1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc. 4 * Author: Joerg Roedel <jroedel@suse.de> 5 */ 6 7 #define pr_fmt(fmt) "iommu: " fmt 8 9 #include <linux/amba/bus.h> 10 #include <linux/device.h> 11 #include <linux/kernel.h> 12 #include <linux/bits.h> 13 #include <linux/bug.h> 14 #include <linux/types.h> 15 #include <linux/init.h> 16 #include <linux/export.h> 17 #include <linux/slab.h> 18 #include <linux/errno.h> 19 #include <linux/host1x_context_bus.h> 20 #include <linux/iommu.h> 21 #include <linux/idr.h> 22 #include <linux/err.h> 23 #include <linux/pci.h> 24 #include <linux/pci-ats.h> 25 #include <linux/bitops.h> 26 #include <linux/platform_device.h> 27 #include <linux/property.h> 28 #include <linux/fsl/mc.h> 29 #include <linux/module.h> 30 #include <linux/cc_platform.h> 31 #include <linux/cdx/cdx_bus.h> 32 #include <trace/events/iommu.h> 33 #include <linux/sched/mm.h> 34 #include <linux/msi.h> 35 36 #include "dma-iommu.h" 37 38 #include "iommu-sva.h" 39 40 static struct kset *iommu_group_kset; 41 static DEFINE_IDA(iommu_group_ida); 42 43 static unsigned int iommu_def_domain_type __read_mostly; 44 static bool iommu_dma_strict __read_mostly = IS_ENABLED(CONFIG_IOMMU_DEFAULT_DMA_STRICT); 45 static u32 iommu_cmd_line __read_mostly; 46 47 struct iommu_group { 48 struct kobject kobj; 49 struct kobject *devices_kobj; 50 struct list_head devices; 51 struct xarray pasid_array; 52 struct mutex mutex; 53 void *iommu_data; 54 void (*iommu_data_release)(void *iommu_data); 55 char *name; 56 int id; 57 struct iommu_domain *default_domain; 58 struct iommu_domain *blocking_domain; 59 struct iommu_domain *domain; 60 struct list_head entry; 61 unsigned int owner_cnt; 62 void *owner; 63 }; 64 65 struct group_device { 66 struct list_head list; 67 struct device *dev; 68 char *name; 69 }; 70 71 /* Iterate over each struct group_device in a struct iommu_group */ 72 #define for_each_group_device(group, pos) \ 73 list_for_each_entry(pos, &(group)->devices, list) 74 75 struct iommu_group_attribute { 76 struct attribute attr; 77 ssize_t (*show)(struct iommu_group *group, char *buf); 78 ssize_t (*store)(struct iommu_group *group, 79 const char *buf, size_t count); 80 }; 81 82 static const char * const iommu_group_resv_type_string[] = { 83 [IOMMU_RESV_DIRECT] = "direct", 84 [IOMMU_RESV_DIRECT_RELAXABLE] = "direct-relaxable", 85 [IOMMU_RESV_RESERVED] = "reserved", 86 [IOMMU_RESV_MSI] = "msi", 87 [IOMMU_RESV_SW_MSI] = "msi", 88 }; 89 90 #define IOMMU_CMD_LINE_DMA_API BIT(0) 91 #define IOMMU_CMD_LINE_STRICT BIT(1) 92 93 static int iommu_bus_notifier(struct notifier_block *nb, 94 unsigned long action, void *data); 95 static void iommu_release_device(struct device *dev); 96 static int iommu_alloc_default_domain(struct iommu_group *group, 97 struct device *dev); 98 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus, 99 unsigned type); 100 static int __iommu_attach_device(struct iommu_domain *domain, 101 struct device *dev); 102 static int __iommu_attach_group(struct iommu_domain *domain, 103 struct iommu_group *group); 104 105 enum { 106 IOMMU_SET_DOMAIN_MUST_SUCCEED = 1 << 0, 107 }; 108 109 static int __iommu_device_set_domain(struct iommu_group *group, 110 struct device *dev, 111 struct iommu_domain *new_domain, 112 unsigned int flags); 113 static int __iommu_group_set_domain_internal(struct iommu_group *group, 114 struct iommu_domain *new_domain, 115 unsigned int flags); 116 static int __iommu_group_set_domain(struct iommu_group *group, 117 struct iommu_domain *new_domain) 118 { 119 return __iommu_group_set_domain_internal(group, new_domain, 0); 120 } 121 static void __iommu_group_set_domain_nofail(struct iommu_group *group, 122 struct iommu_domain *new_domain) 123 { 124 WARN_ON(__iommu_group_set_domain_internal( 125 group, new_domain, IOMMU_SET_DOMAIN_MUST_SUCCEED)); 126 } 127 128 static int iommu_create_device_direct_mappings(struct iommu_group *group, 129 struct device *dev); 130 static struct iommu_group *iommu_group_get_for_dev(struct device *dev); 131 static ssize_t iommu_group_store_type(struct iommu_group *group, 132 const char *buf, size_t count); 133 134 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store) \ 135 struct iommu_group_attribute iommu_group_attr_##_name = \ 136 __ATTR(_name, _mode, _show, _store) 137 138 #define to_iommu_group_attr(_attr) \ 139 container_of(_attr, struct iommu_group_attribute, attr) 140 #define to_iommu_group(_kobj) \ 141 container_of(_kobj, struct iommu_group, kobj) 142 143 static LIST_HEAD(iommu_device_list); 144 static DEFINE_SPINLOCK(iommu_device_lock); 145 146 static struct bus_type * const iommu_buses[] = { 147 &platform_bus_type, 148 #ifdef CONFIG_PCI 149 &pci_bus_type, 150 #endif 151 #ifdef CONFIG_ARM_AMBA 152 &amba_bustype, 153 #endif 154 #ifdef CONFIG_FSL_MC_BUS 155 &fsl_mc_bus_type, 156 #endif 157 #ifdef CONFIG_TEGRA_HOST1X_CONTEXT_BUS 158 &host1x_context_device_bus_type, 159 #endif 160 #ifdef CONFIG_CDX_BUS 161 &cdx_bus_type, 162 #endif 163 }; 164 165 /* 166 * Use a function instead of an array here because the domain-type is a 167 * bit-field, so an array would waste memory. 168 */ 169 static const char *iommu_domain_type_str(unsigned int t) 170 { 171 switch (t) { 172 case IOMMU_DOMAIN_BLOCKED: 173 return "Blocked"; 174 case IOMMU_DOMAIN_IDENTITY: 175 return "Passthrough"; 176 case IOMMU_DOMAIN_UNMANAGED: 177 return "Unmanaged"; 178 case IOMMU_DOMAIN_DMA: 179 case IOMMU_DOMAIN_DMA_FQ: 180 return "Translated"; 181 default: 182 return "Unknown"; 183 } 184 } 185 186 static int __init iommu_subsys_init(void) 187 { 188 struct notifier_block *nb; 189 190 if (!(iommu_cmd_line & IOMMU_CMD_LINE_DMA_API)) { 191 if (IS_ENABLED(CONFIG_IOMMU_DEFAULT_PASSTHROUGH)) 192 iommu_set_default_passthrough(false); 193 else 194 iommu_set_default_translated(false); 195 196 if (iommu_default_passthrough() && cc_platform_has(CC_ATTR_MEM_ENCRYPT)) { 197 pr_info("Memory encryption detected - Disabling default IOMMU Passthrough\n"); 198 iommu_set_default_translated(false); 199 } 200 } 201 202 if (!iommu_default_passthrough() && !iommu_dma_strict) 203 iommu_def_domain_type = IOMMU_DOMAIN_DMA_FQ; 204 205 pr_info("Default domain type: %s%s\n", 206 iommu_domain_type_str(iommu_def_domain_type), 207 (iommu_cmd_line & IOMMU_CMD_LINE_DMA_API) ? 208 " (set via kernel command line)" : ""); 209 210 if (!iommu_default_passthrough()) 211 pr_info("DMA domain TLB invalidation policy: %s mode%s\n", 212 iommu_dma_strict ? "strict" : "lazy", 213 (iommu_cmd_line & IOMMU_CMD_LINE_STRICT) ? 214 " (set via kernel command line)" : ""); 215 216 nb = kcalloc(ARRAY_SIZE(iommu_buses), sizeof(*nb), GFP_KERNEL); 217 if (!nb) 218 return -ENOMEM; 219 220 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) { 221 nb[i].notifier_call = iommu_bus_notifier; 222 bus_register_notifier(iommu_buses[i], &nb[i]); 223 } 224 225 return 0; 226 } 227 subsys_initcall(iommu_subsys_init); 228 229 static int remove_iommu_group(struct device *dev, void *data) 230 { 231 if (dev->iommu && dev->iommu->iommu_dev == data) 232 iommu_release_device(dev); 233 234 return 0; 235 } 236 237 /** 238 * iommu_device_register() - Register an IOMMU hardware instance 239 * @iommu: IOMMU handle for the instance 240 * @ops: IOMMU ops to associate with the instance 241 * @hwdev: (optional) actual instance device, used for fwnode lookup 242 * 243 * Return: 0 on success, or an error. 244 */ 245 int iommu_device_register(struct iommu_device *iommu, 246 const struct iommu_ops *ops, struct device *hwdev) 247 { 248 int err = 0; 249 250 /* We need to be able to take module references appropriately */ 251 if (WARN_ON(is_module_address((unsigned long)ops) && !ops->owner)) 252 return -EINVAL; 253 /* 254 * Temporarily enforce global restriction to a single driver. This was 255 * already the de-facto behaviour, since any possible combination of 256 * existing drivers would compete for at least the PCI or platform bus. 257 */ 258 if (iommu_buses[0]->iommu_ops && iommu_buses[0]->iommu_ops != ops) 259 return -EBUSY; 260 261 iommu->ops = ops; 262 if (hwdev) 263 iommu->fwnode = dev_fwnode(hwdev); 264 265 spin_lock(&iommu_device_lock); 266 list_add_tail(&iommu->list, &iommu_device_list); 267 spin_unlock(&iommu_device_lock); 268 269 for (int i = 0; i < ARRAY_SIZE(iommu_buses) && !err; i++) { 270 iommu_buses[i]->iommu_ops = ops; 271 err = bus_iommu_probe(iommu_buses[i]); 272 } 273 if (err) 274 iommu_device_unregister(iommu); 275 return err; 276 } 277 EXPORT_SYMBOL_GPL(iommu_device_register); 278 279 void iommu_device_unregister(struct iommu_device *iommu) 280 { 281 for (int i = 0; i < ARRAY_SIZE(iommu_buses); i++) 282 bus_for_each_dev(iommu_buses[i], NULL, iommu, remove_iommu_group); 283 284 spin_lock(&iommu_device_lock); 285 list_del(&iommu->list); 286 spin_unlock(&iommu_device_lock); 287 } 288 EXPORT_SYMBOL_GPL(iommu_device_unregister); 289 290 static struct dev_iommu *dev_iommu_get(struct device *dev) 291 { 292 struct dev_iommu *param = dev->iommu; 293 294 if (param) 295 return param; 296 297 param = kzalloc(sizeof(*param), GFP_KERNEL); 298 if (!param) 299 return NULL; 300 301 mutex_init(¶m->lock); 302 dev->iommu = param; 303 return param; 304 } 305 306 static void dev_iommu_free(struct device *dev) 307 { 308 struct dev_iommu *param = dev->iommu; 309 310 dev->iommu = NULL; 311 if (param->fwspec) { 312 fwnode_handle_put(param->fwspec->iommu_fwnode); 313 kfree(param->fwspec); 314 } 315 kfree(param); 316 } 317 318 static u32 dev_iommu_get_max_pasids(struct device *dev) 319 { 320 u32 max_pasids = 0, bits = 0; 321 int ret; 322 323 if (dev_is_pci(dev)) { 324 ret = pci_max_pasids(to_pci_dev(dev)); 325 if (ret > 0) 326 max_pasids = ret; 327 } else { 328 ret = device_property_read_u32(dev, "pasid-num-bits", &bits); 329 if (!ret) 330 max_pasids = 1UL << bits; 331 } 332 333 return min_t(u32, max_pasids, dev->iommu->iommu_dev->max_pasids); 334 } 335 336 static int __iommu_probe_device(struct device *dev, struct list_head *group_list) 337 { 338 const struct iommu_ops *ops = dev->bus->iommu_ops; 339 struct iommu_device *iommu_dev; 340 struct iommu_group *group; 341 static DEFINE_MUTEX(iommu_probe_device_lock); 342 int ret; 343 344 if (!ops) 345 return -ENODEV; 346 /* 347 * Serialise to avoid races between IOMMU drivers registering in 348 * parallel and/or the "replay" calls from ACPI/OF code via client 349 * driver probe. Once the latter have been cleaned up we should 350 * probably be able to use device_lock() here to minimise the scope, 351 * but for now enforcing a simple global ordering is fine. 352 */ 353 mutex_lock(&iommu_probe_device_lock); 354 if (!dev_iommu_get(dev)) { 355 ret = -ENOMEM; 356 goto err_unlock; 357 } 358 359 if (!try_module_get(ops->owner)) { 360 ret = -EINVAL; 361 goto err_free; 362 } 363 364 iommu_dev = ops->probe_device(dev); 365 if (IS_ERR(iommu_dev)) { 366 ret = PTR_ERR(iommu_dev); 367 goto out_module_put; 368 } 369 370 dev->iommu->iommu_dev = iommu_dev; 371 dev->iommu->max_pasids = dev_iommu_get_max_pasids(dev); 372 if (ops->is_attach_deferred) 373 dev->iommu->attach_deferred = ops->is_attach_deferred(dev); 374 375 group = iommu_group_get_for_dev(dev); 376 if (IS_ERR(group)) { 377 ret = PTR_ERR(group); 378 goto out_release; 379 } 380 381 mutex_lock(&group->mutex); 382 if (group_list && !group->default_domain && list_empty(&group->entry)) 383 list_add_tail(&group->entry, group_list); 384 mutex_unlock(&group->mutex); 385 iommu_group_put(group); 386 387 mutex_unlock(&iommu_probe_device_lock); 388 iommu_device_link(iommu_dev, dev); 389 390 return 0; 391 392 out_release: 393 if (ops->release_device) 394 ops->release_device(dev); 395 396 out_module_put: 397 module_put(ops->owner); 398 399 err_free: 400 dev_iommu_free(dev); 401 402 err_unlock: 403 mutex_unlock(&iommu_probe_device_lock); 404 405 return ret; 406 } 407 408 int iommu_probe_device(struct device *dev) 409 { 410 const struct iommu_ops *ops; 411 struct iommu_group *group; 412 int ret; 413 414 ret = __iommu_probe_device(dev, NULL); 415 if (ret) 416 goto err_out; 417 418 group = iommu_group_get(dev); 419 if (!group) { 420 ret = -ENODEV; 421 goto err_release; 422 } 423 424 mutex_lock(&group->mutex); 425 426 iommu_create_device_direct_mappings(group, dev); 427 428 if (group->domain) { 429 ret = __iommu_device_set_domain(group, dev, group->domain, 0); 430 } else if (!group->default_domain) { 431 /* 432 * Try to allocate a default domain - needs support from the 433 * IOMMU driver. There are still some drivers which don't 434 * support default domains, so the return value is not yet 435 * checked. 