1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/device.h> 10 #include <linux/kernel.h> 11 #include <linux/bug.h> 12 #include <linux/types.h> 13 #include <linux/init.h> 14 #include <linux/export.h> 15 #include <linux/slab.h> 16 #include <linux/errno.h> 17 #include <linux/iommu.h> 18 #include <linux/idr.h> 19 #include <linux/notifier.h> 20 #include <linux/err.h> 21 #include <linux/pci.h> 22 #include <linux/bitops.h> 23 #include <linux/property.h> 24 #include <linux/fsl/mc.h> 25 #include <linux/module.h> 26 #include <trace/events/iommu.h> 27 28 static struct kset *iommu_group_kset; 29 static DEFINE_IDA(iommu_group_ida); 30 31 static unsigned int iommu_def_domain_type __read_mostly; 32 static bool iommu_dma_strict __read_mostly = true; 33 static u32 iommu_cmd_line __read_mostly; 34 35 struct iommu_group { 36 struct kobject kobj; 37 struct kobject *devices_kobj; 38 struct list_head devices; 39 struct mutex mutex; 40 struct blocking_notifier_head notifier; 41 void *iommu_data; 42 void (*iommu_data_release)(void *iommu_data); 43 char *name; 44 int id; 45 struct iommu_domain *default_domain; 46 struct iommu_domain *domain; 47 }; 48 49 struct group_device { 50 struct list_head list; 51 struct device *dev; 52 char *name; 53 }; 54 55 struct iommu_group_attribute { 56 struct attribute attr; 57 ssize_t (*show)(struct iommu_group *group, char *buf); 58 ssize_t (*store)(struct iommu_group *group, 59 const char *buf, size_t count); 60 }; 61 62 static const char * const iommu_group_resv_type_string[] = { 63 [IOMMU_RESV_DIRECT] = "direct", 64 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 65 [IOMMU_RESV_RESERVED] = "reserved", 66 [IOMMU_RESV_MSI] = "msi", 67 [IOMMU_RESV_SW_MSI] = "msi", 68 }; 69 70 #define IOMMU_CMD_LINE_DMA_API BIT(0) 71 72 static void iommu_set_cmd_line_dma_api(void) 73 { 74 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 75 } 76 77 static bool iommu_cmd_line_dma_api(void) 78 { 79 return !!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API); 80 } 81 82 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 83 struct iommu_group_attribute iommu_group_attr_##_name = \ 84 __ATTR(_name, _mode, _show, _store) 85 86 #define to_iommu_group_attr(_attr) \ 87 container_of(_attr, struct iommu_group_attribute, attr) 88 #define to_iommu_group(_kobj) \ 89 container_of(_kobj, struct iommu_group, kobj) 90 91 static LIST_HEAD(iommu_device_list); 92 static DEFINE_SPINLOCK(iommu_device_lock); 93 94 /* 95 * Use a function instead of an array here because the domain-type is a 96 * bit-field, so an array would waste memory. 97 */ 98 static const char *iommu_domain_type_str(unsigned int t) 99 { 100 switch (t) { 101 case IOMMU_DOMAIN_BLOCKED: 102 return "Blocked"; 103 case IOMMU_DOMAIN_IDENTITY: 104 return "Passthrough"; 105 case IOMMU_DOMAIN_UNMANAGED: 106 return "Unmanaged"; 107 case IOMMU_DOMAIN_DMA: 108 return "Translated"; 109 default: 110 return "Unknown"; 111 } 112 } 113 114 static int __init iommu_subsys_init(void) 115 { 116 bool cmd_line = iommu_cmd_line_dma_api(); 117 118 if (!cmd_line) { 119 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 120 iommu_set_default_passthrough(false); 121 else 122 iommu_set_default_translated(false); 123 124 if (iommu_default_passthrough() && mem_encrypt_active()) { 125 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 126 iommu_set_default_translated(false); 127 } 128 } 129 130 pr_info("Default domain type: %s %s\n", 131 iommu_domain_type_str(iommu_def_domain_type), 132 cmd_line ? "(set via kernel command line)" : ""); 133 134 return 0; 135 } 136 subsys_initcall(iommu_subsys_init); 137 138 int iommu_device_register(struct iommu_device *iommu) 139 { 140 spin_lock(&iommu_device_lock); 141 list_add_tail(&iommu->list, &iommu_device_list); 142 spin_unlock(&iommu_device_lock); 143 return 0; 144 } 145 EXPORT_SYMBOL_GPL(iommu_device_register); 146 147 void iommu_device_unregister(struct iommu_device *iommu) 148 { 149 spin_lock(&iommu_device_lock); 150 list_del(&iommu->list); 151 spin_unlock(&iommu_device_lock); 152 } 153 EXPORT_SYMBOL_GPL(iommu_device_unregister); 154 155 static struct dev_iommu *dev_iommu_get(struct device *dev) 156 { 157 struct dev_iommu *param = dev->iommu; 158 159 if (param) 160 return param; 161 162 param = kzalloc(sizeof(*param), GFP_KERNEL); 163 if (!param) 164 return NULL; 165 166 mutex_init(¶m->lock); 167 dev->iommu = param; 168 return param; 169 } 170 171 static void dev_iommu_free(struct device *dev) 172 { 173 iommu_fwspec_free(dev); 174 kfree(dev->iommu); 175 dev->iommu = NULL; 176 } 177 178 int iommu_probe_device(struct device *dev) 179 { 180 const struct iommu_ops *ops = dev->bus->iommu_ops; 181 int ret; 182 183 WARN_ON(dev->iommu_group); 184 if (!ops) 185 return -EINVAL; 186 187 if (!dev_iommu_get(dev)) 188 return -ENOMEM; 189 190 if (!try_module_get(ops->owner)) { 191 ret = -EINVAL; 192 goto err_free_dev_param; 193 } 194 195 ret = ops->add_device(dev); 196 if (ret) 197 goto err_module_put; 198 199 return 0; 200 201 err_module_put: 202 module_put(ops->owner); 203 err_free_dev_param: 204 dev_iommu_free(dev); 205 return ret; 206 } 207 208 void iommu_release_device(struct device *dev) 209 { 210 const struct iommu_ops *ops = dev->bus->iommu_ops; 211 212 if (dev->iommu_group) 213 ops->remove_device(dev); 214 215 if (dev->iommu) { 216 module_put(ops->owner); 217 dev_iommu_free(dev); 218 } 219 } 220 221 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 222 unsigned type); 223 static int __iommu_attach_device(struct iommu_domain *domain, 224 struct device *dev); 225 static int __iommu_attach_group(struct iommu_domain *domain, 226 struct iommu_group *group); 227 static void __iommu_detach_group(struct iommu_domain *domain, 228 struct iommu_group *group); 229 230 static int __init iommu_set_def_domain_type(char *str) 231 { 232 bool pt; 233 int ret; 234 235 ret = kstrtobool(str, &pt); 236 if (ret) 237 return ret; 238 239 if (pt) 240 iommu_set_default_passthrough(true); 241 else 242 iommu_set_default_translated(true); 243 244 return 0; 245 } 246 early_param("iommu.passthrough", iommu_set_def_domain_type); 247 248 static int __init iommu_dma_setup(char *str) 249 { 250 return kstrtobool(str, &iommu_dma_strict); 251 } 252 early_param("iommu.strict", iommu_dma_setup); 253 254 static ssize_t iommu_group_attr_show(struct kobject *kobj, 255 struct attribute *__attr, char *buf) 256 { 257 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 258 struct iommu_group *group = to_iommu_group(kobj); 259 ssize_t ret = -EIO; 260 261 if (attr->show) 262 ret = attr->show(group, buf); 263 return ret; 264 } 265 266 static ssize_t iommu_group_attr_store(struct kobject *kobj, 267 struct attribute *__attr, 268 const char *buf, size_t count) 269 { 270 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 271 struct iommu_group *group = to_iommu_group(kobj); 272 ssize_t ret = -EIO; 273 274 if (attr->store) 275 ret = attr->store(group, buf, count); 276 return ret; 277 } 278 279 static const struct sysfs_ops iommu_group_sysfs_ops = { 280 .show = iommu_group_attr_show, 281 .store = iommu_group_attr_store, 282 }; 283 284 static int iommu_group_create_file(struct iommu_group *group, 285 struct iommu_group_attribute *attr) 286 { 287 return sysfs_create_file(&group->kobj, &attr->attr); 288 } 289 290 static void iommu_group_remove_file(struct iommu_group *group, 291 struct iommu_group_attribute *attr) 292 { 293 sysfs_remove_file(&group->kobj, &attr->attr); 294 } 295 296 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 297 { 298 return sprintf(buf, "%s\n", group->name); 299 } 300 301 /** 302 * iommu_insert_resv_region - Insert a new region in the 303 * list of reserved regions. 304 * @new: new region to insert 305 * @regions: list of regions 306 * 307 * Elements are sorted by start address and overlapping segments 308 * of the same type are merged. 309 */ 310 int iommu_insert_resv_region(struct iommu_resv_region *new, 311 struct list_head *regions) 312 { 313 struct iommu_resv_region *iter, *tmp, *nr, *top; 314 LIST_HEAD(stack); 315 316 nr = iommu_alloc_resv_region(new->start, new->length, 317 new->prot, new->type); 318 if (!nr) 319 return -ENOMEM; 320 321 /* First add the new element based on start address sorting */ 322 list_for_each_entry(iter, regions, list) { 323 if (nr->start < iter->start || 324 (nr->start == iter->start && nr->type <= iter->type)) 325 break; 326 } 327 list_add_tail(&nr->list, &iter->list); 328 329 /* Merge overlapping segments of type nr->type in @regions, if any */ 330 list_for_each_entry_safe(iter, tmp, regions, list) { 331 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 332 333 /* no merge needed on elements of different types than @new */ 334 if (iter->type != new->type) { 335 list_move_tail(&iter->list, &stack); 336 continue; 337 } 338 339 /* look for the last stack element of same type as @iter */ 340 list_for_each_entry_reverse(top, &stack, list) 341 if (top->type == iter->type) 342 goto check_overlap; 343 344 list_move_tail(&iter->list, &stack); 345 continue; 346 347 check_overlap: 348 top_end = top->start + top->length - 1; 349 350 if (iter->start > top_end + 1) { 351 list_move_tail(&iter->list, &stack); 352 } else { 353 top->length = max(top_end, iter_end) - top->start + 1; 354 list_del(&iter->list); 355 kfree(iter); 356 } 357 } 358 list_splice(&stack, regions); 359 return 0; 360 } 361 362 static int 363 