1 // SPDX-License-Identifier: GPL-2.0 2 3 #define pr_fmt(fmt) "DMAR-IR: " fmt 4 5 #include <linux/interrupt.h> 6 #include <linux/dmar.h> 7 #include <linux/spinlock.h> 8 #include <linux/slab.h> 9 #include <linux/jiffies.h> 10 #include <linux/hpet.h> 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/intel-iommu.h> 14 #include <linux/acpi.h> 15 #include <linux/irqdomain.h> 16 #include <linux/crash_dump.h> 17 #include <asm/io_apic.h> 18 #include <asm/apic.h> 19 #include <asm/smp.h> 20 #include <asm/cpu.h> 21 #include <asm/irq_remapping.h> 22 #include <asm/pci-direct.h> 23 #include <asm/msidef.h> 24 25 #include "../irq_remapping.h" 26 27 enum irq_mode { 28 IRQ_REMAPPING, 29 IRQ_POSTING, 30 }; 31 32 struct ioapic_scope { 33 struct intel_iommu *iommu; 34 unsigned int id; 35 unsigned int bus; /* PCI bus number */ 36 unsigned int devfn; /* PCI devfn number */ 37 }; 38 39 struct hpet_scope { 40 struct intel_iommu *iommu; 41 u8 id; 42 unsigned int bus; 43 unsigned int devfn; 44 }; 45 46 struct irq_2_iommu { 47 struct intel_iommu *iommu; 48 u16 irte_index; 49 u16 sub_handle; 50 u8 irte_mask; 51 enum irq_mode mode; 52 }; 53 54 struct intel_ir_data { 55 struct irq_2_iommu irq_2_iommu; 56 struct irte irte_entry; 57 union { 58 struct msi_msg msi_entry; 59 }; 60 }; 61 62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0) 63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8) 64 65 static int __read_mostly eim_mode; 66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; 67 static struct hpet_scope ir_hpet[MAX_HPET_TBS]; 68 69 /* 70 * Lock ordering: 71 * ->dmar_global_lock 72 * ->irq_2_ir_lock 73 * ->qi->q_lock 74 * ->iommu->register_lock 75 * Note: 76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called 77 * in single-threaded environment with interrupt disabled, so no need to tabke 78 * the dmar_global_lock. 79 */ 80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock); 81 static const struct irq_domain_ops intel_ir_domain_ops; 82 83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu); 84 static int __init parse_ioapics_under_ir(void); 85 86 static bool ir_pre_enabled(struct intel_iommu *iommu) 87 { 88 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED); 89 } 90 91 static void clear_ir_pre_enabled(struct intel_iommu *iommu) 92 { 93 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 94 } 95 96 static void init_ir_status(struct intel_iommu *iommu) 97 { 98 u32 gsts; 99 100 gsts = readl(iommu->reg + DMAR_GSTS_REG); 101 if (gsts & DMA_GSTS_IRES) 102 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 103 } 104 105 static int alloc_irte(struct intel_iommu *iommu, 106 struct irq_2_iommu *irq_iommu, u16 count) 107 { 108 struct ir_table *table = iommu->ir_table; 109 unsigned int mask = 0; 110 unsigned long flags; 111 int index; 112 113 if (!count || !irq_iommu) 114 return -1; 115 116 if (count > 1) { 117 count = __roundup_pow_of_two(count); 118 mask = ilog2(count); 119 } 120 121 if (mask > ecap_max_handle_mask(iommu->ecap)) { 122 pr_err("Requested mask %x exceeds the max invalidation handle" 123 " mask value %Lx\n", mask, 124 ecap_max_handle_mask(iommu->ecap)); 125 return -1; 126 } 127 128 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 129 index = bitmap_find_free_region(table->bitmap, 130 INTR_REMAP_TABLE_ENTRIES, mask); 131 if (index < 0) { 132 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id); 133 } else { 134 irq_iommu->iommu = iommu; 135 irq_iommu->irte_index = index; 136 irq_iommu->sub_handle = 0; 137 irq_iommu->irte_mask = mask; 138 irq_iommu->mode = IRQ_REMAPPING; 139 } 140 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 141 142 return index; 143 } 144 145 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) 146 { 147 struct qi_desc desc; 148 149 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) 150 | QI_IEC_SELECTIVE; 151 desc.qw1 = 0; 152 desc.qw2 = 0; 153 desc.qw3 = 0; 154 155 return qi_submit_sync(iommu, &desc, 1, 0); 156 } 157 158 static int modify_irte(struct irq_2_iommu *irq_iommu, 159 struct irte *irte_modified) 160 { 161 struct intel_iommu *iommu; 162 unsigned long flags; 163 struct irte *irte; 164 int rc, index; 165 166 if (!irq_iommu) 167 return -1; 168 169 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 170 171 iommu = irq_iommu->iommu; 172 173 index = irq_iommu->irte_index + irq_iommu->sub_handle; 174 irte = &iommu->ir_table->base[index]; 175 176 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) 177 if ((irte->pst == 1) || (irte_modified->pst == 1)) { 178 bool ret; 179 180 ret = cmpxchg_double(&irte->low, &irte->high, 181 irte->low, irte->high, 182 irte_modified->low, irte_modified->high); 183 /* 184 * We use cmpxchg16 to atomically update the 128-bit IRTE, 185 * and it cannot be updated by the hardware or other processors 186 * behind us, so the return value of cmpxchg16 should be the 187 * same as the old value. 