436 */ 437 iommu_alloc_default_domain(group, dev); 438 group->domain = NULL; 439 if (group->default_domain) { 440 iommu_create_device_direct_mappings(group, dev); 441 ret = __iommu_group_set_domain(group, 442 group->default_domain); 443 } 444 445 /* 446 * We assume that the iommu driver starts up the device in 447 * 'set_platform_dma_ops' mode if it does not support default 448 * domains. 449 */ 450 } 451 if (ret) 452 goto err_unlock; 453 454 mutex_unlock(&group->mutex); 455 iommu_group_put(group); 456 457 ops = dev_iommu_ops(dev); 458 if (ops->probe_finalize) 459 ops->probe_finalize(dev); 460 461 return 0; 462 463 err_unlock: 464 mutex_unlock(&group->mutex); 465 iommu_group_put(group); 466 err_release: 467 iommu_release_device(dev); 468 469 err_out: 470 return ret; 471 472 } 473 474 /* 475 * Remove a device from a group's device list and return the group device 476 * if successful. 477 */ 478 static struct group_device * 479 __iommu_group_remove_device(struct iommu_group *group, struct device *dev) 480 { 481 struct group_device *device; 482 483 lockdep_assert_held(&group->mutex); 484 for_each_group_device(group, device) { 485 if (device->dev == dev) { 486 list_del(&device->list); 487 return device; 488 } 489 } 490 491 return NULL; 492 } 493 494 /* 495 * Release a device from its group and decrements the iommu group reference 496 * count. 497 */ 498 static void __iommu_group_release_device(struct iommu_group *group, 499 struct group_device *grp_dev) 500 { 501 struct device *dev = grp_dev->dev; 502 503 sysfs_remove_link(group->devices_kobj, grp_dev->name); 504 sysfs_remove_link(&dev->kobj, "iommu_group"); 505 506 trace_remove_device_from_group(group->id, dev); 507 508 kfree(grp_dev->name); 509 kfree(grp_dev); 510 dev->iommu_group = NULL; 511 kobject_put(group->devices_kobj); 512 } 513 514 static void iommu_release_device(struct device *dev) 515 { 516 struct iommu_group *group = dev->iommu_group; 517 struct group_device *device; 518 const struct iommu_ops *ops; 519 520 if (!dev->iommu || !group) 521 return; 522 523 iommu_device_unlink(dev->iommu->iommu_dev, dev); 524 525 mutex_lock(&group->mutex); 526 device = __iommu_group_remove_device(group, dev); 527 528 /* 529 * If the group has become empty then ownership must have been released, 530 * and the current domain must be set back to NULL or the default 531 * domain. 532 */ 533 if (list_empty(&group->devices)) 534 WARN_ON(group->owner_cnt || 535 group->domain != group->default_domain); 536 537 /* 538 * release_device() must stop using any attached domain on the device. 539 * If there are still other devices in the group they are not effected 540 * by this callback. 541 * 542 * The IOMMU driver must set the device to either an identity or 543 * blocking translation and stop using any domain pointer, as it is 544 * going to be freed. 545 */ 546 ops = dev_iommu_ops(dev); 547 if (ops->release_device) 548 ops->release_device(dev); 549 mutex_unlock(&group->mutex); 550 551 if (device) 552 __iommu_group_release_device(group, device); 553 554 module_put(ops->owner); 555 dev_iommu_free(dev); 556 } 557 558 static int __init iommu_set_def_domain_type(char *str) 559 { 560 bool pt; 561 int ret; 562 563 ret = kstrtobool(str, &pt); 564 if (ret) 565 return ret; 566 567 if (pt) 568 iommu_set_default_passthrough(true); 569 else 570 iommu_set_default_translated(true); 571 572 return 0; 573 } 574 early_param("iommu.passthrough", iommu_set_def_domain_type); 575 576 static int __init iommu_dma_setup(char *str) 577 { 578 int ret = kstrtobool(str, &iommu_dma_strict); 579 580 if (!ret) 581 iommu_cmd_line |= IOMMU_CMD_LINE_STRICT; 582 return ret; 583 } 584 early_param("iommu.strict", iommu_dma_setup); 585 586 void iommu_set_dma_strict(void) 587 { 588 iommu_dma_strict = true; 589 if (iommu_def_domain_type == IOMMU_DOMAIN_DMA_FQ) 590 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 591 } 592 593 static ssize_t iommu_group_attr_show(struct kobject *kobj, 594 struct attribute *__attr, char *buf) 595 { 596 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 597 struct iommu_group *group = to_iommu_group(kobj); 598 ssize_t ret = -EIO; 599 600 if (attr->show) 601 ret = attr->show(group, buf); 602 return ret; 603 } 604 605 static ssize_t iommu_group_attr_store(struct kobject *kobj, 606 struct attribute *__attr, 607 const char *buf, size_t count) 608 { 609 struct iommu_group_attribute *attr = to_iommu_group_attr(__attr); 610 struct iommu_group *group = to_iommu_group(kobj); 611 ssize_t ret = -EIO; 612 613 if (attr->store) 614 ret = attr->store(group, buf, count); 615 return ret; 616 } 617 618 static const struct sysfs_ops iommu_group_sysfs_ops = { 619 .show = iommu_group_attr_show, 620 .store = iommu_group_attr_store, 621 }; 622 623 static int iommu_group_create_file(struct iommu_group *group, 624 struct iommu_group_attribute *attr) 625 { 626 return sysfs_create_file(&group->kobj, &attr->attr); 627 } 628 629 static void iommu_group_remove_file(struct iommu_group *group, 630 struct iommu_group_attribute *attr) 631 { 632 sysfs_remove_file(&group->kobj, &attr->attr); 633 } 634 635 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf) 636 { 637 return sysfs_emit(buf, "%s\n", group->name); 638 } 639 640 /** 641 * iommu_insert_resv_region - Insert a new region in the 642 * list of reserved regions. 643 * @new: new region to insert 644 * @regions: list of regions 645 * 646 * Elements are sorted by start address and overlapping segments 647 * of the same type are merged. 648 */ 649 static int iommu_insert_resv_region(struct iommu_resv_region *new, 650 struct list_head *regions) 651 { 652 struct iommu_resv_region *iter, *tmp, *nr, *top; 653 LIST_HEAD(stack); 654 655 nr = iommu_alloc_resv_region(new->start, new->length, 656 new->prot, new->type, GFP_KERNEL); 657 if (!nr) 658 return -ENOMEM; 659 660 /* First add the new element based on start address sorting */ 661 list_for_each_entry(iter, regions, list) { 662 if (nr->start < iter->start || 663 (nr->start == iter->start && nr->type <= iter->type)) 664 break; 665 } 666 list_add_tail(&nr->list, &iter->list); 667 668 /* Merge overlapping segments of type nr->type in @regions, if any */ 669 list_for_each_entry_safe(iter, tmp, regions, list) { 670 phys_addr_t top_end, iter_end = iter->start + iter->length - 1; 671 672 /* no merge needed on elements of different types than @new */ 673 if (iter->type != new->type) { 674 list_move_tail(&iter->list, &stack); 675 continue; 676 } 677 678 /* look for the last stack element of same type as @iter */ 679 list_for_each_entry_reverse(top, &stack, list) 680 if (top->type == iter->type) 681 goto check_overlap; 682 683 list_move_tail(&iter->list, &stack); 684 continue; 685 686 check_overlap: 687 top_end = top->start + top->length - 1; 688 689 if (iter->start > top_end + 1) { 690 list_move_tail(&iter->list, &stack); 691 } else { 692 top->length = max(top_end, iter_end) - top->start + 1; 693 list_del(&iter->list); 694 kfree(iter); 695 } 696 } 697 list_splice(&stack, regions); 698 return 0; 699 } 700 701 static int 702 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions, 703 struct list_head *group_resv_regions) 704 { 705 struct iommu_resv_region *entry; 706 int ret = 0; 707 708 list_for_each_entry(entry, dev_resv_regions, list) { 709 ret = iommu_insert_resv_region(entry, group_resv_regions); 710 if (ret) 711 break; 712 } 713 return ret; 714 } 715 716 int iommu_get_group_resv_regions(struct iommu_group *group, 717 struct list_head *head) 718 { 719 struct group_device *device; 720 int ret = 0; 721 722 mutex_lock(&group->mutex); 723 for_each_group_device(group, device) { 724 struct list_head dev_resv_regions; 725 726 /* 727 * Non-API groups still expose reserved_regions in sysfs, 728 * so filter out calls that get here that way. 729 */ 730 if (!device->dev->iommu) 731 break; 732 733 INIT_LIST_HEAD(&dev_resv_regions); 734 iommu_get_resv_regions(device->dev, &dev_resv_regions); 735 ret = iommu_insert_device_resv_regions(&dev_resv_regions, head); 736 iommu_put_resv_regions(device->dev, &dev_resv_regions); 737 if (ret) 738 break; 739 } 740 mutex_unlock(&group->mutex); 741 return ret; 742 } 743 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions); 744 745 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group, 746 char *buf) 747 { 748 struct iommu_resv_region *region, *next; 749 struct list_head group_resv_regions; 750 int offset = 0; 751 752 INIT_LIST_HEAD(&group_resv_regions); 753 iommu_get_group_resv_regions(group, &group_resv_regions); 754 755 list_for_each_entry_safe(region, next, &group_resv_regions, list) { 756 offset += sysfs_emit_at(buf, offset, "0x%016llx 0x%016llx %s\n", 757 (long long)region->start, 758 (long long)(region->start + 759 region->length - 1), 760 iommu_group_resv_type_string[region->type]); 761 kfree(region); 762 } 763 764 return offset; 765 } 766 767 static ssize_t iommu_group_show_type(struct iommu_group *group, 768 char *buf) 769 { 770 char *type = "unknown"; 771 772 mutex_lock(&group->mutex); 773 if (group->default_domain) { 774 switch (group->default_domain->type) { 775 case IOMMU_DOMAIN_BLOCKED: 776 type = "blocked"; 777 break; 778 case IOMMU_DOMAIN_IDENTITY: 779 type = "identity"; 780 break; 781 case IOMMU_DOMAIN_UNMANAGED: 782 type = "unmanaged"; 783 break; 784 case IOMMU_DOMAIN_DMA: 785 type = "DMA"; 786 break; 787 case IOMMU_DOMAIN_DMA_FQ: 788 type = "DMA-FQ"; 789 break; 790 } 791 } 792 mutex_unlock(&group->mutex); 793 794 return sysfs_emit(buf, "%s\n", type); 795 } 796 797 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL); 798 799 static IOMMU_GROUP_ATTR(reserved_regions, 0444, 800 iommu_group_show_resv_regions, NULL); 801 802 static IOMMU_GROUP_ATTR(type, 0644, iommu_group_show_type, 803 iommu_group_store_type); 804 805 static void iommu_group_release(struct kobject *kobj) 806 { 807 struct iommu_group *group = to_iommu_group(kobj); 808 809 pr_debug("Releasing group %d\n", group->id); 810 811 if (group->iommu_data_release) 812 group->iommu_data_release(group->iommu_data); 813 814 ida_free(&iommu_group_ida, group->id); 815 816 if (group->default_domain) 817 iommu_domain_free(group->default_domain); 818 if (group->blocking_domain) 819 iommu_domain_free(group->blocking_domain); 820 821 kfree(group->name); 822 kfree(group); 823 } 824 825 static const struct kobj_type iommu_group_ktype = { 826 .sysfs_ops = &iommu_group_sysfs_ops, 827 .release = iommu_group_release, 828 }; 829 830 /** 831 * iommu_group_alloc - Allocate a new group 832 * 833 * This function is called by an iommu driver to allocate a new iommu 834 * group. The iommu group represents the minimum granularity of the iommu. 835 * Upon successful return, the caller holds a reference to the supplied 836 * group in order to hold the group until devices are added. Use 837 * iommu_group_put() to release this extra reference count, allowing the 838 * group to be automatically reclaimed once it has no devices or external 839 * references. 840 */ 841 struct iommu_group *iommu_group_alloc(void) 842 { 843 struct iommu_group *group; 844 int ret; 845 846 group = kzalloc(sizeof(*group), GFP_KERNEL); 847 if (!group) 848 return ERR_PTR(-ENOMEM); 849 850 group->kobj.kset = iommu_group_kset; 851 mutex_init(&group->mutex); 852 INIT_LIST_HEAD(&group->devices); 853 INIT_LIST_HEAD(&group->entry); 854 xa_init(&group->pasid_array); 855 856 ret = ida_alloc(&iommu_group_ida, GFP_KERNEL); 857 if (ret < 0) { 858 kfree(group); 859 return ERR_PTR(ret); 860 } 861 group->id = ret; 862 863 ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype, 864 NULL, "%d", group->id); 865 if (ret) { 866 kobject_put(&group->kobj); 867 return ERR_PTR(ret); 868 } 869 870 group->devices_kobj = kobject_create_and_add("devices", &group->kobj); 871 if (!group->devices_kobj) { 872 kobject_put(&group->kobj); /* triggers .release & free */ 873 return ERR_PTR(-ENOMEM); 874 } 875 876 /* 877 * The devices_kobj holds a reference on the group kobject, so 878 * as long as that exists so will the group. We can therefore 879 * use the devices_kobj for reference counting. 