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 364 struct list_head *group_resv_regions) 365 { 366 struct iommu_resv_region *entry; 367 int ret = 0; 368 369 list_for_each_entry(entry, dev_resv_regions, list) { 370 ret = iommu_insert_resv_region(entry, group_resv_regions); 371 if (ret) 372 break; 373 } 374 return ret; 375 } 376 377 int iommu_get_group_resv_regions(struct iommu_group *group, 378 struct list_head *head) 379 { 380 struct group_device *device; 381 int ret = 0; 382 383 mutex_lock(&group->mutex); 384 list_for_each_entry(device, &group->devices, list) { 385 struct list_head dev_resv_regions; 386 387 INIT_LIST_HEAD(&dev_resv_regions); 388 iommu_get_resv_regions(device->dev, &dev_resv_regions); 389 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 390 iommu_put_resv_regions(device->dev, &dev_resv_regions); 391 if (ret) 392 break; 393 } 394 mutex_unlock(&group->mutex); 395 return ret; 396 } 397 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 398 399 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 400 char *buf) 401 { 402 struct iommu_resv_region *region, *next; 403 struct list_head group_resv_regions; 404 char *str = buf; 405 406 INIT_LIST_HEAD(&group_resv_regions); 407 iommu_get_group_resv_regions(group, &group_resv_regions); 408 409 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 410 str += sprintf(str, "0x%016llx 0x%016llx %s\n", 411 (long long int)region->start, 412 (long long int)(region->start + 413 region->length - 1), 414 iommu_group_resv_type_string[region->type]); 415 kfree(region); 416 } 417 418 return (str - buf); 419 } 420 421 static ssize_t iommu_group_show_type(struct iommu_group *group, 422 char *buf) 423 { 424 char *type = "unknown\n"; 425 426 if (group->default_domain) { 427 switch (group->default_domain->type) { 428 case IOMMU_DOMAIN_BLOCKED: 429 type = "blocked\n"; 430 break; 431 case IOMMU_DOMAIN_IDENTITY: 432 type = "identity\n"; 433 break; 434 case IOMMU_DOMAIN_UNMANAGED: 435 type = "unmanaged\n"; 436 break; 437 case IOMMU_DOMAIN_DMA: 438 type = "DMA\n"; 439 break; 440 } 441 } 442 strcpy(buf, type); 443 444 return strlen(type); 445 } 446 447 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 448 449 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 450 iommu_group_show_resv_regions, NULL); 451 452 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL); 453 454 static void iommu_group_release(struct kobject *kobj) 455 { 456 struct iommu_group *group = to_iommu_group(kobj); 457 458 pr_debug("Releasing group %d\n", group->id); 459 460 if (group->iommu_data_release) 461 group->iommu_data_release(group->iommu_data); 462 463 ida_simple_remove(&iommu_group_ida, group->id); 464 465 if (group->default_domain) 466 iommu_domain_free(group->default_domain); 467 468 kfree(group->name); 469 kfree(group); 470 } 471 472 static struct kobj_type iommu_group_ktype = { 473 .sysfs_ops = &iommu_group_sysfs_ops, 474 .release = iommu_group_release, 475 }; 476 477 /** 478 * iommu_group_alloc - Allocate a new group 479 * 480 * This function is called by an iommu driver to allocate a new iommu 481 * group. The iommu group represents the minimum granularity of the iommu. 482 * Upon successful return, the caller holds a reference to the supplied 483 * group in order to hold the group until devices are added. Use 484 * iommu_group_put() to release this extra reference count, allowing the 485 * group to be automatically reclaimed once it has no devices or external 486 * references. 487 */ 488 struct iommu_group *iommu_group_alloc(void) 489 { 490 struct iommu_group *group; 491 int ret; 492 493 group = kzalloc(sizeof(*group), GFP_KERNEL); 494 if (!group) 495 return ERR_PTR(-ENOMEM); 496 497 group->kobj.kset = iommu_group_kset; 498 mutex_init(&group->mutex); 499 INIT_LIST_HEAD(&group->devices); 500 BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier); 501 502 ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL); 503 if (ret < 0) { 504 kfree(group); 505 return ERR_PTR(ret); 506 } 507 group->id = ret; 508 509 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 510 NULL, "%d", group->id); 511 if (ret) { 512 ida_simple_remove(&iommu_group_ida, group->id); 513 kfree(group); 514 return ERR_PTR(ret); 515 } 516 517 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 518 if (!group->devices_kobj) { 519 kobject_put(&group->kobj); /* triggers .release & free */ 520 return ERR_PTR(-ENOMEM); 521 } 522 523 /* 524 * The devices_kobj holds a reference on the group kobject, so 525 * as long as that exists so will the group. We can therefore 526 * use the devices_kobj for reference counting. 527 */ 528 kobject_put(&group->kobj); 529 530 ret = iommu_group_create_file(group, 531 &iommu_group_attr_reserved_regions); 532 if (ret) 533 return ERR_PTR(ret); 534 535 ret = iommu_group_create_file(group, &iommu_group_attr_type); 536 if (ret) 537 return ERR_PTR(ret); 538 539 pr_debug("Allocated group %d\n", group->id); 540 541 return group; 542 } 543 EXPORT_SYMBOL_GPL(iommu_group_alloc); 544 545 struct iommu_group *iommu_group_get_by_id(int id) 546 { 547 struct kobject *group_kobj; 548 struct iommu_group *group; 549 const char *name; 550 551 if (!iommu_group_kset) 552 return NULL; 553 554 name = kasprintf(GFP_KERNEL, "%d", id); 555 if (!name) 556 return NULL; 557 558 group_kobj = kset_find_obj(iommu_group_kset, name); 559 kfree(name); 560 561 if (!group_kobj) 562 return NULL; 563 564 group = container_of(group_kobj, struct iommu_group, kobj); 565 BUG_ON(group->id != id); 566 567 kobject_get(group->devices_kobj); 568 kobject_put(&group->kobj); 569 570 return group; 571 } 572 EXPORT_SYMBOL_GPL(iommu_group_get_by_id); 573 574 /** 575 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 576 * @group: the group 577 * 578 * iommu drivers can store data in the group for use when doing iommu 579 * operations. This function provides a way to retrieve it. Caller 580 * should hold a group reference. 581 */ 582 void *iommu_group_get_iommudata(struct iommu_group *group) 583 { 584 return group->iommu_data; 585 } 586 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 587 588 /** 589 * iommu_group_set_iommudata - set iommu_data for a group 590 * @group: the group 591 * @iommu_data: new data 592 * @release: release function for iommu_data 593 * 594 * iommu drivers can store data in the group for use when doing iommu 595 * operations. This function provides a way to set the data after 596 * the group has been allocated. Caller should hold a group reference. 597 */ 598 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 599 void (*release)(void *iommu_data)) 600 { 601 group->iommu_data = iommu_data; 602 group->iommu_data_release = release; 603 } 604 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 605 606 /** 607 * iommu_group_set_name - set name for a group 608 * @group: the group 609 * @name: name 610 * 611 * Allow iommu driver to set a name for a group. When set it will 612 * appear in a name attribute file under the group in sysfs. 613 */ 614 int iommu_group_set_name(struct iommu_group *group, const char *name) 615 { 616 int ret; 617 618 if (group->name) { 619 iommu_group_remove_file(group, &iommu_group_attr_name); 620 kfree(group->name); 621 group->name = NULL; 622 if (!name) 623 return 0; 624 } 625 626 group->name = kstrdup(name, GFP_KERNEL); 627 if (!group->name) 628 return -ENOMEM; 629 630 ret = iommu_group_create_file(group, &iommu_group_attr_name); 631 if (ret) { 632 kfree(group->name); 633 group->name = NULL; 634 return ret; 635 } 636 637 return 0; 638 } 639 EXPORT_SYMBOL_GPL(iommu_group_set_name); 640 641 static int iommu_group_create_direct_mappings(struct iommu_group *group, 642 struct device *dev) 643 { 644 struct iommu_domain *domain = group->default_domain; 645 struct iommu_resv_region *entry; 646 struct list_head mappings; 647 unsigned long pg_size; 648 int ret = 0; 649 650 if (!domain || domain->type != IOMMU_DOMAIN_DMA) 651 return 0; 652 653 BUG_ON(!domain->pgsize_bitmap); 654 655 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 656 INIT_LIST_HEAD(&mappings); 657 658 iommu_get_resv_regions(dev, &mappings); 659 660 /* We need to consider overlapping regions for different devices */ 661 list_for_each_entry(entry, &mappings, list) { 662 dma_addr_t start, end, addr; 663 664 if (domain->ops->apply_resv_region) 665 domain->ops->apply_resv_region(dev, domain, entry); 666 667 start = ALIGN(entry->start, pg_size); 668 end = ALIGN(entry->start + entry->length, pg_size); 669 670 if (entry->type != IOMMU_RESV_DIRECT && 671 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 672 continue; 673 674 for (addr = start; addr < end; addr += pg_size) { 675 phys_addr_t phys_addr; 676 677 phys_addr = iommu_iova_to_phys(domain, addr); 678 if (phys_addr) 679 continue; 680 681 ret = iommu_map(domain, addr, addr, pg_size, entry->prot); 682 if (ret) 683 goto out; 684 } 685 686 } 687 688 iommu_flush_tlb_all(domain); 689 690 out: 691 iommu_put_resv_regions(dev, &mappings); 692 693 return ret; 694 } 695 696 /** 697 * iommu_group_add_device - add a device to an iommu group 698 * @group: the group into which to add the device (reference should be held) 699 * @dev: the device 700 * 701 * This function is called by an iommu driver to add a device into a 702 * group. Adding a device increments the group reference count. 