188 */ 189 WARN_ON(!ret); 190 } else 191 #endif 192 { 193 set_64bit(&irte->low, irte_modified->low); 194 set_64bit(&irte->high, irte_modified->high); 195 } 196 __iommu_flush_cache(iommu, irte, sizeof(*irte)); 197 198 rc = qi_flush_iec(iommu, index, 0); 199 200 /* Update iommu mode according to the IRTE mode */ 201 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING; 202 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 203 204 return rc; 205 } 206 207 static struct intel_iommu *map_hpet_to_ir(u8 hpet_id) 208 { 209 int i; 210 211 for (i = 0; i < MAX_HPET_TBS; i++) 212 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu) 213 return ir_hpet[i].iommu; 214 return NULL; 215 } 216 217 static struct intel_iommu *map_ioapic_to_ir(int apic) 218 { 219 int i; 220 221 for (i = 0; i < MAX_IO_APICS; i++) 222 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu) 223 return ir_ioapic[i].iommu; 224 return NULL; 225 } 226 227 static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev) 228 { 229 struct dmar_drhd_unit *drhd; 230 231 drhd = dmar_find_matched_drhd_unit(dev); 232 if (!drhd) 233 return NULL; 234 235 return drhd->iommu; 236 } 237 238 static int clear_entries(struct irq_2_iommu *irq_iommu) 239 { 240 struct irte *start, *entry, *end; 241 struct intel_iommu *iommu; 242 int index; 243 244 if (irq_iommu->sub_handle) 245 return 0; 246 247 iommu = irq_iommu->iommu; 248 index = irq_iommu->irte_index; 249 250 start = iommu->ir_table->base + index; 251 end = start + (1 << irq_iommu->irte_mask); 252 253 for (entry = start; entry < end; entry++) { 254 set_64bit(&entry->low, 0); 255 set_64bit(&entry->high, 0); 256 } 257 bitmap_release_region(iommu->ir_table->bitmap, index, 258 irq_iommu->irte_mask); 259 260 return qi_flush_iec(iommu, index, irq_iommu->irte_mask); 261 } 262 263 /* 264 * source validation type 265 */ 266 #define SVT_NO_VERIFY 0x0 /* no verification is required */ 267 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */ 268 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */ 269 270 /* 271 * source-id qualifier 272 */ 273 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */ 274 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore 275 * the third least significant bit 276 */ 277 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore 278 * the second and third least significant bits 279 */ 280 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore 281 * the least three significant bits 282 */ 283 284 /* 285 * set SVT, SQ and SID fields of irte to verify 286 * source ids of interrupt requests 287 */ 288 static void set_irte_sid(struct irte *irte, unsigned int svt, 289 unsigned int sq, unsigned int sid) 290 { 291 if (disable_sourceid_checking) 292 svt = SVT_NO_VERIFY; 293 irte->svt = svt; 294 irte->sq = sq; 295 irte->sid = sid; 296 } 297 298 /* 299 * Set an IRTE to match only the bus number. Interrupt requests that reference 300 * this IRTE must have a requester-id whose bus number is between or equal 301 * to the start_bus and end_bus arguments. 302 */ 303 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus, 304 unsigned int end_bus) 305 { 306 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16, 307 (start_bus << 8) | end_bus); 308 } 309 310 static int set_ioapic_sid(struct irte *irte, int apic) 311 { 312 int i; 313 u16 sid = 0; 314 315 if (!irte) 316 return -1; 317 318 down_read(&dmar_global_lock); 319 for (i = 0; i < MAX_IO_APICS; i++) { 320 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) { 321 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn; 322 break; 323 } 324 } 325 up_read(&dmar_global_lock); 326 327 if (sid == 0) { 328 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic); 329 return -1; 330 } 331 332 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid); 333 334 return 0; 335 } 336 337 static int set_hpet_sid(struct irte *irte, u8 id) 338 { 339 int i; 340 u16 sid = 0; 341 342 if (!irte) 343 return -1; 344 345 down_read(&dmar_global_lock); 346 for (i = 0; i < MAX_HPET_TBS; i++) { 347 if (ir_hpet[i].iommu && ir_hpet[i].id == id) { 348 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn; 349 break; 350 } 351 } 352 up_read(&dmar_global_lock); 353 354 if (sid == 0) { 355 pr_warn("Failed to set source-id of HPET block (%d)\n", id); 356 return -1; 357 } 358 359 /* 360 * Should really use SQ_ALL_16. Some platforms are broken. 