880 */ 881 kobject_put(&group->kobj); 882 883 ret = iommu_group_create_file(group, 884 &iommu_group_attr_reserved_regions); 885 if (ret) { 886 kobject_put(group->devices_kobj); 887 return ERR_PTR(ret); 888 } 889 890 ret = iommu_group_create_file(group, &iommu_group_attr_type); 891 if (ret) { 892 kobject_put(group->devices_kobj); 893 return ERR_PTR(ret); 894 } 895 896 pr_debug("Allocated group %d\n", group->id); 897 898 return group; 899 } 900 EXPORT_SYMBOL_GPL(iommu_group_alloc); 901 902 /** 903 * iommu_group_get_iommudata - retrieve iommu_data registered for a group 904 * @group: the group 905 * 906 * iommu drivers can store data in the group for use when doing iommu 907 * operations. This function provides a way to retrieve it. Caller 908 * should hold a group reference. 909 */ 910 void *iommu_group_get_iommudata(struct iommu_group *group) 911 { 912 return group->iommu_data; 913 } 914 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata); 915 916 /** 917 * iommu_group_set_iommudata - set iommu_data for a group 918 * @group: the group 919 * @iommu_data: new data 920 * @release: release function for iommu_data 921 * 922 * iommu drivers can store data in the group for use when doing iommu 923 * operations. This function provides a way to set the data after 924 * the group has been allocated. Caller should hold a group reference. 925 */ 926 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data, 927 void (*release)(void *iommu_data)) 928 { 929 group->iommu_data = iommu_data; 930 group->iommu_data_release = release; 931 } 932 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata); 933 934 /** 935 * iommu_group_set_name - set name for a group 936 * @group: the group 937 * @name: name 938 * 939 * Allow iommu driver to set a name for a group. When set it will 940 * appear in a name attribute file under the group in sysfs. 941 */ 942 int iommu_group_set_name(struct iommu_group *group, const char *name) 943 { 944 int ret; 945 946 if (group->name) { 947 iommu_group_remove_file(group, &iommu_group_attr_name); 948 kfree(group->name); 949 group->name = NULL; 950 if (!name) 951 return 0; 952 } 953 954 group->name = kstrdup(name, GFP_KERNEL); 955 if (!group->name) 956 return -ENOMEM; 957 958 ret = iommu_group_create_file(group, &iommu_group_attr_name); 959 if (ret) { 960 kfree(group->name); 961 group->name = NULL; 962 return ret; 963 } 964 965 return 0; 966 } 967 EXPORT_SYMBOL_GPL(iommu_group_set_name); 968 969 static int iommu_create_device_direct_mappings(struct iommu_group *group, 970 struct device *dev) 971 { 972 struct iommu_domain *domain = group->default_domain; 973 struct iommu_resv_region *entry; 974 struct list_head mappings; 975 unsigned long pg_size; 976 int ret = 0; 977 978 if (!domain || !iommu_is_dma_domain(domain)) 979 return 0; 980 981 BUG_ON(!domain->pgsize_bitmap); 982 983 pg_size = 1UL << __ffs(domain->pgsize_bitmap); 984 INIT_LIST_HEAD(&mappings); 985 986 iommu_get_resv_regions(dev, &mappings); 987 988 /* We need to consider overlapping regions for different devices */ 989 list_for_each_entry(entry, &mappings, list) { 990 dma_addr_t start, end, addr; 991 size_t map_size = 0; 992 993 start = ALIGN(entry->start, pg_size); 994 end = ALIGN(entry->start + entry->length, pg_size); 995 996 if (entry->type != IOMMU_RESV_DIRECT && 997 entry->type != IOMMU_RESV_DIRECT_RELAXABLE) 998 continue; 999 1000 for (addr = start; addr <= end; addr += pg_size) { 1001 phys_addr_t phys_addr; 1002 1003 if (addr == end) 1004 goto map_end; 1005 1006 phys_addr = iommu_iova_to_phys(domain, addr); 1007 if (!phys_addr) { 1008 map_size += pg_size; 1009 continue; 1010 } 1011 1012 map_end: 1013 if (map_size) { 1014 ret = iommu_map(domain, addr - map_size, 1015 addr - map_size, map_size, 1016 entry->prot, GFP_KERNEL); 1017 if (ret) 1018 goto out; 1019 map_size = 0; 1020 } 1021 } 1022 1023 } 1024 1025 iommu_flush_iotlb_all(domain); 1026 1027 out: 1028 iommu_put_resv_regions(dev, &mappings); 1029 1030 return ret; 1031 } 1032 1033 /** 1034 * iommu_group_add_device - add a device to an iommu group 1035 * @group: the group into which to add the device (reference should be held) 1036 * @dev: the device 1037 * 1038 * This function is called by an iommu driver to add a device into a 1039 * group. Adding a device increments the group reference count. 1040 */ 1041 int iommu_group_add_device(struct iommu_group *group, struct device *dev) 1042 { 1043 int ret, i = 0; 1044 struct group_device *device; 1045 1046 device = kzalloc(sizeof(*device), GFP_KERNEL); 1047 if (!device) 1048 return -ENOMEM; 1049 1050 device->dev = dev; 1051 1052 ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group"); 1053 if (ret) 1054 goto err_free_device; 1055 1056 device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj)); 1057 rename: 1058 if (!device->name) { 1059 ret = -ENOMEM; 1060 goto err_remove_link; 1061 } 1062 1063 ret = sysfs_create_link_nowarn(group->devices_kobj, 1064 &dev->kobj, device->name); 1065 if (ret) { 1066 if (ret == -EEXIST && i >= 0) { 1067 /* 1068 * Account for the slim chance of collision 1069 * and append an instance to the name. 1070 */ 1071 kfree(device->name); 1072 device->name = kasprintf(GFP_KERNEL, "%s.%d", 1073 kobject_name(&dev->kobj), i++); 1074 goto rename; 1075 } 1076 goto err_free_name; 1077 } 1078 1079 kobject_get(group->devices_kobj); 1080 1081 dev->iommu_group = group; 1082 1083 mutex_lock(&group->mutex); 1084 list_add_tail(&device->list, &group->devices); 1085 mutex_unlock(&group->mutex); 1086 trace_add_device_to_group(group->id, dev); 1087 1088 dev_info(dev, "Adding to iommu group %d\n", group->id); 1089 1090 return 0; 1091 1092 err_free_name: 1093 kfree(device->name); 1094 err_remove_link: 1095 sysfs_remove_link(&dev->kobj, "iommu_group"); 1096 err_free_device: 1097 kfree(device); 1098 dev_err(dev, "Failed to add to iommu group %d: %d\n", group->id, ret); 1099 return ret; 1100 } 1101 EXPORT_SYMBOL_GPL(iommu_group_add_device); 1102 1103 /** 1104 * iommu_group_remove_device - remove a device from it's current group 1105 * @dev: device to be removed 1106 * 1107 * This function is called by an iommu driver to remove the device from 1108 * it's current group. This decrements the iommu group reference count. 1109 */ 1110 void iommu_group_remove_device(struct device *dev) 1111 { 1112 struct iommu_group *group = dev->iommu_group; 1113 struct group_device *device; 1114 1115 if (!group) 1116 return; 1117 1118 dev_info(dev, "Removing from iommu group %d\n", group->id); 1119 1120 mutex_lock(&group->mutex); 1121 device = __iommu_group_remove_device(group, dev); 1122 mutex_unlock(&group->mutex); 1123 1124 if (device) 1125 __iommu_group_release_device(group, device); 1126 } 1127 EXPORT_SYMBOL_GPL(iommu_group_remove_device); 1128 1129 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data, 1130 int (*fn)(struct device *, void *)) 1131 { 1132 struct group_device *device; 1133 int ret = 0; 1134 1135 for_each_group_device(group, device) { 1136 ret = fn(device->dev, data); 1137 if (ret) 1138 break; 1139 } 1140 return ret; 1141 } 1142 1143 /** 1144 * iommu_group_for_each_dev - iterate over each device in the group 1145 * @group: the group 1146 * @data: caller opaque data to be passed to callback function 1147 * @fn: caller supplied callback function 1148 * 1149 * This function is called by group users to iterate over group devices. 1150 * Callers should hold a reference count to the group during callback. 1151 * The group->mutex is held across callbacks, which will block calls to 1152 * iommu_group_add/remove_device. 1153 */ 1154 int iommu_group_for_each_dev(struct iommu_group *group, void *data, 1155 int (*fn)(struct device *, void *)) 1156 { 1157 int ret; 1158 1159 mutex_lock(&group->mutex); 1160 ret = __iommu_group_for_each_dev(group, data, fn); 1161 mutex_unlock(&group->mutex); 1162 1163 return ret; 1164 } 1165 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev); 1166 1167 /** 1168 * iommu_group_get - Return the group for a device and increment reference 1169 * @dev: get the group that this device belongs to 1170 * 1171 * This function is called by iommu drivers and users to get the group 1172 * for the specified device. If found, the group is returned and the group 1173 * reference in incremented, else NULL. 1174 */ 1175 struct iommu_group *iommu_group_get(struct device *dev) 1176 { 1177 struct iommu_group *group = dev->iommu_group; 1178 1179 if (group) 1180 kobject_get(group->devices_kobj); 1181 1182 return group; 1183 } 1184 EXPORT_SYMBOL_GPL(iommu_group_get); 1185 1186 /** 1187 * iommu_group_ref_get - Increment reference on a group 1188 * @group: the group to use, must not be NULL 1189 * 1190 * This function is called by iommu drivers to take additional references on an 1191 * existing group. Returns the given group for convenience. 1192 */ 1193 struct iommu_group *iommu_group_ref_get(struct iommu_group *group) 1194 { 1195 kobject_get(group->devices_kobj); 1196 return group; 1197 } 1198 EXPORT_SYMBOL_GPL(iommu_group_ref_get); 1199 1200 /** 1201 * iommu_group_put - Decrement group reference 1202 * @group: the group to use 1203 * 1204 * This function is called by iommu drivers and users to release the 1205 * iommu group. Once the reference count is zero, the group is released. 1206 */ 1207 void iommu_group_put(struct iommu_group *group) 1208 { 1209 if (group) 1210 kobject_put(group->devices_kobj); 1211 } 1212 EXPORT_SYMBOL_GPL(iommu_group_put); 1213 1214 /** 1215 * iommu_register_device_fault_handler() - Register a device fault handler 1216 * @dev: the device 1217 * @handler: the fault handler 1218 * @data: private data passed as argument to the handler 1219 * 1220 * When an IOMMU fault event is received, this handler gets called with the 1221 * fault event and data as argument. The handler should return 0 on success. If 1222 * the fault is recoverable (IOMMU_FAULT_PAGE_REQ), the consumer should also 1223 * complete the fault by calling iommu_page_response() with one of the following 1224 * response code: 1225 * - IOMMU_PAGE_RESP_SUCCESS: retry the translation 1226 * - IOMMU_PAGE_RESP_INVALID: terminate the fault 1227 * - IOMMU_PAGE_RESP_FAILURE: terminate the fault and stop reporting 1228 * page faults if possible. 1229 * 1230 * Return 0 if the fault handler was installed successfully, or an error. 1231 */ 1232 int iommu_register_device_fault_handler(struct device *dev, 1233 iommu_dev_fault_handler_t handler, 1234 void *data) 1235 { 1236 struct dev_iommu *param = dev->iommu; 1237 int ret = 0; 1238 1239 if (!param) 1240 return -EINVAL; 1241 1242 mutex_lock(¶m->lock); 1243 /* Only allow one fault handler registered for each device */ 1244 if (param->fault_param) { 1245 ret = -EBUSY; 1246 goto done_unlock; 1247 } 1248 1249 get_device(dev); 1250 param->fault_param = kzalloc(sizeof(*param->fault_param), GFP_KERNEL); 1251 if (!param->fault_param) { 1252 put_device(dev); 1253 ret = -ENOMEM; 1254 goto done_unlock; 1255 } 1256 param->fault_param->handler = handler; 1257 param->fault_param->data = data; 1258 mutex_init(¶m->fault_param->lock); 1259 INIT_LIST_HEAD(¶m->fault_param->faults); 1260 1261 done_unlock: 1262 mutex_unlock(¶m->lock); 1263 1264 return ret; 1265 } 1266 EXPORT_SYMBOL_GPL(iommu_register_device_fault_handler); 1267 1268 /** 1269 * iommu_unregister_device_fault_handler() - Unregister the device fault handler 1270 * @dev: the device 1271 * 1272 * Remove the device fault handler installed with 1273 * iommu_register_device_fault_handler(). 1274 * 1275 * Return 0 on success, or an error. 1276 */ 1277 int iommu_unregister_device_fault_handler(struct device *dev) 1278 { 1279 struct dev_iommu *param = dev->iommu; 1280 int ret = 0; 1281 1282 if (!param) 1283 return -EINVAL; 1284 1285 mutex_lock(¶m->lock); 1286 1287 if (!param->fault_param) 1288 goto unlock; 1289 1290 /* we cannot unregister handler if there are pending faults */ 1291 if (!list_empty(¶m->fault_param->faults)) { 1292 ret = -EBUSY; 1293 goto unlock; 1294 } 1295 1296 kfree(param->fault_param); 1297 param->fault_param = NULL; 1298 put_device(dev); 1299 unlock: 1300 mutex_unlock(¶m->lock); 1301 1302 return ret; 1303 } 1304 EXPORT_SYMBOL_GPL(iommu_unregister_device_fault_handler); 1305 1306 /** 1307 * iommu_report_device_fault() - Report fault event to device driver 1308 * @dev: the device 1309 * @evt: fault event data 1310 * 1311 * Called by IOMMU drivers when a fault is detected, typically in a threaded IRQ 1312 * handler. When this function fails and the fault is recoverable, it is the 1313 * caller's responsibility to complete the fault. 1314 * 1315 * Return 0 on success, or an error. 