703 */ 704 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 705 { 706 int ret, i = 0; 707 struct group_device *device; 708 709 device = kzalloc(sizeof(*device), GFP_KERNEL); 710 if (!device) 711 return -ENOMEM; 712 713 device->dev = dev; 714 715 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 716 if (ret) 717 goto err_free_device; 718 719 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 720 rename: 721 if (!device->name) { 722 ret = -ENOMEM; 723 goto err_remove_link; 724 } 725 726 ret = sysfs_create_link_nowarn(group->devices_kobj, 727 &dev->kobj, device->name); 728 if (ret) { 729 if (ret == -EEXIST && i >= 0) { 730 /* 731 * Account for the slim chance of collision 732 * and append an instance to the name. 733 */ 734 kfree(device->name); 735 device->name = kasprintf(GFP_KERNEL, "%s.%d", 736 kobject_name(&dev->kobj), i++); 737 goto rename; 738 } 739 goto err_free_name; 740 } 741 742 kobject_get(group->devices_kobj); 743 744 dev->iommu_group = group; 745 746 iommu_group_create_direct_mappings(group, dev); 747 748 mutex_lock(&group->mutex); 749 list_add_tail(&device->list, &group->devices); 750 if (group->domain) 751 ret = __iommu_attach_device(group->domain, dev); 752 mutex_unlock(&group->mutex); 753 if (ret) 754 goto err_put_group; 755 756 /* Notify any listeners about change to group. */ 757 blocking_notifier_call_chain(&group->notifier, 758 IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev); 759 760 trace_add_device_to_group(group->id, dev); 761 762 dev_info(dev, "Adding to iommu group %d\n", group->id); 763 764 return 0; 765 766 err_put_group: 767 mutex_lock(&group->mutex); 768 list_del(&device->list); 769 mutex_unlock(&group->mutex); 770 dev->iommu_group = NULL; 771 kobject_put(group->devices_kobj); 772 sysfs_remove_link(group->devices_kobj, device->name); 773 err_free_name: 774 kfree(device->name); 775 err_remove_link: 776 sysfs_remove_link(&dev->kobj, "iommu_group"); 777 err_free_device: 778 kfree(device); 779 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 780 return ret; 781 } 782 EXPORT_SYMBOL_GPL(iommu_group_add_device); 783 784 /** 785 * iommu_group_remove_device - remove a device from it's current group 786 * @dev: device to be removed 787 * 788 * This function is called by an iommu driver to remove the device from 789 * it's current group. This decrements the iommu group reference count. 790 */ 791 void iommu_group_remove_device(struct device *dev) 792 { 793 struct iommu_group *group = dev->iommu_group; 794 struct group_device *tmp_device, *device = NULL; 795 796 dev_info(dev, "Removing from iommu group %d\n", group->id); 797 798 /* Pre-notify listeners that a device is being removed. */ 799 blocking_notifier_call_chain(&group->notifier, 800 IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev); 801 802 mutex_lock(&group->mutex); 803 list_for_each_entry(tmp_device, &group->devices, list) { 804 if (tmp_device->dev == dev) { 805 device = tmp_device; 806 list_del(&device->list); 807 break; 808 } 809 } 810 mutex_unlock(&group->mutex); 811 812 if (!device) 813 return; 814 815 sysfs_remove_link(group->devices_kobj, device->name); 816 sysfs_remove_link(&dev->kobj, "iommu_group"); 817 818 trace_remove_device_from_group(group->id, dev); 819 820 kfree(device->name); 821 kfree(device); 822 dev->iommu_group = NULL; 823 kobject_put(group->devices_kobj); 824 } 825 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 826 827 static int iommu_group_device_count(struct iommu_group *group) 828 { 829 struct group_device *entry; 830 int ret = 0; 831 832 list_for_each_entry(entry, &group->devices, list) 833 ret++; 834 835 return ret; 836 } 837 838 /** 839 * iommu_group_for_each_dev - iterate over each device in the group 840 * @group: the group 841 * @data: caller opaque data to be passed to callback function 842 * @fn: caller supplied callback function 843 * 844 * This function is called by group users to iterate over group devices. 845 * Callers should hold a reference count to the group during callback. 846 * The group->mutex is held across callbacks, which will block calls to 847 * iommu_group_add/remove_device. 848 */ 849 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 850 int (*fn)(struct device *, void *)) 851 { 852 struct group_device *device; 853 int ret = 0; 854 855 list_for_each_entry(device, &group->devices, list) { 856 ret = fn(device->dev, data); 857 if (ret) 858 break; 859 } 860 return ret; 861 } 862 863 864 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 865 int (*fn)(struct device *, void *)) 866 { 867 int ret; 868 869 mutex_lock(&group->mutex); 870 ret = __iommu_group_for_each_dev(group, data, fn); 871 mutex_unlock(&group->mutex); 872 873 return ret; 874 } 875 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 876 877 /** 878 * iommu_group_get - Return the group for a device and increment reference 879 * @dev: get the group that this device belongs to 880 * 881 * This function is called by iommu drivers and users to get the group 882 * for the specified device. If found, the group is returned and the group 883 * reference in incremented, else NULL. 884 */ 885 struct iommu_group *iommu_group_get(struct device *dev) 886 { 887 struct iommu_group *group = dev->iommu_group; 888 889 if (group) 890 kobject_get(group->devices_kobj); 891 892 return group; 893 } 894 EXPORT_SYMBOL_GPL(iommu_group_get); 895 896 /** 897 * iommu_group_ref_get - Increment reference on a group 898 * @group: the group to use, must not be NULL 899 * 900 * This function is called by iommu drivers to take additional references on an 901 * existing group. Returns the given group for convenience. 902 */ 903 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 904 { 905 kobject_get(group->devices_kobj); 906 return group; 907 } 908 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 909 910 /** 911 * iommu_group_put - Decrement group reference 912 * @group: the group to use 913 * 914 * This function is called by iommu drivers and users to release the 915 * iommu group. Once the reference count is zero, the group is released. 916 */ 917 void iommu_group_put(struct iommu_group *group) 918 { 919 if (group) 920 kobject_put(group->devices_kobj); 921 } 922 EXPORT_SYMBOL_GPL(iommu_group_put); 923 924 /** 925 * iommu_group_register_notifier - Register a notifier for group changes 926 * @group: the group to watch 927 * @nb: notifier block to signal 928 * 929 * This function allows iommu group users to track changes in a group. 930 * See include/linux/iommu.h for actions sent via this notifier. Caller 931 * should hold a reference to the group throughout notifier registration. 932 */ 933 int iommu_group_register_notifier(struct iommu_group *group, 934 struct notifier_block *nb) 935 { 936 return blocking_notifier_chain_register(&group->notifier, nb); 937 } 938 EXPORT_SYMBOL_GPL(iommu_group_register_notifier); 939 940 /** 941 * iommu_group_unregister_notifier - Unregister a notifier 942 * @group: the group to watch 943 * @nb: notifier block to signal 944 * 945 * Unregister a previously registered group notifier block. 946 */ 947 int iommu_group_unregister_notifier(struct iommu_group *group, 948 struct notifier_block *nb) 949 { 950 return blocking_notifier_chain_unregister(&group->notifier, nb); 951 } 952 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier); 953 954 /** 955 * iommu_register_device_fault_handler() - Register a device fault handler 956 * @dev: the device 957 * @handler: the fault handler 958 * @data: private data passed as argument to the handler 959 * 960 * When an IOMMU fault event is received, this handler gets called with the 961 * fault event and data as argument. The handler should return 0 on success. If 962 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 963 * complete the fault by calling iommu_page_response() with one of the following 964 * response code: 965 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 966 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 967 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 968 * page faults if possible. 969 * 970 * Return 0 if the fault handler was installed successfully, or an error. 971 */ 972 int iommu_register_device_fault_handler(struct device *dev, 973 iommu_dev_fault_handler_t handler, 974 void *data) 975 { 976 struct dev_iommu *param = dev->iommu; 977 int ret = 0; 978 979 if (!param) 980 return -EINVAL; 981 982 mutex_lock(¶m->lock); 983 /* Only allow one fault handler registered for each device */ 984 if (param->fault_param) { 985 ret = -EBUSY; 986 goto done_unlock; 987 } 988 989 get_device(dev); 990 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 991 if (!param->fault_param) { 992 put_device(dev); 993 ret = -ENOMEM; 994 goto done_unlock; 995 } 996 param->fault_param->handler = handler; 997 param->fault_param->data = data; 998 mutex_init(¶m->fault_param->lock); 999 INIT_LIST_HEAD(¶m->fault_param->faults); 1000 1001 done_unlock: 1002 mutex_unlock(¶m->lock); 1003 1004 return ret; 1005 } 1006 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1007 1008 /** 1009 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1010 * @dev: the device 1011 * 1012 * Remove the device fault handler installed with 1013 * iommu_register_device_fault_handler(). 1014 * 1015 * Return 0 on success, or an error. 