xref: /openbmc/linux/drivers/iommu/iommu.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3  * Author: Joerg Roedel <jroedel@suse.de>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17  */
18 
19 #define pr_fmt(fmt)    "iommu: " fmt
20 
21 #include <linux/device.h>
22 #include <linux/kernel.h>
23 #include <linux/bug.h>
24 #include <linux/types.h>
25 #include <linux/module.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/iommu.h>
29 #include <linux/idr.h>
30 #include <linux/notifier.h>
31 #include <linux/err.h>
32 #include <linux/pci.h>
33 #include <linux/bitops.h>
34 #include <linux/property.h>
35 #include <linux/fsl/mc.h>
36 #include <trace/events/iommu.h>
37 
38 static struct kset *iommu_group_kset;
39 static DEFINE_IDA(iommu_group_ida);
40 #ifdef CONFIG_IOMMU_DEFAULT_PASSTHROUGH
41 static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_IDENTITY;
42 #else
43 static unsigned int iommu_def_domain_type = IOMMU_DOMAIN_DMA;
44 #endif
45 static bool iommu_dma_strict __read_mostly = true;
46 
47 struct iommu_callback_data {
48 	const struct iommu_ops *ops;
49 };
50 
51 struct iommu_group {
52 	struct kobject kobj;
53 	struct kobject *devices_kobj;
54 	struct list_head devices;
55 	struct mutex mutex;
56 	struct blocking_notifier_head notifier;
57 	void *iommu_data;
58 	void (*iommu_data_release)(void *iommu_data);
59 	char *name;
60 	int id;
61 	struct iommu_domain *default_domain;
62 	struct iommu_domain *domain;
63 };
64 
65 struct group_device {
66 	struct list_head list;
67 	struct device *dev;
68 	char *name;
69 };
70 
71 struct iommu_group_attribute {
72 	struct attribute attr;
73 	ssize_t (*show)(struct iommu_group *group, char *buf);
74 	ssize_t (*store)(struct iommu_group *group,
75 			 const char *buf, size_t count);
76 };
77 
78 static const char * const iommu_group_resv_type_string[] = {
79 	[IOMMU_RESV_DIRECT]	= "direct",
80 	[IOMMU_RESV_RESERVED]	= "reserved",
81 	[IOMMU_RESV_MSI]	= "msi",
82 	[IOMMU_RESV_SW_MSI]	= "msi",
83 };
84 
85 #define IOMMU_GROUP_ATTR(_name, _mode, _show, _store)		\
86 struct iommu_group_attribute iommu_group_attr_##_name =		\
87 	__ATTR(_name, _mode, _show, _store)
88 
89 #define to_iommu_group_attr(_attr)	\
90 	container_of(_attr, struct iommu_group_attribute, attr)
91 #define to_iommu_group(_kobj)		\
92 	container_of(_kobj, struct iommu_group, kobj)
93 
94 static LIST_HEAD(iommu_device_list);
95 static DEFINE_SPINLOCK(iommu_device_lock);
96 
97 int iommu_device_register(struct iommu_device *iommu)
98 {
99 	spin_lock(&iommu_device_lock);
100 	list_add_tail(&iommu->list, &iommu_device_list);
101 	spin_unlock(&iommu_device_lock);
102 
103 	return 0;
104 }
105 
106 void iommu_device_unregister(struct iommu_device *iommu)
107 {
108 	spin_lock(&iommu_device_lock);
109 	list_del(&iommu->list);
110 	spin_unlock(&iommu_device_lock);
111 }
112 
113 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
114 						 unsigned type);
115 static int __iommu_attach_device(struct iommu_domain *domain,
116 				 struct device *dev);
117 static int __iommu_attach_group(struct iommu_domain *domain,
118 				struct iommu_group *group);
119 static void __iommu_detach_group(struct iommu_domain *domain,
120 				 struct iommu_group *group);
121 
122 static int __init iommu_set_def_domain_type(char *str)
123 {
124 	bool pt;
125 	int ret;
126 
127 	ret = kstrtobool(str, &pt);
128 	if (ret)
129 		return ret;
130 
131 	iommu_def_domain_type = pt ? IOMMU_DOMAIN_IDENTITY : IOMMU_DOMAIN_DMA;
132 	return 0;
133 }
134 early_param("iommu.passthrough", iommu_set_def_domain_type);
135 
136 static int __init iommu_dma_setup(char *str)
137 {
138 	return kstrtobool(str, &iommu_dma_strict);
139 }
140 early_param("iommu.strict", iommu_dma_setup);
141 
142 static ssize_t iommu_group_attr_show(struct kobject *kobj,
143 				     struct attribute *__attr, char *buf)
144 {
145 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
146 	struct iommu_group *group = to_iommu_group(kobj);
147 	ssize_t ret = -EIO;
148 
149 	if (attr->show)
150 		ret = attr->show(group, buf);
151 	return ret;
152 }
153 
154 static ssize_t iommu_group_attr_store(struct kobject *kobj,
155 				      struct attribute *__attr,
156 				      const char *buf, size_t count)
157 {
158 	struct iommu_group_attribute *attr = to_iommu_group_attr(__attr);
159 	struct iommu_group *group = to_iommu_group(kobj);
160 	ssize_t ret = -EIO;
161 
162 	if (attr->store)
163 		ret = attr->store(group, buf, count);
164 	return ret;
165 }
166 
167 static const struct sysfs_ops iommu_group_sysfs_ops = {
168 	.show = iommu_group_attr_show,
169 	.store = iommu_group_attr_store,
170 };
171 
172 static int iommu_group_create_file(struct iommu_group *group,
173 				   struct iommu_group_attribute *attr)
174 {
175 	return sysfs_create_file(&group->kobj, &attr->attr);
176 }
177 
178 static void iommu_group_remove_file(struct iommu_group *group,
179 				    struct iommu_group_attribute *attr)
180 {
181 	sysfs_remove_file(&group->kobj, &attr->attr);
182 }
183 
184 static ssize_t iommu_group_show_name(struct iommu_group *group, char *buf)
185 {
186 	return sprintf(buf, "%s\n", group->name);
187 }
188 
189 /**
190  * iommu_insert_resv_region - Insert a new region in the
191  * list of reserved regions.
192  * @new: new region to insert
193  * @regions: list of regions
194  *
195  * The new element is sorted by address with respect to the other
196  * regions of the same type. In case it overlaps with another
197  * region of the same type, regions are merged. In case it
198  * overlaps with another region of different type, regions are
199  * not merged.