1316 */ 1317 int iommu_report_device_fault(struct device *dev, struct iommu_fault_event *evt) 1318 { 1319 struct dev_iommu *param = dev->iommu; 1320 struct iommu_fault_event *evt_pending = NULL; 1321 struct iommu_fault_param *fparam; 1322 int ret = 0; 1323 1324 if (!param || !evt) 1325 return -EINVAL; 1326 1327 /* we only report device fault if there is a handler registered */ 1328 mutex_lock(¶m->lock); 1329 fparam = param->fault_param; 1330 if (!fparam || !fparam->handler) { 1331 ret = -EINVAL; 1332 goto done_unlock; 1333 } 1334 1335 if (evt->fault.type == IOMMU_FAULT_PAGE_REQ && 1336 (evt->fault.prm.flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE)) { 1337 evt_pending = kmemdup(evt, sizeof(struct iommu_fault_event), 1338 GFP_KERNEL); 1339 if (!evt_pending) { 1340 ret = -ENOMEM; 1341 goto done_unlock; 1342 } 1343 mutex_lock(&fparam->lock); 1344 list_add_tail(&evt_pending->list, &fparam->faults); 1345 mutex_unlock(&fparam->lock); 1346 } 1347 1348 ret = fparam->handler(&evt->fault, fparam->data); 1349 if (ret && evt_pending) { 1350 mutex_lock(&fparam->lock); 1351 list_del(&evt_pending->list); 1352 mutex_unlock(&fparam->lock); 1353 kfree(evt_pending); 1354 } 1355 done_unlock: 1356 mutex_unlock(¶m->lock); 1357 return ret; 1358 } 1359 EXPORT_SYMBOL_GPL(iommu_report_device_fault); 1360 1361 int iommu_page_response(struct device *dev, 1362 struct iommu_page_response *msg) 1363 { 1364 bool needs_pasid; 1365 int ret = -EINVAL; 1366 struct iommu_fault_event *evt; 1367 struct iommu_fault_page_request *prm; 1368 struct dev_iommu *param = dev->iommu; 1369 const struct iommu_ops *ops = dev_iommu_ops(dev); 1370 bool has_pasid = msg->flags & IOMMU_PAGE_RESP_PASID_VALID; 1371 1372 if (!ops->page_response) 1373 return -ENODEV; 1374 1375 if (!param || !param->fault_param) 1376 return -EINVAL; 1377 1378 if (msg->version != IOMMU_PAGE_RESP_VERSION_1 || 1379 msg->flags & ~IOMMU_PAGE_RESP_PASID_VALID) 1380 return -EINVAL; 1381 1382 /* Only send response if there is a fault report pending */ 1383 mutex_lock(¶m->fault_param->lock); 1384 if (list_empty(¶m->fault_param->faults)) { 1385 dev_warn_ratelimited(dev, "no pending PRQ, drop response\n"); 1386 goto done_unlock; 1387 } 1388 /* 1389 * Check if we have a matching page request pending to respond, 1390 * otherwise return -EINVAL 1391 */ 1392 list_for_each_entry(evt, ¶m->fault_param->faults, list) { 1393 prm = &evt->fault.prm; 1394 if (prm->grpid != msg->grpid) 1395 continue; 1396 1397 /* 1398 * If the PASID is required, the corresponding request is 1399 * matched using the group ID, the PASID valid bit and the PASID 1400 * value. Otherwise only the group ID matches request and 1401 * response. 1402 */ 1403 needs_pasid = prm->flags & IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; 1404 if (needs_pasid && (!has_pasid || msg->pasid != prm->pasid)) 1405 continue; 1406 1407 if (!needs_pasid && has_pasid) { 1408 /* No big deal, just clear it. */ 1409 msg->flags &= ~IOMMU_PAGE_RESP_PASID_VALID; 1410 msg->pasid = 0; 1411 } 1412 1413 ret = ops->page_response(dev, evt, msg); 1414 list_del(&evt->list); 1415 kfree(evt); 1416 break; 1417 } 1418 1419 done_unlock: 1420 mutex_unlock(¶m->fault_param->lock); 1421 return ret; 1422 } 1423 EXPORT_SYMBOL_GPL(iommu_page_response); 1424 1425 /** 1426 * iommu_group_id - Return ID for a group 1427 * @group: the group to ID 1428 * 1429 * Return the unique ID for the group matching the sysfs group number. 1430 */ 1431 int iommu_group_id(struct iommu_group *group) 1432 { 1433 return group->id; 1434 } 1435 EXPORT_SYMBOL_GPL(iommu_group_id); 1436 1437 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1438 unsigned long *devfns); 1439 1440 /* 1441 * To consider a PCI device isolated, we require ACS to support Source 1442 * Validation, Request Redirection, Completer Redirection, and Upstream 1443 * Forwarding. This effectively means that devices cannot spoof their 1444 * requester ID, requests and completions cannot be redirected, and all 1445 * transactions are forwarded upstream, even as it passes through a 1446 * bridge where the target device is downstream. 1447 */ 1448 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF) 1449 1450 /* 1451 * For multifunction devices which are not isolated from each other, find 1452 * all the other non-isolated functions and look for existing groups. For 1453 * each function, we also need to look for aliases to or from other devices 1454 * that may already have a group. 1455 */ 1456 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev, 1457 unsigned long *devfns) 1458 { 1459 struct pci_dev *tmp = NULL; 1460 struct iommu_group *group; 1461 1462 if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS)) 1463 return NULL; 1464 1465 for_each_pci_dev(tmp) { 1466 if (tmp == pdev || tmp->bus != pdev->bus || 1467 PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) || 1468 pci_acs_enabled(tmp, REQ_ACS_FLAGS)) 1469 continue; 1470 1471 group = get_pci_alias_group(tmp, devfns); 1472 if (group) { 1473 pci_dev_put(tmp); 1474 return group; 1475 } 1476 } 1477 1478 return NULL; 1479 } 1480 1481 /* 1482 * Look for aliases to or from the given device for existing groups. DMA 1483 * aliases are only supported on the same bus, therefore the search 1484 * space is quite small (especially since we're really only looking at pcie 1485 * device, and therefore only expect multiple slots on the root complex or 1486 * downstream switch ports). It's conceivable though that a pair of 1487 * multifunction devices could have aliases between them that would cause a 1488 * loop. To prevent this, we use a bitmap to track where we've been. 1489 */ 1490 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev, 1491 unsigned long *devfns) 1492 { 1493 struct pci_dev *tmp = NULL; 1494 struct iommu_group *group; 1495 1496 if (test_and_set_bit(pdev->devfn & 0xff, devfns)) 1497 return NULL; 1498 1499 group = iommu_group_get(&pdev->dev); 1500 if (group) 1501 return group; 1502 1503 for_each_pci_dev(tmp) { 1504 if (tmp == pdev || tmp->bus != pdev->bus) 1505 continue; 1506 1507 /* We alias them or they alias us */ 1508 if (pci_devs_are_dma_aliases(pdev, tmp)) { 1509 group = get_pci_alias_group(tmp, devfns); 1510 if (group) { 1511 pci_dev_put(tmp); 1512 return group; 1513 } 1514 1515 group = get_pci_function_alias_group(tmp, devfns); 1516 if (group) { 1517 pci_dev_put(tmp); 1518 return group; 1519 } 1520 } 1521 } 1522 1523 return NULL; 1524 } 1525 1526 struct group_for_pci_data { 1527 struct pci_dev *pdev; 1528 struct iommu_group *group; 1529 }; 1530 1531 /* 1532 * DMA alias iterator callback, return the last seen device. Stop and return 1533 * the IOMMU group if we find one along the way. 1534 */ 1535 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque) 1536 { 1537 struct group_for_pci_data *data = opaque; 1538 1539 data->pdev = pdev; 1540 data->group = iommu_group_get(&pdev->dev); 1541 1542 return data->group != NULL; 1543 } 1544 1545 /* 1546 * Generic device_group call-back function. It just allocates one 1547 * iommu-group per device. 1548 */ 1549 struct iommu_group *generic_device_group(struct device *dev) 1550 { 1551 return iommu_group_alloc(); 1552 } 1553 EXPORT_SYMBOL_GPL(generic_device_group); 1554 1555 /* 1556 * Use standard PCI bus topology, isolation features, and DMA alias quirks 1557 * to find or create an IOMMU group for a device. 1558 */ 1559 struct iommu_group *pci_device_group(struct device *dev) 1560 { 1561 struct pci_dev *pdev = to_pci_dev(dev); 1562 struct group_for_pci_data data; 1563 struct pci_bus *bus; 1564 struct iommu_group *group = NULL; 1565 u64 devfns[4] = { 0 }; 1566 1567 if (WARN_ON(!dev_is_pci(dev))) 1568 return ERR_PTR(-EINVAL); 1569 1570 /* 1571 * Find the upstream DMA alias for the device. A device must not 1572 * be aliased due to topology in order to have its own IOMMU group. 1573 * If we find an alias along the way that already belongs to a 1574 * group, use it. 1575 */ 1576 if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data)) 1577 return data.group; 1578 1579 pdev = data.pdev; 1580 1581 /* 1582 * Continue upstream from the point of minimum IOMMU granularity 1583 * due to aliases to the point where devices are protected from 1584 * peer-to-peer DMA by PCI ACS. Again, if we find an existing 1585 * group, use it. 1586 */ 1587 for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) { 1588 if (!bus->self) 1589 continue; 1590 1591 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS)) 1592 break; 1593 1594 pdev = bus->self; 1595 1596 group = iommu_group_get(&pdev->dev); 1597 if (group) 1598 return group; 1599 } 1600 1601 /* 1602 * Look for existing groups on device aliases. If we alias another 1603 * device or another device aliases us, use the same group. 1604 */ 1605 group = get_pci_alias_group(pdev, (unsigned long *)devfns); 1606 if (group) 1607 return group; 1608 1609 /* 1610 * Look for existing groups on non-isolated functions on the same 1611 * slot and aliases of those funcions, if any. No need to clear 1612 * the search bitmap, the tested devfns are still valid. 1613 */ 1614 group = get_pci_function_alias_group(pdev, (unsigned long *)devfns); 1615 if (group) 1616 return group; 1617 1618 /* No shared group found, allocate new */ 1619 return iommu_group_alloc(); 1620 } 1621 EXPORT_SYMBOL_GPL(pci_device_group); 1622 1623 /* Get the IOMMU group for device on fsl-mc bus */ 1624 struct iommu_group *fsl_mc_device_group(struct device *dev) 1625 { 1626 struct device *cont_dev = fsl_mc_cont_dev(dev); 1627 struct iommu_group *group; 1628 1629 group = iommu_group_get(cont_dev); 1630 if (!group) 1631 group = iommu_group_alloc(); 1632 return group; 1633 } 1634 EXPORT_SYMBOL_GPL(fsl_mc_device_group); 1635 1636 static int iommu_get_def_domain_type(struct device *dev) 1637 { 1638 const struct iommu_ops *ops = dev_iommu_ops(dev); 1639 1640 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted) 1641 return IOMMU_DOMAIN_DMA; 1642 1643 if (ops->def_domain_type) 1644 return ops->def_domain_type(dev); 1645 1646 return 0; 1647 } 1648 1649 static int iommu_group_alloc_default_domain(const struct bus_type *bus, 1650 struct iommu_group *group, 1651 unsigned int type) 1652 { 1653 struct iommu_domain *dom; 1654 1655 dom = __iommu_domain_alloc(bus, type); 1656 if (!dom && type != IOMMU_DOMAIN_DMA) { 1657 dom = __iommu_domain_alloc(bus, IOMMU_DOMAIN_DMA); 1658 if (dom) 1659 pr_warn("Failed to allocate default IOMMU domain of type %u for group %s - Falling back to IOMMU_DOMAIN_DMA", 1660 type, group->name); 1661 } 1662 1663 if (!dom) 1664 return -ENOMEM; 1665 1666 group->default_domain = dom; 1667 if (!group->domain) 1668 group->domain = dom; 1669 return 0; 1670 } 1671 1672 static int iommu_alloc_default_domain(struct iommu_group *group, 1673 struct device *dev) 1674 { 1675 unsigned int type; 1676 1677 type = iommu_get_def_domain_type(dev) ? : iommu_def_domain_type; 1678 1679 return iommu_group_alloc_default_domain(dev->bus, group, type); 1680 } 1681 1682 /** 1683 * iommu_group_get_for_dev - Find or create the IOMMU group for a device 1684 * @dev: target device 1685 * 1686 * This function is intended to be called by IOMMU drivers and extended to 1687 * support common, bus-defined algorithms when determining or creating the 1688 * IOMMU group for a device. On success, the caller will hold a reference 1689 * to the returned IOMMU group, which will already include the provided 1690 * device. The reference should be released with iommu_group_put(). 