361 * While we figure out the right quirks for these broken platforms, use 362 * SQ_13_IGNORE_3 for now. 363 */ 364 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid); 365 366 return 0; 367 } 368 369 struct set_msi_sid_data { 370 struct pci_dev *pdev; 371 u16 alias; 372 int count; 373 int busmatch_count; 374 }; 375 376 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque) 377 { 378 struct set_msi_sid_data *data = opaque; 379 380 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias)) 381 data->busmatch_count++; 382 383 data->pdev = pdev; 384 data->alias = alias; 385 data->count++; 386 387 return 0; 388 } 389 390 static int set_msi_sid(struct irte *irte, struct pci_dev *dev) 391 { 392 struct set_msi_sid_data data; 393 394 if (!irte || !dev) 395 return -1; 396 397 data.count = 0; 398 data.busmatch_count = 0; 399 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data); 400 401 /* 402 * DMA alias provides us with a PCI device and alias. The only case 403 * where the it will return an alias on a different bus than the 404 * device is the case of a PCIe-to-PCI bridge, where the alias is for 405 * the subordinate bus. In this case we can only verify the bus. 406 * 407 * If there are multiple aliases, all with the same bus number, 408 * then all we can do is verify the bus. This is typical in NTB 409 * hardware which use proxy IDs where the device will generate traffic 410 * from multiple devfn numbers on the same bus. 411 * 412 * If the alias device is on a different bus than our source device 413 * then we have a topology based alias, use it. 414 * 415 * Otherwise, the alias is for a device DMA quirk and we cannot 416 * assume that MSI uses the same requester ID. Therefore use the 417 * original device. 418 */ 419 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number) 420 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias), 421 dev->bus->number); 422 else if (data.count >= 2 && data.busmatch_count == data.count) 423 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number); 424 else if (data.pdev->bus->number != dev->bus->number) 425 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias); 426 else 427 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, 428 pci_dev_id(dev)); 429 430 return 0; 431 } 432 433 static int iommu_load_old_irte(struct intel_iommu *iommu) 434 { 435 struct irte *old_ir_table; 436 phys_addr_t irt_phys; 437 unsigned int i; 438 size_t size; 439 u64 irta; 440 441 /* Check whether the old ir-table has the same size as ours */ 442 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG); 443 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK) 444 != INTR_REMAP_TABLE_REG_SIZE) 445 return -EINVAL; 446 447 irt_phys = irta & VTD_PAGE_MASK; 448 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte); 449 450 /* Map the old IR table */ 451 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB); 452 if (!old_ir_table) 453 return -ENOMEM; 454 455 /* Copy data over */ 456 memcpy(iommu->ir_table->base, old_ir_table, size); 457 458 __iommu_flush_cache(iommu, iommu->ir_table->base, size); 459 460 /* 461 * Now check the table for used entries and mark those as 462 * allocated in the bitmap 463 */ 464 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) { 465 if (iommu->ir_table->base[i].present) 466 bitmap_set(iommu->ir_table->bitmap, i, 1); 467 } 468 469 memunmap(old_ir_table); 470 471 return 0; 472 } 473 474 475 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode) 476 { 477 unsigned long flags; 478 u64 addr; 479 u32 sts; 480 481 addr = virt_to_phys((void *)iommu->ir_table->base); 482 483 raw_spin_lock_irqsave(&iommu->register_lock, flags); 484 485 dmar_writeq(iommu->reg + DMAR_IRTA_REG, 486 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); 487 488 /* Set interrupt-remapping table pointer */ 489 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG); 490 491 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 492 readl, (sts & DMA_GSTS_IRTPS), sts); 493 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 494 495 /* 496 * Global invalidation of interrupt entry cache to make sure the 497 * hardware uses the new irq remapping table. 498 */ 499 qi_global_iec(iommu); 500 } 501 502 static void iommu_enable_irq_remapping(struct intel_iommu *iommu) 503 { 504 unsigned long flags; 505 u32 sts; 506 507 raw_spin_lock_irqsave(&iommu->register_lock, flags); 508 509 /* Enable interrupt-remapping */ 510 iommu->gcmd |= DMA_GCMD_IRE; 511 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 512 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 513 readl, (sts & DMA_GSTS_IRES), sts); 514 515 /* Block compatibility-format MSIs */ 516 if (sts & DMA_GSTS_CFIS) { 517 iommu->gcmd &= ~DMA_GCMD_CFI; 518 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 519 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 520 readl, !