200  */
201 static int iommu_insert_resv_region(struct iommu_resv_region *new,
202 				    struct list_head *regions)
203 {
204 	struct iommu_resv_region *region;
205 	phys_addr_t start = new->start;
206 	phys_addr_t end = new->start + new->length - 1;
207 	struct list_head *pos = regions->next;
208 
209 	while (pos != regions) {
210 		struct iommu_resv_region *entry =
211 			list_entry(pos, struct iommu_resv_region, list);
212 		phys_addr_t a = entry->start;
213 		phys_addr_t b = entry->start + entry->length - 1;
214 		int type = entry->type;
215 
216 		if (end < a) {
217 			goto insert;
218 		} else if (start > b) {
219 			pos = pos->next;
220 		} else if ((start >= a) && (end <= b)) {
221 			if (new->type == type)
222 				goto done;
223 			else
224 				pos = pos->next;
225 		} else {
226 			if (new->type == type) {
227 				phys_addr_t new_start = min(a, start);
228 				phys_addr_t new_end = max(b, end);
229 
230 				list_del(&entry->list);
231 				entry->start = new_start;
232 				entry->length = new_end - new_start + 1;
233 				iommu_insert_resv_region(entry, regions);
234 			} else {
235 				pos = pos->next;
236 			}
237 		}
238 	}
239 insert:
240 	region = iommu_alloc_resv_region(new->start, new->length,
241 					 new->prot, new->type);
242 	if (!region)
243 		return -ENOMEM;
244 
245 	list_add_tail(&region->list, pos);
246 done:
247 	return 0;
248 }
249 
250 static int
251 iommu_insert_device_resv_regions(struct list_head *dev_resv_regions,
252 				 struct list_head *group_resv_regions)
253 {
254 	struct iommu_resv_region *entry;
255 	int ret = 0;
256 
257 	list_for_each_entry(entry, dev_resv_regions, list) {
258 		ret = iommu_insert_resv_region(entry, group_resv_regions);
259 		if (ret)
260 			break;
261 	}
262 	return ret;
263 }
264 
265 int iommu_get_group_resv_regions(struct iommu_group *group,
266 				 struct list_head *head)
267 {
268 	struct group_device *device;
269 	int ret = 0;
270 
271 	mutex_lock(&group->mutex);
272 	list_for_each_entry(device, &group->devices, list) {
273 		struct list_head dev_resv_regions;
274 
275 		INIT_LIST_HEAD(&dev_resv_regions);
276 		iommu_get_resv_regions(device->dev, &dev_resv_regions);
277 		ret = iommu_insert_device_resv_regions(&dev_resv_regions, head);
278 		iommu_put_resv_regions(device->dev, &dev_resv_regions);
279 		if (ret)
280 			break;
281 	}
282 	mutex_unlock(&group->mutex);
283 	return ret;
284 }
285 EXPORT_SYMBOL_GPL(iommu_get_group_resv_regions);
286 
287 static ssize_t iommu_group_show_resv_regions(struct iommu_group *group,
288 					     char *buf)
289 {
290 	struct iommu_resv_region *region, *next;
291 	struct list_head group_resv_regions;
292 	char *str = buf;
293 
294 	INIT_LIST_HEAD(&group_resv_regions);
295 	iommu_get_group_resv_regions(group, &group_resv_regions);
296 
297 	list_for_each_entry_safe(region, next, &group_resv_regions, list) {
298 		str += sprintf(str, "0x%016llx 0x%016llx %s\n",
299 			       (long long int)region->start,
300 			       (long long int)(region->start +
301 						region->length - 1),
302 			       iommu_group_resv_type_string[region->type]);
303 		kfree(region);
304 	}
305 
306 	return (str - buf);
307 }
308 
309 static ssize_t iommu_group_show_type(struct iommu_group *group,
310 				     char *buf)
311 {
312 	char *type = "unknown\n";
313 
314 	if (group->default_domain) {
315 		switch (group->default_domain->type) {
316 		case IOMMU_DOMAIN_BLOCKED:
317 			type = "blocked\n";
318 			break;
319 		case IOMMU_DOMAIN_IDENTITY:
320 			type = "identity\n";
321 			break;
322 		case IOMMU_DOMAIN_UNMANAGED:
323 			type = "unmanaged\n";
324 			break;
325 		case IOMMU_DOMAIN_DMA:
326 			type = "DMA";
327 			break;
328 		}
329 	}
330 	strcpy(buf, type);
331 
332 	return strlen(type);
333 }
334 
335 static IOMMU_GROUP_ATTR(name, S_IRUGO, iommu_group_show_name, NULL);
336 
337 static IOMMU_GROUP_ATTR(reserved_regions, 0444,
338 			iommu_group_show_resv_regions, NULL);
339 
340 static IOMMU_GROUP_ATTR(type, 0444, iommu_group_show_type, NULL);
341 
342 static void iommu_group_release(struct kobject *kobj)
343 {
344 	struct iommu_group *group = to_iommu_group(kobj);
345 
346 	pr_debug("Releasing group %d\n", group->id);
347 
348 	if (group->iommu_data_release)
349 		group->iommu_data_release(group->iommu_data);
350 
351 	ida_simple_remove(&iommu_group_ida, group->id);
352 
353 	if (group->default_domain)
354 		iommu_domain_free(group->default_domain);
355 
356 	kfree(group->name);
357 	kfree(group);
358 }
359 
360 static struct kobj_type iommu_group_ktype = {
361 	.sysfs_ops = &iommu_group_sysfs_ops,
362 	.release = iommu_group_release,
363 };
364 
365 /**
366  * iommu_group_alloc - Allocate a new group
367  *
368  * This function is called by an iommu driver to allocate a new iommu
369  * group.  The iommu group represents the minimum granularity of the iommu.
370  * Upon successful return, the caller holds a reference to the supplied
371  * group in order to hold the group until devices are added.  Use
372  * iommu_group_put() to release this extra reference count, allowing the
373  * group to be automatically reclaimed once it has no devices or external
374  * references.
375  */
376 struct iommu_group *iommu_group_alloc(void)
377 {
378 	struct iommu_group *group;
379 	int ret;
380 
381 	group = kzalloc(sizeof(*group), GFP_KERNEL);
382 	if (!group)
383 		return ERR_PTR(-ENOMEM);
384 
385 	group->kobj.kset = iommu_group_kset;
386 	mutex_init(&group->mutex);
387 	INIT_LIST_HEAD(&group->devices);
388 	BLOCKING_INIT_NOTIFIER_HEAD(&group->notifier);
389 
390 	ret = ida_simple_get(&iommu_group_ida, 0, 0, GFP_KERNEL);
391 	if (ret < 0) {
392 		kfree(group);
393 		return ERR_PTR(ret);
394 	}
395 	group->id = ret;
396 
397 	ret = kobject_init_and_add(&group->kobj, &iommu_group_ktype,
398 				   NULL, "%d", group->id);
399 	if (ret) {
400 		ida_simple_remove(&iommu_group_ida, group->id);
401 		kfree(group);
402 		return ERR_PTR(ret);
403 	}
404 
405 	group->devices_kobj = kobject_create_and_add("devices", &group->kobj);
406 	if (!group->devices_kobj) {
407 		kobject_put(&group->kobj); /* triggers .release & free */
408 		return ERR_PTR(-ENOMEM);
409 	}
410 
411 	/*
412 	 * The devices_kobj holds a reference on the group kobject, so
413 	 * as long as that exists so will the group.  We can therefore
414 	 * use the devices_kobj for reference counting.
415 	 */
416 	kobject_put(&group->kobj);
417 
418 	ret = iommu_group_create_file(group,
419 				      &iommu_group_attr_reserved_regions);
420 	if (ret)
421 		return ERR_PTR(ret);
422 
423 	ret = iommu_group_create_file(group, &iommu_group_attr_type);
424 	if (ret)
425 		return ERR_PTR(ret);
426 
427 	pr_debug("Allocated group %d\n", group->id);
428 
429 	return group;
430 }
431 EXPORT_SYMBOL_GPL(iommu_group_alloc);
432 
433 struct iommu_group *iommu_group_get_by_id(int id)
434 {
435 	struct kobject *group_kobj;
436 	struct iommu_group *group;
437 	const char *name;
438 
439 	if (!iommu_group_kset)
440 		return NULL;
441 
442 	name = kasprintf(GFP_KERNEL, "%d", id);
443 	if (!name)
444 		return NULL;
445 
446 	group_kobj = kset_find_obj(iommu_group_kset, name);
447 	kfree(name);
448 
449 	if (!group_kobj)
450 		return NULL;
451 
452 	group = container_of(group_kobj, struct iommu_group, kobj);
453 	BUG_ON(group->id != id);
454 
455 	kobject_get(group->devices_kobj);
456 	kobject_put(&group->kobj);
457 
458 	return group;
459 }
460 EXPORT_SYMBOL_GPL(iommu_group_get_by_id);
461 
462 /**
463  * iommu_group_get_iommudata - retrieve iommu_data registered for a group
464  * @group: the group
465  *
466  * iommu drivers can store data in the group for use when doing iommu
467  * operations.  This function provides a way to retrieve it.  Caller
468  * should hold a group reference.
469  */
470 void *iommu_group_get_iommudata(struct iommu_group *group)
471 {
472 	return group->iommu_data;
473 }
474 EXPORT_SYMBOL_GPL(iommu_group_get_iommudata);
475 
476 /**
477  * iommu_group_set_iommudata - set iommu_data for a group
478  * @group: the group
479  * @iommu_data: new data
480  * @release: release function for iommu_data
481  *
482  * iommu drivers can store data in the group for use when doing iommu
483  * operations.  This function provides a way to set the data after
484  * the group has been allocated.  Caller should hold a group reference.
485  */
486 void iommu_group_set_iommudata(struct iommu_group *group, void *iommu_data,
487 			       void (*release)(void *iommu_data))
488 {
489 	group->iommu_data = iommu_data;
490 	group->iommu_data_release = release;
491 }
492 EXPORT_SYMBOL_GPL(iommu_group_set_iommudata);
493 
494 /**
495  * iommu_group_set_name - set name for a group
496  * @group: the group
497  * @name: name
498  *
499  * Allow iommu driver to set a name for a group.  When set it will
500  * appear in a name attribute file under the group in sysfs.
