xref: /openbmc/linux/drivers/iommu/intel/irq_remapping.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #define pr_fmt(fmt)     "DMAR-IR: " fmt
4 
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/intel-iommu.h>
14 #include <linux/acpi.h>
15 #include <linux/irqdomain.h>
16 #include <linux/crash_dump.h>
17 #include <asm/io_apic.h>
18 #include <asm/apic.h>
19 #include <asm/smp.h>
20 #include <asm/cpu.h>
21 #include <asm/irq_remapping.h>
22 #include <asm/pci-direct.h>
23 #include <asm/msidef.h>
24 
25 #include "../irq_remapping.h"
26 
27 enum irq_mode {
28 	IRQ_REMAPPING,
29 	IRQ_POSTING,
30 };
31 
32 struct ioapic_scope {
33 	struct intel_iommu *iommu;
34 	unsigned int id;
35 	unsigned int bus;	/* PCI bus number */
36 	unsigned int devfn;	/* PCI devfn number */
37 };
38 
39 struct hpet_scope {
40 	struct intel_iommu *iommu;
41 	u8 id;
42 	unsigned int bus;
43 	unsigned int devfn;
44 };
45 
46 struct irq_2_iommu {
47 	struct intel_iommu *iommu;
48 	u16 irte_index;
49 	u16 sub_handle;
50 	u8  irte_mask;
51 	enum irq_mode mode;
52 };
53 
54 struct intel_ir_data {
55 	struct irq_2_iommu			irq_2_iommu;
56 	struct irte				irte_entry;
57 	union {
58 		struct msi_msg			msi_entry;
59 	};
60 };
61 
62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64 
65 static int __read_mostly eim_mode;
66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68 
69 /*
70  * Lock ordering:
71  * ->dmar_global_lock
72  *	->irq_2_ir_lock
73  *		->qi->q_lock
74  *	->iommu->register_lock
75  * Note:
76  * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
77  * in single-threaded environment with interrupt disabled, so no need to tabke
78  * the dmar_global_lock.
79  */
80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81 static const struct irq_domain_ops intel_ir_domain_ops;
82 
83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84 static int __init parse_ioapics_under_ir(void);
85 
86 static bool ir_pre_enabled(struct intel_iommu *iommu)
87 {
88 	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
89 }
90 
91 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
92 {
93 	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
94 }
95 
96 static void init_ir_status(struct intel_iommu *iommu)
97 {
98 	u32 gsts;
99 
100 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
101 	if (gsts & DMA_GSTS_IRES)
102 		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
103 }
104 
105 static int alloc_irte(struct intel_iommu *iommu,
106 		      struct irq_2_iommu *irq_iommu, u16 count)
107 {
108 	struct ir_table *table = iommu->ir_table;
109 	unsigned int mask = 0;
110 	unsigned long flags;
111 	int index;
112 
113 	if (!count || !irq_iommu)
114 		return -1;
115 
116 	if (count > 1) {
117 		count = __roundup_pow_of_two(count);
118 		mask = ilog2(count);
119 	}
120 
121 	if (mask > ecap_max_handle_mask(iommu->ecap)) {
122 		pr_err("Requested mask %x exceeds the max invalidation handle"
123 		       " mask value %Lx\n", mask,
124 		       ecap_max_handle_mask(iommu->ecap));
125 		return -1;
126 	}
127 
128 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
129 	index = bitmap_find_free_region(table->bitmap,
130 					INTR_REMAP_TABLE_ENTRIES, mask);
131 	if (index < 0) {
132 		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
133 	} else {
134 		irq_iommu->iommu = iommu;
135 		irq_iommu->irte_index =  index;
136 		irq_iommu->sub_handle = 0;
137 		irq_iommu->irte_mask = mask;
138 		irq_iommu->mode = IRQ_REMAPPING;
139 	}
140 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
141 
142 	return index;
143 }
144 
145 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
146 {
147 	struct qi_desc desc;
148 
149 	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
150 		   | QI_IEC_SELECTIVE;
151 	desc.qw1 = 0;
152 	desc.qw2 = 0;
153 	desc.qw3 = 0;
154 
155 	return qi_submit_sync(iommu, &desc, 1, 0);
156 }
157 
158 static int modify_irte(struct irq_2_iommu *irq_iommu,
159 		       struct irte *irte_modified)
160 {
161 	struct intel_iommu *iommu;
162 	unsigned long flags;
163 	struct irte *irte;
164 	int rc, index;
165 
166 	if (!irq_iommu)
167 		return -1;
168 
169 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
170 
171 	iommu = irq_iommu->iommu;
172 
173 	index = irq_iommu->irte_index + irq_iommu->sub_handle;
174 	irte = &iommu->ir_table->base[index];
175 
176 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
177 	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
178 		bool ret;
179 
180 		ret = cmpxchg_double(&irte->low, &irte->high,
181 				     irte->low, irte->high,
182 				     irte_modified->low, irte_modified->high);
183 		/*
184 		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
185 		 * and it cannot be updated by the hardware or other processors
186 		 * behind us, so the return value of cmpxchg16 should be the
187 		 * same as the old value.
