list)
2869 		if (iommu->fwnode == fwnode) {
2870 			ops = iommu->ops;
2871 			break;
2872 		}
2873 	spin_unlock(&iommu_device_lock);
2874 	return ops;
2875 }
2876 
2877 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
2878 		      const struct iommu_ops *ops)
2879 {
2880 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2881 
2882 	if (fwspec)
2883 		return ops == fwspec->ops ? 0 : -EINVAL;
2884 
2885 	if (!dev_iommu_get(dev))
2886 		return -ENOMEM;
2887 
2888 	/* Preallocate for the overwhelmingly common case of 1 ID */
2889 	fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL);
2890 	if (!fwspec)
2891 		return -ENOMEM;
2892 
2893 	of_node_get(to_of_node(iommu_fwnode));
2894 	fwspec->iommu_fwnode = iommu_fwnode;
2895 	fwspec->ops = ops;
2896 	dev_iommu_fwspec_set(dev, fwspec);
2897 	return 0;
2898 }
2899 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
2900 
2901 void iommu_fwspec_free(struct device *dev)
2902 {
2903 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2904 
2905 	if (fwspec) {
2906 		fwnode_handle_put(fwspec->iommu_fwnode);
2907 		kfree(fwspec);
2908 		dev_iommu_fwspec_set(dev, NULL);
2909 	}
2910 }
2911 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2912 
2913 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2914 {
2915 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2916 	int i, new_num;
2917 
2918 	if (!fwspec)
2919 		return -EINVAL;
2920 
2921 	new_num = fwspec->num_ids + num_ids;
2922 	if (new_num > 1) {
2923 		fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num),
2924 				  GFP_KERNEL);
2925 		if (!fwspec)
2926 			return -ENOMEM;
2927 
2928 		dev_iommu_fwspec_set(dev, fwspec);
2929 	}
2930 
2931 	for (i = 0; i < num_ids; i++)
2932 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2933 
2934 	fwspec->num_ids = new_num;
2935 	return 0;
2936 }
2937 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2938 
2939 /*
2940  * Per device IOMMU features.
2941  */
2942 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat)
2943 {
2944 	if (dev->iommu && dev->iommu->iommu_dev) {
2945 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2946 
2947 		if (ops->dev_enable_feat)
2948 			return ops->dev_enable_feat(dev, feat);
2949 	}
2950 
2951 	return -ENODEV;
2952 }
2953 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature);
2954 
2955 /*
2956  * The device drivers should do the necessary cleanups before calling this.
2957  * For example, before disabling the aux-domain feature, the device driver
2958  * should detach all aux-domains. Otherwise, this will return -EBUSY.
2959  */
2960 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat)
2961 {
2962 	if (dev->iommu && dev->iommu->iommu_dev) {
2963 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2964 
2965 		if (ops->dev_disable_feat)
2966 			return ops->dev_disable_feat(dev, feat);
2967 	}
2968 
2969 	return -EBUSY;
2970 }
2971 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature);
2972 
2973 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat)
2974 {
2975 	if (dev->iommu && dev->iommu->iommu_dev) {
2976 		const struct iommu_ops *ops = dev->iommu->iommu_dev->ops;
2977 
2978 		if (ops->dev_feat_enabled)
2979 			return ops->dev_feat_enabled(dev, feat);
2980 	}
2981 
2982 	return false;
2983 }
2984 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled);
2985 
2986 /*
2987  * Aux-domain specific attach/detach.
2988  *
2989  * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns
2990  * true. Also, as long as domains are attached to a device through this
2991  * interface, any tries to call iommu_attach_device() should fail
2992  * (iommu_detach_device() can't fail, so we fail when trying to re-attach).
2993  * This should make us safe against a device being attached to a guest as a
2994  * whole while there are still pasid users on it (aux and sva).