(sts & DMA_GSTS_CFIS), sts); 521 } 522 523 /* 524 * With CFI clear in the Global Command register, we should be 525 * protected from dangerous (i.e. compatibility) interrupts 526 * regardless of x2apic status. Check just to be sure. 527 */ 528 if (sts & DMA_GSTS_CFIS) 529 WARN(1, KERN_WARNING 530 "Compatibility-format IRQs enabled despite intr remapping;\n" 531 "you are vulnerable to IRQ injection.\n"); 532 533 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 534 } 535 536 static int intel_setup_irq_remapping(struct intel_iommu *iommu) 537 { 538 struct ir_table *ir_table; 539 struct fwnode_handle *fn; 540 unsigned long *bitmap; 541 struct page *pages; 542 543 if (iommu->ir_table) 544 return 0; 545 546 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL); 547 if (!ir_table) 548 return -ENOMEM; 549 550 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO, 551 INTR_REMAP_PAGE_ORDER); 552 if (!pages) { 553 pr_err("IR%d: failed to allocate pages of order %d\n", 554 iommu->seq_id, INTR_REMAP_PAGE_ORDER); 555 goto out_free_table; 556 } 557 558 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC); 559 if (bitmap == NULL) { 560 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id); 561 goto out_free_pages; 562 } 563 564 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id); 565 if (!fn) 566 goto out_free_bitmap; 567 568 iommu->ir_domain = 569 irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 570 0, INTR_REMAP_TABLE_ENTRIES, 571 fn, &intel_ir_domain_ops, 572 iommu); 573 if (!iommu->ir_domain) { 574 irq_domain_free_fwnode(fn); 575 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id); 576 goto out_free_bitmap; 577 } 578 iommu->ir_msi_domain = 579 arch_create_remap_msi_irq_domain(iommu->ir_domain, 580 "INTEL-IR-MSI", 581 iommu->seq_id); 582 583 ir_table->base = page_address(pages); 584 ir_table->bitmap = bitmap; 585 iommu->ir_table = ir_table; 586 587 /* 588 * If the queued invalidation is already initialized, 589 * shouldn't disable it. 590 */ 591 if (!iommu->qi) { 592 /* 593 * Clear previous faults. 594 */ 595 dmar_fault(-1, iommu); 596 dmar_disable_qi(iommu); 597 598 if (dmar_enable_qi(iommu)) { 599 pr_err("Failed to enable queued invalidation\n"); 600 goto out_free_bitmap; 601 } 602 } 603 604 init_ir_status(iommu); 605 606 if (ir_pre_enabled(iommu)) { 607 if (!is_kdump_kernel()) { 608 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n", 609 iommu->name); 610 clear_ir_pre_enabled(iommu); 611 iommu_disable_irq_remapping(iommu); 612 } else if (iommu_load_old_irte(iommu)) 613 pr_err("Failed to copy IR table for %s from previous kernel\n", 614 iommu->name); 615 else 616 pr_info("Copied IR table for %s from previous kernel\n", 617 iommu->name); 618 } 619 620 iommu_set_irq_remapping(iommu, eim_mode); 621 622 return 0; 623 624 out_free_bitmap: 625 bitmap_free(bitmap); 626 out_free_pages: 627 __free_pages(pages, INTR_REMAP_PAGE_ORDER); 628 out_free_table: 629 kfree(ir_table); 630 631 iommu->ir_table = NULL; 632 633 return -ENOMEM; 634 } 635 636 static void intel_teardown_irq_remapping(struct intel_iommu *iommu) 637 { 638 struct fwnode_handle *fn; 639 640 if (iommu && iommu->ir_table) { 641 if (iommu->ir_msi_domain) { 642 fn = iommu->ir_msi_domain->fwnode; 643 644 irq_domain_remove(iommu->ir_msi_domain); 645 irq_domain_free_fwnode(fn); 646 iommu->ir_msi_domain = NULL; 647 } 648 if (iommu->ir_domain) { 649 fn = iommu->ir_domain->fwnode; 650 651 irq_domain_remove(iommu->ir_domain); 652 irq_domain_free_fwnode(fn); 653 iommu->ir_domain = NULL; 654 } 655 free_pages((unsigned long)iommu->ir_table->base, 656 INTR_REMAP_PAGE_ORDER); 657 bitmap_free(iommu->ir_table->bitmap); 658 kfree(iommu->ir_table); 659 iommu->ir_table = NULL; 660 } 661 } 662 663 /* 664 * Disable Interrupt Remapping. 665 */ 666 static void iommu_disable_irq_remapping(struct intel_iommu *iommu) 667 { 668 unsigned long flags; 669 u32 sts; 670 671 if (!ecap_ir_support(iommu->ecap)) 672 return; 673 674 /* 675 * global invalidation of interrupt entry cache before disabling 676 * interrupt-remapping. 677 */ 678 qi_global_iec(iommu); 679 680 raw_spin_lock_irqsave(&iommu->register_lock, flags); 681 682 sts = readl(iommu->reg + DMAR_GSTS_REG); 683 if (!(sts & DMA_GSTS_IRES)) 684 goto end; 685 686 iommu->gcmd &= ~DMA_GCMD_IRE; 687 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 688 689 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 690 readl, !