188 		 */
189 		WARN_ON(!ret);
190 	} else
191 #endif
192 	{
193 		set_64bit(&irte->low, irte_modified->low);
194 		set_64bit(&irte->high, irte_modified->high);
195 	}
196 	__iommu_flush_cache(iommu, irte, sizeof(*irte));
197 
198 	rc = qi_flush_iec(iommu, index, 0);
199 
200 	/* Update iommu mode according to the IRTE mode */
201 	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
202 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
203 
204 	return rc;
205 }
206 
207 static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
208 {
209 	int i;
210 
211 	for (i = 0; i < MAX_HPET_TBS; i++)
212 		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
213 			return ir_hpet[i].iommu;
214 	return NULL;
215 }
216 
217 static struct intel_iommu *map_ioapic_to_ir(int apic)
218 {
219 	int i;
220 
221 	for (i = 0; i < MAX_IO_APICS; i++)
222 		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
223 			return ir_ioapic[i].iommu;
224 	return NULL;
225 }
226 
227 static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
228 {
229 	struct dmar_drhd_unit *drhd;
230 
231 	drhd = dmar_find_matched_drhd_unit(dev);
232 	if (!drhd)
233 		return NULL;
234 
235 	return drhd->iommu;
236 }
237 
238 static int clear_entries(struct irq_2_iommu *irq_iommu)
239 {
240 	struct irte *start, *entry, *end;
241 	struct intel_iommu *iommu;
242 	int index;
243 
244 	if (irq_iommu->sub_handle)
245 		return 0;
246 
247 	iommu = irq_iommu->iommu;
248 	index = irq_iommu->irte_index;
249 
250 	start = iommu->ir_table->base + index;
251 	end = start + (1 << irq_iommu->irte_mask);
252 
253 	for (entry = start; entry < end; entry++) {
254 		set_64bit(&entry->low, 0);
255 		set_64bit(&entry->high, 0);
256 	}
257 	bitmap_release_region(iommu->ir_table->bitmap, index,
258 			      irq_iommu->irte_mask);
259 
260 	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
261 }
262 
263 /*
264  * source validation type
265  */
266 #define SVT_NO_VERIFY		0x0  /* no verification is required */
267 #define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
268 #define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
269 
270 /*
271  * source-id qualifier
272  */
273 #define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
274 #define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
275 			      * the third least significant bit
276 			      */
277 #define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
278 			      * the second and third least significant bits
279 			      */
280 #define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
281 			      * the least three significant bits
282 			      */
283 
284 /*
285  * set SVT, SQ and SID fields of irte to verify
286  * source ids of interrupt requests
287  */
288 static void set_irte_sid(struct irte *irte, unsigned int svt,
289 			 unsigned int sq, unsigned int sid)
290 {
291 	if (disable_sourceid_checking)
292 		svt = SVT_NO_VERIFY;
293 	irte->svt = svt;
294 	irte->sq = sq;
295 	irte->sid = sid;
296 }
297 
298 /*
299  * Set an IRTE to match only the bus number. Interrupt requests that reference
300  * this IRTE must have a requester-id whose bus number is between or equal
301  * to the start_bus and end_bus arguments.
302  */
303 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
304 				unsigned int end_bus)
305 {
306 	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
307 		     (start_bus << 8) | end_bus);
308 }
309 
310 static int set_ioapic_sid(struct irte *irte, int apic)
311 {
312 	int i;
313 	u16 sid = 0;
314 
315 	if (!irte)
316 		return -1;
317 
318 	down_read(&dmar_global_lock);
319 	for (i = 0; i < MAX_IO_APICS; i++) {
320 		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
321 			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
322 			break;
323 		}
324 	}
325 	up_read(&dmar_global_lock);
326 
327 	if (sid == 0) {
328 		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
329 		return -1;
330 	}
331 
332 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
333 
334 	return 0;
335 }
336 
337 static int set_hpet_sid(struct irte *irte, u8 id)
338 {
339 	int i;
340 	u16 sid = 0;
341 
342 	if (!irte)
343 		return -1;
344 
345 	down_read(&dmar_global_lock);
346 	for (i = 0; i < MAX_HPET_TBS; i++) {
347 		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
348 			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
349 			break;
350 		}
351 	}
352 	up_read(&dmar_global_lock);
353 
354 	if (sid == 0) {
355 		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
356 		return -1;
357 	}
358 
359 	/*
360 	 * Should really use SQ_ALL_16. Some platforms are broken.
361 	 * While we figure out the right quirks for these broken platforms, use
362 	 * SQ_13_IGNORE_3 for now.
363 	 */
364 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
365 
366 	return 0;
367 }
368 
369 struct set_msi_sid_data {
370 	struct pci_dev *pdev;
371 	u16 alias;
372 	int count;
373 	int busmatch_count;
374 };
375 
376 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
377 {
378 	struct set_msi_sid_data *data = opaque;
379 
380 	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
381 		data->busmatch_count++;
382 
383 	data->pdev = pdev;
384 	data->alias = alias;
385 	data->count++;
386 
387 	return 0;
388 }
389 
390 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
391 {
392 	struct set_msi_sid_data data;
393 
394 	if (!irte || !dev)
395 		return -1;
396 
397 	data.count = 0;
398 	data.busmatch_count = 0;
399 	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
400 
401 	/*
402 	 * DMA alias provides us with a PCI device and alias.  The only case
403 	 * where the it will return an alias on a different bus than the
404 	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
405 	 * the subordinate bus.  In this case we can only verify the bus.
406 	 *
407 	 * If there are multiple aliases, all with the same bus number,
408 	 * then all we can do is verify the bus. This is typical in NTB
409 	 * hardware which use proxy IDs where the device will generate traffic
410 	 * from multiple devfn numbers on the same bus.
411 	 *
412 	 * If the alias device is on a different bus than our source device
413 	 * then we have a topology based alias, use it.
414 	 *
415 	 * Otherwise, the alias is for a device DMA quirk and we cannot
416 	 * assume that MSI uses the same requester ID.  Therefore use the
417 	 * original device.