1016 */ 1017 int iommu_unregister_device_fault_handler(struct device *dev) 1018 { 1019 struct dev_iommu *param = dev->iommu; 1020 int ret = 0; 1021 1022 if (!param) 1023 return -EINVAL; 1024 1025 mutex_lock(¶m->lock); 1026 1027 if (!param->fault_param) 1028 goto unlock; 1029 1030 /* we cannot unregister handler if there are pending faults */ 1031 if (!list_empty(¶m->fault_param->faults)) { 1032 ret = -EBUSY; 1033 goto unlock; 1034 } 1035 1036 kfree(param->fault_param); 1037 param->fault_param = NULL; 1038 put_device(dev); 1039 unlock: 1040 mutex_unlock(¶m->lock); 1041 1042 return ret; 1043 } 1044 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1045 1046 /** 1047 * iommu_report_device_fault() - Report fault event to device driver 1048 * @dev: the device 1049 * @evt: fault event data 1050 * 1051 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1052 * handler. When this function fails and the fault is recoverable, it is the 1053 * caller's responsibility to complete the fault. 1054 * 1055 * Return 0 on success, or an error. 1056 */ 1057 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1058 { 1059 struct dev_iommu *param = dev->iommu; 1060 struct iommu_fault_event *evt_pending = NULL; 1061 struct iommu_fault_param *fparam; 1062 int ret = 0; 1063 1064 if (!param || !evt) 1065 return -EINVAL; 1066 1067 /* we only report device fault if there is a handler registered */ 1068 mutex_lock(¶m->lock); 1069 fparam = param->fault_param; 1070 if (!fparam || !fparam->handler) { 1071 ret = -EINVAL; 1072 goto done_unlock; 1073 } 1074 1075 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1076 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1077 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1078 GFP_KERNEL); 1079 if (!evt_pending) { 1080 ret = -ENOMEM; 1081 goto done_unlock; 1082 } 1083 mutex_lock(&fparam->lock); 1084 list_add_tail(&evt_pending->list, &fparam->faults); 1085 mutex_unlock(&fparam->lock); 1086 } 1087 1088 ret = fparam->handler(&evt->fault, fparam->data); 1089 if (ret && evt_pending) { 1090 mutex_lock(&fparam->lock); 1091 list_del(&evt_pending->list); 1092 mutex_unlock(&fparam->lock); 1093 kfree(evt_pending); 1094 } 1095 done_unlock: 1096 mutex_unlock(¶m->lock); 1097 return ret; 1098 } 1099 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1100 1101 int iommu_page_response(struct device *dev, 1102 struct iommu_page_response *msg) 1103 { 1104 bool pasid_valid; 1105 int ret = -EINVAL; 1106 struct iommu_fault_event *evt; 1107 struct iommu_fault_page_request *prm; 1108 struct dev_iommu *param = dev->iommu; 1109 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 1110 1111 if (!domain || !domain->ops->page_response) 1112 return -ENODEV; 1113 1114 if (!param || !param->fault_param) 1115 return -EINVAL; 1116 1117 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1118 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1119 return -EINVAL; 1120 1121 /* Only send response if there is a fault report pending */ 1122 mutex_lock(¶m->fault_param->lock); 1123 if (list_empty(¶m->fault_param->faults)) { 1124 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1125 goto done_unlock; 1126 } 1127 /* 1128 * Check if we have a matching page request pending to respond, 1129 * otherwise return -EINVAL 1130 */ 1131 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1132 prm = &evt->fault.prm; 1133 pasid_valid = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; 1134 1135 if ((pasid_valid && prm->pasid != msg->pasid) || 1136 prm->grpid != msg->grpid) 1137 continue; 1138 1139 /* Sanitize the reply */ 1140 msg->flags = pasid_valid ? IOMMU_PAGE_RESP_PASID_VALID : 0; 1141 1142 ret = domain->ops->page_response(dev, evt, msg); 1143 list_del(&evt->list); 1144 kfree(evt); 1145 break; 1146 } 1147 1148 done_unlock: 1149 mutex_unlock(¶m->fault_param->lock); 1150 return ret; 1151 } 1152 EXPORT_SYMBOL_GPL(iommu_page_response); 1153 1154 /** 1155 * iommu_group_id - Return ID for a group 1156 * @group: the group to ID 1157 * 1158 * Return the unique ID for the group matching the sysfs group number. 1159 */ 1160 int iommu_group_id(struct iommu_group *group) 1161 { 1162 return group->id; 1163 } 1164 EXPORT_SYMBOL_GPL(iommu_group_id); 1165 1166 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1167 unsigned long *devfns); 1168 1169 /* 1170 * To consider a PCI device isolated, we require ACS to support Source 1171 * Validation, Request Redirection, Completer Redirection, and Upstream 1172 * Forwarding. This effectively means that devices cannot spoof their 1173 * requester ID, requests and completions cannot be redirected, and all 1174 * transactions are forwarded upstream, even as it passes through a 1175 * bridge where the target device is downstream. 1176 */ 1177 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1178 1179 /* 1180 * For multifunction devices which are not isolated from each other, find 1181 * all the other non-isolated functions and look for existing groups. For 1182 * each function, we also need to look for aliases to or from other devices 1183 * that may already have a group. 1184 */ 1185 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1186 unsigned long *devfns) 1187 { 1188 struct pci_dev *tmp = NULL; 1189 struct iommu_group *group; 1190 1191 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1192 return NULL; 1193 1194 for_each_pci_dev(tmp) { 1195 if (tmp == pdev || tmp->bus != pdev->bus || 1196 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1197 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1198 continue; 1199 1200 group = get_pci_alias_group(tmp, devfns); 1201 if (group) { 1202 pci_dev_put(tmp); 1203 return group; 1204 } 1205 } 1206 1207 return NULL; 1208 } 1209 1210 /* 1211 * Look for aliases to or from the given device for existing groups. DMA 1212 * aliases are only supported on the same bus, therefore the search 1213 * space is quite small (especially since we're really only looking at pcie 1214 * device, and therefore only expect multiple slots on the root complex or 1215 * downstream switch ports). It's conceivable though that a pair of 1216 * multifunction devices could have aliases between them that would cause a 1217 * loop. To prevent this, we use a bitmap to track where we've been. 1218 */ 1219 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1220 unsigned long *devfns) 1221 { 1222 struct pci_dev *tmp = NULL; 1223 struct iommu_group *group; 1224 1225 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1226 return NULL; 1227 1228 group = iommu_group_get(&pdev->dev); 1229 if (group) 1230 return group; 1231 1232 for_each_pci_dev(tmp) { 1233 if (tmp == pdev || tmp->bus != pdev->bus) 1234 continue; 1235 1236 /* We alias them or they alias us */ 1237 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1238 group = get_pci_alias_group(tmp, devfns); 1239 if (group) { 1240 pci_dev_put(tmp); 1241 return group; 1242 } 1243 1244 group = get_pci_function_alias_group(tmp, devfns); 1245 if (group) { 1246 pci_dev_put(tmp); 1247 return group; 1248 } 1249 } 1250 } 1251 1252 return NULL; 1253 } 1254 1255 struct group_for_pci_data { 1256 struct pci_dev *pdev; 1257 struct iommu_group *group; 1258 }; 1259 1260 /* 1261 * DMA alias iterator callback, return the last seen device. Stop and return 1262 * the IOMMU group if we find one along the way. 1263 */ 1264 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1265 { 1266 struct group_for_pci_data *data = opaque; 1267 1268 data->pdev = pdev; 1269 data->group = iommu_group_get(&pdev->dev); 1270 1271 return data->group != NULL; 1272 } 1273 1274 /* 1275 * Generic device_group call-back function. It just allocates one 1276 * iommu-group per device. 1277 */ 1278 struct iommu_group *generic_device_group(struct device *dev) 1279 { 1280 return iommu_group_alloc(); 1281 } 1282 EXPORT_SYMBOL_GPL(generic_device_group); 1283 1284 /* 1285 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1286 * to find or create an IOMMU group for a device. 1287 */ 1288 struct iommu_group *pci_device_group(struct device *dev) 1289 { 1290 struct pci_dev *pdev = to_pci_dev(dev); 1291 struct group_for_pci_data data; 1292 struct pci_bus *bus; 1293 struct iommu_group *group = NULL; 1294 u64 devfns[4] = { 0 }; 1295 1296 if (WARN_ON(!dev_is_pci(dev))) 1297 return ERR_PTR(-EINVAL); 1298 1299 /* 1300 * Find the upstream DMA alias for the device. A device must not 1301 * be aliased due to topology in order to have its own IOMMU group. 1302 * If we find an alias along the way that already belongs to a 1303 * group, use it. 1304 */ 1305 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1306 return data.group; 1307 1308 pdev = data.pdev; 1309 1310 /* 1311 * Continue upstream from the point of minimum IOMMU granularity 1312 * due to aliases to the point where devices are protected from 1313 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1314 * group, use it. 1315 */ 1316 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1317 if (!bus->self) 1318 continue; 1319 1320 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1321 break; 1322 1323 pdev = bus->self; 1324 1325 group = iommu_group_get(&pdev->dev); 1326 if (group) 1327 return group; 1328 } 1329 1330 /* 1331 * Look for existing groups on device aliases. If we alias another 1332 * device or another device aliases us, use the same group. 1333 */ 1334 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1335 if (group) 1336 return group; 1337 1338 /* 1339 * Look for existing groups on non-isolated functions on the same 1340 * slot and aliases of those funcions, if any. No need to clear 1341 * the search bitmap, the tested devfns are still valid. 