501  */
502 int iommu_group_set_name(struct iommu_group *group, const char *name)
503 {
504 	int ret;
505 
506 	if (group->name) {
507 		iommu_group_remove_file(group, &iommu_group_attr_name);
508 		kfree(group->name);
509 		group->name = NULL;
510 		if (!name)
511 			return 0;
512 	}
513 
514 	group->name = kstrdup(name, GFP_KERNEL);
515 	if (!group->name)
516 		return -ENOMEM;
517 
518 	ret = iommu_group_create_file(group, &iommu_group_attr_name);
519 	if (ret) {
520 		kfree(group->name);
521 		group->name = NULL;
522 		return ret;
523 	}
524 
525 	return 0;
526 }
527 EXPORT_SYMBOL_GPL(iommu_group_set_name);
528 
529 static int iommu_group_create_direct_mappings(struct iommu_group *group,
530 					      struct device *dev)
531 {
532 	struct iommu_domain *domain = group->default_domain;
533 	struct iommu_resv_region *entry;
534 	struct list_head mappings;
535 	unsigned long pg_size;
536 	int ret = 0;
537 
538 	if (!domain || domain->type != IOMMU_DOMAIN_DMA)
539 		return 0;
540 
541 	BUG_ON(!domain->pgsize_bitmap);
542 
543 	pg_size = 1UL << __ffs(domain->pgsize_bitmap);
544 	INIT_LIST_HEAD(&mappings);
545 
546 	iommu_get_resv_regions(dev, &mappings);
547 
548 	/* We need to consider overlapping regions for different devices */
549 	list_for_each_entry(entry, &mappings, list) {
550 		dma_addr_t start, end, addr;
551 
552 		if (domain->ops->apply_resv_region)
553 			domain->ops->apply_resv_region(dev, domain, entry);
554 
555 		start = ALIGN(entry->start, pg_size);
556 		end   = ALIGN(entry->start + entry->length, pg_size);
557 
558 		if (entry->type != IOMMU_RESV_DIRECT)
559 			continue;
560 
561 		for (addr = start; addr < end; addr += pg_size) {
562 			phys_addr_t phys_addr;
563 
564 			phys_addr = iommu_iova_to_phys(domain, addr);
565 			if (phys_addr)
566 				continue;
567 
568 			ret = iommu_map(domain, addr, addr, pg_size, entry->prot);
569 			if (ret)
570 				goto out;
571 		}
572 
573 	}
574 
575 	iommu_flush_tlb_all(domain);
576 
577 out:
578 	iommu_put_resv_regions(dev, &mappings);
579 
580 	return ret;
581 }
582 
583 /**
584  * iommu_group_add_device - add a device to an iommu group
585  * @group: the group into which to add the device (reference should be held)
586  * @dev: the device
587  *
588  * This function is called by an iommu driver to add a device into a
589  * group.  Adding a device increments the group reference count.
590  */
591 int iommu_group_add_device(struct iommu_group *group, struct device *dev)
592 {
593 	int ret, i = 0;
594 	struct group_device *device;
595 
596 	device = kzalloc(sizeof(*device), GFP_KERNEL);
597 	if (!device)
598 		return -ENOMEM;
599 
600 	device->dev = dev;
601 
602 	ret = sysfs_create_link(&dev->kobj, &group->kobj, "iommu_group");
603 	if (ret)
604 		goto err_free_device;
605 
606 	device->name = kasprintf(GFP_KERNEL, "%s", kobject_name(&dev->kobj));
607 rename:
608 	if (!device->name) {
609 		ret = -ENOMEM;
610 		goto err_remove_link;
611 	}
612 
613 	ret = sysfs_create_link_nowarn(group->devices_kobj,
614 				       &dev->kobj, device->name);
615 	if (ret) {
616 		if (ret == -EEXIST && i >= 0) {
617 			/*
618 			 * Account for the slim chance of collision
619 			 * and append an instance to the name.
620 			 */
621 			kfree(device->name);
622 			device->name = kasprintf(GFP_KERNEL, "%s.%d",
623 						 kobject_name(&dev->kobj), i++);
624 			goto rename;
625 		}
626 		goto err_free_name;
627 	}
628 
629 	kobject_get(group->devices_kobj);
630 
631 	dev->iommu_group = group;
632 
633 	iommu_group_create_direct_mappings(group, dev);
634 
635 	mutex_lock(&group->mutex);
636 	list_add_tail(&device->list, &group->devices);
637 	if (group->domain)
638 		ret = __iommu_attach_device(group->domain, dev);
639 	mutex_unlock(&group->mutex);
640 	if (ret)
641 		goto err_put_group;
642 
643 	/* Notify any listeners about change to group. */
644 	blocking_notifier_call_chain(&group->notifier,
645 				     IOMMU_GROUP_NOTIFY_ADD_DEVICE, dev);
646 
647 	trace_add_device_to_group(group->id, dev);
648 
649 	pr_info("Adding device %s to group %d\n", dev_name(dev), group->id);
650 
651 	return 0;
652 
653 err_put_group:
654 	mutex_lock(&group->mutex);
655 	list_del(&device->list);
656 	mutex_unlock(&group->mutex);
657 	dev->iommu_group = NULL;
658 	kobject_put(group->devices_kobj);
659 err_free_name:
660 	kfree(device->name);
661 err_remove_link:
662 	sysfs_remove_link(&dev->kobj, "iommu_group");
663 err_free_device:
664 	kfree(device);
665 	pr_err("Failed to add device %s to group %d: %d\n", dev_name(dev), group->id, ret);
666 	return ret;
667 }
668 EXPORT_SYMBOL_GPL(iommu_group_add_device);
669 
670 /**
671  * iommu_group_remove_device - remove a device from it's current group
672  * @dev: device to be removed
673  *
674  * This function is called by an iommu driver to remove the device from
675  * it's current group.  This decrements the iommu group reference count.
676  */
677 void iommu_group_remove_device(struct device *dev)
678 {
679 	struct iommu_group *group = dev->iommu_group;
680 	struct group_device *tmp_device, *device = NULL;
681 
682 	pr_info("Removing device %s from group %d\n", dev_name(dev), group->id);
683 
684 	/* Pre-notify listeners that a device is being removed. */
685 	blocking_notifier_call_chain(&group->notifier,
686 				     IOMMU_GROUP_NOTIFY_DEL_DEVICE, dev);
687 
688 	mutex_lock(&group->mutex);
689 	list_for_each_entry(tmp_device, &group->devices, list) {
690 		if (tmp_device->dev == dev) {
691 			device = tmp_device;
692 			list_del(&device->list);
693 			break;
694 		}
695 	}
696 	mutex_unlock(&group->mutex);
697 
698 	if (!device)
699 		return;
700 
701 	sysfs_remove_link(group->devices_kobj, device->name);
702 	sysfs_remove_link(&dev->kobj, "iommu_group");
703 
704 	trace_remove_device_from_group(group->id, dev);
705 
706 	kfree(device->name);
707 	kfree(device);
708 	dev->iommu_group = NULL;
709 	kobject_put(group->devices_kobj);
710 }
711 EXPORT_SYMBOL_GPL(iommu_group_remove_device);
712 
713 static int iommu_group_device_count(struct iommu_group *group)
714 {
715 	struct group_device *entry;
716 	int ret = 0;
717 
718 	list_for_each_entry(entry, &group->devices, list)
719 		ret++;
720 
721 	return ret;
722 }
723 
724 /**
725  * iommu_group_for_each_dev - iterate over each device in the group
726  * @group: the group
727  * @data: caller opaque data to be passed to callback function
728  * @fn: caller supplied callback function
729  *
730  * This function is called by group users to iterate over group devices.
731  * Callers should hold a reference count to the group during callback.
732  * The group->mutex is held across callbacks, which will block calls to
733  * iommu_group_add/remove_device.
734  */
735 static int __iommu_group_for_each_dev(struct iommu_group *group, void *data,
736 				      int (*fn)(struct device *, void *))
737 {
738 	struct group_device *device;
739 	int ret = 0;
740 
741 	list_for_each_entry(device, &group->devices, list) {
742 		ret = fn(device->dev, data);
743 		if (ret)
744 			break;
745 	}
746 	return ret;
747 }
748 
749 
750 int iommu_group_for_each_dev(struct iommu_group *group, void *data,
751 			     int (*fn)(struct device *, void *))
752 {
753 	int ret;
754 
755 	mutex_lock(&group->mutex);
756 	ret = __iommu_group_for_each_dev(group, data, fn);
757 	mutex_unlock(&group->mutex);
758 
759 	return ret;
760 }
761 EXPORT_SYMBOL_GPL(iommu_group_for_each_dev);
762 
763 /**
764  * iommu_group_get - Return the group for a device and increment reference
765  * @dev: get the group that this device belongs to
766  *
767  * This function is called by iommu drivers and users to get the group
768  * for the specified device.  If found, the group is returned and the group
769  * reference in incremented, else NULL.
770  */
771 struct iommu_group *iommu_group_get(struct device *dev)
772 {
773 	struct iommu_group *group = dev->iommu_group;
774 
775 	if (group)
776 		kobject_get(group->devices_kobj);
777 
778 	return group;
779 }
780 EXPORT_SYMBOL_GPL(iommu_group_get);
781 
782 /**
783  * iommu_group_ref_get - Increment reference on a group
784  * @group: the group to use, must not be NULL
785  *
786  * This function is called by iommu drivers to take additional references on an
787  * existing group.  Returns the given group for convenience.
788  */
789 struct iommu_group *iommu_group_ref_get(struct iommu_group *group)
790 {
791 	kobject_get(group->devices_kobj);
792 	return group;
793 }
794 
795 /**
796  * iommu_group_put - Decrement group reference
797  * @group: the group to use
798  *
799  * This function is called by iommu drivers and users to release the
800  * iommu group.  Once the reference count is zero, the group is released.