418 	 */
419 	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
420 		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
421 				    dev->bus->number);
422 	else if (data.count >= 2 && data.busmatch_count == data.count)
423 		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
424 	else if (data.pdev->bus->number != dev->bus->number)
425 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
426 	else
427 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
428 			     pci_dev_id(dev));
429 
430 	return 0;
431 }
432 
433 static int iommu_load_old_irte(struct intel_iommu *iommu)
434 {
435 	struct irte *old_ir_table;
436 	phys_addr_t irt_phys;
437 	unsigned int i;
438 	size_t size;
439 	u64 irta;
440 
441 	/* Check whether the old ir-table has the same size as ours */
442 	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
443 	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
444 	     != INTR_REMAP_TABLE_REG_SIZE)
445 		return -EINVAL;
446 
447 	irt_phys = irta & VTD_PAGE_MASK;
448 	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
449 
450 	/* Map the old IR table */
451 	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
452 	if (!old_ir_table)
453 		return -ENOMEM;
454 
455 	/* Copy data over */
456 	memcpy(iommu->ir_table->base, old_ir_table, size);
457 
458 	__iommu_flush_cache(iommu, iommu->ir_table->base, size);
459 
460 	/*
461 	 * Now check the table for used entries and mark those as
462 	 * allocated in the bitmap
463 	 */
464 	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
465 		if (iommu->ir_table->base[i].present)
466 			bitmap_set(iommu->ir_table->bitmap, i, 1);
467 	}
468 
469 	memunmap(old_ir_table);
470 
471 	return 0;
472 }
473 
474 
475 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
476 {
477 	unsigned long flags;
478 	u64 addr;
479 	u32 sts;
480 
481 	addr = virt_to_phys((void *)iommu->ir_table->base);
482 
483 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
484 
485 	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
486 		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
487 
488 	/* Set interrupt-remapping table pointer */
489 	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
490 
491 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
492 		      readl, (sts & DMA_GSTS_IRTPS), sts);
493 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
494 
495 	/*
496 	 * Global invalidation of interrupt entry cache to make sure the
497 	 * hardware uses the new irq remapping table.
498 	 */
499 	qi_global_iec(iommu);
500 }
501 
502 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
503 {
504 	unsigned long flags;
505 	u32 sts;
506 
507 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
508 
509 	/* Enable interrupt-remapping */
510 	iommu->gcmd |= DMA_GCMD_IRE;
511 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
512 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
513 		      readl, (sts & DMA_GSTS_IRES), sts);
514 
515 	/* Block compatibility-format MSIs */
516 	if (sts & DMA_GSTS_CFIS) {
517 		iommu->gcmd &= ~DMA_GCMD_CFI;
518 		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
519 		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
520 			      readl, !(sts & DMA_GSTS_CFIS), sts);
521 	}
522 
523 	/*
524 	 * With CFI clear in the Global Command register, we should be
525 	 * protected from dangerous (i.e. compatibility) interrupts
526 	 * regardless of x2apic status.  Check just to be sure.
527 	 */
528 	if (sts & DMA_GSTS_CFIS)
529 		WARN(1, KERN_WARNING
530 			"Compatibility-format IRQs enabled despite intr remapping;\n"
531 			"you are vulnerable to IRQ injection.\n");
532 
533 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
534 }
535 
536 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
537 {
538 	struct ir_table *ir_table;
539 	struct fwnode_handle *fn;
540 	unsigned long *bitmap;
541 	struct page *pages;
542 
543 	if (iommu->ir_table)
544 		return 0;
545 
546 	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
547 	if (!ir_table)
548 		return -ENOMEM;
549 
550 	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
551 				 INTR_REMAP_PAGE_ORDER);
552 	if (!pages) {
553 		pr_err("IR%d: failed to allocate pages of order %d\n",
554 		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
555 		goto out_free_table;
556 	}
557 
558 	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC);
559 	if (bitmap == NULL) {
560 		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
561 		goto out_free_pages;
562 	}
563 
564 	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
565 	if (!fn)
566 		goto out_free_bitmap;
567 
568 	iommu->ir_domain =
569 		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
570 					    0, INTR_REMAP_TABLE_ENTRIES,
571 					    fn, &intel_ir_domain_ops,
572 					    iommu);
573 	if (!iommu->ir_domain) {
574 		irq_domain_free_fwnode(fn);
575 		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
576 		goto out_free_bitmap;
577 	}
578 	iommu->ir_msi_domain =
579 		arch_create_remap_msi_irq_domain(iommu->ir_domain,
580 						 "INTEL-IR-MSI",
581 						 iommu->seq_id);
582 
583 	ir_table->base = page_address(pages);
584 	ir_table->bitmap = bitmap;
585 	iommu->ir_table = ir_table;
586 
587 	/*
588 	 * If the queued invalidation is already initialized,
589 	 * shouldn't disable it.
590 	 */
591 	if (!iommu->qi) {
592 		/*
593 		 * Clear previous faults.
594 		 */
595 		dmar_fault(-1, iommu);
596 		dmar_disable_qi(iommu);
597 
598 		if (dmar_enable_qi(iommu)) {
599 			pr_err("Failed to enable queued invalidation\n");
600 			goto out_free_bitmap;
601 		}
602 	}
603 
604 	init_ir_status(iommu);
605 
606 	if (ir_pre_enabled(iommu)) {
607 		if (!is_kdump_kernel()) {
608 			pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
609 				iommu->name);
610 			clear_ir_pre_enabled(iommu);
611 			iommu_disable_irq_remapping(iommu);
612 		} else if (iommu_load_old_irte(iommu))
613 			pr_err("Failed to copy IR table for %s from previous kernel\n",
614 			       iommu->name);
615 		else
616 			pr_info("Copied IR table for %s from previous kernel\n",
617 				iommu->name);
618 	}
619 
620 	iommu_set_irq_remapping(iommu, eim_mode);
621 
622 	return 0;
623 
624 out_free_bitmap:
625 	bitmap_free(bitmap);
626 out_free_pages:
627 	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
628 out_free_table:
629 	kfree(ir_table);
630 
631 	iommu->ir_table  = NULL;
632 
633 	return -ENOMEM;
634 }
635 
636 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
637 {
638 	struct fwnode_handle *fn;
639 
640 	if (iommu && iommu->ir_table) {
641 		if (iommu->ir_msi_domain) {
642 			fn = iommu->ir_msi_domain->fwnode;
643 
644 			irq_domain_remove(iommu->ir_msi_domain);
645 			irq_domain_free_fwnode(fn);
646 			iommu->ir_msi_domain = NULL;
647 		}
648 		if (iommu->ir_domain) {
649 			fn = iommu->ir_domain->fwnode;
650 
651 			irq_domain_remove(iommu->ir_domain);
652 			irq_domain_free_fwnode(fn);
653 			iommu->ir_domain = NULL;
654 		}
655 		free_pages((unsigned long)iommu->ir_table->base,
656 			   INTR_REMAP_PAGE_ORDER);
657 		bitmap_free(iommu->ir_table->bitmap);
658 		kfree(iommu->ir_table);
659 		iommu->ir_table = NULL;
660 	}
661 }
662 
663 /*
664  * Disable Interrupt Remapping.