1691 */ 1692 static struct iommu_group *iommu_group_get_for_dev(struct device *dev) 1693 { 1694 const struct iommu_ops *ops = dev_iommu_ops(dev); 1695 struct iommu_group *group; 1696 int ret; 1697 1698 group = iommu_group_get(dev); 1699 if (group) 1700 return group; 1701 1702 group = ops->device_group(dev); 1703 if (WARN_ON_ONCE(group == NULL)) 1704 return ERR_PTR(-EINVAL); 1705 1706 if (IS_ERR(group)) 1707 return group; 1708 1709 ret = iommu_group_add_device(group, dev); 1710 if (ret) 1711 goto out_put_group; 1712 1713 return group; 1714 1715 out_put_group: 1716 iommu_group_put(group); 1717 1718 return ERR_PTR(ret); 1719 } 1720 1721 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group) 1722 { 1723 return group->default_domain; 1724 } 1725 1726 static int probe_iommu_group(struct device *dev, void *data) 1727 { 1728 struct list_head *group_list = data; 1729 struct iommu_group *group; 1730 int ret; 1731 1732 /* Device is probed already if in a group */ 1733 group = iommu_group_get(dev); 1734 if (group) { 1735 iommu_group_put(group); 1736 return 0; 1737 } 1738 1739 ret = __iommu_probe_device(dev, group_list); 1740 if (ret == -ENODEV) 1741 ret = 0; 1742 1743 return ret; 1744 } 1745 1746 static int iommu_bus_notifier(struct notifier_block *nb, 1747 unsigned long action, void *data) 1748 { 1749 struct device *dev = data; 1750 1751 if (action == BUS_NOTIFY_ADD_DEVICE) { 1752 int ret; 1753 1754 ret = iommu_probe_device(dev); 1755 return (ret) ? NOTIFY_DONE : NOTIFY_OK; 1756 } else if (action == BUS_NOTIFY_REMOVED_DEVICE) { 1757 iommu_release_device(dev); 1758 return NOTIFY_OK; 1759 } 1760 1761 return 0; 1762 } 1763 1764 struct __group_domain_type { 1765 struct device *dev; 1766 unsigned int type; 1767 }; 1768 1769 static int probe_get_default_domain_type(struct device *dev, void *data) 1770 { 1771 struct __group_domain_type *gtype = data; 1772 unsigned int type = iommu_get_def_domain_type(dev); 1773 1774 if (type) { 1775 if (gtype->type && gtype->type != type) { 1776 dev_warn(dev, "Device needs domain type %s, but device %s in the same iommu group requires type %s - using default\n", 1777 iommu_domain_type_str(type), 1778 dev_name(gtype->dev), 1779 iommu_domain_type_str(gtype->type)); 1780 gtype->type = 0; 1781 } 1782 1783 if (!gtype->dev) { 1784 gtype->dev = dev; 1785 gtype->type = type; 1786 } 1787 } 1788 1789 return 0; 1790 } 1791 1792 static void probe_alloc_default_domain(const struct bus_type *bus, 1793 struct iommu_group *group) 1794 { 1795 struct __group_domain_type gtype; 1796 1797 memset(>ype, 0, sizeof(gtype)); 1798 1799 /* Ask for default domain requirements of all devices in the group */ 1800 __iommu_group_for_each_dev(group, >ype, 1801 probe_get_default_domain_type); 1802 1803 if (!gtype.type) 1804 gtype.type = iommu_def_domain_type; 1805 1806 iommu_group_alloc_default_domain(bus, group, gtype.type); 1807 1808 } 1809 1810 static int iommu_group_do_probe_finalize(struct device *dev, void *data) 1811 { 1812 const struct iommu_ops *ops = dev_iommu_ops(dev); 1813 1814 if (ops->probe_finalize) 1815 ops->probe_finalize(dev); 1816 1817 return 0; 1818 } 1819 1820 static void __iommu_group_dma_finalize(struct iommu_group *group) 1821 { 1822 __iommu_group_for_each_dev(group, group->default_domain, 1823 iommu_group_do_probe_finalize); 1824 } 1825 1826 static int iommu_do_create_direct_mappings(struct device *dev, void *data) 1827 { 1828 struct iommu_group *group = data; 1829 1830 iommu_create_device_direct_mappings(group, dev); 1831 1832 return 0; 1833 } 1834 1835 static int iommu_group_create_direct_mappings(struct iommu_group *group) 1836 { 1837 return __iommu_group_for_each_dev(group, group, 1838 iommu_do_create_direct_mappings); 1839 } 1840 1841 int bus_iommu_probe(const struct bus_type *bus) 1842 { 1843 struct iommu_group *group, *next; 1844 LIST_HEAD(group_list); 1845 int ret; 1846 1847 /* 1848 * This code-path does not allocate the default domain when 1849 * creating the iommu group, so do it after the groups are 1850 * created. 1851 */ 1852 ret = bus_for_each_dev(bus, NULL, &group_list, probe_iommu_group); 1853 if (ret) 1854 return ret; 1855 1856 list_for_each_entry_safe(group, next, &group_list, entry) { 1857 mutex_lock(&group->mutex); 1858 1859 /* Remove item from the list */ 1860 list_del_init(&group->entry); 1861 1862 /* Try to allocate default domain */ 1863 probe_alloc_default_domain(bus, group); 1864 1865 if (!group->default_domain) { 1866 mutex_unlock(&group->mutex); 1867 continue; 1868 } 1869 1870 iommu_group_create_direct_mappings(group); 1871 1872 group->domain = NULL; 1873 ret = __iommu_group_set_domain(group, group->default_domain); 1874 1875 mutex_unlock(&group->mutex); 1876 1877 if (ret) 1878 break; 1879 1880 __iommu_group_dma_finalize(group); 1881 } 1882 1883 return ret; 1884 } 1885 1886 bool iommu_present(const struct bus_type *bus) 1887 { 1888 return bus->iommu_ops != NULL; 1889 } 1890 EXPORT_SYMBOL_GPL(iommu_present); 1891 1892 /** 1893 * device_iommu_capable() - check for a general IOMMU capability 1894 * @dev: device to which the capability would be relevant, if available 1895 * @cap: IOMMU capability 1896 * 1897 * Return: true if an IOMMU is present and supports the given capability 1898 * for the given device, otherwise false. 1899 */ 1900 bool device_iommu_capable(struct device *dev, enum iommu_cap cap) 1901 { 1902 const struct iommu_ops *ops; 1903 1904 if (!dev->iommu || !dev->iommu->iommu_dev) 1905 return false; 1906 1907 ops = dev_iommu_ops(dev); 1908 if (!ops->capable) 1909 return false; 1910 1911 return ops->capable(dev, cap); 1912 } 1913 EXPORT_SYMBOL_GPL(device_iommu_capable); 1914 1915 /** 1916 * iommu_group_has_isolated_msi() - Compute msi_device_has_isolated_msi() 1917 * for a group 1918 * @group: Group to query 1919 * 1920 * IOMMU groups should not have differing values of 1921 * msi_device_has_isolated_msi() for devices in a group. However nothing 1922 * directly prevents this, so ensure mistakes don't result in isolation failures 1923 * by checking that all the devices are the same. 1924 */ 1925 bool iommu_group_has_isolated_msi(struct iommu_group *group) 1926 { 1927 struct group_device *group_dev; 1928 bool ret = true; 1929 1930 mutex_lock(&group->mutex); 1931 for_each_group_device(group, group_dev) 1932 ret &= msi_device_has_isolated_msi(group_dev->dev); 1933 mutex_unlock(&group->mutex); 1934 return ret; 1935 } 1936 EXPORT_SYMBOL_GPL(iommu_group_has_isolated_msi); 1937 1938 /** 1939 * iommu_set_fault_handler() - set a fault handler for an iommu domain 1940 * @domain: iommu domain 1941 * @handler: fault handler 1942 * @token: user data, will be passed back to the fault handler 1943 * 1944 * This function should be used by IOMMU users which want to be notified 1945 * whenever an IOMMU fault happens. 1946 * 1947 * The fault handler itself should return 0 on success, and an appropriate 1948 * error code otherwise. 1949 */ 1950 void iommu_set_fault_handler(struct iommu_domain *domain, 1951 iommu_fault_handler_t handler, 1952 void *token) 1953 { 1954 BUG_ON(!domain); 1955 1956 domain->handler = handler; 1957 domain->handler_token = token; 1958 } 1959 EXPORT_SYMBOL_GPL(iommu_set_fault_handler); 1960 1961 static struct iommu_domain *__iommu_domain_alloc(const struct bus_type *bus, 1962 unsigned type) 1963 { 1964 struct iommu_domain *domain; 1965 unsigned int alloc_type = type & IOMMU_DOMAIN_ALLOC_FLAGS; 1966 1967 if (bus == NULL || bus->iommu_ops == NULL) 1968 return NULL; 1969 1970 domain = bus->iommu_ops->domain_alloc(alloc_type); 1971 if (!domain) 1972 return NULL; 1973 1974 domain->type = type; 1975 /* 1976 * If not already set, assume all sizes by default; the driver 1977 * may override this later 1978 */ 1979 if (!domain->pgsize_bitmap) 1980 domain->pgsize_bitmap = bus->iommu_ops->pgsize_bitmap; 1981 1982 if (!domain->ops) 1983 domain->ops = bus->iommu_ops->default_domain_ops; 1984 1985 if (iommu_is_dma_domain(domain) && iommu_get_dma_cookie(domain)) { 1986 iommu_domain_free(domain); 1987 domain = NULL; 1988 } 1989 return domain; 1990 } 1991 1992 struct iommu_domain *iommu_domain_alloc(const struct bus_type *bus) 1993 { 1994 return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED); 1995 } 1996 EXPORT_SYMBOL_GPL(iommu_domain_alloc); 1997 1998 void iommu_domain_free(struct iommu_domain *domain) 1999 { 2000 if (domain->type == IOMMU_DOMAIN_SVA) 2001 mmdrop(domain->mm); 2002 iommu_put_dma_cookie(domain); 2003 domain->ops->free(domain); 2004 } 2005 EXPORT_SYMBOL_GPL(iommu_domain_free); 2006 2007 /* 2008 * Put the group's domain back to the appropriate core-owned domain - either the 2009 * standard kernel-mode DMA configuration or an all-DMA-blocked domain. 2010 */ 2011 static void __iommu_group_set_core_domain(struct iommu_group *group) 2012 { 2013 struct iommu_domain *new_domain; 2014 2015 if (group->owner) 2016 new_domain = group->blocking_domain; 2017 else 2018 new_domain = group->default_domain; 2019 2020 __iommu_group_set_domain_nofail(group, new_domain); 2021 } 2022 2023 static int __iommu_attach_device(struct iommu_domain *domain, 2024 struct device *dev) 2025 { 2026 int ret; 2027 2028 if (unlikely(domain->ops->attach_dev == NULL)) 2029 return -ENODEV; 2030 2031 ret = domain->ops->attach_dev(domain, dev); 2032 if (ret) 2033 return ret; 2034 dev->iommu->attach_deferred = 0; 2035 trace_attach_device_to_domain(dev); 2036 return 0; 2037 } 2038 2039 /** 2040 * iommu_attach_device - Attach an IOMMU domain to a device 2041 * @domain: IOMMU domain to attach 2042 * @dev: Device that will be attached 2043 * 2044 * Returns 0 on success and error code on failure 2045 * 2046 * Note that EINVAL can be treated as a soft failure, indicating 2047 * that certain configuration of the domain is incompatible with 2048 * the device. In this case attaching a different domain to the 2049 * device may succeed. 2050 */ 2051 int iommu_attach_device(struct iommu_domain *domain, struct device *dev) 2052 { 2053 struct iommu_group *group; 2054 int ret; 2055 2056 group = iommu_group_get(dev); 2057 if (!group) 2058 return -ENODEV; 2059 2060 /* 2061 * Lock the group to make sure the device-count doesn't 2062 * change while we are attaching 2063 */ 2064 mutex_lock(&group->mutex); 2065 ret = -EINVAL; 2066 if (list_count_nodes(&group->devices) != 1) 2067 goto out_unlock; 2068 2069 ret = __iommu_attach_group(domain, group); 2070 2071 out_unlock: 2072 mutex_unlock(&group->mutex); 2073 iommu_group_put(group); 2074 2075 return ret; 2076 } 2077 EXPORT_SYMBOL_GPL(iommu_attach_device); 2078 2079 int iommu_deferred_attach(struct device *dev, struct iommu_domain *domain) 2080 { 2081 if (dev->iommu && dev->iommu->attach_deferred) 2082 return __iommu_attach_device(domain, dev); 2083 2084 return 0; 2085 } 2086 2087 void iommu_detach_device(struct iommu_domain *domain, struct device *dev) 2088 { 2089 struct iommu_group *group; 2090 2091 group = iommu_group_get(dev); 2092 if (!group) 2093 return; 2094 2095 mutex_lock(&group->mutex); 2096 if (WARN_ON(domain != group->domain) || 2097 WARN_ON(list_count_nodes(&group->devices) != 1)) 2098 goto out_unlock; 2099 __iommu_group_set_core_domain(group); 2100 2101 out_unlock: 2102 mutex_unlock(&group->mutex); 2103 iommu_group_put(group); 2104 } 2105 EXPORT_SYMBOL_GPL(iommu_detach_device); 2106 2107 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev) 2108 { 2109 struct iommu_domain *domain; 2110 struct iommu_group *group; 2111 2112 group = iommu_group_get(dev); 2113 if (!group) 2114 return NULL; 2115 2116 domain = group->domain; 2117 2118 iommu_group_put(group); 2119 2120 return domain; 2121 } 2122 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev); 2123 2124 /* 2125 * For IOMMU_DOMAIN_DMA implementations which already provide their own 2126 * guarantees that the group and its default domain are valid and correct. 2127 */ 2128 struct iommu_domain *iommu_get_dma_domain(struct device *dev) 2129 { 2130 return dev->iommu_group->default_domain; 2131 } 2132 2133 static int __iommu_attach_group(struct iommu_domain *domain, 2134 struct iommu_group *group) 2135 { 2136 if (group->domain && group->domain != group->default_domain && 2137 group->domain != group->blocking_domain) 2138 return -EBUSY; 2139 2140 return __iommu_group_set_domain(group, domain); 2141 } 2142 2143 /** 2144 * iommu_attach_group - Attach an IOMMU domain to an IOMMU group 2145 * @domain: IOMMU domain to attach 2146 * @group: IOMMU group that will be attached 2147 * 2148 * Returns 0 on success and error code on failure 2149 * 2150 * Note that EINVAL can be treated as a soft failure, indicating 2151 * that certain configuration of the domain is incompatible with 2152 * the group. In this case attaching a different domain to the 2153 * group may succeed. 