801  */
802 void iommu_group_put(struct iommu_group *group)
803 {
804 	if (group)
805 		kobject_put(group->devices_kobj);
806 }
807 EXPORT_SYMBOL_GPL(iommu_group_put);
808 
809 /**
810  * iommu_group_register_notifier - Register a notifier for group changes
811  * @group: the group to watch
812  * @nb: notifier block to signal
813  *
814  * This function allows iommu group users to track changes in a group.
815  * See include/linux/iommu.h for actions sent via this notifier.  Caller
816  * should hold a reference to the group throughout notifier registration.
817  */
818 int iommu_group_register_notifier(struct iommu_group *group,
819 				  struct notifier_block *nb)
820 {
821 	return blocking_notifier_chain_register(&group->notifier, nb);
822 }
823 EXPORT_SYMBOL_GPL(iommu_group_register_notifier);
824 
825 /**
826  * iommu_group_unregister_notifier - Unregister a notifier
827  * @group: the group to watch
828  * @nb: notifier block to signal
829  *
830  * Unregister a previously registered group notifier block.
831  */
832 int iommu_group_unregister_notifier(struct iommu_group *group,
833 				    struct notifier_block *nb)
834 {
835 	return blocking_notifier_chain_unregister(&group->notifier, nb);
836 }
837 EXPORT_SYMBOL_GPL(iommu_group_unregister_notifier);
838 
839 /**
840  * iommu_group_id - Return ID for a group
841  * @group: the group to ID
842  *
843  * Return the unique ID for the group matching the sysfs group number.
844  */
845 int iommu_group_id(struct iommu_group *group)
846 {
847 	return group->id;
848 }
849 EXPORT_SYMBOL_GPL(iommu_group_id);
850 
851 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
852 					       unsigned long *devfns);
853 
854 /*
855  * To consider a PCI device isolated, we require ACS to support Source
856  * Validation, Request Redirection, Completer Redirection, and Upstream
857  * Forwarding.  This effectively means that devices cannot spoof their
858  * requester ID, requests and completions cannot be redirected, and all
859  * transactions are forwarded upstream, even as it passes through a
860  * bridge where the target device is downstream.
861  */
862 #define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
863 
864 /*
865  * For multifunction devices which are not isolated from each other, find
866  * all the other non-isolated functions and look for existing groups.  For
867  * each function, we also need to look for aliases to or from other devices
868  * that may already have a group.
869  */
870 static struct iommu_group *get_pci_function_alias_group(struct pci_dev *pdev,
871 							unsigned long *devfns)
872 {
873 	struct pci_dev *tmp = NULL;
874 	struct iommu_group *group;
875 
876 	if (!pdev->multifunction || pci_acs_enabled(pdev, REQ_ACS_FLAGS))
877 		return NULL;
878 
879 	for_each_pci_dev(tmp) {
880 		if (tmp == pdev || tmp->bus != pdev->bus ||
881 		    PCI_SLOT(tmp->devfn) != PCI_SLOT(pdev->devfn) ||
882 		    pci_acs_enabled(tmp, REQ_ACS_FLAGS))
883 			continue;
884 
885 		group = get_pci_alias_group(tmp, devfns);
886 		if (group) {
887 			pci_dev_put(tmp);
888 			return group;
889 		}
890 	}
891 
892 	return NULL;
893 }
894 
895 /*
896  * Look for aliases to or from the given device for existing groups. DMA
897  * aliases are only supported on the same bus, therefore the search
898  * space is quite small (especially since we're really only looking at pcie
899  * device, and therefore only expect multiple slots on the root complex or
900  * downstream switch ports).  It's conceivable though that a pair of
901  * multifunction devices could have aliases between them that would cause a
902  * loop.  To prevent this, we use a bitmap to track where we've been.
903  */
904 static struct iommu_group *get_pci_alias_group(struct pci_dev *pdev,
905 					       unsigned long *devfns)
906 {
907 	struct pci_dev *tmp = NULL;
908 	struct iommu_group *group;
909 
910 	if (test_and_set_bit(pdev->devfn & 0xff, devfns))
911 		return NULL;
912 
913 	group = iommu_group_get(&pdev->dev);
914 	if (group)
915 		return group;
916 
917 	for_each_pci_dev(tmp) {
918 		if (tmp == pdev || tmp->bus != pdev->bus)
919 			continue;
920 
921 		/* We alias them or they alias us */
922 		if (pci_devs_are_dma_aliases(pdev, tmp)) {
923 			group = get_pci_alias_group(tmp, devfns);
924 			if (group) {
925 				pci_dev_put(tmp);
926 				return group;
927 			}
928 
929 			group = get_pci_function_alias_group(tmp, devfns);
930 			if (group) {
931 				pci_dev_put(tmp);
932 				return group;
933 			}
934 		}
935 	}
936 
937 	return NULL;
938 }
939 
940 struct group_for_pci_data {
941 	struct pci_dev *pdev;
942 	struct iommu_group *group;
943 };
944 
945 /*
946  * DMA alias iterator callback, return the last seen device.  Stop and return
947  * the IOMMU group if we find one along the way.
948  */
949 static int get_pci_alias_or_group(struct pci_dev *pdev, u16 alias, void *opaque)
950 {
951 	struct group_for_pci_data *data = opaque;
952 
953 	data->pdev = pdev;
954 	data->group = iommu_group_get(&pdev->dev);
955 
956 	return data->group != NULL;
957 }
958 
959 /*
960  * Generic device_group call-back function. It just allocates one
961  * iommu-group per device.
962  */
963 struct iommu_group *generic_device_group(struct device *dev)
964 {
965 	return iommu_group_alloc();
966 }
967 
968 /*
969  * Use standard PCI bus topology, isolation features, and DMA alias quirks
970  * to find or create an IOMMU group for a device.
971  */
972 struct iommu_group *pci_device_group(struct device *dev)
973 {
974 	struct pci_dev *pdev = to_pci_dev(dev);
975 	struct group_for_pci_data data;
976 	struct pci_bus *bus;
977 	struct iommu_group *group = NULL;
978 	u64 devfns[4] = { 0 };
979 
980 	if (WARN_ON(!dev_is_pci(dev)))
981 		return ERR_PTR(-EINVAL);
982 
983 	/*
984 	 * Find the upstream DMA alias for the device.  A device must not
985 	 * be aliased due to topology in order to have its own IOMMU group.
986 	 * If we find an alias along the way that already belongs to a
987 	 * group, use it.
988 	 */
989 	if (pci_for_each_dma_alias(pdev, get_pci_alias_or_group, &data))
990 		return data.group;
991 
992 	pdev = data.pdev;
993 
994 	/*
995 	 * Continue upstream from the point of minimum IOMMU granularity
996 	 * due to aliases to the point where devices are protected from
997 	 * peer-to-peer DMA by PCI ACS.  Again, if we find an existing
998 	 * group, use it.
999 	 */
1000 	for (bus = pdev->bus; !pci_is_root_bus(bus); bus = bus->parent) {
1001 		if (!bus->self)
1002 			continue;
1003 
1004 		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
1005 			break;
1006 
1007 		pdev = bus->self;
1008 
1009 		group = iommu_group_get(&pdev->dev);
1010 		if (group)
1011 			return group;
1012 	}
1013 
1014 	/*
1015 	 * Look for existing groups on device aliases.  If we alias another
1016 	 * device or another device aliases us, use the same group.
1017 	 */
1018 	group = get_pci_alias_group(pdev, (unsigned long *)devfns);
1019 	if (group)
1020 		return group;
1021 
1022 	/*
1023 	 * Look for existing groups on non-isolated functions on the same
1024 	 * slot and aliases of those funcions, if any.  No need to clear
1025 	 * the search bitmap, the tested devfns are still valid.
1026 	 */
1027 	group = get_pci_function_alias_group(pdev, (unsigned long *)devfns);
1028 	if (group)
1029 		return group;
1030 
1031 	/* No shared group found, allocate new */
1032 	return iommu_group_alloc();
1033 }
1034 
1035 /* Get the IOMMU group for device on fsl-mc bus */
1036 struct iommu_group *fsl_mc_device_group(struct device *dev)
1037 {
1038 	struct device *cont_dev = fsl_mc_cont_dev(dev);
1039 	struct iommu_group *group;
1040 
1041 	group = iommu_group_get(cont_dev);
1042 	if (!group)
1043 		group = iommu_group_alloc();
1044 	return group;
1045 }
1046 
1047 /**
1048  * iommu_group_get_for_dev - Find or create the IOMMU group for a device
1049  * @dev: target device
1050  *
1051  * This function is intended to be called by IOMMU drivers and extended to
1052  * support common, bus-defined algorithms when determining or creating the
1053  * IOMMU group for a device.  On success, the caller will hold a reference
1054  * to the returned IOMMU group, which will already include the provided
1055  * device.  The reference should be released with iommu_group_put().