665  */
666 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
667 {
668 	unsigned long flags;
669 	u32 sts;
670 
671 	if (!ecap_ir_support(iommu->ecap))
672 		return;
673 
674 	/*
675 	 * global invalidation of interrupt entry cache before disabling
676 	 * interrupt-remapping.
677 	 */
678 	qi_global_iec(iommu);
679 
680 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
681 
682 	sts = readl(iommu->reg + DMAR_GSTS_REG);
683 	if (!(sts & DMA_GSTS_IRES))
684 		goto end;
685 
686 	iommu->gcmd &= ~DMA_GCMD_IRE;
687 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
688 
689 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
690 		      readl, !(sts & DMA_GSTS_IRES), sts);
691 
692 end:
693 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
694 }
695 
696 static int __init dmar_x2apic_optout(void)
697 {
698 	struct acpi_table_dmar *dmar;
699 	dmar = (struct acpi_table_dmar *)dmar_tbl;
700 	if (!dmar || no_x2apic_optout)
701 		return 0;
702 	return dmar->flags & DMAR_X2APIC_OPT_OUT;
703 }
704 
705 static void __init intel_cleanup_irq_remapping(void)
706 {
707 	struct dmar_drhd_unit *drhd;
708 	struct intel_iommu *iommu;
709 
710 	for_each_iommu(iommu, drhd) {
711 		if (ecap_ir_support(iommu->ecap)) {
712 			iommu_disable_irq_remapping(iommu);
713 			intel_teardown_irq_remapping(iommu);
714 		}
715 	}
716 
717 	if (x2apic_supported())
718 		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
719 }
720 
721 static int __init intel_prepare_irq_remapping(void)
722 {
723 	struct dmar_drhd_unit *drhd;
724 	struct intel_iommu *iommu;
725 	int eim = 0;
726 
727 	if (irq_remap_broken) {
728 		pr_warn("This system BIOS has enabled interrupt remapping\n"
729 			"on a chipset that contains an erratum making that\n"
730 			"feature unstable.  To maintain system stability\n"
731 			"interrupt remapping is being disabled.  Please\n"
732 			"contact your BIOS vendor for an update\n");
733 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
734 		return -ENODEV;
735 	}
736 
737 	if (dmar_table_init() < 0)
738 		return -ENODEV;
739 
740 	if (!dmar_ir_support())
741 		return -ENODEV;
742 
743 	if (parse_ioapics_under_ir()) {
744 		pr_info("Not enabling interrupt remapping\n");
745 		goto error;
746 	}
747 
748 	/* First make sure all IOMMUs support IRQ remapping */
749 	for_each_iommu(iommu, drhd)
750 		if (!ecap_ir_support(iommu->ecap))
751 			goto error;
752 
753 	/* Detect remapping mode: lapic or x2apic */
754 	if (x2apic_supported()) {
755 		eim = !dmar_x2apic_optout();
756 		if (!eim) {
757 			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
758 			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
759 		}
760 	}
761 
762 	for_each_iommu(iommu, drhd) {
763 		if (eim && !ecap_eim_support(iommu->ecap)) {
764 			pr_info("%s does not support EIM\n", iommu->name);
765 			eim = 0;
766 		}
767 	}
768 
769 	eim_mode = eim;
770 	if (eim)
771 		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
772 
773 	/* Do the initializations early */
774 	for_each_iommu(iommu, drhd) {
775 		if (intel_setup_irq_remapping(iommu)) {
776 			pr_err("Failed to setup irq remapping for %s\n",
777 			       iommu->name);
778 			goto error;
779 		}
780 	}
781 
782 	return 0;
783 
784 error:
785 	intel_cleanup_irq_remapping();
786 	return -ENODEV;
787 }
788 
789 /*
790  * Set Posted-Interrupts capability.
791  */
792 static inline void set_irq_posting_cap(void)
793 {
794 	struct dmar_drhd_unit *drhd;
795 	struct intel_iommu *iommu;
796 
797 	if (!disable_irq_post) {
798 		/*
799 		 * If IRTE is in posted format, the 'pda' field goes across the
800 		 * 64-bit boundary, we need use cmpxchg16b to atomically update
801 		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
802 		 * is supported. Actually, hardware platforms supporting PI
803 		 * should have X86_FEATURE_CX16 support, this has been confirmed
804 		 * with Intel hardware guys.
805 		 */
806 		if (boot_cpu_has(X86_FEATURE_CX16))
807 			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
808 
809 		for_each_iommu(iommu, drhd)
810 			if (!cap_pi_support(iommu->cap)) {
811 				intel_irq_remap_ops.capability &=
812 						~(1 << IRQ_POSTING_CAP);
813 				break;
814 			}
815 	}
816 }
817 
818 static int __init intel_enable_irq_remapping(void)
819 {
820 	struct dmar_drhd_unit *drhd;
821 	struct intel_iommu *iommu;
822 	bool setup = false;
823 
824 	/*
825 	 * Setup Interrupt-remapping for all the DRHD's now.