2154 */ 2155 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group) 2156 { 2157 int ret; 2158 2159 mutex_lock(&group->mutex); 2160 ret = __iommu_attach_group(domain, group); 2161 mutex_unlock(&group->mutex); 2162 2163 return ret; 2164 } 2165 EXPORT_SYMBOL_GPL(iommu_attach_group); 2166 2167 static int __iommu_device_set_domain(struct iommu_group *group, 2168 struct device *dev, 2169 struct iommu_domain *new_domain, 2170 unsigned int flags) 2171 { 2172 int ret; 2173 2174 if (dev->iommu->attach_deferred) { 2175 if (new_domain == group->default_domain) 2176 return 0; 2177 dev->iommu->attach_deferred = 0; 2178 } 2179 2180 ret = __iommu_attach_device(new_domain, dev); 2181 if (ret) { 2182 /* 2183 * If we have a blocking domain then try to attach that in hopes 2184 * of avoiding a UAF. Modern drivers should implement blocking 2185 * domains as global statics that cannot fail. 2186 */ 2187 if ((flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) && 2188 group->blocking_domain && 2189 group->blocking_domain != new_domain) 2190 __iommu_attach_device(group->blocking_domain, dev); 2191 return ret; 2192 } 2193 return 0; 2194 } 2195 2196 /* 2197 * If 0 is returned the group's domain is new_domain. If an error is returned 2198 * then the group's domain will be set back to the existing domain unless 2199 * IOMMU_SET_DOMAIN_MUST_SUCCEED, otherwise an error is returned and the group's 2200 * domains is left inconsistent. This is a driver bug to fail attach with a 2201 * previously good domain. We try to avoid a kernel UAF because of this. 2202 * 2203 * IOMMU groups are really the natural working unit of the IOMMU, but the IOMMU 2204 * API works on domains and devices. Bridge that gap by iterating over the 2205 * devices in a group. Ideally we'd have a single device which represents the 2206 * requestor ID of the group, but we also allow IOMMU drivers to create policy 2207 * defined minimum sets, where the physical hardware may be able to distiguish 2208 * members, but we wish to group them at a higher level (ex. untrusted 2209 * multi-function PCI devices). Thus we attach each device. 2210 */ 2211 static int __iommu_group_set_domain_internal(struct iommu_group *group, 2212 struct iommu_domain *new_domain, 2213 unsigned int flags) 2214 { 2215 struct group_device *last_gdev; 2216 struct group_device *gdev; 2217 int result; 2218 int ret; 2219 2220 lockdep_assert_held(&group->mutex); 2221 2222 if (group->domain == new_domain) 2223 return 0; 2224 2225 /* 2226 * New drivers should support default domains, so set_platform_dma() 2227 * op will never be called. Otherwise the NULL domain represents some 2228 * platform specific behavior. 2229 */ 2230 if (!new_domain) { 2231 for_each_group_device(group, gdev) { 2232 const struct iommu_ops *ops = dev_iommu_ops(gdev->dev); 2233 2234 if (!WARN_ON(!ops->set_platform_dma_ops)) 2235 ops->set_platform_dma_ops(gdev->dev); 2236 } 2237 group->domain = NULL; 2238 return 0; 2239 } 2240 2241 /* 2242 * Changing the domain is done by calling attach_dev() on the new 2243 * domain. This switch does not have to be atomic and DMA can be 2244 * discarded during the transition. DMA must only be able to access 2245 * either new_domain or group->domain, never something else. 2246 */ 2247 result = 0; 2248 for_each_group_device(group, gdev) { 2249 ret = __iommu_device_set_domain(group, gdev->dev, new_domain, 2250 flags); 2251 if (ret) { 2252 result = ret; 2253 /* 2254 * Keep trying the other devices in the group. If a 2255 * driver fails attach to an otherwise good domain, and 2256 * does not support blocking domains, it should at least 2257 * drop its reference on the current domain so we don't 2258 * UAF. 2259 */ 2260 if (flags & IOMMU_SET_DOMAIN_MUST_SUCCEED) 2261 continue; 2262 goto err_revert; 2263 } 2264 } 2265 group->domain = new_domain; 2266 return result; 2267 2268 err_revert: 2269 /* 2270 * This is called in error unwind paths. A well behaved driver should 2271 * always allow us to attach to a domain that was already attached. 2272 */ 2273 last_gdev = gdev; 2274 for_each_group_device(group, gdev) { 2275 const struct iommu_ops *ops = dev_iommu_ops(gdev->dev); 2276 2277 /* 2278 * If set_platform_dma_ops is not present a NULL domain can 2279 * happen only for first probe, in which case we leave 2280 * group->domain as NULL and let release clean everything up. 2281 */ 2282 if (group->domain) 2283 WARN_ON(__iommu_device_set_domain( 2284 group, gdev->dev, group->domain, 2285 IOMMU_SET_DOMAIN_MUST_SUCCEED)); 2286 else if (ops->set_platform_dma_ops) 2287 ops->set_platform_dma_ops(gdev->dev); 2288 if (gdev == last_gdev) 2289 break; 2290 } 2291 return ret; 2292 } 2293 2294 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group) 2295 { 2296 mutex_lock(&group->mutex); 2297 __iommu_group_set_core_domain(group); 2298 mutex_unlock(&group->mutex); 2299 } 2300 EXPORT_SYMBOL_GPL(iommu_detach_group); 2301 2302 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 2303 { 2304 if (domain->type == IOMMU_DOMAIN_IDENTITY) 2305 return iova; 2306 2307 if (domain->type == IOMMU_DOMAIN_BLOCKED) 2308 return 0; 2309 2310 return domain->ops->iova_to_phys(domain, iova); 2311 } 2312 EXPORT_SYMBOL_GPL(iommu_iova_to_phys); 2313 2314 static size_t iommu_pgsize(struct iommu_domain *domain, unsigned long iova, 2315 phys_addr_t paddr, size_t size, size_t *count) 2316 { 2317 unsigned int pgsize_idx, pgsize_idx_next; 2318 unsigned long pgsizes; 2319 size_t offset, pgsize, pgsize_next; 2320 unsigned long addr_merge = paddr | iova; 2321 2322 /* Page sizes supported by the hardware and small enough for @size */ 2323 pgsizes = domain->pgsize_bitmap & GENMASK(__fls(size), 0); 2324 2325 /* Constrain the page sizes further based on the maximum alignment */ 2326 if (likely(addr_merge)) 2327 pgsizes &= GENMASK(__ffs(addr_merge), 0); 2328 2329 /* Make sure we have at least one suitable page size */ 2330 BUG_ON(!pgsizes); 2331 2332 /* Pick the biggest page size remaining */ 2333 pgsize_idx = __fls(pgsizes); 2334 pgsize = BIT(pgsize_idx); 2335 if (!count) 2336 return pgsize; 2337 2338 /* Find the next biggest support page size, if it exists */ 2339 pgsizes = domain->pgsize_bitmap & ~GENMASK(pgsize_idx, 0); 2340 if (!pgsizes) 2341 goto out_set_count; 2342 2343 pgsize_idx_next = __ffs(pgsizes); 2344 pgsize_next = BIT(pgsize_idx_next); 2345 2346 /* 2347 * There's no point trying a bigger page size unless the virtual 2348 * and physical addresses are similarly offset within the larger page. 2349 */ 2350 if ((iova ^ paddr) & (pgsize_next - 1)) 2351 goto out_set_count; 2352 2353 /* Calculate the offset to the next page size alignment boundary */ 2354 offset = pgsize_next - (addr_merge & (pgsize_next - 1)); 2355 2356 /* 2357 * If size is big enough to accommodate the larger page, reduce 2358 * the number of smaller pages. 2359 */ 2360 if (offset + pgsize_next <= size) 2361 size = offset; 2362 2363 out_set_count: 2364 *count = size >> pgsize_idx; 2365 return pgsize; 2366 } 2367 2368 static int __iommu_map_pages(struct iommu_domain *domain, unsigned long iova, 2369 phys_addr_t paddr, size_t size, int prot, 2370 gfp_t gfp, size_t *mapped) 2371 { 2372 const struct iommu_domain_ops *ops = domain->ops; 2373 size_t pgsize, count; 2374 int ret; 2375 2376 pgsize = iommu_pgsize(domain, iova, paddr, size, &count); 2377 2378 pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx count %zu\n", 2379 iova, &paddr, pgsize, count); 2380 2381 if (ops->map_pages) { 2382 ret = ops->map_pages(domain, iova, paddr, pgsize, count, prot, 2383 gfp, mapped); 2384 } else { 2385 ret = ops->map(domain, iova, paddr, pgsize, prot, gfp); 2386 *mapped = ret ? 0 : pgsize; 2387 } 2388 2389 return ret; 2390 } 2391 2392 static int __iommu_map(struct iommu_domain *domain, unsigned long iova, 2393 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2394 { 2395 const struct iommu_domain_ops *ops = domain->ops; 2396 unsigned long orig_iova = iova; 2397 unsigned int min_pagesz; 2398 size_t orig_size = size; 2399 phys_addr_t orig_paddr = paddr; 2400 int ret = 0; 2401 2402 if (unlikely(!(ops->map || ops->map_pages) || 2403 domain->pgsize_bitmap == 0UL)) 2404 return -ENODEV; 2405 2406 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2407 return -EINVAL; 2408 2409 /* find out the minimum page size supported */ 2410 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2411 2412 /* 2413 * both the virtual address and the physical one, as well as 2414 * the size of the mapping, must be aligned (at least) to the 2415 * size of the smallest page supported by the hardware 2416 */ 2417 if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { 2418 pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n", 2419 iova, &paddr, size, min_pagesz); 2420 return -EINVAL; 2421 } 2422 2423 pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); 2424 2425 while (size) { 2426 size_t mapped = 0; 2427 2428 ret = __iommu_map_pages(domain, iova, paddr, size, prot, gfp, 2429 &mapped); 2430 /* 2431 * Some pages may have been mapped, even if an error occurred, 2432 * so we should account for those so they can be unmapped. 2433 */ 2434 size -= mapped; 2435 2436 if (ret) 2437 break; 2438 2439 iova += mapped; 2440 paddr += mapped; 2441 } 2442 2443 /* unroll mapping in case something went wrong */ 2444 if (ret) 2445 iommu_unmap(domain, orig_iova, orig_size - size); 2446 else 2447 trace_map(orig_iova, orig_paddr, orig_size); 2448 2449 return ret; 2450 } 2451 2452 int iommu_map(struct iommu_domain *domain, unsigned long iova, 2453 phys_addr_t paddr, size_t size, int prot, gfp_t gfp) 2454 { 2455 const struct iommu_domain_ops *ops = domain->ops; 2456 int ret; 2457 2458 might_sleep_if(gfpflags_allow_blocking(gfp)); 2459 2460 /* Discourage passing strange GFP flags */ 2461 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | 2462 __GFP_HIGHMEM))) 2463 return -EINVAL; 2464 2465 ret = __iommu_map(domain, iova, paddr, size, prot, gfp); 2466 if (ret == 0 && ops->iotlb_sync_map) 2467 ops->iotlb_sync_map(domain, iova, size); 2468 2469 return ret; 2470 } 2471 EXPORT_SYMBOL_GPL(iommu_map); 2472 2473 static size_t __iommu_unmap_pages(struct iommu_domain *domain, 2474 unsigned long iova, size_t size, 2475 struct iommu_iotlb_gather *iotlb_gather) 2476 { 2477 const struct iommu_domain_ops *ops = domain->ops; 2478 size_t pgsize, count; 2479 2480 pgsize = iommu_pgsize(domain, iova, iova, size, &count); 2481 return ops->unmap_pages ? 2482 ops->unmap_pages(domain, iova, pgsize, count, iotlb_gather) : 2483 ops->unmap(domain, iova, pgsize, iotlb_gather); 2484 } 2485 2486 static size_t __iommu_unmap(struct iommu_domain *domain, 2487 unsigned long iova, size_t size, 2488 struct iommu_iotlb_gather *iotlb_gather) 2489 { 2490 const struct iommu_domain_ops *ops = domain->ops; 2491 size_t unmapped_page, unmapped = 0; 2492 unsigned long orig_iova = iova; 2493 unsigned int min_pagesz; 2494 2495 if (unlikely(!(ops->unmap || ops->unmap_pages) || 2496 domain->pgsize_bitmap == 0UL)) 2497 return 0; 2498 2499 if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING))) 2500 return 0; 2501 2502 /* find out the minimum page size supported */ 2503 min_pagesz = 1 << __ffs(domain->pgsize_bitmap); 2504 2505 /* 2506 * The virtual address, as well as the size of the mapping, must be 2507 * aligned (at least) to the size of the smallest page supported 2508 * by the hardware 2509 */ 2510 if (!IS_ALIGNED(iova | size, min_pagesz)) { 2511 pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", 2512 iova, size, min_pagesz); 2513 return 0; 2514 } 2515 2516 pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size); 2517 2518 /* 2519 * Keep iterating until we either unmap 'size' bytes (or more) 2520 * or we hit an area that isn't mapped. 