1056  */
1057 struct iommu_group *iommu_group_get_for_dev(struct device *dev)
1058 {
1059 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1060 	struct iommu_group *group;
1061 	int ret;
1062 
1063 	group = iommu_group_get(dev);
1064 	if (group)
1065 		return group;
1066 
1067 	if (!ops)
1068 		return ERR_PTR(-EINVAL);
1069 
1070 	group = ops->device_group(dev);
1071 	if (WARN_ON_ONCE(group == NULL))
1072 		return ERR_PTR(-EINVAL);
1073 
1074 	if (IS_ERR(group))
1075 		return group;
1076 
1077 	/*
1078 	 * Try to allocate a default domain - needs support from the
1079 	 * IOMMU driver.
1080 	 */
1081 	if (!group->default_domain) {
1082 		struct iommu_domain *dom;
1083 
1084 		dom = __iommu_domain_alloc(dev->bus, iommu_def_domain_type);
1085 		if (!dom && iommu_def_domain_type != IOMMU_DOMAIN_DMA) {
1086 			dev_warn(dev,
1087 				 "failed to allocate default IOMMU domain of type %u; falling back to IOMMU_DOMAIN_DMA",
1088 				 iommu_def_domain_type);
1089 			dom = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_DMA);
1090 		}
1091 
1092 		group->default_domain = dom;
1093 		if (!group->domain)
1094 			group->domain = dom;
1095 
1096 		if (dom && !iommu_dma_strict) {
1097 			int attr = 1;
1098 			iommu_domain_set_attr(dom,
1099 					      DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE,
1100 					      &attr);
1101 		}
1102 	}
1103 
1104 	ret = iommu_group_add_device(group, dev);
1105 	if (ret) {
1106 		iommu_group_put(group);
1107 		return ERR_PTR(ret);
1108 	}
1109 
1110 	return group;
1111 }
1112 
1113 struct iommu_domain *iommu_group_default_domain(struct iommu_group *group)
1114 {
1115 	return group->default_domain;
1116 }
1117 
1118 static int add_iommu_group(struct device *dev, void *data)
1119 {
1120 	struct iommu_callback_data *cb = data;
1121 	const struct iommu_ops *ops = cb->ops;
1122 	int ret;
1123 
1124 	if (!ops->add_device)
1125 		return 0;
1126 
1127 	WARN_ON(dev->iommu_group);
1128 
1129 	ret = ops->add_device(dev);
1130 
1131 	/*
1132 	 * We ignore -ENODEV errors for now, as they just mean that the
1133 	 * device is not translated by an IOMMU. We still care about
1134 	 * other errors and fail to initialize when they happen.
1135 	 */
1136 	if (ret == -ENODEV)
1137 		ret = 0;
1138 
1139 	return ret;
1140 }
1141 
1142 static int remove_iommu_group(struct device *dev, void *data)
1143 {
1144 	struct iommu_callback_data *cb = data;
1145 	const struct iommu_ops *ops = cb->ops;
1146 
1147 	if (ops->remove_device && dev->iommu_group)
1148 		ops->remove_device(dev);
1149 
1150 	return 0;
1151 }
1152 
1153 static int iommu_bus_notifier(struct notifier_block *nb,
1154 			      unsigned long action, void *data)
1155 {
1156 	struct device *dev = data;
1157 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1158 	struct iommu_group *group;
1159 	unsigned long group_action = 0;
1160 
1161 	/*
1162 	 * ADD/DEL call into iommu driver ops if provided, which may
1163 	 * result in ADD/DEL notifiers to group->notifier
1164 	 */
1165 	if (action == BUS_NOTIFY_ADD_DEVICE) {
1166 		if (ops->add_device) {
1167 			int ret;
1168 
1169 			ret = ops->add_device(dev);
1170 			return (ret) ? NOTIFY_DONE : NOTIFY_OK;
1171 		}
1172 	} else if (action == BUS_NOTIFY_REMOVED_DEVICE) {
1173 		if (ops->remove_device && dev->iommu_group) {
1174 			ops->remove_device(dev);
1175 			return 0;
1176 		}
1177 	}
1178 
1179 	/*
1180 	 * Remaining BUS_NOTIFYs get filtered and republished to the
1181 	 * group, if anyone is listening
1182 	 */
1183 	group = iommu_group_get(dev);
1184 	if (!group)
1185 		return 0;
1186 
1187 	switch (action) {
1188 	case BUS_NOTIFY_BIND_DRIVER:
1189 		group_action = IOMMU_GROUP_NOTIFY_BIND_DRIVER;
1190 		break;
1191 	case BUS_NOTIFY_BOUND_DRIVER:
1192 		group_action = IOMMU_GROUP_NOTIFY_BOUND_DRIVER;
1193 		break;
1194 	case BUS_NOTIFY_UNBIND_DRIVER:
1195 		group_action = IOMMU_GROUP_NOTIFY_UNBIND_DRIVER;
1196 		break;
1197 	case BUS_NOTIFY_UNBOUND_DRIVER:
1198 		group_action = IOMMU_GROUP_NOTIFY_UNBOUND_DRIVER;
1199 		break;
1200 	}
1201 
1202 	if (group_action)
1203 		blocking_notifier_call_chain(&group->notifier,
1204 					     group_action, dev);
1205 
1206 	iommu_group_put(group);
1207 	return 0;
1208 }
1209 
1210 static int iommu_bus_init(struct bus_type *bus, const struct iommu_ops *ops)
1211 {
1212 	int err;
1213 	struct notifier_block *nb;
1214 	struct iommu_callback_data cb = {
1215 		.ops = ops,
1216 	};
1217 
1218 	nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL);
1219 	if (!nb)
1220 		return -ENOMEM;
1221 
1222 	nb->notifier_call = iommu_bus_notifier;
1223 
1224 	err = bus_register_notifier(bus, nb);
1225 	if (err)
1226 		goto out_free;
1227 
1228 	err = bus_for_each_dev(bus, NULL, &cb, add_iommu_group);
1229 	if (err)
1230 		goto out_err;
1231 
1232 
1233 	return 0;
1234 
1235 out_err:
1236 	/* Clean up */
1237 	bus_for_each_dev(bus, NULL, &cb, remove_iommu_group);
1238 	bus_unregister_notifier(bus, nb);
1239 
1240 out_free:
1241 	kfree(nb);
1242 
1243 	return err;
1244 }
1245 
1246 /**
1247  * bus_set_iommu - set iommu-callbacks for the bus
1248  * @bus: bus.
1249  * @ops: the callbacks provided by the iommu-driver
1250  *
1251  * This function is called by an iommu driver to set the iommu methods
1252  * used for a particular bus. Drivers for devices on that bus can use
1253  * the iommu-api after these ops are registered.
1254  * This special function is needed because IOMMUs are usually devices on
1255  * the bus itself, so the iommu drivers are not initialized when the bus
1256  * is set up. With this function the iommu-driver can set the iommu-ops
1257  * afterwards.
1258  */
1259 int bus_set_iommu(struct bus_type *bus, const struct iommu_ops *ops)
1260 {
1261 	int err;
1262 
1263 	if (bus->iommu_ops != NULL)
1264 		return -EBUSY;
1265 
1266 	bus->iommu_ops = ops;
1267 
1268 	/* Do IOMMU specific setup for this bus-type */
1269 	err = iommu_bus_init(bus, ops);
1270 	if (err)
1271 		bus->iommu_ops = NULL;
1272 
1273 	return err;
1274 }
1275 EXPORT_SYMBOL_GPL(bus_set_iommu);
1276 
1277 bool iommu_present(struct bus_type *bus)
1278 {
1279 	return bus->iommu_ops != NULL;
1280 }
1281 EXPORT_SYMBOL_GPL(iommu_present);
1282 
1283 bool iommu_capable(struct bus_type *bus, enum iommu_cap cap)
1284 {
1285 	if (!bus->iommu_ops || !bus->iommu_ops->capable)
1286 		return false;
1287 
1288 	return bus->iommu_ops->capable(cap);
1289 }
1290 EXPORT_SYMBOL_GPL(iommu_capable);
1291 
1292 /**
1293  * iommu_set_fault_handler() - set a fault handler for an iommu domain
1294  * @domain: iommu domain
1295  * @handler: fault handler
1296  * @token: user data, will be passed back to the fault handler
1297  *
1298  * This function should be used by IOMMU users which want to be notified
1299  * whenever an IOMMU fault happens.
1300  *
1301  * The fault handler itself should return 0 on success, and an appropriate
1302  * error code otherwise.