826 	 */
827 	for_each_iommu(iommu, drhd) {
828 		if (!ir_pre_enabled(iommu))
829 			iommu_enable_irq_remapping(iommu);
830 		setup = true;
831 	}
832 
833 	if (!setup)
834 		goto error;
835 
836 	irq_remapping_enabled = 1;
837 
838 	set_irq_posting_cap();
839 
840 	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
841 
842 	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
843 
844 error:
845 	intel_cleanup_irq_remapping();
846 	return -1;
847 }
848 
849 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
850 				   struct intel_iommu *iommu,
851 				   struct acpi_dmar_hardware_unit *drhd)
852 {
853 	struct acpi_dmar_pci_path *path;
854 	u8 bus;
855 	int count, free = -1;
856 
857 	bus = scope->bus;
858 	path = (struct acpi_dmar_pci_path *)(scope + 1);
859 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
860 		/ sizeof(struct acpi_dmar_pci_path);
861 
862 	while (--count > 0) {
863 		/*
864 		 * Access PCI directly due to the PCI
865 		 * subsystem isn't initialized yet.
866 		 */
867 		bus = read_pci_config_byte(bus, path->device, path->function,
868 					   PCI_SECONDARY_BUS);
869 		path++;
870 	}
871 
872 	for (count = 0; count < MAX_HPET_TBS; count++) {
873 		if (ir_hpet[count].iommu == iommu &&
874 		    ir_hpet[count].id == scope->enumeration_id)
875 			return 0;
876 		else if (ir_hpet[count].iommu == NULL && free == -1)
877 			free = count;
878 	}
879 	if (free == -1) {
880 		pr_warn("Exceeded Max HPET blocks\n");
881 		return -ENOSPC;
882 	}
883 
884 	ir_hpet[free].iommu = iommu;
885 	ir_hpet[free].id    = scope->enumeration_id;
886 	ir_hpet[free].bus   = bus;
887 	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
888 	pr_info("HPET id %d under DRHD base 0x%Lx\n",
889 		scope->enumeration_id, drhd->address);
890 
891 	return 0;
892 }
893 
894 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
895 				     struct intel_iommu *iommu,
896 				     struct acpi_dmar_hardware_unit *drhd)
897 {
898 	struct acpi_dmar_pci_path *path;
899 	u8 bus;
900 	int count, free = -1;
901 
902 	bus = scope->bus;
903 	path = (struct acpi_dmar_pci_path *)(scope + 1);
904 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
905 		/ sizeof(struct acpi_dmar_pci_path);
906 
907 	while (--count > 0) {
908 		/*
909 		 * Access PCI directly due to the PCI
910 		 * subsystem isn't initialized yet.
911 		 */
912 		bus = read_pci_config_byte(bus, path->device, path->function,
913 					   PCI_SECONDARY_BUS);
914 		path++;
915 	}
916 
917 	for (count = 0; count < MAX_IO_APICS; count++) {
918 		if (ir_ioapic[count].iommu == iommu &&
919 		    ir_ioapic[count].id == scope->enumeration_id)
920 			return 0;
921 		else if (ir_ioapic[count].iommu == NULL && free == -1)
922 			free = count;
923 	}
924 	if (free == -1) {
925 		pr_warn("Exceeded Max IO APICS\n");
926 		return -ENOSPC;
927 	}
928 
929 	ir_ioapic[free].bus   = bus;
930 	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
931 	ir_ioapic[free].iommu = iommu;
932 	ir_ioapic[free].id    = scope->enumeration_id;
933 	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
934 		scope->enumeration_id, drhd->address, iommu->seq_id);
935 
936 	return 0;
937 }
938 
939 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
940 				      struct intel_iommu *iommu)
941 {
942 	int ret = 0;
943 	struct acpi_dmar_hardware_unit *drhd;
944 	struct acpi_dmar_device_scope *scope;
945 	void *start, *end;
946 
947 	drhd = (struct acpi_dmar_hardware_unit *)header;
948 	start = (void *)(drhd + 1);
949 	end = ((void *)drhd) + header->length;
950 
951 	while (start < end && ret == 0) {
952 		scope = start;
953 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
954 			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
955 		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
956 			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
957 		start += scope->length;
958 	}
959 
960 	return ret;
961 }
962 
963 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
964 {
965 	int i;
966 
967 	for (i = 0; i < MAX_HPET_TBS; i++)
968 		if (ir_hpet[i].iommu == iommu)
969 			ir_hpet[i].iommu = NULL;
970 
971 	for (i = 0; i < MAX_IO_APICS; i++)
972 		if (ir_ioapic[i].iommu == iommu)
973 			ir_ioapic[i].iommu = NULL;
974 }
975 
976 /*
977  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
978  * hardware unit.
979  */
980 static int __init parse_ioapics_under_ir(void)
981 {
982 	struct dmar_drhd_unit *drhd;
983 	struct intel_iommu *iommu;
984 	bool ir_supported = false;
985 	int ioapic_idx;
986 
987 	for_each_iommu(iommu, drhd) {
988 		int ret;
989 
990 		if (!ecap_ir_support(iommu->ecap))
991 			continue;
992 
993 		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
994 		if (ret)
995 			return ret;
996 
997 		ir_supported = true;
998 	}
999 
1000 	if (!ir_supported)
1001 		return -ENODEV;
1002 
1003 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
1004 		int ioapic_id = mpc_ioapic_id(ioapic_idx);
1005 		if (!map_ioapic_to_ir(ioapic_id)) {
1006 			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1007 			       "interrupt remapping will be disabled\n",
1008 			       ioapic_id);
1009 			return -1;
1010 		}
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 static int __init ir_dev_scope_init(void)
1017 {
1018 	int ret;
1019 
1020 	if (!irq_remapping_enabled)
1021 		return 0;
1022 
1023 	down_write(&dmar_global_lock);
1024 	ret = dmar_dev_scope_init();
1025 	up_write(&dmar_global_lock);
1026 
1027 	return ret;
1028 }
1029 rootfs_initcall(ir_dev_scope_init);
1030 
1031 static void disable_irq_remapping(void)
1032 {
1033 	struct dmar_drhd_unit *drhd;
1034 	struct intel_iommu *iommu = NULL;
1035 
1036 	/*
1037 	 * Disable Interrupt-remapping for all the DRHD's now.