1342 */ 1343 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1344 if (group) 1345 return group; 1346 1347 /* No shared group found, allocate new */ 1348 return iommu_group_alloc(); 1349 } 1350 EXPORT_SYMBOL_GPL(pci_device_group); 1351 1352 /* Get the IOMMU group for device on fsl-mc bus */ 1353 struct iommu_group *fsl_mc_device_group(struct device *dev) 1354 { 1355 struct device *cont_dev = fsl_mc_cont_dev(dev); 1356 struct iommu_group *group; 1357 1358 group = iommu_group_get(cont_dev); 1359 if (!group) 1360 group = iommu_group_alloc(); 1361 return group; 1362 } 1363 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1364 1365 /** 1366 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1367 * @dev: target device 1368 * 1369 * This function is intended to be called by IOMMU drivers and extended to 1370 * support common, bus-defined algorithms when determining or creating the 1371 * IOMMU group for a device. On success, the caller will hold a reference 1372 * to the returned IOMMU group, which will already include the provided 1373 * device. The reference should be released with iommu_group_put(). 1374 */ 1375 struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1376 { 1377 const struct iommu_ops *ops = dev->bus->iommu_ops; 1378 struct iommu_group *group; 1379 int ret; 1380 1381 group = iommu_group_get(dev); 1382 if (group) 1383 return group; 1384 1385 if (!ops) 1386 return ERR_PTR(-EINVAL); 1387 1388 group = ops->device_group(dev); 1389 if (WARN_ON_ONCE(group == NULL)) 1390 return ERR_PTR(-EINVAL); 1391 1392 if (IS_ERR(group)) 1393 return group; 1394 1395 /* 1396 * Try to allocate a default domain - needs support from the 1397 * IOMMU driver. 1398 */ 1399 if (!group->default_domain) { 1400 struct iommu_domain *dom; 1401 1402 dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type); 1403 if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) { 1404 dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA); 1405 if (dom) { 1406 dev_warn(dev, 1407 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA", 1408 iommu_def_domain_type); 1409 } 1410 } 1411 1412 group->default_domain = dom; 1413 if (!group->domain) 1414 group->domain = dom; 1415 1416 if (dom && !iommu_dma_strict) { 1417 int attr = 1; 1418 iommu_domain_set_attr(dom, 1419 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, 1420 &attr); 1421 } 1422 } 1423 1424 ret = iommu_group_add_device(group, dev); 1425 if (ret) { 1426 iommu_group_put(group); 1427 return ERR_PTR(ret); 1428 } 1429 1430 return group; 1431 } 1432 EXPORT_SYMBOL_GPL(iommu_group_get_for_dev); 1433 1434 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1435 { 1436 return group->default_domain; 1437 } 1438 1439 static int add_iommu_group(struct device *dev, void *data) 1440 { 1441 int ret = iommu_probe_device(dev); 1442 1443 /* 1444 * We ignore -ENODEV errors for now, as they just mean that the 1445 * device is not translated by an IOMMU. We still care about 1446 * other errors and fail to initialize when they happen. 1447 */ 1448 if (ret == -ENODEV) 1449 ret = 0; 1450 1451 return ret; 1452 } 1453 1454 static int remove_iommu_group(struct device *dev, void *data) 1455 { 1456 iommu_release_device(dev); 1457 1458 return 0; 1459 } 1460 1461 static int iommu_bus_notifier(struct notifier_block *nb, 1462 unsigned long action, void *data) 1463 { 1464 unsigned long group_action = 0; 1465 struct device *dev = data; 1466 struct iommu_group *group; 1467 1468 /* 1469 * ADD/DEL call into iommu driver ops if provided, which may 1470 * result in ADD/DEL notifiers to group->notifier 1471 */ 1472 if (action == BUS_NOTIFY_ADD_DEVICE) { 1473 int ret; 1474 1475 ret = iommu_probe_device(dev); 1476 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1477 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1478 iommu_release_device(dev); 1479 return NOTIFY_OK; 1480 } 1481 1482 /* 1483 * Remaining BUS_NOTIFYs get filtered and republished to the 1484 * group, if anyone is listening 1485 */ 1486 group = iommu_group_get(dev); 1487 if (!group) 1488 return 0; 1489 1490 switch (action) { 1491 case BUS_NOTIFY_BIND_DRIVER: 1492 group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER; 1493 break; 1494 case BUS_NOTIFY_BOUND_DRIVER: 1495 group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER; 1496 break; 1497 case BUS_NOTIFY_UNBIND_DRIVER: 1498 group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER; 1499 break; 1500 case BUS_NOTIFY_UNBOUND_DRIVER: 1501 group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER; 1502 break; 1503 } 1504 1505 if (group_action) 1506 blocking_notifier_call_chain(&group->notifier, 1507 group_action, dev); 1508 1509 iommu_group_put(group); 1510 return 0; 1511 } 1512 1513 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops) 1514 { 1515 int err; 1516 struct notifier_block *nb; 1517 1518 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 1519 if (!nb) 1520 return -ENOMEM; 1521 1522 nb->notifier_call = iommu_bus_notifier; 1523 1524 err = bus_register_notifier(bus, nb); 1525 if (err) 1526 goto out_free; 1527 1528 err = bus_for_each_dev(bus, NULL, NULL, add_iommu_group); 1529 if (err) 1530 goto out_err; 1531 1532 1533 return 0; 1534 1535 out_err: 1536 /* Clean up */ 1537 bus_for_each_dev(bus, NULL, NULL, remove_iommu_group); 1538 bus_unregister_notifier(bus, nb); 1539 1540 out_free: 1541 kfree(nb); 1542 1543 return err; 1544 } 1545 1546 /** 1547 * bus_set_iommu - set iommu-callbacks for the bus 1548 * @bus: bus. 1549 * @ops: the callbacks provided by the iommu-driver 1550 * 1551 * This function is called by an iommu driver to set the iommu methods 1552 * used for a particular bus. Drivers for devices on that bus can use 1553 * the iommu-api after these ops are registered. 1554 * This special function is needed because IOMMUs are usually devices on 1555 * the bus itself, so the iommu drivers are not initialized when the bus 1556 * is set up. With this function the iommu-driver can set the iommu-ops 1557 * afterwards. 1558 */ 1559 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops) 1560 { 1561 int err; 1562 1563 if (ops == NULL) { 1564 bus->iommu_ops = NULL; 1565 return 0; 1566 } 1567 1568 if (bus->iommu_ops != NULL) 1569 return -EBUSY; 1570 1571 bus->iommu_ops = ops; 1572 1573 /* Do IOMMU specific setup for this bus-type */ 1574 err = iommu_bus_init(bus, ops); 1575 if (err) 1576 bus->iommu_ops = NULL; 1577 1578 return err; 1579 } 1580 EXPORT_SYMBOL_GPL(bus_set_iommu); 1581 1582 bool iommu_present(struct bus_type *bus) 1583 { 1584 return bus->iommu_ops != NULL; 1585 } 1586 EXPORT_SYMBOL_GPL(iommu_present); 1587 1588 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap) 1589 { 1590 if (!bus->iommu_ops || !bus->iommu_ops->capable) 1591 return false; 1592 1593 return bus->iommu_ops->capable(cap); 1594 } 1595 EXPORT_SYMBOL_GPL(iommu_capable); 1596 1597 /** 1598 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1599 * @domain: iommu domain 1600 * @handler: fault handler 1601 * @token: user data, will be passed back to the fault handler 1602 * 1603 * This function should be used by IOMMU users which want to be notified 1604 * whenever an IOMMU fault happens. 1605 * 1606 * The fault handler itself should return 0 on success, and an appropriate 1607 * error code otherwise. 1608 */ 1609 void iommu_set_fault_handler(struct iommu_domain *domain, 1610 iommu_fault_handler_t handler, 1611 void *token) 1612 { 1613 BUG_ON(!domain); 1614 1615 domain->handler = handler; 1616 domain->handler_token = token; 1617 } 1618 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1619 1620 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus, 1621 unsigned type) 1622 { 1623 struct iommu_domain *domain; 1624 1625 if (bus == NULL || bus->iommu_ops == NULL) 1626 return NULL; 1627 1628 domain = bus->iommu_ops->domain_alloc(type); 1629 if (!domain) 1630 return NULL; 1631 1632 domain->ops = bus->iommu_ops; 1633 domain->type = type; 1634 /* Assume all sizes by default; the driver may override this later */ 1635 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1636 1637 return domain; 1638 } 1639 1640 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus) 1641 { 1642 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1643 } 1644 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1645 1646 void iommu_domain_free(struct iommu_domain *domain) 1647 { 1648 domain->ops->domain_free(domain); 1649 } 1650 EXPORT_SYMBOL_GPL(iommu_domain_free); 1651 1652 static int __iommu_attach_device(struct iommu_domain *domain, 1653 struct device *dev) 1654 { 1655 int ret; 1656 if ((domain->ops->is_attach_deferred != NULL) && 1657 domain->ops->is_attach_deferred(domain, dev)) 1658 return 0; 1659 1660 if (unlikely(domain->ops->attach_dev == NULL)) 1661 return -ENODEV; 1662 1663 ret = domain->ops->attach_dev(domain, dev); 1664 if (!ret) 1665 trace_attach_device_to_domain(dev); 1666 return ret; 1667 } 1668 1669 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 1670 { 1671 struct iommu_group *group; 1672 int ret; 1673 1674 group = iommu_group_get(dev); 1675 if (!group) 1676 return -ENODEV; 1677 1678 /* 1679 * Lock the group to make sure the device-count doesn't 1680 * change while we are attaching 1681 */ 1682 mutex_lock(&group->mutex); 1683 ret = -EINVAL; 1684 if (iommu_group_device_count(group) != 1) 1685 goto out_unlock; 1686 1687 ret = __iommu_attach_group(domain, group); 