1303  */
1304 void iommu_set_fault_handler(struct iommu_domain *domain,
1305 					iommu_fault_handler_t handler,
1306 					void *token)
1307 {
1308 	BUG_ON(!domain);
1309 
1310 	domain->handler = handler;
1311 	domain->handler_token = token;
1312 }
1313 EXPORT_SYMBOL_GPL(iommu_set_fault_handler);
1314 
1315 static struct iommu_domain *__iommu_domain_alloc(struct bus_type *bus,
1316 						 unsigned type)
1317 {
1318 	struct iommu_domain *domain;
1319 
1320 	if (bus == NULL || bus->iommu_ops == NULL)
1321 		return NULL;
1322 
1323 	domain = bus->iommu_ops->domain_alloc(type);
1324 	if (!domain)
1325 		return NULL;
1326 
1327 	domain->ops  = bus->iommu_ops;
1328 	domain->type = type;
1329 	/* Assume all sizes by default; the driver may override this later */
1330 	domain->pgsize_bitmap  = bus->iommu_ops->pgsize_bitmap;
1331 
1332 	return domain;
1333 }
1334 
1335 struct iommu_domain *iommu_domain_alloc(struct bus_type *bus)
1336 {
1337 	return __iommu_domain_alloc(bus, IOMMU_DOMAIN_UNMANAGED);
1338 }
1339 EXPORT_SYMBOL_GPL(iommu_domain_alloc);
1340 
1341 void iommu_domain_free(struct iommu_domain *domain)
1342 {
1343 	domain->ops->domain_free(domain);
1344 }
1345 EXPORT_SYMBOL_GPL(iommu_domain_free);
1346 
1347 static int __iommu_attach_device(struct iommu_domain *domain,
1348 				 struct device *dev)
1349 {
1350 	int ret;
1351 	if ((domain->ops->is_attach_deferred != NULL) &&
1352 	    domain->ops->is_attach_deferred(domain, dev))
1353 		return 0;
1354 
1355 	if (unlikely(domain->ops->attach_dev == NULL))
1356 		return -ENODEV;
1357 
1358 	ret = domain->ops->attach_dev(domain, dev);
1359 	if (!ret)
1360 		trace_attach_device_to_domain(dev);
1361 	return ret;
1362 }
1363 
1364 int iommu_attach_device(struct iommu_domain *domain, struct device *dev)
1365 {
1366 	struct iommu_group *group;
1367 	int ret;
1368 
1369 	group = iommu_group_get(dev);
1370 	if (!group)
1371 		return -ENODEV;
1372 
1373 	/*
1374 	 * Lock the group to make sure the device-count doesn't
1375 	 * change while we are attaching
1376 	 */
1377 	mutex_lock(&group->mutex);
1378 	ret = -EINVAL;
1379 	if (iommu_group_device_count(group) != 1)
1380 		goto out_unlock;
1381 
1382 	ret = __iommu_attach_group(domain, group);
1383 
1384 out_unlock:
1385 	mutex_unlock(&group->mutex);
1386 	iommu_group_put(group);
1387 
1388 	return ret;
1389 }
1390 EXPORT_SYMBOL_GPL(iommu_attach_device);
1391 
1392 static void __iommu_detach_device(struct iommu_domain *domain,
1393 				  struct device *dev)
1394 {
1395 	if ((domain->ops->is_attach_deferred != NULL) &&
1396 	    domain->ops->is_attach_deferred(domain, dev))
1397 		return;
1398 
1399 	if (unlikely(domain->ops->detach_dev == NULL))
1400 		return;
1401 
1402 	domain->ops->detach_dev(domain, dev);
1403 	trace_detach_device_from_domain(dev);
1404 }
1405 
1406 void iommu_detach_device(struct iommu_domain *domain, struct device *dev)
1407 {
1408 	struct iommu_group *group;
1409 
1410 	group = iommu_group_get(dev);
1411 	if (!group)
1412 		return;
1413 
1414 	mutex_lock(&group->mutex);
1415 	if (iommu_group_device_count(group) != 1) {
1416 		WARN_ON(1);
1417 		goto out_unlock;
1418 	}
1419 
1420 	__iommu_detach_group(domain, group);
1421 
1422 out_unlock:
1423 	mutex_unlock(&group->mutex);
1424 	iommu_group_put(group);
1425 }
1426 EXPORT_SYMBOL_GPL(iommu_detach_device);
1427 
1428 struct iommu_domain *iommu_get_domain_for_dev(struct device *dev)
1429 {
1430 	struct iommu_domain *domain;
1431 	struct iommu_group *group;
1432 
1433 	group = iommu_group_get(dev);
1434 	if (!group)
1435 		return NULL;
1436 
1437 	domain = group->domain;
1438 
1439 	iommu_group_put(group);
1440 
1441 	return domain;
1442 }
1443 EXPORT_SYMBOL_GPL(iommu_get_domain_for_dev);
1444 
1445 /*
1446  * For IOMMU_DOMAIN_DMA implementations which already provide their own
1447  * guarantees that the group and its default domain are valid and correct.
1448  */
1449 struct iommu_domain *iommu_get_dma_domain(struct device *dev)
1450 {
1451 	return dev->iommu_group->default_domain;
1452 }
1453 
1454 /*
1455  * IOMMU groups are really the natural working unit of the IOMMU, but
1456  * the IOMMU API works on domains and devices.  Bridge that gap by
1457  * iterating over the devices in a group.  Ideally we'd have a single
1458  * device which represents the requestor ID of the group, but we also
1459  * allow IOMMU drivers to create policy defined minimum sets, where
1460  * the physical hardware may be able to distiguish members, but we
1461  * wish to group them at a higher level (ex. untrusted multi-function
1462  * PCI devices).  Thus we attach each device.
1463  */
1464 static int iommu_group_do_attach_device(struct device *dev, void *data)
1465 {
1466 	struct iommu_domain *domain = data;
1467 
1468 	return __iommu_attach_device(domain, dev);
1469 }
1470 
1471 static int __iommu_attach_group(struct iommu_domain *domain,
1472 				struct iommu_group *group)
1473 {
1474 	int ret;
1475 
1476 	if (group->default_domain && group->domain != group->default_domain)
1477 		return -EBUSY;
1478 
1479 	ret = __iommu_group_for_each_dev(group, domain,
1480 					 iommu_group_do_attach_device);
1481 	if (ret == 0)
1482 		group->domain = domain;
1483 
1484 	return ret;
1485 }
1486 
1487 int iommu_attach_group(struct iommu_domain *domain, struct iommu_group *group)
1488 {
1489 	int ret;
1490 
1491 	mutex_lock(&group->mutex);
1492 	ret = __iommu_attach_group(domain, group);
1493 	mutex_unlock(&group->mutex);
1494 
1495 	return ret;
1496 }
1497 EXPORT_SYMBOL_GPL(iommu_attach_group);
1498 
1499 static int iommu_group_do_detach_device(struct device *dev, void *data)
1500 {
1501 	struct iommu_domain *domain = data;
1502 
1503 	__iommu_detach_device(domain, dev);
1504 
1505 	return 0;
1506 }
1507 
1508 static void __iommu_detach_group(struct iommu_domain *domain,
1509 				 struct iommu_group *group)
1510 {
1511 	int ret;
1512 
1513 	if (!group->default_domain) {
1514 		__iommu_group_for_each_dev(group, domain,
1515 					   iommu_group_do_detach_device);
1516 		group->domain = NULL;
1517 		return;
1518 	}
1519 
1520 	if (group->domain == group->default_domain)
1521 		return;
1522 
1523 	/* Detach by re-attaching to the default domain */
1524 	ret = __iommu_group_for_each_dev(group, group->default_domain,
1525 					 iommu_group_do_attach_device);
1526 	if (ret != 0)
1527 		WARN_ON(1);
1528 	else
1529 		group->domain = group->default_domain;
1530 }
1531 
1532 void iommu_detach_group(struct iommu_domain *domain, struct iommu_group *group)
1533 {
1534 	mutex_lock(&group->mutex);
1535 	__iommu_detach_group(domain, group);
1536 	mutex_unlock(&group->mutex);
1537 }
1538 EXPORT_SYMBOL_GPL(iommu_detach_group);
1539 
1540 phys_addr_t iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
1541 {
1542 	if (unlikely(domain->ops->iova_to_phys == NULL))
1543 		return 0;
1544 
1545 	return domain->ops->iova_to_phys(domain, iova);
1546 }
1547 EXPORT_SYMBOL_GPL(iommu_iova_to_phys);
1548 
1549 static size_t iommu_pgsize(struct iommu_domain *domain,
1550 			   unsigned long addr_merge, size_t size)
1551 {
1552 	unsigned int pgsize_idx;
1553 	size_t pgsize;
1554 
1555 	/* Max page size that still fits into 'size' */