2521 */ 2522 while (unmapped < size) { 2523 unmapped_page = __iommu_unmap_pages(domain, iova, 2524 size - unmapped, 2525 iotlb_gather); 2526 if (!unmapped_page) 2527 break; 2528 2529 pr_debug("unmapped: iova 0x%lx size 0x%zx\n", 2530 iova, unmapped_page); 2531 2532 iova += unmapped_page; 2533 unmapped += unmapped_page; 2534 } 2535 2536 trace_unmap(orig_iova, size, unmapped); 2537 return unmapped; 2538 } 2539 2540 size_t iommu_unmap(struct iommu_domain *domain, 2541 unsigned long iova, size_t size) 2542 { 2543 struct iommu_iotlb_gather iotlb_gather; 2544 size_t ret; 2545 2546 iommu_iotlb_gather_init(&iotlb_gather); 2547 ret = __iommu_unmap(domain, iova, size, &iotlb_gather); 2548 iommu_iotlb_sync(domain, &iotlb_gather); 2549 2550 return ret; 2551 } 2552 EXPORT_SYMBOL_GPL(iommu_unmap); 2553 2554 size_t iommu_unmap_fast(struct iommu_domain *domain, 2555 unsigned long iova, size_t size, 2556 struct iommu_iotlb_gather *iotlb_gather) 2557 { 2558 return __iommu_unmap(domain, iova, size, iotlb_gather); 2559 } 2560 EXPORT_SYMBOL_GPL(iommu_unmap_fast); 2561 2562 ssize_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova, 2563 struct scatterlist *sg, unsigned int nents, int prot, 2564 gfp_t gfp) 2565 { 2566 const struct iommu_domain_ops *ops = domain->ops; 2567 size_t len = 0, mapped = 0; 2568 phys_addr_t start; 2569 unsigned int i = 0; 2570 int ret; 2571 2572 might_sleep_if(gfpflags_allow_blocking(gfp)); 2573 2574 /* Discourage passing strange GFP flags */ 2575 if (WARN_ON_ONCE(gfp & (__GFP_COMP | __GFP_DMA | __GFP_DMA32 | 2576 __GFP_HIGHMEM))) 2577 return -EINVAL; 2578 2579 while (i <= nents) { 2580 phys_addr_t s_phys = sg_phys(sg); 2581 2582 if (len && s_phys != start + len) { 2583 ret = __iommu_map(domain, iova + mapped, start, 2584 len, prot, gfp); 2585 2586 if (ret) 2587 goto out_err; 2588 2589 mapped += len; 2590 len = 0; 2591 } 2592 2593 if (sg_is_dma_bus_address(sg)) 2594 goto next; 2595 2596 if (len) { 2597 len += sg->length; 2598 } else { 2599 len = sg->length; 2600 start = s_phys; 2601 } 2602 2603 next: 2604 if (++i < nents) 2605 sg = sg_next(sg); 2606 } 2607 2608 if (ops->iotlb_sync_map) 2609 ops->iotlb_sync_map(domain, iova, mapped); 2610 return mapped; 2611 2612 out_err: 2613 /* undo mappings already done */ 2614 iommu_unmap(domain, iova, mapped); 2615 2616 return ret; 2617 } 2618 EXPORT_SYMBOL_GPL(iommu_map_sg); 2619 2620 /** 2621 * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework 2622 * @domain: the iommu domain where the fault has happened 2623 * @dev: the device where the fault has happened 2624 * @iova: the faulting address 2625 * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...) 2626 * 2627 * This function should be called by the low-level IOMMU implementations 2628 * whenever IOMMU faults happen, to allow high-level users, that are 2629 * interested in such events, to know about them. 2630 * 2631 * This event may be useful for several possible use cases: 2632 * - mere logging of the event 2633 * - dynamic TLB/PTE loading 2634 * - if restarting of the faulting device is required 2635 * 2636 * Returns 0 on success and an appropriate error code otherwise (if dynamic 2637 * PTE/TLB loading will one day be supported, implementations will be able 2638 * to tell whether it succeeded or not according to this return value). 2639 * 2640 * Specifically, -ENOSYS is returned if a fault handler isn't installed 2641 * (though fault handlers can also return -ENOSYS, in case they want to 2642 * elicit the default behavior of the IOMMU drivers). 2643 */ 2644 int report_iommu_fault(struct iommu_domain *domain, struct device *dev, 2645 unsigned long iova, int flags) 2646 { 2647 int ret = -ENOSYS; 2648 2649 /* 2650 * if upper layers showed interest and installed a fault handler, 2651 * invoke it. 2652 */ 2653 if (domain->handler) 2654 ret = domain->handler(domain, dev, iova, flags, 2655 domain->handler_token); 2656 2657 trace_io_page_fault(dev, iova, flags); 2658 return ret; 2659 } 2660 EXPORT_SYMBOL_GPL(report_iommu_fault); 2661 2662 static int __init iommu_init(void) 2663 { 2664 iommu_group_kset = kset_create_and_add("iommu_groups", 2665 NULL, kernel_kobj); 2666 BUG_ON(!iommu_group_kset); 2667 2668 iommu_debugfs_setup(); 2669 2670 return 0; 2671 } 2672 core_initcall(iommu_init); 2673 2674 int iommu_enable_nesting(struct iommu_domain *domain) 2675 { 2676 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2677 return -EINVAL; 2678 if (!domain->ops->enable_nesting) 2679 return -EINVAL; 2680 return domain->ops->enable_nesting(domain); 2681 } 2682 EXPORT_SYMBOL_GPL(iommu_enable_nesting); 2683 2684 int iommu_set_pgtable_quirks(struct iommu_domain *domain, 2685 unsigned long quirk) 2686 { 2687 if (domain->type != IOMMU_DOMAIN_UNMANAGED) 2688 return -EINVAL; 2689 if (!domain->ops->set_pgtable_quirks) 2690 return -EINVAL; 2691 return domain->ops->set_pgtable_quirks(domain, quirk); 2692 } 2693 EXPORT_SYMBOL_GPL(iommu_set_pgtable_quirks); 2694 2695 void iommu_get_resv_regions(struct device *dev, struct list_head *list) 2696 { 2697 const struct iommu_ops *ops = dev_iommu_ops(dev); 2698 2699 if (ops->get_resv_regions) 2700 ops->get_resv_regions(dev, list); 2701 } 2702 2703 /** 2704 * iommu_put_resv_regions - release resered regions 2705 * @dev: device for which to free reserved regions 2706 * @list: reserved region list for device 2707 * 2708 * This releases a reserved region list acquired by iommu_get_resv_regions(). 2709 */ 2710 void iommu_put_resv_regions(struct device *dev, struct list_head *list) 2711 { 2712 struct iommu_resv_region *entry, *next; 2713 2714 list_for_each_entry_safe(entry, next, list, list) { 2715 if (entry->free) 2716 entry->free(dev, entry); 2717 else 2718 kfree(entry); 2719 } 2720 } 2721 EXPORT_SYMBOL(iommu_put_resv_regions); 2722 2723 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start, 2724 size_t length, int prot, 2725 enum iommu_resv_type type, 2726 gfp_t gfp) 2727 { 2728 struct iommu_resv_region *region; 2729 2730 region = kzalloc(sizeof(*region), gfp); 2731 if (!region) 2732 return NULL; 2733 2734 INIT_LIST_HEAD(®ion->list); 2735 region->start = start; 2736 region->length = length; 2737 region->prot = prot; 2738 region->type = type; 2739 return region; 2740 } 2741 EXPORT_SYMBOL_GPL(iommu_alloc_resv_region); 2742 2743 void iommu_set_default_passthrough(bool cmd_line) 2744 { 2745 if (cmd_line) 2746 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2747 iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY; 2748 } 2749 2750 void iommu_set_default_translated(bool cmd_line) 2751 { 2752 if (cmd_line) 2753 iommu_cmd_line |= IOMMU_CMD_LINE_DMA_API; 2754 iommu_def_domain_type = IOMMU_DOMAIN_DMA; 2755 } 2756 2757 bool iommu_default_passthrough(void) 2758 { 2759 return iommu_def_domain_type == IOMMU_DOMAIN_IDENTITY; 2760 } 2761 EXPORT_SYMBOL_GPL(iommu_default_passthrough); 2762 2763 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode) 2764 { 2765 const struct iommu_ops *ops = NULL; 2766 struct iommu_device *iommu; 2767 2768 spin_lock(&iommu_device_lock); 2769 list_for_each_entry(iommu, &iommu_device_list, list) 2770 if (iommu->fwnode == fwnode) { 2771 ops = iommu->ops; 2772 break; 2773 } 2774 spin_unlock(&iommu_device_lock); 2775 return ops; 2776 } 2777 2778 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode, 2779 const struct iommu_ops *ops) 2780 { 2781 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2782 2783 if (fwspec) 2784 return ops == fwspec->ops ? 0 : -EINVAL; 2785 2786 if (!dev_iommu_get(dev)) 2787 return -ENOMEM; 2788 2789 /* Preallocate for the overwhelmingly common case of 1 ID */ 2790 fwspec = kzalloc(struct_size(fwspec, ids, 1), GFP_KERNEL); 2791 if (!fwspec) 2792 return -ENOMEM; 2793 2794 of_node_get(to_of_node(iommu_fwnode)); 2795 fwspec->iommu_fwnode = iommu_fwnode; 2796 fwspec->ops = ops; 2797 dev_iommu_fwspec_set(dev, fwspec); 2798 return 0; 2799 } 2800 EXPORT_SYMBOL_GPL(iommu_fwspec_init); 2801 2802 void iommu_fwspec_free(struct device *dev) 2803 { 2804 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2805 2806 if (fwspec) { 2807 fwnode_handle_put(fwspec->iommu_fwnode); 2808 kfree(fwspec); 2809 dev_iommu_fwspec_set(dev, NULL); 2810 } 2811 } 2812 EXPORT_SYMBOL_GPL(iommu_fwspec_free); 2813 2814 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids) 2815 { 2816 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 2817 int i, new_num; 2818 2819 if (!fwspec) 2820 return -EINVAL; 2821 2822 new_num = fwspec->num_ids + num_ids; 2823 if (new_num > 1) { 2824 fwspec = krealloc(fwspec, struct_size(fwspec, ids, new_num), 2825 GFP_KERNEL); 2826 if (!fwspec) 2827 return -ENOMEM; 2828 2829 dev_iommu_fwspec_set(dev, fwspec); 2830 } 2831 2832 for (i = 0; i < num_ids; i++) 2833 fwspec->ids[fwspec->num_ids + i] = ids[i]; 2834 2835 fwspec->num_ids = new_num; 2836 return 0; 2837 } 2838 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids); 2839 2840 /* 2841 * Per device IOMMU features. 2842 */ 2843 int iommu_dev_enable_feature(struct device *dev, enum iommu_dev_features feat) 2844 { 2845 if (dev->iommu && dev->iommu->iommu_dev) { 2846 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2847 2848 if (ops->dev_enable_feat) 2849 return ops->dev_enable_feat(dev, feat); 2850 } 2851 2852 return -ENODEV; 2853 } 2854 EXPORT_SYMBOL_GPL(iommu_dev_enable_feature); 2855 2856 /* 2857 * The device drivers should do the necessary cleanups before calling this. 2858 */ 2859 int iommu_dev_disable_feature(struct device *dev, enum iommu_dev_features feat) 2860 { 2861 if (dev->iommu && dev->iommu->iommu_dev) { 2862 const struct iommu_ops *ops = dev->iommu->iommu_dev->ops; 2863 2864 if (ops->dev_disable_feat) 2865 return ops->dev_disable_feat(dev, feat); 2866 } 2867 2868 return -EBUSY; 2869 } 2870 EXPORT_SYMBOL_GPL(iommu_dev_disable_feature); 2871 2872 /* 2873 * Changes the default domain of an iommu group 2874 * 2875 * @group: The group for which the default domain should be changed 2876 * @dev: The first device in the group 2877 * @type: The type of the new default domain that gets associated with the group 2878 * 2879 * Returns 0 on success and error code on failure 2880 * 2881 * Note: 2882 * 1. Presently, this function is called only when user requests to change the 2883 * group's default domain type through /sys/kernel/iommu_groups/<grp_id>/type 2884 * Please take a closer look if intended to use for other purposes. 2885 */ 2886 static int iommu_change_dev_def_domain(struct iommu_group *group, 2887 struct device *dev, int type) 2888 { 2889 struct __group_domain_type gtype = {NULL, 0}; 2890 struct iommu_domain *prev_dom; 2891 int ret; 2892 2893 lockdep_assert_held(&group->mutex); 2894 2895 prev_dom = group->default_domain; 2896 __iommu_group_for_each_dev(group, >ype, 2897 probe_get_default_domain_type); 2898 if (!type) { 2899 /* 2900 * If the user hasn't requested any specific type of domain and 2901 * if the device supports both the domains, then default to the 2902 * domain the device was booted with 2903 */ 2904 type = gtype.type ? : iommu_def_domain_type; 2905 } else if (gtype.type && type != gtype.type) { 2906 dev_err_ratelimited(dev, "Device cannot be in %s domain\n", 2907 iommu_domain_type_str(type)); 2908 return -EINVAL; 2909 } 2910 2911 /* 2912 * Switch to a new domain only if the requested domain type is different 2913 * from the existing default domain type 2914 */ 2915 if (prev_dom->type == type) 2916 return 0; 2917 2918 group->default_domain = NULL; 2919 group->domain = NULL; 2920 2921 /* Sets group->default_domain to the newly allocated domain */ 2922 ret = iommu_group_alloc_default_domain(dev->bus, group, type); 2923 if (ret) 2924 goto restore_old_domain; 2925 2926 group->domain = prev_dom; 2927 ret = iommu_create_device_direct_mappings(group, dev); 2928 if (ret) 2929 goto free_new_domain; 2930 2931 ret = __iommu_group_set_domain(group, group->default_domain); 2932 if (ret) 2933 goto free_new_domain; 2934 2935 iommu_domain_free(prev_dom); 2936 2937 return 0; 2938 2939 free_new_domain: 2940 iommu_domain_free(group->default_domain); 2941 restore_old_domain: 2942 group->default_domain = prev_dom; 2943 2944 return ret; 2945 } 2946 2947 /* 2948 * Changing the default domain through sysfs requires the users to unbind the 2949 * drivers from the devices in the iommu group, except for a DMA -> DMA-FQ 2950 * transition. Return failure if this isn't met. 2951 * 2952 * We need to consider the race between this and the device release path. 2953 * group->mutex is used here to guarantee that the device release path 2954 * will not be entered at the same time. 2955 */ 2956 static ssize_t iommu_group_store_type(struct iommu_group *group, 2957 const char *buf, size_t count) 2958 { 2959 struct group_device *grp_dev; 2960 struct device *dev; 2961 int ret, req_type; 2962 2963 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) 2964 return -EACCES; 2965 2966 if (WARN_ON(!group) || !group->default_domain) 2967 return -EINVAL; 2968 2969 if (sysfs_streq(buf, "identity")) 2970 req_type = IOMMU_DOMAIN_IDENTITY; 2971 else if (sysfs_streq(buf, "DMA")) 2972 req_type = IOMMU_DOMAIN_DMA; 2973 else if (sysfs_streq(buf, "DMA-FQ")) 2974 req_type = IOMMU_DOMAIN_DMA_FQ; 2975 else if (sysfs_streq(buf, "auto")) 2976 req_type = 0; 2977 else 2978 return -EINVAL; 2979 2980 mutex_lock(&group->mutex); 2981 /* We can bring up a flush queue without tearing down the domain. */ 2982 if (req_type == IOMMU_DOMAIN_DMA_FQ && 2983 group->default_domain->type == IOMMU_DOMAIN_DMA) { 2984 ret = iommu_dma_init_fq(group->default_domain); 2985 if (!ret) 2986 group->default_domain->type = IOMMU_DOMAIN_DMA_FQ; 2987 mutex_unlock(&group->mutex); 2988 2989 return ret ?: count; 2990 } 2991 2992 /* Otherwise, ensure that device exists and no driver is bound. */ 2993 if (list_empty(&group->devices) || group->owner_cnt) { 2994 mutex_unlock(&group->mutex); 2995 return -EPERM; 2996 } 2997 2998 grp_dev = list_first_entry(&group->devices, struct group_device, list); 2999 dev = grp_dev->dev; 3000 3001 ret = iommu_change_dev_def_domain(group, dev, req_type); 3002 3003 /* 3004 * Release the mutex here because ops->probe_finalize() call-back of 3005 * some vendor IOMMU drivers calls arm_iommu_attach_device() which 3006 * in-turn might call back into IOMMU core code, where it tries to take 3007 * group->mutex, resulting in a deadlock. 