1038 	 */
1039 	for_each_iommu(iommu, drhd) {
1040 		if (!ecap_ir_support(iommu->ecap))
1041 			continue;
1042 
1043 		iommu_disable_irq_remapping(iommu);
1044 	}
1045 
1046 	/*
1047 	 * Clear Posted-Interrupts capability.
1048 	 */
1049 	if (!disable_irq_post)
1050 		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1051 }
1052 
1053 static int reenable_irq_remapping(int eim)
1054 {
1055 	struct dmar_drhd_unit *drhd;
1056 	bool setup = false;
1057 	struct intel_iommu *iommu = NULL;
1058 
1059 	for_each_iommu(iommu, drhd)
1060 		if (iommu->qi)
1061 			dmar_reenable_qi(iommu);
1062 
1063 	/*
1064 	 * Setup Interrupt-remapping for all the DRHD's now.
1065 	 */
1066 	for_each_iommu(iommu, drhd) {
1067 		if (!ecap_ir_support(iommu->ecap))
1068 			continue;
1069 
1070 		/* Set up interrupt remapping for iommu.*/
1071 		iommu_set_irq_remapping(iommu, eim);
1072 		iommu_enable_irq_remapping(iommu);
1073 		setup = true;
1074 	}
1075 
1076 	if (!setup)
1077 		goto error;
1078 
1079 	set_irq_posting_cap();
1080 
1081 	return 0;
1082 
1083 error:
1084 	/*
1085 	 * handle error condition gracefully here!
1086 	 */
1087 	return -1;
1088 }
1089 
1090 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1091 {
1092 	memset(irte, 0, sizeof(*irte));
1093 
1094 	irte->present = 1;
1095 	irte->dst_mode = apic->irq_dest_mode;
1096 	/*
1097 	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1098 	 * actual level or edge trigger will be setup in the IO-APIC
1099 	 * RTE. This will help simplify level triggered irq migration.
1100 	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1101 	 * irq migration in the presence of interrupt-remapping.
1102 	*/
1103 	irte->trigger_mode = 0;
1104 	irte->dlvry_mode = apic->irq_delivery_mode;
1105 	irte->vector = vector;
1106 	irte->dest_id = IRTE_DEST(dest);
1107 	irte->redir_hint = 1;
1108 }
1109 
1110 static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
1111 {
1112 	struct intel_iommu *iommu = NULL;
1113 
1114 	if (!info)
1115 		return NULL;
1116 
1117 	switch (info->type) {
1118 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1119 		iommu = map_ioapic_to_ir(info->ioapic_id);
1120 		break;
1121 	case X86_IRQ_ALLOC_TYPE_HPET:
1122 		iommu = map_hpet_to_ir(info->hpet_id);
1123 		break;
1124 	case X86_IRQ_ALLOC_TYPE_MSI:
1125 	case X86_IRQ_ALLOC_TYPE_MSIX:
1126 		iommu = map_dev_to_ir(info->msi_dev);
1127 		break;
1128 	default:
1129 		BUG_ON(1);
1130 		break;
1131 	}
1132 
1133 	return iommu ? iommu->ir_domain : NULL;
1134 }
1135 
1136 static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
1137 {
1138 	struct intel_iommu *iommu;
1139 
1140 	if (!info)
1141 		return NULL;
1142 
1143 	switch (info->type) {
1144 	case X86_IRQ_ALLOC_TYPE_MSI:
1145 	case X86_IRQ_ALLOC_TYPE_MSIX:
1146 		iommu = map_dev_to_ir(info->msi_dev);
1147 		if (iommu)
1148 			return iommu->ir_msi_domain;
1149 		break;
1150 	default:
1151 		break;
1152 	}
1153 
1154 	return NULL;
1155 }
1156 
1157 struct irq_remap_ops intel_irq_remap_ops = {
1158 	.prepare		= intel_prepare_irq_remapping,
1159 	.enable			= intel_enable_irq_remapping,
1160 	.disable		= disable_irq_remapping,
1161 	.reenable		= reenable_irq_remapping,
1162 	.enable_faulting	= enable_drhd_fault_handling,
1163 	.get_ir_irq_domain	= intel_get_ir_irq_domain,
1164 	.get_irq_domain		= intel_get_irq_domain,
1165 };
1166 
1167 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1168 {
1169 	struct intel_ir_data *ir_data = irqd->chip_data;
1170 	struct irte *irte = &ir_data->irte_entry;
1171 	struct irq_cfg *cfg = irqd_cfg(irqd);
1172 
1173 	/*
1174 	 * Atomically updates the IRTE with the new destination, vector
1175 	 * and flushes the interrupt entry cache.
1176 	 */
1177 	irte->vector = cfg->vector;
1178 	irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1179 
1180 	/* Update the hardware only if the interrupt is in remapped mode. */
1181 	if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1182 		modify_irte(&ir_data->irq_2_iommu, irte);
1183 }
1184 
1185 /*
1186  * Migrate the IO-APIC irq in the presence of intr-remapping.
1187  *
1188  * For both level and edge triggered, irq migration is a simple atomic
1189  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1190  *
1191  * For level triggered, we eliminate the io-apic RTE modification (with the
1192  * updated vector information), by using a virtual vector (io-apic pin number).
1193  * Real vector that is used for interrupting cpu will be coming from
1194  * the interrupt-remapping table entry.