1556 	pgsize_idx = __fls(size);
1557 
1558 	/* need to consider alignment requirements ? */
1559 	if (likely(addr_merge)) {
1560 		/* Max page size allowed by address */
1561 		unsigned int align_pgsize_idx = __ffs(addr_merge);
1562 		pgsize_idx = min(pgsize_idx, align_pgsize_idx);
1563 	}
1564 
1565 	/* build a mask of acceptable page sizes */
1566 	pgsize = (1UL << (pgsize_idx + 1)) - 1;
1567 
1568 	/* throw away page sizes not supported by the hardware */
1569 	pgsize &= domain->pgsize_bitmap;
1570 
1571 	/* make sure we're still sane */
1572 	BUG_ON(!pgsize);
1573 
1574 	/* pick the biggest page */
1575 	pgsize_idx = __fls(pgsize);
1576 	pgsize = 1UL << pgsize_idx;
1577 
1578 	return pgsize;
1579 }
1580 
1581 int iommu_map(struct iommu_domain *domain, unsigned long iova,
1582 	      phys_addr_t paddr, size_t size, int prot)
1583 {
1584 	unsigned long orig_iova = iova;
1585 	unsigned int min_pagesz;
1586 	size_t orig_size = size;
1587 	phys_addr_t orig_paddr = paddr;
1588 	int ret = 0;
1589 
1590 	if (unlikely(domain->ops->map == NULL ||
1591 		     domain->pgsize_bitmap == 0UL))
1592 		return -ENODEV;
1593 
1594 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1595 		return -EINVAL;
1596 
1597 	/* find out the minimum page size supported */
1598 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1599 
1600 	/*
1601 	 * both the virtual address and the physical one, as well as
1602 	 * the size of the mapping, must be aligned (at least) to the
1603 	 * size of the smallest page supported by the hardware
1604 	 */
1605 	if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) {
1606 		pr_err("unaligned: iova 0x%lx pa %pa size 0x%zx min_pagesz 0x%x\n",
1607 		       iova, &paddr, size, min_pagesz);
1608 		return -EINVAL;
1609 	}
1610 
1611 	pr_debug("map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size);
1612 
1613 	while (size) {
1614 		size_t pgsize = iommu_pgsize(domain, iova | paddr, size);
1615 
1616 		pr_debug("mapping: iova 0x%lx pa %pa pgsize 0x%zx\n",
1617 			 iova, &paddr, pgsize);
1618 
1619 		ret = domain->ops->map(domain, iova, paddr, pgsize, prot);
1620 		if (ret)
1621 			break;
1622 
1623 		iova += pgsize;
1624 		paddr += pgsize;
1625 		size -= pgsize;
1626 	}
1627 
1628 	/* unroll mapping in case something went wrong */
1629 	if (ret)
1630 		iommu_unmap(domain, orig_iova, orig_size - size);
1631 	else
1632 		trace_map(orig_iova, orig_paddr, orig_size);
1633 
1634 	return ret;
1635 }
1636 EXPORT_SYMBOL_GPL(iommu_map);
1637 
1638 static size_t __iommu_unmap(struct iommu_domain *domain,
1639 			    unsigned long iova, size_t size,
1640 			    bool sync)
1641 {
1642 	const struct iommu_ops *ops = domain->ops;
1643 	size_t unmapped_page, unmapped = 0;
1644 	unsigned long orig_iova = iova;
1645 	unsigned int min_pagesz;
1646 
1647 	if (unlikely(ops->unmap == NULL ||
1648 		     domain->pgsize_bitmap == 0UL))
1649 		return 0;
1650 
1651 	if (unlikely(!(domain->type & __IOMMU_DOMAIN_PAGING)))
1652 		return 0;
1653 
1654 	/* find out the minimum page size supported */
1655 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1656 
1657 	/*
1658 	 * The virtual address, as well as the size of the mapping, must be
1659 	 * aligned (at least) to the size of the smallest page supported
1660 	 * by the hardware
1661 	 */
1662 	if (!IS_ALIGNED(iova | size, min_pagesz)) {
1663 		pr_err("unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n",
1664 		       iova, size, min_pagesz);
1665 		return 0;
1666 	}
1667 
1668 	pr_debug("unmap this: iova 0x%lx size 0x%zx\n", iova, size);
1669 
1670 	/*
1671 	 * Keep iterating until we either unmap 'size' bytes (or more)
1672 	 * or we hit an area that isn't mapped.
1673 	 */
1674 	while (unmapped < size) {
1675 		size_t pgsize = iommu_pgsize(domain, iova, size - unmapped);
1676 
1677 		unmapped_page = ops->unmap(domain, iova, pgsize);
1678 		if (!unmapped_page)
1679 			break;
1680 
1681 		if (sync && ops->iotlb_range_add)
1682 			ops->iotlb_range_add(domain, iova, pgsize);
1683 
1684 		pr_debug("unmapped: iova 0x%lx size 0x%zx\n",
1685 			 iova, unmapped_page);
1686 
1687 		iova += unmapped_page;
1688 		unmapped += unmapped_page;
1689 	}
1690 
1691 	if (sync && ops->iotlb_sync)
1692 		ops->iotlb_sync(domain);
1693 
1694 	trace_unmap(orig_iova, size, unmapped);
1695 	return unmapped;
1696 }
1697 
1698 size_t iommu_unmap(struct iommu_domain *domain,
1699 		   unsigned long iova, size_t size)
1700 {
1701 	return __iommu_unmap(domain, iova, size, true);
1702 }
1703 EXPORT_SYMBOL_GPL(iommu_unmap);
1704 
1705 size_t iommu_unmap_fast(struct iommu_domain *domain,
1706 			unsigned long iova, size_t size)
1707 {
1708 	return __iommu_unmap(domain, iova, size, false);
1709 }
1710 EXPORT_SYMBOL_GPL(iommu_unmap_fast);
1711 
1712 size_t iommu_map_sg(struct iommu_domain *domain, unsigned long iova,
1713 		    struct scatterlist *sg, unsigned int nents, int prot)
1714 {
1715 	struct scatterlist *s;
1716 	size_t mapped = 0;
1717 	unsigned int i, min_pagesz;
1718 	int ret;
1719 
1720 	if (unlikely(domain->pgsize_bitmap == 0UL))
1721 		return 0;
1722 
1723 	min_pagesz = 1 << __ffs(domain->pgsize_bitmap);
1724 
1725 	for_each_sg(sg, s, nents, i) {
1726 		phys_addr_t phys = page_to_phys(sg_page(s)) + s->offset;
1727 
1728 		/*
1729 		 * We are mapping on IOMMU page boundaries, so offset within
1730 		 * the page must be 0. However, the IOMMU may support pages
1731 		 * smaller than PAGE_SIZE, so s->offset may still represent
1732 		 * an offset of that boundary within the CPU page.
1733 		 */
1734 		if (!IS_ALIGNED(s->offset, min_pagesz))
1735 			goto out_err;
1736 
1737 		ret = iommu_map(domain, iova + mapped, phys, s->length, prot);
1738 		if (ret)
1739 			goto out_err;
1740 
1741 		mapped += s->length;
1742 	}
1743 
1744 	return mapped;
1745 
1746 out_err:
1747 	/* undo mappings already done */
1748 	iommu_unmap(domain, iova, mapped);
1749 
1750 	return 0;
1751 
1752 }
1753 EXPORT_SYMBOL_GPL(iommu_map_sg);
1754 
1755 int iommu_domain_window_enable(struct iommu_domain *domain, u32 wnd_nr,
1756 			       phys_addr_t paddr, u64 size, int prot)
1757 {
1758 	if (unlikely(domain->ops->domain_window_enable == NULL))
1759 		return -ENODEV;
1760 
1761 	return domain->ops->domain_window_enable(domain, wnd_nr, paddr, size,
1762 						 prot);
1763 }
1764 EXPORT_SYMBOL_GPL(iommu_domain_window_enable);
1765 
1766 void iommu_domain_window_disable(struct iommu_domain *domain, u32 wnd_nr)
1767 {
1768 	if (unlikely(domain->ops->domain_window_disable == NULL))
1769 		return;
1770 
1771 	return domain->ops->domain_window_disable(domain, wnd_nr);
1772 }
1773 EXPORT_SYMBOL_GPL(iommu_domain_window_disable);
1774 
1775 /**
1776  * report_iommu_fault() - report about an IOMMU fault to the IOMMU framework
1777  * @domain: the iommu domain where the fault has happened
1778  * @dev: the device where the fault has happened
1779  * @iova: the faulting address
1780  * @flags: mmu fault flags (e.g. IOMMU_FAULT_READ/IOMMU_FAULT_WRITE/...)
1781  *
1782  * This function should be called by the low-level IOMMU implementations
1783  * whenever IOMMU faults happen, to allow high-level users, that are
1784  * interested in such events, to know about them.