1688 1689 out_unlock: 1690 mutex_unlock(&group->mutex); 1691 iommu_group_put(group); 1692 1693 return ret; 1694 } 1695 EXPORT_SYMBOL_GPL(iommu_attach_device); 1696 1697 int iommu_cache_invalidate(struct iommu_domain *domain, struct device *dev, 1698 struct iommu_cache_invalidate_info *inv_info) 1699 { 1700 if (unlikely(!domain->ops->cache_invalidate)) 1701 return -ENODEV; 1702 1703 return domain->ops->cache_invalidate(domain, dev, inv_info); 1704 } 1705 EXPORT_SYMBOL_GPL(iommu_cache_invalidate); 1706 1707 int iommu_sva_bind_gpasid(struct iommu_domain *domain, 1708 struct device *dev, struct iommu_gpasid_bind_data *data) 1709 { 1710 if (unlikely(!domain->ops->sva_bind_gpasid)) 1711 return -ENODEV; 1712 1713 return domain->ops->sva_bind_gpasid(domain, dev, data); 1714 } 1715 EXPORT_SYMBOL_GPL(iommu_sva_bind_gpasid); 1716 1717 int iommu_sva_unbind_gpasid(struct iommu_domain *domain, struct device *dev, 1718 ioasid_t pasid) 1719 { 1720 if (unlikely(!domain->ops->sva_unbind_gpasid)) 1721 return -ENODEV; 1722 1723 return domain->ops->sva_unbind_gpasid(dev, pasid); 1724 } 1725 EXPORT_SYMBOL_GPL(iommu_sva_unbind_gpasid); 1726 1727 static void __iommu_detach_device(struct iommu_domain *domain, 1728 struct device *dev) 1729 { 1730 if ((domain->ops->is_attach_deferred != NULL) && 1731 domain->ops->is_attach_deferred(domain, dev)) 1732 return; 1733 1734 if (unlikely(domain->ops->detach_dev == NULL)) 1735 return; 1736 1737 domain->ops->detach_dev(domain, dev); 1738 trace_detach_device_from_domain(dev); 1739 } 1740 1741 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 1742 { 1743 struct iommu_group *group; 1744 1745 group = iommu_group_get(dev); 1746 if (!group) 1747 return; 1748 1749 mutex_lock(&group->mutex); 1750 if (iommu_group_device_count(group) != 1) { 1751 WARN_ON(1); 1752 goto out_unlock; 1753 } 1754 1755 __iommu_detach_group(domain, group); 1756 1757 out_unlock: 1758 mutex_unlock(&group->mutex); 1759 iommu_group_put(group); 1760 } 1761 EXPORT_SYMBOL_GPL(iommu_detach_device); 1762 1763 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 1764 { 1765 struct iommu_domain *domain; 1766 struct iommu_group *group; 1767 1768 group = iommu_group_get(dev); 1769 if (!group) 1770 return NULL; 1771 1772 domain = group->domain; 1773 1774 iommu_group_put(group); 1775 1776 return domain; 1777 } 1778 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 1779 1780 /* 1781 * For IOMMU_DOMAIN_DMA implementations which already provide their own 1782 * guarantees that the group and its default domain are valid and correct. 1783 */ 1784 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 1785 { 1786 return dev->iommu_group->default_domain; 1787 } 1788 1789 /* 1790 * IOMMU groups are really the natural working unit of the IOMMU, but 1791 * the IOMMU API works on domains and devices. Bridge that gap by 1792 * iterating over the devices in a group. Ideally we'd have a single 1793 * device which represents the requestor ID of the group, but we also 1794 * allow IOMMU drivers to create policy defined minimum sets, where 1795 * the physical hardware may be able to distiguish members, but we 1796 * wish to group them at a higher level (ex. untrusted multi-function 1797 * PCI devices). Thus we attach each device. 1798 */ 1799 static int iommu_group_do_attach_device(struct device *dev, void *data) 1800 { 1801 struct iommu_domain *domain = data; 1802 1803 return __iommu_attach_device(domain, dev); 1804 } 1805 1806 static int __iommu_attach_group(struct iommu_domain *domain, 1807 struct iommu_group *group) 1808 { 1809 int ret; 1810 1811 if (group->default_domain && group->domain != group->default_domain) 1812 return -EBUSY; 1813 1814 ret = __iommu_group_for_each_dev(group, domain, 1815 iommu_group_do_attach_device); 1816 if (ret == 0) 1817 group->domain = domain; 1818 1819 return ret; 1820 } 1821 1822 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 1823 { 1824 int ret; 1825 1826 mutex_lock(&group->mutex); 1827 ret = __iommu_attach_group(domain, group); 1828 mutex_unlock(&group->mutex); 1829 1830 return ret; 1831 } 1832 EXPORT_SYMBOL_GPL(iommu_attach_group); 1833 1834 static int iommu_group_do_detach_device(struct device *dev, void *data) 1835 { 1836 struct iommu_domain *domain = data; 1837 1838 __iommu_detach_device(domain, dev); 1839 1840 return 0; 1841 } 1842 1843 static void __iommu_detach_group(struct iommu_domain *domain, 1844 struct iommu_group *group) 1845 { 1846 int ret; 1847 1848 if (!group->default_domain) { 1849 __iommu_group_for_each_dev(group, domain, 1850 iommu_group_do_detach_device); 1851 group->domain = NULL; 1852 return; 1853 } 1854 1855 if (group->domain == group->default_domain) 1856 return; 1857 1858 /* Detach by re-attaching to the default domain */ 1859 ret = __iommu_group_for_each_dev(group, group->default_domain, 1860 iommu_group_do_attach_device); 1861 if (ret != 0) 1862 WARN_ON(1); 1863 else 1864 group->domain = group->default_domain; 1865 } 1866 1867 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 1868 { 1869 mutex_lock(&group->mutex); 1870 __iommu_detach_group(domain, group); 1871 mutex_unlock(&group->mutex); 1872 } 1873 EXPORT_SYMBOL_GPL(iommu_detach_group); 1874 1875 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 1876 { 1877 if (unlikely(domain->ops->iova_to_phys == NULL)) 1878 return 0; 1879 1880 return domain->ops->iova_to_phys(domain, iova); 1881 } 1882 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 1883 1884 static size_t iommu_pgsize(struct iommu_domain *domain, 1885 unsigned long addr_merge, size_t size) 1886 { 1887 unsigned int pgsize_idx; 1888 size_t pgsize; 1889 1890 /* Max page size that still fits into 'size' */ 1891 pgsize_idx = __fls(size); 1892 1893 /* need to consider alignment requirements ? */ 1894 if (likely(addr_merge)) { 1895 /* Max page size allowed by address */ 1896 unsigned int align_pgsize_idx = __ffs(addr_merge); 1897 pgsize_idx = min(pgsize_idx, align_pgsize_idx); 1898 } 1899 1900 /* build a mask of acceptable page sizes */ 1901 pgsize = (1UL << (pgsize_idx + 1)) - 1; 1902 1903 /* throw away page sizes not supported by the hardware */ 1904 pgsize &= domain->pgsize_bitmap; 1905 1906 /* make sure we're still sane */ 1907 BUG_ON(!pgsize); 1908 1909 /* pick the biggest page */ 1910 pgsize_idx = __fls(pgsize); 1911 pgsize = 1UL << pgsize_idx; 1912 1913 return pgsize; 1914 } 1915 1916 int __iommu_map(struct iommu_domain *domain, unsigned long iova, 1917 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 1918 { 1919 const struct iommu_ops *ops = domain->ops; 1920 unsigned long orig_iova = iova; 1921 unsigned int min_pagesz; 1922 size_t orig_size = size; 1923 phys_addr_t orig_paddr = paddr; 1924 int ret = 0; 1925 1926 if (unlikely(ops->map == NULL || 1927 domain->pgsize_bitmap == 0UL)) 1928 return -ENODEV; 1929 1930 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 1931 return -EINVAL; 1932 1933 /* find out the minimum page size supported */ 1934 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 1935 1936 /* 1937 * both the virtual address and the physical one, as well as 1938 * the size of the mapping, must be aligned (at least) to the 1939 * size of the smallest page supported by the hardware 1940 */ 1941 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 1942 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 1943 iova, &paddr, size, min_pagesz); 1944 return -EINVAL; 1945 } 1946 1947 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 1948 1949 while (size) { 1950 size_t pgsize = iommu_pgsize(domain, iova | paddr, size); 1951 1952 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", 1953 iova, &paddr, pgsize); 1954 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 1955 1956 if (ret) 1957 break; 1958 1959 iova += pgsize; 1960 paddr += pgsize; 1961 size -= pgsize; 1962 } 1963 1964 if (ops->iotlb_sync_map) 1965 ops->iotlb_sync_map(domain); 1966 1967 /* unroll mapping in case something went wrong */ 1968 if (ret) 1969 iommu_unmap(domain, orig_iova, orig_size - size); 1970 else 1971 trace_map(orig_iova, orig_paddr, orig_size); 1972 1973 return ret; 1974 } 1975 1976 int iommu_map(struct iommu_domain *domain, unsigned long iova, 1977 phys_addr_t paddr, size_t size, int prot) 1978 { 1979 might_sleep(); 1980 return __iommu_map(domain, iova, paddr, size, prot, GFP_KERNEL); 1981 } 1982 EXPORT_SYMBOL_GPL(iommu_map); 1983 1984 int iommu_map_atomic(struct iommu_domain *domain, unsigned long iova, 1985 phys_addr_t paddr, size_t size, int prot) 1986 { 1987 return __iommu_map(domain, iova, paddr, size, prot, GFP_ATOMIC); 1988 } 1989 EXPORT_SYMBOL_GPL(iommu_map_atomic); 1990 1991 static size_t __iommu_unmap(struct iommu_domain *domain, 1992 unsigned long iova, size_t size, 1993 struct iommu_iotlb_gather *iotlb_gather) 1994 { 1995 const struct iommu_ops *ops = domain->ops; 1996 size_t unmapped_page, unmapped = 0; 1997 unsigned long orig_iova = iova; 1998 unsigned int min_pagesz; 1999 2000 if (unlikely(ops->unmap == NULL || 2001 domain->pgsize_bitmap == 0UL)) 2002 return 0; 2003 2004 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2005 return 0; 2006 2007 /* find out the minimum page size supported */ 2008 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2009 2010 /* 2011 * The virtual address, as well as the size of the mapping, must be 2012 * aligned (at least) to the size of the smallest page supported 2013 * by the hardware 2014 */ 2015 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2016 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2017 iova, size, min_pagesz); 2018 return 0; 2019 } 2020 2021 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2022 2023 /* 2024 * Keep iterating until we either unmap 'size' bytes (or more) 2025 * or we hit an area that isn't mapped. 