2995  */
2996 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev)
2997 {
2998 	int ret = -ENODEV;
2999 
3000 	if (domain->ops->aux_attach_dev)
3001 		ret = domain->ops->aux_attach_dev(domain, dev);
3002 
3003 	if (!ret)
3004 		trace_attach_device_to_domain(dev);
3005 
3006 	return ret;
3007 }
3008 EXPORT_SYMBOL_GPL(iommu_aux_attach_device);
3009 
3010 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev)
3011 {
3012 	if (domain->ops->aux_detach_dev) {
3013 		domain->ops->aux_detach_dev(domain, dev);
3014 		trace_detach_device_from_domain(dev);
3015 	}
3016 }
3017 EXPORT_SYMBOL_GPL(iommu_aux_detach_device);
3018 
3019 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
3020 {
3021 	int ret = -ENODEV;
3022 
3023 	if (domain->ops->aux_get_pasid)
3024 		ret = domain->ops->aux_get_pasid(domain, dev);
3025 
3026 	return ret;
3027 }
3028 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid);
3029 
3030 /**
3031  * iommu_sva_bind_device() - Bind a process address space to a device
3032  * @dev: the device
3033  * @mm: the mm to bind, caller must hold a reference to it
3034  *
3035  * Create a bond between device and address space, allowing the device to access
3036  * the mm using the returned PASID. If a bond already exists between @device and
3037  * @mm, it is returned and an additional reference is taken. Caller must call
3038  * iommu_sva_unbind_device() to release each reference.
3039  *
3040  * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to
3041  * initialize the required SVA features.
3042  *
3043  * On error, returns an ERR_PTR value.
3044  */
3045 struct iommu_sva *
3046 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata)
3047 {
3048 	struct iommu_group *group;
3049 	struct iommu_sva *handle = ERR_PTR(-EINVAL);
3050 	const struct iommu_ops *ops = dev->bus->iommu_ops;
3051 
3052 	if (!ops || !ops->sva_bind)
3053 		return ERR_PTR(-ENODEV);
3054 
3055 	group = iommu_group_get(dev);
3056 	if (!group)
3057 		return ERR_PTR(-ENODEV);
3058 
3059 	/* Ensure device count and domain don't change while we're binding */
3060 	mutex_lock(&group->mutex);
3061 
3062 	/*
3063 	 * To keep things simple, SVA currently doesn't support IOMMU groups
3064 	 * with more than one device. Existing SVA-capable systems are not
3065 	 * affected by the problems that required IOMMU groups (lack of ACS
3066 	 * isolation, device ID aliasing and other hardware issues).
3067 	 */
3068 	if (iommu_group_device_count(group) != 1)
3069 		goto out_unlock;
3070 
3071 	handle = ops->sva_bind(dev, mm, drvdata);
3072 
3073 out_unlock:
3074 	mutex_unlock(&group->mutex);
3075 	iommu_group_put(group);
3076 
3077 	return handle;
3078 }
3079 EXPORT_SYMBOL_GPL(iommu_sva_bind_device);
3080 
3081 /**
3082  * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device
3083  * @handle: the handle returned by iommu_sva_bind_device()
3084  *
3085  * Put reference to a bond between device and address space. The device should
3086  * not be issuing any more transaction for this PASID. All outstanding page
3087  * requests for this PASID must have been flushed to the IOMMU.
3088  */
3089 void iommu_sva_unbind_device(struct iommu_sva *handle)
3090 {
3091 	struct iommu_group *group;
3092 	struct device *dev = handle->dev;
3093 	const struct iommu_ops *ops = dev->bus->iommu_ops;
3094 
3095 	if (!ops || !ops->sva_unbind)
3096 		return;
3097 
3098 	group = iommu_group_get(dev);
3099 	if (!group)
3100 		return;
3101 
3102 	mutex_lock(&group->mutex);
3103 	ops->sva_unbind(handle);
3104 	mutex_unlock(&group->mutex);
3105 
3106 	iommu_group_put(group);
3107 }
3108 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device);
3109 
3110 u32 iommu_sva_get_pasid(struct iommu_sva *handle)
3111 {
3112 	const struct iommu_ops *ops = handle->dev->bus->iommu_ops;
3113 
3114 	if (!ops || !ops->sva_get_pasid)
3115 		return IOMMU_PASID_INVALID;
3116 
3117 	return ops->sva_get_pasid(handle);
3118 }
3119 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid);
3120 
3121 /*
3122  * Changes the default domain of an iommu group that has *only* one device
3123  *
3124  * @group: The group for which the default domain should be changed
3125  * @prev_dev: The device in the group (this is used to make sure that the device
3126  *	 hasn't changed after the caller has called this function)
3127  * @type: The type of the new default domain that gets associated with the group
3128  *
3129  * Returns 0 on success and error code on failure
3130  *
3131  * Note:
3132  * 1. Presently, this function is called only when user requests to change the
3133  *    group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type
3134  *    Please take a closer look if intended to use for other purposes.