(sts & DMA_GSTS_IRES), sts); 691 692 end: 693 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 694 } 695 696 static int __init dmar_x2apic_optout(void) 697 { 698 struct acpi_table_dmar *dmar; 699 dmar = (struct acpi_table_dmar *)dmar_tbl; 700 if (!dmar || no_x2apic_optout) 701 return 0; 702 return dmar->flags & DMAR_X2APIC_OPT_OUT; 703 } 704 705 static void __init intel_cleanup_irq_remapping(void) 706 { 707 struct dmar_drhd_unit *drhd; 708 struct intel_iommu *iommu; 709 710 for_each_iommu(iommu, drhd) { 711 if (ecap_ir_support(iommu->ecap)) { 712 iommu_disable_irq_remapping(iommu); 713 intel_teardown_irq_remapping(iommu); 714 } 715 } 716 717 if (x2apic_supported()) 718 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n"); 719 } 720 721 static int __init intel_prepare_irq_remapping(void) 722 { 723 struct dmar_drhd_unit *drhd; 724 struct intel_iommu *iommu; 725 int eim = 0; 726 727 if (irq_remap_broken) { 728 pr_warn("This system BIOS has enabled interrupt remapping\n" 729 "on a chipset that contains an erratum making that\n" 730 "feature unstable. To maintain system stability\n" 731 "interrupt remapping is being disabled. Please\n" 732 "contact your BIOS vendor for an update\n"); 733 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 734 return -ENODEV; 735 } 736 737 if (dmar_table_init() < 0) 738 return -ENODEV; 739 740 if (!dmar_ir_support()) 741 return -ENODEV; 742 743 if (parse_ioapics_under_ir()) { 744 pr_info("Not enabling interrupt remapping\n"); 745 goto error; 746 } 747 748 /* First make sure all IOMMUs support IRQ remapping */ 749 for_each_iommu(iommu, drhd) 750 if (!ecap_ir_support(iommu->ecap)) 751 goto error; 752 753 /* Detect remapping mode: lapic or x2apic */ 754 if (x2apic_supported()) { 755 eim = !dmar_x2apic_optout(); 756 if (!eim) { 757 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit."); 758 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n"); 759 } 760 } 761 762 for_each_iommu(iommu, drhd) { 763 if (eim && !ecap_eim_support(iommu->ecap)) { 764 pr_info("%s does not support EIM\n", iommu->name); 765 eim = 0; 766 } 767 } 768 769 eim_mode = eim; 770 if (eim) 771 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n"); 772 773 /* Do the initializations early */ 774 for_each_iommu(iommu, drhd) { 775 if (intel_setup_irq_remapping(iommu)) { 776 pr_err("Failed to setup irq remapping for %s\n", 777 iommu->name); 778 goto error; 779 } 780 } 781 782 return 0; 783 784 error: 785 intel_cleanup_irq_remapping(); 786 return -ENODEV; 787 } 788 789 /* 790 * Set Posted-Interrupts capability. 791 */ 792 static inline void set_irq_posting_cap(void) 793 { 794 struct dmar_drhd_unit *drhd; 795 struct intel_iommu *iommu; 796 797 if (!disable_irq_post) { 798 /* 799 * If IRTE is in posted format, the 'pda' field goes across the 800 * 64-bit boundary, we need use cmpxchg16b to atomically update 801 * it. We only expose posted-interrupt when X86_FEATURE_CX16 802 * is supported. Actually, hardware platforms supporting PI 803 * should have X86_FEATURE_CX16 support, this has been confirmed 804 * with Intel hardware guys. 805 */ 806 if (boot_cpu_has(X86_FEATURE_CX16)) 807 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP; 808 809 for_each_iommu(iommu, drhd) 810 if (!cap_pi_support(iommu->cap)) { 811 intel_irq_remap_ops.capability &= 812 ~(1 << IRQ_POSTING_CAP); 813 break; 814 } 815 } 816 } 817 818 static int __init intel_enable_irq_remapping(void) 819 { 820 struct dmar_drhd_unit *drhd; 821 struct intel_iommu *iommu; 822 bool setup = false; 823 824 /* 825 * Setup Interrupt-remapping for all the DRHD's now. 826 */ 827 for_each_iommu(iommu, drhd) { 828 if (!ir_pre_enabled(iommu)) 829 iommu_enable_irq_remapping(iommu); 830 setup = true; 831 } 832 833 if (!setup) 834 goto error; 835 836 irq_remapping_enabled = 1; 837 838 set_irq_posting_cap(); 839 840 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic"); 841 842 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE; 843 844 error: 845 intel_cleanup_irq_remapping(); 846 return -1; 847 } 848 849 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope, 850 struct intel_iommu *iommu, 851 struct acpi_dmar_hardware_unit *drhd) 852 { 853 struct acpi_dmar_pci_path *path; 854 u8 bus; 855 int count, free = -1; 856 857 bus = scope->bus; 858 path = (struct acpi_dmar_pci_path *)(scope + 1); 859 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 860 / sizeof(struct acpi_dmar_pci_path); 861 862 while (--count > 0) { 863 /* 864 * Access PCI directly due to the PCI 865 * subsystem isn't initialized yet. 866 */ 867 bus = read_pci_config_byte(bus, path->device, path->function, 868 PCI_SECONDARY_BUS); 869 path++; 870 } 871 872 for (count = 0; count < MAX_HPET_TBS; count++) { 873 if (ir_hpet[count].iommu == iommu && 874 ir_hpet[count].id == scope->enumeration_id) 875 return 0; 876 else if (ir_hpet[count].iommu == NULL && free == -1) 877 free = count; 878 } 879 if (free == -1) { 880 pr_warn("Exceeded Max HPET blocks\n"); 881 return -ENOSPC; 882 } 883 884 ir_hpet[free].iommu = iommu; 885 ir_hpet[free].id = scope->enumeration_id; 886 ir_hpet[free].bus = bus; 887 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function); 888 pr_info("HPET id %d under DRHD base 0x%Lx\n", 889 scope->enumeration_id, drhd->address); 890 891 return 0; 892 } 893 894 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope, 895 struct intel_iommu *iommu, 896 struct acpi_dmar_hardware_unit *drhd) 897 { 898 struct acpi_dmar_pci_path *path; 899 u8 bus; 900 int count, free = -1; 901 902 bus = scope->bus; 903 path = (struct acpi_dmar_pci_path *)(scope + 1); 904 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 905 / sizeof(struct acpi_dmar_pci_path); 906 907 while (--count > 0) { 908 /* 909 * Access PCI directly due to the PCI 910 * subsystem isn't initialized yet. 911 */ 912 bus = read_pci_config_byte(bus, path->device, path->function, 913 PCI_SECONDARY_BUS); 914 path++; 915 } 916 917 for (count = 0; count < MAX_IO_APICS; count++) { 918 if (ir_ioapic[count].iommu == iommu && 919 ir_ioapic[count].id == scope->enumeration_id) 920 return 0; 921 else if (ir_ioapic[count].iommu == NULL && free == -1) 922 free = count; 923 } 924 if (free == -1) { 925 pr_warn("Exceeded Max IO APICS\n"); 926 return -ENOSPC; 927 } 928 929 ir_ioapic[free].bus = bus; 930 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function); 931 ir_ioapic[free].iommu = iommu; 932 ir_ioapic[free].id = scope->enumeration_id; 933 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n", 934 scope->enumeration_id, drhd->address, iommu->seq_id); 935 936 return 0; 937 } 938 939 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header, 940 struct intel_iommu *iommu) 941 { 942 int ret = 0; 943 struct acpi_dmar_hardware_unit *drhd; 944 struct acpi_dmar_device_scope *scope; 945 void *start, *end; 946 947 drhd = (struct acpi_dmar_hardware_unit *)header; 948 start = (void *)(drhd + 1); 949 end = ((void *)drhd) + header->length; 950 951 while (start < end && ret == 0) { 952 scope = start; 953 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) 954 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd); 955 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) 956 ret = ir_parse_one_hpet_scope(scope, iommu, drhd); 957 start += scope->length; 958 } 959 960 return ret; 961 } 962 963 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu) 964 { 965 int i; 966 967 for (i = 0; i < MAX_HPET_TBS; i++) 968 if (ir_hpet[i].iommu == iommu) 969 ir_hpet[i].iommu = NULL; 970 971 for (i = 0; i < MAX_IO_APICS; i++) 972 if (ir_ioapic[i].iommu == iommu) 973 ir_ioapic[i].iommu = NULL; 974 } 975 976 /* 977 * Finds the assocaition between IOAPIC's and its Interrupt-remapping 978 * hardware unit. 979 */ 980 static int __init parse_ioapics_under_ir(void) 981 { 982 struct dmar_drhd_unit *drhd; 983 struct intel_iommu *iommu; 984 bool ir_supported = false; 985 int ioapic_idx; 986 987 for_each_iommu(iommu, drhd) { 988 int ret; 989 990 if (!ecap_ir_support(iommu->ecap)) 991 continue; 992 993 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu); 994 if (ret) 995 return ret; 996 997 ir_supported = true; 998 } 999 1000 if (!ir_supported) 1001 return -ENODEV; 1002 1003 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) { 1004 int ioapic_id = mpc_ioapic_id(ioapic_idx); 1005 if (!map_ioapic_to_ir(ioapic_id)) { 1006 pr_err(FW_BUG "ioapic %d has no mapping iommu, " 1007 "interrupt remapping will be disabled\n", 1008 ioapic_id); 1009 return -1; 1010 } 1011 } 1012 1013 return 0; 1014 } 1015 1016 static int __init ir_dev_scope_init(void) 1017 { 1018 int ret; 1019 1020 if (!irq_remapping_enabled) 1021 return 0; 1022 1023 down_write(&dmar_global_lock); 1024 ret = dmar_dev_scope_init(); 1025 up_write(&dmar_global_lock); 1026 1027 return ret; 1028 } 1029 rootfs_initcall(ir_dev_scope_init); 1030 1031 static void disable_irq_remapping(void) 1032 { 1033 struct dmar_drhd_unit *drhd; 1034 struct intel_iommu *iommu = NULL; 1035 1036 /* 1037 * Disable Interrupt-remapping for all the DRHD's now. 1038 */ 1039 for_each_iommu(iommu, drhd) { 1040 if (!ecap_ir_support(iommu->ecap)) 1041 continue; 1042 1043 iommu_disable_irq_remapping(iommu); 1044 } 1045 1046 /* 1047 * Clear Posted-Interrupts capability. 