2026 */ 2027 while (unmapped < size) { 2028 size_t pgsize = iommu_pgsize(domain, iova, size - unmapped); 2029 2030 unmapped_page = ops->unmap(domain, iova, pgsize, iotlb_gather); 2031 if (!unmapped_page) 2032 break; 2033 2034 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2035 iova, unmapped_page); 2036 2037 iova += unmapped_page; 2038 unmapped += unmapped_page; 2039 } 2040 2041 trace_unmap(orig_iova, size, unmapped); 2042 return unmapped; 2043 } 2044 2045 size_t iommu_unmap(struct iommu_domain *domain, 2046 unsigned long iova, size_t size) 2047 { 2048 struct iommu_iotlb_gather iotlb_gather; 2049 size_t ret; 2050 2051 iommu_iotlb_gather_init(&iotlb_gather); 2052 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2053 iommu_tlb_sync(domain, &iotlb_gather); 2054 2055 return ret; 2056 } 2057 EXPORT_SYMBOL_GPL(iommu_unmap); 2058 2059 size_t iommu_unmap_fast(struct iommu_domain *domain, 2060 unsigned long iova, size_t size, 2061 struct iommu_iotlb_gather *iotlb_gather) 2062 { 2063 return __iommu_unmap(domain, iova, size, iotlb_gather); 2064 } 2065 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2066 2067 size_t __iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2068 struct scatterlist *sg, unsigned int nents, int prot, 2069 gfp_t gfp) 2070 { 2071 size_t len = 0, mapped = 0; 2072 phys_addr_t start; 2073 unsigned int i = 0; 2074 int ret; 2075 2076 while (i <= nents) { 2077 phys_addr_t s_phys = sg_phys(sg); 2078 2079 if (len && s_phys != start + len) { 2080 ret = __iommu_map(domain, iova + mapped, start, 2081 len, prot, gfp); 2082 2083 if (ret) 2084 goto out_err; 2085 2086 mapped += len; 2087 len = 0; 2088 } 2089 2090 if (len) { 2091 len += sg->length; 2092 } else { 2093 len = sg->length; 2094 start = s_phys; 2095 } 2096 2097 if (++i < nents) 2098 sg = sg_next(sg); 2099 } 2100 2101 return mapped; 2102 2103 out_err: 2104 /* undo mappings already done */ 2105 iommu_unmap(domain, iova, mapped); 2106 2107 return 0; 2108 2109 } 2110 2111 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2112 struct scatterlist *sg, unsigned int nents, int prot) 2113 { 2114 might_sleep(); 2115 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_KERNEL); 2116 } 2117 EXPORT_SYMBOL_GPL(iommu_map_sg); 2118 2119 size_t iommu_map_sg_atomic(struct iommu_domain *domain, unsigned long iova, 2120 struct scatterlist *sg, unsigned int nents, int prot) 2121 { 2122 return __iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC); 2123 } 2124 EXPORT_SYMBOL_GPL(iommu_map_sg_atomic); 2125 2126 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr, 2127 phys_addr_t paddr, u64 size, int prot) 2128 { 2129 if (unlikely(domain->ops->domain_window_enable == NULL)) 2130 return -ENODEV; 2131 2132 return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size, 2133 prot); 2134 } 2135 EXPORT_SYMBOL_GPL(iommu_domain_window_enable); 2136 2137 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr) 2138 { 2139 if (unlikely(domain->ops->domain_window_disable == NULL)) 2140 return; 2141 2142 return domain->ops->domain_window_disable(domain, wnd_nr); 2143 } 2144 EXPORT_SYMBOL_GPL(iommu_domain_window_disable); 2145 2146 /** 2147 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2148 * @domain: the iommu domain where the fault has happened 2149 * @dev: the device where the fault has happened 2150 * @iova: the faulting address 2151 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2152 * 2153 * This function should be called by the low-level IOMMU implementations 2154 * whenever IOMMU faults happen, to allow high-level users, that are 2155 * interested in such events, to know about them. 2156 * 2157 * This event may be useful for several possible use cases: 2158 * - mere logging of the event 2159 * - dynamic TLB/PTE loading 2160 * - if restarting of the faulting device is required 2161 * 2162 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2163 * PTE/TLB loading will one day be supported, implementations will be able 2164 * to tell whether it succeeded or not according to this return value). 2165 * 2166 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2167 * (though fault handlers can also return -ENOSYS, in case they want to 2168 * elicit the default behavior of the IOMMU drivers). 2169 */ 2170 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2171 unsigned long iova, int flags) 2172 { 2173 int ret = -ENOSYS; 2174 2175 /* 2176 * if upper layers showed interest and installed a fault handler, 2177 * invoke it. 2178 */ 2179 if (domain->handler) 2180 ret = domain->handler(domain, dev, iova, flags, 2181 domain->handler_token); 2182 2183 trace_io_page_fault(dev, iova, flags); 2184 return ret; 2185 } 2186 EXPORT_SYMBOL_GPL(report_iommu_fault); 2187 2188 static int __init iommu_init(void) 2189 { 2190 iommu_group_kset = kset_create_and_add("iommu_groups", 2191 NULL, kernel_kobj); 2192 BUG_ON(!iommu_group_kset); 2193 2194 iommu_debugfs_setup(); 2195 2196 return 0; 2197 } 2198 core_initcall(iommu_init); 2199 2200 int iommu_domain_get_attr(struct iommu_domain *domain, 2201 enum iommu_attr attr, void *data) 2202 { 2203 struct iommu_domain_geometry *geometry; 2204 bool *paging; 2205 int ret = 0; 2206 2207 switch (attr) { 2208 case DOMAIN_ATTR_GEOMETRY: 2209 geometry = data; 2210 *geometry = domain->geometry; 2211 2212 break; 2213 case DOMAIN_ATTR_PAGING: 2214 paging = data; 2215 *paging = (domain->pgsize_bitmap != 0UL); 2216 break; 2217 default: 2218 if (!domain->ops->domain_get_attr) 2219 return -EINVAL; 2220 2221 ret = domain->ops->domain_get_attr(domain, attr, data); 2222 } 2223 2224 return ret; 2225 } 2226 EXPORT_SYMBOL_GPL(iommu_domain_get_attr); 2227 2228 int iommu_domain_set_attr(struct iommu_domain *domain, 2229 enum iommu_attr attr, void *data) 2230 { 2231 int ret = 0; 2232 2233 switch (attr) { 2234 default: 2235 if (domain->ops->domain_set_attr == NULL) 2236 return -EINVAL; 2237 2238 ret = domain->ops->domain_set_attr(domain, attr, data); 2239 } 2240 2241 return ret; 2242 } 2243 EXPORT_SYMBOL_GPL(iommu_domain_set_attr); 2244 2245 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2246 { 2247 const struct iommu_ops *ops = dev->bus->iommu_ops; 2248 2249 if (ops && ops->get_resv_regions) 2250 ops->get_resv_regions(dev, list); 2251 } 2252 2253 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2254 { 2255 const struct iommu_ops *ops = dev->bus->iommu_ops; 2256 2257 if (ops && ops->put_resv_regions) 2258 ops->put_resv_regions(dev, list); 2259 } 2260 2261 /** 2262 * generic_iommu_put_resv_regions - Reserved region driver helper 2263 * @dev: device for which to free reserved regions 2264 * @list: reserved region list for device 2265 * 2266 * IOMMU drivers can use this to implement their .put_resv_regions() callback 2267 * for simple reservations. Memory allocated for each reserved region will be 2268 * freed. If an IOMMU driver allocates additional resources per region, it is 2269 * going to have to implement a custom callback. 2270 */ 2271 void generic_iommu_put_resv_regions(struct device *dev, struct list_head *list) 2272 { 2273 struct iommu_resv_region *entry, *next; 2274 2275 list_for_each_entry_safe(entry, next, list, list) 2276 kfree(entry); 2277 } 2278 EXPORT_SYMBOL(generic_iommu_put_resv_regions); 2279 2280 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2281 size_t length, int prot, 2282 enum iommu_resv_type type) 2283 { 2284 struct iommu_resv_region *region; 2285 2286 region = kzalloc(sizeof(*region), GFP_KERNEL); 2287 if (!region) 2288 return NULL; 2289 2290 INIT_LIST_HEAD(®ion->list); 2291 region->start = start; 2292 region->length = length; 2293 region->prot = prot; 2294 region->type = type; 2295 return region; 2296 } 2297 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2298 2299 static int 2300 request_default_domain_for_dev(struct device *dev, unsigned long type) 2301 { 2302 struct iommu_domain *domain; 2303 struct iommu_group *group; 2304 int ret; 2305 2306 /* Device must already be in a group before calling this function */ 2307 group = iommu_group_get(dev); 2308 if (!group) 2309 return -EINVAL; 2310 2311 mutex_lock(&group->mutex); 2312 2313 ret = 0; 2314 if (group->default_domain && group->default_domain->type == type) 2315 goto out; 2316 2317 /* Don't change mappings of existing devices */ 2318 ret = -EBUSY; 2319 if (iommu_group_device_count(group) != 1) 2320 goto out; 2321 2322 ret = -ENOMEM; 2323 domain = __iommu_domain_alloc(dev->bus, type); 2324 if (!domain) 2325 goto out; 2326 2327 /* Attach the device to the domain */ 2328 ret = __iommu_attach_group(domain, group); 2329 if (ret) { 2330 iommu_domain_free(domain); 2331 goto out; 2332 } 2333 2334 /* Make the domain the default for this group */ 2335 if (group->default_domain) 2336 iommu_domain_free(group->default_domain); 2337 group->default_domain = domain; 2338 2339 iommu_group_create_direct_mappings(group, dev); 2340 2341 dev_info(dev, "Using iommu %s mapping\n", 2342 type == IOMMU_DOMAIN_DMA ? "dma" : "direct"); 2343 2344 ret = 0; 2345 out: 2346 mutex_unlock(&group->mutex); 2347 