1785  *
1786  * This event may be useful for several possible use cases:
1787  * - mere logging of the event
1788  * - dynamic TLB/PTE loading
1789  * - if restarting of the faulting device is required
1790  *
1791  * Returns 0 on success and an appropriate error code otherwise (if dynamic
1792  * PTE/TLB loading will one day be supported, implementations will be able
1793  * to tell whether it succeeded or not according to this return value).
1794  *
1795  * Specifically, -ENOSYS is returned if a fault handler isn't installed
1796  * (though fault handlers can also return -ENOSYS, in case they want to
1797  * elicit the default behavior of the IOMMU drivers).
1798  */
1799 int report_iommu_fault(struct iommu_domain *domain, struct device *dev,
1800 		       unsigned long iova, int flags)
1801 {
1802 	int ret = -ENOSYS;
1803 
1804 	/*
1805 	 * if upper layers showed interest and installed a fault handler,
1806 	 * invoke it.
1807 	 */
1808 	if (domain->handler)
1809 		ret = domain->handler(domain, dev, iova, flags,
1810 						domain->handler_token);
1811 
1812 	trace_io_page_fault(dev, iova, flags);
1813 	return ret;
1814 }
1815 EXPORT_SYMBOL_GPL(report_iommu_fault);
1816 
1817 static int __init iommu_init(void)
1818 {
1819 	iommu_group_kset = kset_create_and_add("iommu_groups",
1820 					       NULL, kernel_kobj);
1821 	BUG_ON(!iommu_group_kset);
1822 
1823 	iommu_debugfs_setup();
1824 
1825 	return 0;
1826 }
1827 core_initcall(iommu_init);
1828 
1829 int iommu_domain_get_attr(struct iommu_domain *domain,
1830 			  enum iommu_attr attr, void *data)
1831 {
1832 	struct iommu_domain_geometry *geometry;
1833 	bool *paging;
1834 	int ret = 0;
1835 
1836 	switch (attr) {
1837 	case DOMAIN_ATTR_GEOMETRY:
1838 		geometry  = data;
1839 		*geometry = domain->geometry;
1840 
1841 		break;
1842 	case DOMAIN_ATTR_PAGING:
1843 		paging  = data;
1844 		*paging = (domain->pgsize_bitmap != 0UL);
1845 		break;
1846 	default:
1847 		if (!domain->ops->domain_get_attr)
1848 			return -EINVAL;
1849 
1850 		ret = domain->ops->domain_get_attr(domain, attr, data);
1851 	}
1852 
1853 	return ret;
1854 }
1855 EXPORT_SYMBOL_GPL(iommu_domain_get_attr);
1856 
1857 int iommu_domain_set_attr(struct iommu_domain *domain,
1858 			  enum iommu_attr attr, void *data)
1859 {
1860 	int ret = 0;
1861 
1862 	switch (attr) {
1863 	default:
1864 		if (domain->ops->domain_set_attr == NULL)
1865 			return -EINVAL;
1866 
1867 		ret = domain->ops->domain_set_attr(domain, attr, data);
1868 	}
1869 
1870 	return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(iommu_domain_set_attr);
1873 
1874 void iommu_get_resv_regions(struct device *dev, struct list_head *list)
1875 {
1876 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1877 
1878 	if (ops && ops->get_resv_regions)
1879 		ops->get_resv_regions(dev, list);
1880 }
1881 
1882 void iommu_put_resv_regions(struct device *dev, struct list_head *list)
1883 {
1884 	const struct iommu_ops *ops = dev->bus->iommu_ops;
1885 
1886 	if (ops && ops->put_resv_regions)
1887 		ops->put_resv_regions(dev, list);
1888 }
1889 
1890 struct iommu_resv_region *iommu_alloc_resv_region(phys_addr_t start,
1891 						  size_t length, int prot,
1892 						  enum iommu_resv_type type)
1893 {
1894 	struct iommu_resv_region *region;
1895 
1896 	region = kzalloc(sizeof(*region), GFP_KERNEL);
1897 	if (!region)
1898 		return NULL;
1899 
1900 	INIT_LIST_HEAD(&region->list);
1901 	region->start = start;
1902 	region->length = length;
1903 	region->prot = prot;
1904 	region->type = type;
1905 	return region;
1906 }
1907 
1908 /* Request that a device is direct mapped by the IOMMU */
1909 int iommu_request_dm_for_dev(struct device *dev)
1910 {
1911 	struct iommu_domain *dm_domain;
1912 	struct iommu_group *group;
1913 	int ret;
1914 
1915 	/* Device must already be in a group before calling this function */
1916 	group = iommu_group_get_for_dev(dev);
1917 	if (IS_ERR(group))
1918 		return PTR_ERR(group);
1919 
1920 	mutex_lock(&group->mutex);
1921 
1922 	/* Check if the default domain is already direct mapped */
1923 	ret = 0;
1924 	if (group->default_domain &&
1925 	    group->default_domain->type == IOMMU_DOMAIN_IDENTITY)
1926 		goto out;
1927 
1928 	/* Don't change mappings of existing devices */
1929 	ret = -EBUSY;
1930 	if (iommu_group_device_count(group) != 1)
1931 		goto out;
1932 
1933 	/* Allocate a direct mapped domain */
1934 	ret = -ENOMEM;
1935 	dm_domain = __iommu_domain_alloc(dev->bus, IOMMU_DOMAIN_IDENTITY);
1936 	if (!dm_domain)
1937 		goto out;
1938 
1939 	/* Attach the device to the domain */
1940 	ret = __iommu_attach_group(dm_domain, group);
1941 	if (ret) {
1942 		iommu_domain_free(dm_domain);
1943 		goto out;
1944 	}
1945 
1946 	/* Make the direct mapped domain the default for this group */
1947 	if (group->default_domain)
1948 		iommu_domain_free(group->default_domain);
1949 	group->default_domain = dm_domain;
1950 
1951 	pr_info("Using direct mapping for device %s\n", dev_name(dev));
1952 
1953 	ret = 0;
1954 out:
1955 	mutex_unlock(&group->mutex);
1956 	iommu_group_put(group);
1957 
1958 	return ret;
1959 }
1960 
1961 const struct iommu_ops *iommu_ops_from_fwnode(struct fwnode_handle *fwnode)
1962 {
1963 	const struct iommu_ops *ops = NULL;
1964 	struct iommu_device *iommu;
1965 
1966 	spin_lock(&iommu_device_lock);
1967 	list_for_each_entry(iommu, &iommu_device_list, list)
1968 		if (iommu->fwnode == fwnode) {
1969 			ops = iommu->ops;
1970 			break;
1971 		}
1972 	spin_unlock(&iommu_device_lock);
1973 	return ops;
1974 }
1975 
1976 int iommu_fwspec_init(struct device *dev, struct fwnode_handle *iommu_fwnode,
1977 		      const struct iommu_ops *ops)
1978 {
1979 	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1980 
1981 	if (fwspec)
1982 		return ops == fwspec->ops ? 0 : -EINVAL;
1983 
1984 	fwspec = kzalloc(sizeof(*fwspec), GFP_KERNEL);
1985 	if (!fwspec)
1986 		return -ENOMEM;
1987 
1988 	of_node_get(to_of_node(iommu_fwnode));
1989 	fwspec->iommu_fwnode = iommu_fwnode;
1990 	fwspec->ops = ops;
1991 	dev->iommu_fwspec = fwspec;
1992 	return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(iommu_fwspec_init);
1995 
1996 void iommu_fwspec_free(struct device *dev)
1997 {
1998 	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
1999 
2000 	if (fwspec) {
2001 		fwnode_handle_put(fwspec->iommu_fwnode);
2002 		kfree(fwspec);
2003 		dev->iommu_fwspec = NULL;
2004 	}
2005 }
2006 EXPORT_SYMBOL_GPL(iommu_fwspec_free);
2007 
2008 int iommu_fwspec_add_ids(struct device *dev, u32 *ids, int num_ids)
2009 {
2010 	struct iommu_fwspec *fwspec = dev->iommu_fwspec;
2011 	size_t size;
2012 	int i;
2013 
2014 	if (!fwspec)
2015 		return -EINVAL;
2016 
2017 	size = offsetof(struct iommu_fwspec, ids[fwspec->num_ids + num_ids]);
2018 	if (size > sizeof(*fwspec)) {
2019 		fwspec = krealloc(dev->iommu_fwspec, size, GFP_KERNEL);
2020 		if (!fwspec)
2021 			return -ENOMEM;
2022 
2023 		dev->iommu_fwspec = fwspec;
2024 	}
2025 
2026 	for (i = 0; i < num_ids; i++)
2027 		fwspec->ids[fwspec->num_ids + i] = ids[i];
2028 
2029 	fwspec->num_ids += num_ids;
2030 	return 0;
2031 }
2032 EXPORT_SYMBOL_GPL(iommu_fwspec_add_ids);
2033