1048 */ 1049 if (!disable_irq_post) 1050 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP); 1051 } 1052 1053 static int reenable_irq_remapping(int eim) 1054 { 1055 struct dmar_drhd_unit *drhd; 1056 bool setup = false; 1057 struct intel_iommu *iommu = NULL; 1058 1059 for_each_iommu(iommu, drhd) 1060 if (iommu->qi) 1061 dmar_reenable_qi(iommu); 1062 1063 /* 1064 * Setup Interrupt-remapping for all the DRHD's now. 1065 */ 1066 for_each_iommu(iommu, drhd) { 1067 if (!ecap_ir_support(iommu->ecap)) 1068 continue; 1069 1070 /* Set up interrupt remapping for iommu.*/ 1071 iommu_set_irq_remapping(iommu, eim); 1072 iommu_enable_irq_remapping(iommu); 1073 setup = true; 1074 } 1075 1076 if (!setup) 1077 goto error; 1078 1079 set_irq_posting_cap(); 1080 1081 return 0; 1082 1083 error: 1084 /* 1085 * handle error condition gracefully here! 1086 */ 1087 return -1; 1088 } 1089 1090 static void prepare_irte(struct irte *irte, int vector, unsigned int dest) 1091 { 1092 memset(irte, 0, sizeof(*irte)); 1093 1094 irte->present = 1; 1095 irte->dst_mode = apic->irq_dest_mode; 1096 /* 1097 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the 1098 * actual level or edge trigger will be setup in the IO-APIC 1099 * RTE. This will help simplify level triggered irq migration. 1100 * For more details, see the comments (in io_apic.c) explainig IO-APIC 1101 * irq migration in the presence of interrupt-remapping. 1102 */ 1103 irte->trigger_mode = 0; 1104 irte->dlvry_mode = apic->irq_delivery_mode; 1105 irte->vector = vector; 1106 irte->dest_id = IRTE_DEST(dest); 1107 irte->redir_hint = 1; 1108 } 1109 1110 static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info) 1111 { 1112 struct intel_iommu *iommu = NULL; 1113 1114 if (!info) 1115 return NULL; 1116 1117 switch (info->type) { 1118 case X86_IRQ_ALLOC_TYPE_IOAPIC: 1119 iommu = map_ioapic_to_ir(info->ioapic_id); 1120 break; 1121 case X86_IRQ_ALLOC_TYPE_HPET: 1122 iommu = map_hpet_to_ir(info->hpet_id); 1123 break; 1124 case X86_IRQ_ALLOC_TYPE_MSI: 1125 case X86_IRQ_ALLOC_TYPE_MSIX: 1126 iommu = map_dev_to_ir(info->msi_dev); 1127 break; 1128 default: 1129 BUG_ON(1); 1130 break; 1131 } 1132 1133 return iommu ? iommu->ir_domain : NULL; 1134 } 1135 1136 static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info) 1137 { 1138 struct intel_iommu *iommu; 1139 1140 if (!info) 1141 return NULL; 1142 1143 switch (info->type) { 1144 case X86_IRQ_ALLOC_TYPE_MSI: 1145 case X86_IRQ_ALLOC_TYPE_MSIX: 1146 iommu = map_dev_to_ir(info->msi_dev); 1147 if (iommu) 1148 return iommu->ir_msi_domain; 1149 break; 1150 default: 1151 break; 1152 } 1153 1154 return NULL; 1155 } 1156 1157 struct irq_remap_ops intel_irq_remap_ops = { 1158 .prepare = intel_prepare_irq_remapping, 1159 .enable = intel_enable_irq_remapping, 1160 .disable = disable_irq_remapping, 1161 .reenable = reenable_irq_remapping, 1162 .enable_faulting = enable_drhd_fault_handling, 1163 .get_ir_irq_domain = intel_get_ir_irq_domain, 1164 .get_irq_domain = intel_get_irq_domain, 1165 }; 1166 1167 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force) 1168 { 1169 struct intel_ir_data *ir_data = irqd->chip_data; 1170 struct irte *irte = &ir_data->irte_entry; 1171 struct irq_cfg *cfg = irqd_cfg(irqd); 1172 1173 /* 1174 * Atomically updates the IRTE with the new destination, vector 1175 * and flushes the interrupt entry cache. 1176 */ 1177 irte->vector = cfg->vector; 1178 irte->dest_id = IRTE_DEST(cfg->dest_apicid); 1179 1180 /* Update the hardware only if the interrupt is in remapped mode. */ 1181 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING) 1182 modify_irte(&ir_data->irq_2_iommu, irte); 1183 } 1184 1185 /* 1186 * Migrate the IO-APIC irq in the presence of intr-remapping. 1187 * 1188 * For both level and edge triggered, irq migration is a simple atomic 1189 * update(of vector and cpu destination) of IRTE and flush the hardware cache. 1190 * 1191 * For level triggered, we eliminate the io-apic RTE modification (with the 1192 * updated vector information), by using a virtual vector (io-apic pin number). 1193 * Real vector that is used for interrupting cpu will be coming from 1194 * the interrupt-remapping table entry. 1195 * 1196 * As the migration is a simple atomic update of IRTE, the same mechanism 1197 * is used to migrate MSI irq's in the presence of interrupt-remapping. 1198 */ 1199 static int 1200 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask, 1201 bool force) 1202 { 1203 struct irq_data *parent = data->parent_data; 1204 struct irq_cfg *cfg = irqd_cfg(data); 1205 int ret; 1206 1207 ret = parent->chip->irq_set_affinity(parent, mask, force); 1208 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 1209 return ret; 1210 1211 intel_ir_reconfigure_irte(data, false); 1212 /* 1213 * After this point, all the interrupts will start arriving 1214 * at the new destination. So, time to cleanup the previous 1215 * vector allocation. 