1195  *
1196  * As the migration is a simple atomic update of IRTE, the same mechanism
1197  * is used to migrate MSI irq's in the presence of interrupt-remapping.
1198  */
1199 static int
1200 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1201 		      bool force)
1202 {
1203 	struct irq_data *parent = data->parent_data;
1204 	struct irq_cfg *cfg = irqd_cfg(data);
1205 	int ret;
1206 
1207 	ret = parent->chip->irq_set_affinity(parent, mask, force);
1208 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1209 		return ret;
1210 
1211 	intel_ir_reconfigure_irte(data, false);
1212 	/*
1213 	 * After this point, all the interrupts will start arriving
1214 	 * at the new destination. So, time to cleanup the previous
1215 	 * vector allocation.
1216 	 */
1217 	send_cleanup_vector(cfg);
1218 
1219 	return IRQ_SET_MASK_OK_DONE;
1220 }
1221 
1222 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1223 				     struct msi_msg *msg)
1224 {
1225 	struct intel_ir_data *ir_data = irq_data->chip_data;
1226 
1227 	*msg = ir_data->msi_entry;
1228 }
1229 
1230 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1231 {
1232 	struct intel_ir_data *ir_data = data->chip_data;
1233 	struct vcpu_data *vcpu_pi_info = info;
1234 
1235 	/* stop posting interrupts, back to remapping mode */
1236 	if (!vcpu_pi_info) {
1237 		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1238 	} else {
1239 		struct irte irte_pi;
1240 
1241 		/*
1242 		 * We are not caching the posted interrupt entry. We
1243 		 * copy the data from the remapped entry and modify
1244 		 * the fields which are relevant for posted mode. The
1245 		 * cached remapped entry is used for switching back to
1246 		 * remapped mode.
1247 		 */
1248 		memset(&irte_pi, 0, sizeof(irte_pi));
1249 		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1250 
1251 		/* Update the posted mode fields */
1252 		irte_pi.p_pst = 1;
1253 		irte_pi.p_urgent = 0;
1254 		irte_pi.p_vector = vcpu_pi_info->vector;
1255 		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1256 				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1257 		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1258 				~(-1UL << PDA_HIGH_BIT);
1259 
1260 		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1261 	}
1262 
1263 	return 0;
1264 }
1265 
1266 static struct irq_chip intel_ir_chip = {
1267 	.name			= "INTEL-IR",
1268 	.irq_ack		= apic_ack_irq,
1269 	.irq_set_affinity	= intel_ir_set_affinity,
1270 	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1271 	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1272 };
1273 
1274 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1275 					     struct irq_cfg *irq_cfg,
1276 					     struct irq_alloc_info *info,
1277 					     int index, int sub_handle)
1278 {
1279 	struct IR_IO_APIC_route_entry *entry;
1280 	struct irte *irte = &data->irte_entry;
1281 	struct msi_msg *msg = &data->msi_entry;
1282 
1283 	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1284 	switch (info->type) {
1285 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1286 		/* Set source-id of interrupt request */
1287 		set_ioapic_sid(irte, info->ioapic_id);
1288 		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1289 			info->ioapic_id, irte->present, irte->fpd,
1290 			irte->dst_mode, irte->redir_hint,
1291 			irte->trigger_mode, irte->dlvry_mode,
1292 			irte->avail, irte->vector, irte->dest_id,
1293 			irte->sid, irte->sq, irte->svt);
1294 
1295 		entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
1296 		info->ioapic_entry = NULL;
1297 		memset(entry, 0, sizeof(*entry));
1298 		entry->index2	= (index >> 15) & 0x1;
1299 		entry->zero	= 0;
1300 		entry->format	= 1;
1301 		entry->index	= (index & 0x7fff);
1302 		/*
1303 		 * IO-APIC RTE will be configured with virtual vector.
1304 		 * irq handler will do the explicit EOI to the io-apic.
1305 		 */
1306 		entry->vector	= info->ioapic_pin;
1307 		entry->mask	= 0;			/* enable IRQ */
1308 		entry->trigger	= info->ioapic_trigger;
1309 		entry->polarity	= info->ioapic_polarity;
1310 		if (info->ioapic_trigger)
1311 			entry->mask = 1; /* Mask level triggered irqs. */
1312 		break;
1313 
1314 	case X86_IRQ_ALLOC_TYPE_HPET:
1315 	case X86_IRQ_ALLOC_TYPE_MSI:
1316 	case X86_IRQ_ALLOC_TYPE_MSIX:
1317 		if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
1318 			set_hpet_sid(irte, info->hpet_id);
1319 		else
1320 			set_msi_sid(irte, info->msi_dev);
1321 
1322 		msg->address_hi = MSI_ADDR_BASE_HI;
1323 		msg->data = sub_handle;
1324 		msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1325 				  MSI_ADDR_IR_SHV |
1326 				  MSI_ADDR_IR_INDEX1(index) |
1327 				  MSI_ADDR_IR_INDEX2(index);
1328 		break;
1329 
1330 	default:
1331 		BUG_ON(1);
1332 		break;
1333 	}
1334 }
1335 
1336 static void intel_free_irq_resources(struct irq_domain *domain,
1337 				     unsigned int virq, unsigned int nr_irqs)
1338 {
1339 	struct irq_data *irq_data;
1340 	struct intel_ir_data *data;
1341 	struct irq_2_iommu *irq_iommu;
1342 	unsigned long flags;
1343 	int i;
1344 	for (i = 0; i < nr_irqs; i++) {
1345 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
1346 		if (irq_data && irq_data->chip_data) {
1347 			data = irq_data->chip_data;
1348 			irq_iommu = &data->irq_2_iommu;
1349 			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1350 			clear_entries(irq_iommu);
1351 			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1352 			irq_domain_reset_irq_data(irq_data);
1353 			kfree(data);
1354 		}
1355 	}
1356 }
1357 
1358 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1359 				     unsigned int virq, unsigned int nr_irqs,
1360 				     void *arg)
1361 {
1362 	struct intel_iommu *iommu = domain->host_data;
1363 	struct irq_alloc_info *info = arg;
1364 	struct intel_ir_data *data, *ird;
1365 	struct irq_data *irq_data;
1366 	struct irq_cfg *irq_cfg;
1367 	int i, ret, index;
1368 
1369 	if (!info || !iommu)
1370 		return -EINVAL;
1371 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
1372 	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
1373 		return -EINVAL;
1374 
1375 	/*
1376 	 * With IRQ remapping enabled, don't need contiguous CPU vectors
1377 	 * to support multiple MSI interrupts.