3008 */ 3009 mutex_unlock(&group->mutex); 3010 3011 /* Make sure dma_ops is appropriatley set */ 3012 if (!ret) 3013 __iommu_group_dma_finalize(group); 3014 3015 return ret ?: count; 3016 } 3017 3018 static bool iommu_is_default_domain(struct iommu_group *group) 3019 { 3020 if (group->domain == group->default_domain) 3021 return true; 3022 3023 /* 3024 * If the default domain was set to identity and it is still an identity 3025 * domain then we consider this a pass. This happens because of 3026 * amd_iommu_init_device() replacing the default idenytity domain with an 3027 * identity domain that has a different configuration for AMDGPU. 3028 */ 3029 if (group->default_domain && 3030 group->default_domain->type == IOMMU_DOMAIN_IDENTITY && 3031 group->domain && group->domain->type == IOMMU_DOMAIN_IDENTITY) 3032 return true; 3033 return false; 3034 } 3035 3036 /** 3037 * iommu_device_use_default_domain() - Device driver wants to handle device 3038 * DMA through the kernel DMA API. 3039 * @dev: The device. 3040 * 3041 * The device driver about to bind @dev wants to do DMA through the kernel 3042 * DMA API. Return 0 if it is allowed, otherwise an error. 3043 */ 3044 int iommu_device_use_default_domain(struct device *dev) 3045 { 3046 struct iommu_group *group = iommu_group_get(dev); 3047 int ret = 0; 3048 3049 if (!group) 3050 return 0; 3051 3052 mutex_lock(&group->mutex); 3053 if (group->owner_cnt) { 3054 if (group->owner || !iommu_is_default_domain(group) || 3055 !xa_empty(&group->pasid_array)) { 3056 ret = -EBUSY; 3057 goto unlock_out; 3058 } 3059 } 3060 3061 group->owner_cnt++; 3062 3063 unlock_out: 3064 mutex_unlock(&group->mutex); 3065 iommu_group_put(group); 3066 3067 return ret; 3068 } 3069 3070 /** 3071 * iommu_device_unuse_default_domain() - Device driver stops handling device 3072 * DMA through the kernel DMA API. 3073 * @dev: The device. 3074 * 3075 * The device driver doesn't want to do DMA through kernel DMA API anymore. 3076 * It must be called after iommu_device_use_default_domain(). 3077 */ 3078 void iommu_device_unuse_default_domain(struct device *dev) 3079 { 3080 struct iommu_group *group = iommu_group_get(dev); 3081 3082 if (!group) 3083 return; 3084 3085 mutex_lock(&group->mutex); 3086 if (!WARN_ON(!group->owner_cnt || !xa_empty(&group->pasid_array))) 3087 group->owner_cnt--; 3088 3089 mutex_unlock(&group->mutex); 3090 iommu_group_put(group); 3091 } 3092 3093 static int __iommu_group_alloc_blocking_domain(struct iommu_group *group) 3094 { 3095 struct group_device *dev = 3096 list_first_entry(&group->devices, struct group_device, list); 3097 3098 if (group->blocking_domain) 3099 return 0; 3100 3101 group->blocking_domain = 3102 __iommu_domain_alloc(dev->dev->bus, IOMMU_DOMAIN_BLOCKED); 3103 if (!group->blocking_domain) { 3104 /* 3105 * For drivers that do not yet understand IOMMU_DOMAIN_BLOCKED 3106 * create an empty domain instead. 3107 */ 3108 group->blocking_domain = __iommu_domain_alloc( 3109 dev->dev->bus, IOMMU_DOMAIN_UNMANAGED); 3110 if (!group->blocking_domain) 3111 return -EINVAL; 3112 } 3113 return 0; 3114 } 3115 3116 static int __iommu_take_dma_ownership(struct iommu_group *group, void *owner) 3117 { 3118 int ret; 3119 3120 if ((group->domain && group->domain != group->default_domain) || 3121 !xa_empty(&group->pasid_array)) 3122 return -EBUSY; 3123 3124 ret = __iommu_group_alloc_blocking_domain(group); 3125 if (ret) 3126 return ret; 3127 ret = __iommu_group_set_domain(group, group->blocking_domain); 3128 if (ret) 3129 return ret; 3130 3131 group->owner = owner; 3132 group->owner_cnt++; 3133 return 0; 3134 } 3135 3136 /** 3137 * iommu_group_claim_dma_owner() - Set DMA ownership of a group 3138 * @group: The group. 3139 * @owner: Caller specified pointer. Used for exclusive ownership. 3140 * 3141 * This is to support backward compatibility for vfio which manages the dma 3142 * ownership in iommu_group level. New invocations on this interface should be 3143 * prohibited. Only a single owner may exist for a group. 3144 */ 3145 int iommu_group_claim_dma_owner(struct iommu_group *group, void *owner) 3146 { 3147 int ret = 0; 3148 3149 if (WARN_ON(!owner)) 3150 return -EINVAL; 3151 3152 mutex_lock(&group->mutex); 3153 if (group->owner_cnt) { 3154 ret = -EPERM; 3155 goto unlock_out; 3156 } 3157 3158 ret = __iommu_take_dma_ownership(group, owner); 3159 unlock_out: 3160 mutex_unlock(&group->mutex); 3161 3162 return ret; 3163 } 3164 EXPORT_SYMBOL_GPL(iommu_group_claim_dma_owner); 3165 3166 /** 3167 * iommu_device_claim_dma_owner() - Set DMA ownership of a device 3168 * @dev: The device. 3169 * @owner: Caller specified pointer. Used for exclusive ownership. 3170 * 3171 * Claim the DMA ownership of a device. Multiple devices in the same group may 3172 * concurrently claim ownership if they present the same owner value. Returns 0 3173 * on success and error code on failure 3174 */ 3175 int iommu_device_claim_dma_owner(struct device *dev, void *owner) 3176 { 3177 struct iommu_group *group; 3178 int ret = 0; 3179 3180 if (WARN_ON(!owner)) 3181 return -EINVAL; 3182 3183 group = iommu_group_get(dev); 3184 if (!group) 3185 return -ENODEV; 3186 3187 mutex_lock(&group->mutex); 3188 if (group->owner_cnt) { 3189 if (group->owner != owner) { 3190 ret = -EPERM; 3191 goto unlock_out; 3192 } 3193 group->owner_cnt++; 3194 goto unlock_out; 3195 } 3196 3197 ret = __iommu_take_dma_ownership(group, owner); 3198 unlock_out: 3199 mutex_unlock(&group->mutex); 3200 iommu_group_put(group); 3201 3202 return ret; 3203 } 3204 EXPORT_SYMBOL_GPL(iommu_device_claim_dma_owner); 3205 3206 static void __iommu_release_dma_ownership(struct iommu_group *group) 3207 { 3208 if (WARN_ON(!group->owner_cnt || !group->owner || 3209 !xa_empty(&group->pasid_array))) 3210 return; 3211 3212 group->owner_cnt = 0; 3213 group->owner = NULL; 3214 __iommu_group_set_domain_nofail(group, group->default_domain); 3215 } 3216 3217 /** 3218 * iommu_group_release_dma_owner() - Release DMA ownership of a group 3219 * @dev: The device 3220 * 3221 * Release the DMA ownership claimed by iommu_group_claim_dma_owner(). 3222 */ 3223 void iommu_group_release_dma_owner(struct iommu_group *group) 3224 { 3225 mutex_lock(&group->mutex); 3226 __iommu_release_dma_ownership(group); 3227 mutex_unlock(&group->mutex); 3228 } 3229 EXPORT_SYMBOL_GPL(iommu_group_release_dma_owner); 3230 3231 /** 3232 * iommu_device_release_dma_owner() - Release DMA ownership of a device 3233 * @group: The device. 3234 * 3235 * Release the DMA ownership claimed by iommu_device_claim_dma_owner(). 3236 */ 3237 void iommu_device_release_dma_owner(struct device *dev) 3238 { 3239 struct iommu_group *group = iommu_group_get(dev); 3240 3241 mutex_lock(&group->mutex); 3242 if (group->owner_cnt > 1) 3243 group->owner_cnt--; 3244 else 3245 __iommu_release_dma_ownership(group); 3246 mutex_unlock(&group->mutex); 3247 iommu_group_put(group); 3248 } 3249 EXPORT_SYMBOL_GPL(iommu_device_release_dma_owner); 3250 3251 /** 3252 * iommu_group_dma_owner_claimed() - Query group dma ownership status 3253 * @group: The group. 3254 * 3255 * This provides status query on a given group. It is racy and only for 3256 * non-binding status reporting. 3257 */ 3258 bool iommu_group_dma_owner_claimed(struct iommu_group *group) 3259 { 3260 unsigned int user; 3261 3262 mutex_lock(&group->mutex); 3263 user = group->owner_cnt; 3264 mutex_unlock(&group->mutex); 3265 3266 return user; 3267 } 3268 EXPORT_SYMBOL_GPL(iommu_group_dma_owner_claimed); 3269 3270 static int __iommu_set_group_pasid(struct iommu_domain *domain, 3271 struct iommu_group *group, ioasid_t pasid) 3272 { 3273 struct group_device *device; 3274 int ret = 0; 3275 3276 for_each_group_device(group, device) { 3277 ret = domain->ops->set_dev_pasid(domain, device->dev, pasid); 3278 if (ret) 3279 break; 3280 } 3281 3282 return ret; 3283 } 3284 3285 static void __iommu_remove_group_pasid(struct iommu_group *group, 3286 ioasid_t pasid) 3287 { 3288 struct group_device *device; 3289 const struct iommu_ops *ops; 3290 3291 for_each_group_device(group, device) { 3292 ops = dev_iommu_ops(device->dev); 3293 ops->remove_dev_pasid(device->dev, pasid); 3294 } 3295 } 3296 3297 /* 3298 * iommu_attach_device_pasid() - Attach a domain to pasid of device 3299 * @domain: the iommu domain. 3300 * @dev: the attached device. 3301 * @pasid: the pasid of the device. 3302 * 3303 * Return: 0 on success, or an error. 3304 */ 3305 int iommu_attach_device_pasid(struct iommu_domain *domain, 3306 struct device *dev, ioasid_t pasid) 3307 { 3308 struct iommu_group *group; 3309 void *curr; 3310 int ret; 3311 3312 if (!domain->ops->set_dev_pasid) 3313 return -EOPNOTSUPP; 3314 3315 group = iommu_group_get(dev); 3316 if (!group) 3317 return -ENODEV; 3318 3319 mutex_lock(&group->mutex); 3320 curr = xa_cmpxchg(&group->pasid_array, pasid, NULL, domain, GFP_KERNEL); 3321 if (curr) { 3322 ret = xa_err(curr) ? : -EBUSY; 3323 goto out_unlock; 3324 } 3325 3326 ret = __iommu_set_group_pasid(domain, group, pasid); 3327 if (ret) { 3328 __iommu_remove_group_pasid(group, pasid); 3329 xa_erase(&group->pasid_array, pasid); 3330 } 3331 out_unlock: 3332 mutex_unlock(&group->mutex); 3333 iommu_group_put(group); 3334 3335 return ret; 3336 } 3337 EXPORT_SYMBOL_GPL(iommu_attach_device_pasid); 3338 3339 /* 3340 * iommu_detach_device_pasid() - Detach the domain from pasid of device 3341 * @domain: the iommu domain. 3342 * @dev: the attached device. 3343 * @pasid: the pasid of the device. 3344 * 3345 * The @domain must have been attached to @pasid of the @dev with 3346 * iommu_attach_device_pasid(). 3347 */ 3348 void iommu_detach_device_pasid(struct iommu_domain *domain, struct device *dev, 3349 ioasid_t pasid) 3350 { 3351 struct iommu_group *group = iommu_group_get(dev); 3352 3353 mutex_lock(&group->mutex); 3354 __iommu_remove_group_pasid(group, pasid); 3355 WARN_ON(xa_erase(&group->pasid_array, pasid) != domain); 3356 mutex_unlock(&group->mutex); 3357 3358 iommu_group_put(group); 3359 } 3360 EXPORT_SYMBOL_GPL(iommu_detach_device_pasid); 3361 3362 /* 3363 * iommu_get_domain_for_dev_pasid() - Retrieve domain for @pasid of @dev 3364 * @dev: the queried device 3365 * @pasid: the pasid of the device 3366 * @type: matched domain type, 0 for any match 3367 * 3368 * This is a variant of iommu_get_domain_for_dev(). It returns the existing 3369 * domain attached to pasid of a device. Callers must hold a lock around this 3370 * function, and both iommu_attach/detach_dev_pasid() whenever a domain of 3371 * type is being manipulated. This API does not internally resolve races with 3372 * attach/detach. 3373 * 3374 * Return: attached domain on success, NULL otherwise. 3375 */ 3376 struct iommu_domain *iommu_get_domain_for_dev_pasid(struct device *dev, 3377 ioasid_t pasid, 3378 unsigned int type) 3379 { 3380 struct iommu_domain *domain; 3381 struct iommu_group *group; 3382 3383 group = iommu_group_get(dev); 3384 if (!group) 3385 return NULL; 3386 3387 xa_lock(&group->pasid_array); 3388 domain = xa_load(&group->pasid_array, pasid); 3389 if (type && domain && domain->type != type) 3390 domain = ERR_PTR(-EBUSY); 3391 xa_unlock(&group->pasid_array); 3392 iommu_group_put(group); 3393 3394 return domain; 3395 } 3396 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev_pasid); 3397 3398 struct iommu_domain *iommu_sva_domain_alloc(struct device *dev, 3399 struct mm_struct *mm) 3400 { 3401 const struct iommu_ops *ops = dev_iommu_ops(dev); 3402 struct iommu_domain *domain; 3403 3404 domain = ops->domain_alloc(IOMMU_DOMAIN_SVA); 3405 if (!domain) 3406 return NULL; 3407 3408 domain->type = IOMMU_DOMAIN_SVA; 3409 mmgrab(mm); 3410 domain->mm = mm; 3411 domain->iopf_handler = iommu_sva_handle_iopf; 3412 domain->fault_data = mm; 3413 3414 return domain; 3415 } 3416