3135  */
3136 static int iommu_change_dev_def_domain(struct iommu_group *group,
3137 				       struct device *prev_dev, int type)
3138 {
3139 	struct iommu_domain *prev_dom;
3140 	struct group_device *grp_dev;
3141 	int ret, dev_def_dom;
3142 	struct device *dev;
3143 
3144 	mutex_lock(&group->mutex);
3145 
3146 	if (group->default_domain != group->domain) {
3147 		dev_err_ratelimited(prev_dev, "Group not assigned to default domain\n");
3148 		ret = -EBUSY;
3149 		goto out;
3150 	}
3151 
3152 	/*
3153 	 * iommu group wasn't locked while acquiring device lock in
3154 	 * iommu_group_store_type(). So, make sure that the device count hasn't
3155 	 * changed while acquiring device lock.
3156 	 *
3157 	 * Changing default domain of an iommu group with two or more devices
3158 	 * isn't supported because there could be a potential deadlock. Consider
3159 	 * the following scenario. T1 is trying to acquire device locks of all
3160 	 * the devices in the group and before it could acquire all of them,
3161 	 * there could be another thread T2 (from different sub-system and use
3162 	 * case) that has already acquired some of the device locks and might be
3163 	 * waiting for T1 to release other device locks.
3164 	 */
3165 	if (iommu_group_device_count(group) != 1) {
3166 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Group has more than one device\n");
3167 		ret = -EINVAL;
3168 		goto out;
3169 	}
3170 
3171 	/* Since group has only one device */
3172 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3173 	dev = grp_dev->dev;
3174 
3175 	if (prev_dev != dev) {
3176 		dev_err_ratelimited(prev_dev, "Cannot change default domain: Device has been changed\n");
3177 		ret = -EBUSY;
3178 		goto out;
3179 	}
3180 
3181 	prev_dom = group->default_domain;
3182 	if (!prev_dom) {
3183 		ret = -EINVAL;
3184 		goto out;
3185 	}
3186 
3187 	dev_def_dom = iommu_get_def_domain_type(dev);
3188 	if (!type) {
3189 		/*
3190 		 * If the user hasn't requested any specific type of domain and
3191 		 * if the device supports both the domains, then default to the
3192 		 * domain the device was booted with
3193 		 */
3194 		type = dev_def_dom ? : iommu_def_domain_type;
3195 	} else if (dev_def_dom && type != dev_def_dom) {
3196 		dev_err_ratelimited(prev_dev, "Device cannot be in %s domain\n",
3197 				    iommu_domain_type_str(type));
3198 		ret = -EINVAL;
3199 		goto out;
3200 	}
3201 
3202 	/*
3203 	 * Switch to a new domain only if the requested domain type is different
3204 	 * from the existing default domain type
3205 	 */
3206 	if (prev_dom->type == type) {
3207 		ret = 0;
3208 		goto out;
3209 	}
3210 
3211 	/* We can bring up a flush queue without tearing down the domain */
3212 	if (type == IOMMU_DOMAIN_DMA_FQ && prev_dom->type == IOMMU_DOMAIN_DMA) {
3213 		ret = iommu_dma_init_fq(prev_dom);
3214 		if (!ret)
3215 			prev_dom->type = IOMMU_DOMAIN_DMA_FQ;
3216 		goto out;
3217 	}
3218 
3219 	/* Sets group->default_domain to the newly allocated domain */
3220 	ret = iommu_group_alloc_default_domain(dev->bus, group, type);
3221 	if (ret)
3222 		goto out;
3223 
3224 	ret = iommu_create_device_direct_mappings(group, dev);
3225 	if (ret)
3226 		goto free_new_domain;
3227 
3228 	ret = __iommu_attach_device(group->default_domain, dev);
3229 	if (ret)
3230 		goto free_new_domain;
3231 
3232 	group->domain = group->default_domain;
3233 
3234 	/*
3235 	 * Release the mutex here because ops->probe_finalize() call-back of
3236 	 * some vendor IOMMU drivers calls arm_iommu_attach_device() which
3237 	 * in-turn might call back into IOMMU core code, where it tries to take
3238 	 * group->mutex, resulting in a deadlock.