1378 	 */
1379 	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
1380 		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1381 
1382 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1383 	if (ret < 0)
1384 		return ret;
1385 
1386 	ret = -ENOMEM;
1387 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1388 	if (!data)
1389 		goto out_free_parent;
1390 
1391 	down_read(&dmar_global_lock);
1392 	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1393 	up_read(&dmar_global_lock);
1394 	if (index < 0) {
1395 		pr_warn("Failed to allocate IRTE\n");
1396 		kfree(data);
1397 		goto out_free_parent;
1398 	}
1399 
1400 	for (i = 0; i < nr_irqs; i++) {
1401 		irq_data = irq_domain_get_irq_data(domain, virq + i);
1402 		irq_cfg = irqd_cfg(irq_data);
1403 		if (!irq_data || !irq_cfg) {
1404 			ret = -EINVAL;
1405 			goto out_free_data;
1406 		}
1407 
1408 		if (i > 0) {
1409 			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1410 			if (!ird)
1411 				goto out_free_data;
1412 			/* Initialize the common data */
1413 			ird->irq_2_iommu = data->irq_2_iommu;
1414 			ird->irq_2_iommu.sub_handle = i;
1415 		} else {
1416 			ird = data;
1417 		}
1418 
1419 		irq_data->hwirq = (index << 16) + i;
1420 		irq_data->chip_data = ird;
1421 		irq_data->chip = &intel_ir_chip;
1422 		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1423 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1424 	}
1425 	return 0;
1426 
1427 out_free_data:
1428 	intel_free_irq_resources(domain, virq, i);
1429 out_free_parent:
1430 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1431 	return ret;
1432 }
1433 
1434 static void intel_irq_remapping_free(struct irq_domain *domain,
1435 				     unsigned int virq, unsigned int nr_irqs)
1436 {
1437 	intel_free_irq_resources(domain, virq, nr_irqs);
1438 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1439 }
1440 
1441 static int intel_irq_remapping_activate(struct irq_domain *domain,
1442 					struct irq_data *irq_data, bool reserve)
1443 {
1444 	intel_ir_reconfigure_irte(irq_data, true);
1445 	return 0;
1446 }
1447 
1448 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1449 					   struct irq_data *irq_data)
1450 {
1451 	struct intel_ir_data *data = irq_data->chip_data;
1452 	struct irte entry;
1453 
1454 	memset(&entry, 0, sizeof(entry));
1455 	modify_irte(&data->irq_2_iommu, &entry);
1456 }
1457 
1458 static const struct irq_domain_ops intel_ir_domain_ops = {
1459 	.alloc = intel_irq_remapping_alloc,
1460 	.free = intel_irq_remapping_free,
1461 	.activate = intel_irq_remapping_activate,
1462 	.deactivate = intel_irq_remapping_deactivate,
1463 };
1464 
1465 /*
1466  * Support of Interrupt Remapping Unit Hotplug
1467  */
1468 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1469 {
1470 	int ret;
1471 	int eim = x2apic_enabled();
1472 
1473 	if (eim && !ecap_eim_support(iommu->ecap)) {
1474 		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1475 			iommu->reg_phys, iommu->ecap);
1476 		return -ENODEV;
1477 	}
1478 
1479 	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1480 		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1481 			iommu->reg_phys);
1482 		return -ENODEV;
1483 	}
1484 
1485 	/* TODO: check all IOAPICs are covered by IOMMU */
1486 
1487 	/* Setup Interrupt-remapping now. */
1488 	ret = intel_setup_irq_remapping(iommu);
1489 	if (ret) {
1490 		pr_err("Failed to setup irq remapping for %s\n",
1491 		       iommu->name);
1492 		intel_teardown_irq_remapping(iommu);
1493 		ir_remove_ioapic_hpet_scope(iommu);
1494 	} else {
1495 		iommu_enable_irq_remapping(iommu);
1496 	}
1497 
1498 	return ret;
1499 }
1500 
1501 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1502 {
1503 	int ret = 0;
1504 	struct intel_iommu *iommu = dmaru->iommu;
1505 
1506 	if (!irq_remapping_enabled)
1507 		return 0;
1508 	if (iommu == NULL)
1509 		return -EINVAL;
1510 	if (!ecap_ir_support(iommu->ecap))
1511 		return 0;
1512 	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1513 	    !cap_pi_support(iommu->cap))
1514 		return -EBUSY;
1515 
1516 	if (insert) {
1517 		if (!iommu->ir_table)
1518 			ret = dmar_ir_add(dmaru, iommu);
1519 	} else {
1520 		if (iommu->ir_table) {
1521 			if (!bitmap_empty(iommu->ir_table->bitmap,
1522 					  INTR_REMAP_TABLE_ENTRIES)) {
1523 				ret = -EBUSY;
1524 			} else {
1525 				iommu_disable_irq_remapping(iommu);
1526 				intel_teardown_irq_remapping(iommu);
1527 				ir_remove_ioapic_hpet_scope(iommu);
1528 			}
1529 		}
1530 	}
1531 
1532 	return ret;
1533 }
1534