iommu_group_put(group); 2348 2349 return ret; 2350 } 2351 2352 /* Request that a device is direct mapped by the IOMMU */ 2353 int iommu_request_dm_for_dev(struct device *dev) 2354 { 2355 return request_default_domain_for_dev(dev, IOMMU_DOMAIN_IDENTITY); 2356 } 2357 2358 /* Request that a device can't be direct mapped by the IOMMU */ 2359 int iommu_request_dma_domain_for_dev(struct device *dev) 2360 { 2361 return request_default_domain_for_dev(dev, IOMMU_DOMAIN_DMA); 2362 } 2363 2364 void iommu_set_default_passthrough(bool cmd_line) 2365 { 2366 if (cmd_line) 2367 iommu_set_cmd_line_dma_api(); 2368 2369 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2370 } 2371 2372 void iommu_set_default_translated(bool cmd_line) 2373 { 2374 if (cmd_line) 2375 iommu_set_cmd_line_dma_api(); 2376 2377 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2378 } 2379 2380 bool iommu_default_passthrough(void) 2381 { 2382 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2383 } 2384 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2385 2386 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2387 { 2388 const struct iommu_ops *ops = NULL; 2389 struct iommu_device *iommu; 2390 2391 spin_lock(&iommu_device_lock); 2392 list_for_each_entry(iommu, &iommu_device_list, list) 2393 if (iommu->fwnode == fwnode) { 2394 ops = iommu->ops; 2395 break; 2396 } 2397 spin_unlock(&iommu_device_lock); 2398 return ops; 2399 } 2400 2401 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2402 const struct iommu_ops *ops) 2403 { 2404 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2405 2406 if (fwspec) 2407 return ops == fwspec->ops ? 0 : -EINVAL; 2408 2409 if (!dev_iommu_get(dev)) 2410 return -ENOMEM; 2411 2412 /* Preallocate for the overwhelmingly common case of 1 ID */ 2413 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2414 if (!fwspec) 2415 return -ENOMEM; 2416 2417 of_node_get(to_of_node(iommu_fwnode)); 2418 fwspec->iommu_fwnode = iommu_fwnode; 2419 fwspec->ops = ops; 2420 dev_iommu_fwspec_set(dev, fwspec); 2421 return 0; 2422 } 2423 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2424 2425 void iommu_fwspec_free(struct device *dev) 2426 { 2427 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2428 2429 if (fwspec) { 2430 fwnode_handle_put(fwspec->iommu_fwnode); 2431 kfree(fwspec); 2432 dev_iommu_fwspec_set(dev, NULL); 2433 } 2434 } 2435 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2436 2437 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2438 { 2439 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2440 int i, new_num; 2441 2442 if (!fwspec) 2443 return -EINVAL; 2444 2445 new_num = fwspec->num_ids + num_ids; 2446 if (new_num > 1) { 2447 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2448 GFP_KERNEL); 2449 if (!fwspec) 2450 return -ENOMEM; 2451 2452 dev_iommu_fwspec_set(dev, fwspec); 2453 } 2454 2455 for (i = 0; i < num_ids; i++) 2456 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2457 2458 fwspec->num_ids = new_num; 2459 return 0; 2460 } 2461 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2462 2463 /* 2464 * Per device IOMMU features. 2465 */ 2466 bool iommu_dev_has_feature(struct device *dev, enum iommu_dev_features feat) 2467 { 2468 const struct iommu_ops *ops = dev->bus->iommu_ops; 2469 2470 if (ops && ops->dev_has_feat) 2471 return ops->dev_has_feat(dev, feat); 2472 2473 return false; 2474 } 2475 EXPORT_SYMBOL_GPL(iommu_dev_has_feature); 2476 2477 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2478 { 2479 const struct iommu_ops *ops = dev->bus->iommu_ops; 2480 2481 if (ops && ops->dev_enable_feat) 2482 return ops->dev_enable_feat(dev, feat); 2483 2484 return -ENODEV; 2485 } 2486 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2487 2488 /* 2489 * The device drivers should do the necessary cleanups before calling this. 2490 * For example, before disabling the aux-domain feature, the device driver 2491 * should detach all aux-domains. Otherwise, this will return -EBUSY. 2492 */ 2493 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2494 { 2495 const struct iommu_ops *ops = dev->bus->iommu_ops; 2496 2497 if (ops && ops->dev_disable_feat) 2498 return ops->dev_disable_feat(dev, feat); 2499 2500 return -EBUSY; 2501 } 2502 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2503 2504 bool iommu_dev_feature_enabled(struct device *dev, enum iommu_dev_features feat) 2505 { 2506 const struct iommu_ops *ops = dev->bus->iommu_ops; 2507 2508 if (ops && ops->dev_feat_enabled) 2509 return ops->dev_feat_enabled(dev, feat); 2510 2511 return false; 2512 } 2513 EXPORT_SYMBOL_GPL(iommu_dev_feature_enabled); 2514 2515 /* 2516 * Aux-domain specific attach/detach. 2517 * 2518 * Only works if iommu_dev_feature_enabled(dev, IOMMU_DEV_FEAT_AUX) returns 2519 * true. Also, as long as domains are attached to a device through this 2520 * interface, any tries to call iommu_attach_device() should fail 2521 * (iommu_detach_device() can't fail, so we fail when trying to re-attach). 2522 * This should make us safe against a device being attached to a guest as a 2523 * whole while there are still pasid users on it (aux and sva). 2524 */ 2525 int iommu_aux_attach_device(struct iommu_domain *domain, struct device *dev) 2526 { 2527 int ret = -ENODEV; 2528 2529 if (domain->ops->aux_attach_dev) 2530 ret = domain->ops->aux_attach_dev(domain, dev); 2531 2532 if (!ret) 2533 trace_attach_device_to_domain(dev); 2534 2535 return ret; 2536 } 2537 EXPORT_SYMBOL_GPL(iommu_aux_attach_device); 2538 2539 void iommu_aux_detach_device(struct iommu_domain *domain, struct device *dev) 2540 { 2541 if (domain->ops->aux_detach_dev) { 2542 domain->ops->aux_detach_dev(domain, dev); 2543 trace_detach_device_from_domain(dev); 2544 } 2545 } 2546 EXPORT_SYMBOL_GPL(iommu_aux_detach_device); 2547 2548 int iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) 2549 { 2550 int ret = -ENODEV; 2551 2552 if (domain->ops->aux_get_pasid) 2553 ret = domain->ops->aux_get_pasid(domain, dev); 2554 2555 return ret; 2556 } 2557 EXPORT_SYMBOL_GPL(iommu_aux_get_pasid); 2558 2559 /** 2560 * iommu_sva_bind_device() - Bind a process address space to a device 2561 * @dev: the device 2562 * @mm: the mm to bind, caller must hold a reference to it 2563 * 2564 * Create a bond between device and address space, allowing the device to access 2565 * the mm using the returned PASID. If a bond already exists between @device and 2566 * @mm, it is returned and an additional reference is taken. Caller must call 2567 * iommu_sva_unbind_device() to release each reference. 2568 * 2569 * iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) must be called first, to 2570 * initialize the required SVA features. 2571 * 2572 * On error, returns an ERR_PTR value. 2573 */ 2574 struct iommu_sva * 2575 iommu_sva_bind_device(struct device *dev, struct mm_struct *mm, void *drvdata) 2576 { 2577 struct iommu_group *group; 2578 struct iommu_sva *handle = ERR_PTR(-EINVAL); 2579 const struct iommu_ops *ops = dev->bus->iommu_ops; 2580 2581 if (!ops || !ops->sva_bind) 2582 return ERR_PTR(-ENODEV); 2583 2584 group = iommu_group_get(dev); 2585 if (!group) 2586 return ERR_PTR(-ENODEV); 2587 2588 /* Ensure device count and domain don't change while we're binding */ 2589 mutex_lock(&group->mutex); 2590 2591 /* 2592 * To keep things simple, SVA currently doesn't support IOMMU groups 2593 * with more than one device. Existing SVA-capable systems are not 2594 * affected by the problems that required IOMMU groups (lack of ACS 2595 * isolation, device ID aliasing and other hardware issues). 2596 */ 2597 if (iommu_group_device_count(group) != 1) 2598 goto out_unlock; 2599 2600 handle = ops->sva_bind(dev, mm, drvdata); 2601 2602 out_unlock: 2603 mutex_unlock(&group->mutex); 2604 iommu_group_put(group); 2605 2606 return handle; 2607 } 2608 EXPORT_SYMBOL_GPL(iommu_sva_bind_device); 2609 2610 /** 2611 * iommu_sva_unbind_device() - Remove a bond created with iommu_sva_bind_device 2612 * @handle: the handle returned by iommu_sva_bind_device() 2613 * 2614 * Put reference to a bond between device and address space. The device should 2615 * not be issuing any more transaction for this PASID. All outstanding page 2616 * requests for this PASID must have been flushed to the IOMMU. 2617 * 2618 * Returns 0 on success, or an error value 2619 */ 2620 void iommu_sva_unbind_device(struct iommu_sva *handle) 2621 { 2622 struct iommu_group *group; 2623 struct device *dev = handle->dev; 2624 const struct iommu_ops *ops = dev->bus->iommu_ops; 2625 2626 if (!ops || !ops->sva_unbind) 2627 return; 2628 2629 group = iommu_group_get(dev); 2630 if (!group) 2631 return; 2632 2633 mutex_lock(&group->mutex); 2634 ops->sva_unbind(handle); 2635 mutex_unlock(&group->mutex); 2636 2637 iommu_group_put(group); 2638 } 2639 EXPORT_SYMBOL_GPL(iommu_sva_unbind_device); 2640 2641 int iommu_sva_set_ops(struct iommu_sva *handle, 2642 const struct iommu_sva_ops *sva_ops) 2643 { 2644 if (handle->ops && handle->ops != sva_ops) 2645 return -EEXIST; 2646 2647 handle->ops = sva_ops; 2648 return 0; 2649 } 2650 EXPORT_SYMBOL_GPL(iommu_sva_set_ops); 2651 2652 int iommu_sva_get_pasid(struct iommu_sva *handle) 2653 { 2654 const struct iommu_ops *ops = handle->dev->bus->iommu_ops; 2655 2656 if (!ops || !ops->sva_get_pasid) 2657 return IOMMU_PASID_INVALID; 2658 2659 return ops->sva_get_pasid(handle); 2660 } 2661 EXPORT_SYMBOL_GPL(iommu_sva_get_pasid); 2662