3239 	 */
3240 	mutex_unlock(&group->mutex);
3241 
3242 	/* Make sure dma_ops is appropriatley set */
3243 	iommu_group_do_probe_finalize(dev, group->default_domain);
3244 	iommu_domain_free(prev_dom);
3245 	return 0;
3246 
3247 free_new_domain:
3248 	iommu_domain_free(group->default_domain);
3249 	group->default_domain = prev_dom;
3250 	group->domain = prev_dom;
3251 
3252 out:
3253 	mutex_unlock(&group->mutex);
3254 
3255 	return ret;
3256 }
3257 
3258 /*
3259  * Changing the default domain through sysfs requires the users to unbind the
3260  * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ
3261  * transition. Return failure if this isn't met.
3262  *
3263  * We need to consider the race between this and the device release path.
3264  * device_lock(dev) is used here to guarantee that the device release path
3265  * will not be entered at the same time.
3266  */
3267 static ssize_t iommu_group_store_type(struct iommu_group *group,
3268 				      const char *buf, size_t count)
3269 {
3270 	struct group_device *grp_dev;
3271 	struct device *dev;
3272 	int ret, req_type;
3273 
3274 	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
3275 		return -EACCES;
3276 
3277 	if (WARN_ON(!group))
3278 		return -EINVAL;
3279 
3280 	if (sysfs_streq(buf, "identity"))
3281 		req_type = IOMMU_DOMAIN_IDENTITY;
3282 	else if (sysfs_streq(buf, "DMA"))
3283 		req_type = IOMMU_DOMAIN_DMA;
3284 	else if (sysfs_streq(buf, "DMA-FQ"))
3285 		req_type = IOMMU_DOMAIN_DMA_FQ;
3286 	else if (sysfs_streq(buf, "auto"))
3287 		req_type = 0;
3288 	else
3289 		return -EINVAL;
3290 
3291 	/*
3292 	 * Lock/Unlock the group mutex here before device lock to
3293 	 * 1. Make sure that the iommu group has only one device (this is a
3294 	 *    prerequisite for step 2)
3295 	 * 2. Get struct *dev which is needed to lock device
3296 	 */
3297 	mutex_lock(&group->mutex);
3298 	if (iommu_group_device_count(group) != 1) {
3299 		mutex_unlock(&group->mutex);
3300 		pr_err_ratelimited("Cannot change default domain: Group has more than one device\n");
3301 		return -EINVAL;
3302 	}
3303 
3304 	/* Since group has only one device */
3305 	grp_dev = list_first_entry(&group->devices, struct group_device, list);
3306 	dev = grp_dev->dev;
3307 	get_device(dev);
3308 
3309 	/*
3310 	 * Don't hold the group mutex because taking group mutex first and then
3311 	 * the device lock could potentially cause a deadlock as below. Assume
3312 	 * two threads T1 and T2. T1 is trying to change default domain of an
3313 	 * iommu group and T2 is trying to hot unplug a device or release [1] VF
3314 	 * of a PCIe device which is in the same iommu group. T1 takes group
3315 	 * mutex and before it could take device lock assume T2 has taken device
3316 	 * lock and is yet to take group mutex. Now, both the threads will be
3317 	 * waiting for the other thread to release lock. Below, lock order was
3318 	 * suggested.
3319 	 * device_lock(dev);
3320 	 *	mutex_lock(&group->mutex);
3321 	 *		iommu_change_dev_def_domain();
3322 	 *	mutex_unlock(&group->mutex);
3323 	 * device_unlock(dev);
3324 	 *
3325 	 * [1] Typical device release path
3326 	 * device_lock() from device/driver core code
3327 	 *  -> bus_notifier()
3328 	 *   -> iommu_bus_notifier()
3329 	 *    -> iommu_release_device()
3330 	 *     -> ops->release_device() vendor driver calls back iommu core code
3331 	 *      -> mutex_lock() from iommu core code
3332 	 */
3333 	mutex_unlock(&group->mutex);
3334 
3335 	/* Check if the device in the group still has a driver bound to it */
3336 	device_lock(dev);
3337 	if (device_is_bound(dev) && !(req_type == IOMMU_DOMAIN_DMA_FQ &&
3338 	    group->default_domain->type == IOMMU_DOMAIN_DMA)) {
3339 		pr_err_ratelimited("Device is still bound to driver\n");
3340 		ret = -EBUSY;
3341 		goto out;
3342 	}
3343 
3344 	ret = iommu_change_dev_def_domain(group, dev, req_type);
3345 	ret = ret ?: count;
3346 
3347 out:
3348 	device_unlock(dev);
3349 	put_device(dev);
3350 
3351 	return ret;
3352 }
3353