1216 */ 1217 send_cleanup_vector(cfg); 1218 1219 return IRQ_SET_MASK_OK_DONE; 1220 } 1221 1222 static void intel_ir_compose_msi_msg(struct irq_data *irq_data, 1223 struct msi_msg *msg) 1224 { 1225 struct intel_ir_data *ir_data = irq_data->chip_data; 1226 1227 *msg = ir_data->msi_entry; 1228 } 1229 1230 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info) 1231 { 1232 struct intel_ir_data *ir_data = data->chip_data; 1233 struct vcpu_data *vcpu_pi_info = info; 1234 1235 /* stop posting interrupts, back to remapping mode */ 1236 if (!vcpu_pi_info) { 1237 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry); 1238 } else { 1239 struct irte irte_pi; 1240 1241 /* 1242 * We are not caching the posted interrupt entry. We 1243 * copy the data from the remapped entry and modify 1244 * the fields which are relevant for posted mode. The 1245 * cached remapped entry is used for switching back to 1246 * remapped mode. 1247 */ 1248 memset(&irte_pi, 0, sizeof(irte_pi)); 1249 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry); 1250 1251 /* Update the posted mode fields */ 1252 irte_pi.p_pst = 1; 1253 irte_pi.p_urgent = 0; 1254 irte_pi.p_vector = vcpu_pi_info->vector; 1255 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >> 1256 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT); 1257 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) & 1258 ~(-1UL << PDA_HIGH_BIT); 1259 1260 modify_irte(&ir_data->irq_2_iommu, &irte_pi); 1261 } 1262 1263 return 0; 1264 } 1265 1266 static struct irq_chip intel_ir_chip = { 1267 .name = "INTEL-IR", 1268 .irq_ack = apic_ack_irq, 1269 .irq_set_affinity = intel_ir_set_affinity, 1270 .irq_compose_msi_msg = intel_ir_compose_msi_msg, 1271 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity, 1272 }; 1273 1274 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data, 1275 struct irq_cfg *irq_cfg, 1276 struct irq_alloc_info *info, 1277 int index, int sub_handle) 1278 { 1279 struct IR_IO_APIC_route_entry *entry; 1280 struct irte *irte = &data->irte_entry; 1281 struct msi_msg *msg = &data->msi_entry; 1282 1283 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid); 1284 switch (info->type) { 1285 case X86_IRQ_ALLOC_TYPE_IOAPIC: 1286 /* Set source-id of interrupt request */ 1287 set_ioapic_sid(irte, info->ioapic_id); 1288 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n", 1289 info->ioapic_id, irte->present, irte->fpd, 1290 irte->dst_mode, irte->redir_hint, 1291 irte->trigger_mode, irte->dlvry_mode, 1292 irte->avail, irte->vector, irte->dest_id, 1293 irte->sid, irte->sq, irte->svt); 1294 1295 entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry; 1296 info->ioapic_entry = NULL; 1297 memset(entry, 0, sizeof(*entry)); 1298 entry->index2 = (index >> 15) & 0x1; 1299 entry->zero = 0; 1300 entry->format = 1; 1301 entry->index = (index & 0x7fff); 1302 /* 1303 * IO-APIC RTE will be configured with virtual vector. 1304 * irq handler will do the explicit EOI to the io-apic. 1305 */ 1306 entry->vector = info->ioapic_pin; 1307 entry->mask = 0; /* enable IRQ */ 1308 entry->trigger = info->ioapic_trigger; 1309 entry->polarity = info->ioapic_polarity; 1310 if (info->ioapic_trigger) 1311 entry->mask = 1; /* Mask level triggered irqs. */ 1312 break; 1313 1314 case X86_IRQ_ALLOC_TYPE_HPET: 1315 case X86_IRQ_ALLOC_TYPE_MSI: 1316 case X86_IRQ_ALLOC_TYPE_MSIX: 1317 if (info->type == X86_IRQ_ALLOC_TYPE_HPET) 1318 set_hpet_sid(irte, info->hpet_id); 1319 else 1320 set_msi_sid(irte, info->msi_dev); 1321 1322 msg->address_hi = MSI_ADDR_BASE_HI; 1323 msg->data = sub_handle; 1324 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT | 1325 MSI_ADDR_IR_SHV | 1326 MSI_ADDR_IR_INDEX1(index) | 1327 MSI_ADDR_IR_INDEX2(index); 1328 break; 1329 1330 default: 1331 BUG_ON(1); 1332 break; 1333 } 1334 } 1335 1336 static void intel_free_irq_resources(struct irq_domain *domain, 1337 unsigned int virq, unsigned int nr_irqs) 1338 { 1339 struct irq_data *irq_data; 1340 struct intel_ir_data *data; 1341 struct irq_2_iommu *irq_iommu; 1342 unsigned long flags; 1343 int i; 1344 for (i = 0; i < nr_irqs; i++) { 1345 irq_data = irq_domain_get_irq_data(domain, virq + i); 1346 if (irq_data && irq_data->chip_data) { 1347 data = irq_data->chip_data; 1348 irq_iommu = &data->irq_2_iommu; 1349 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 1350 clear_entries(irq_iommu); 1351 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 1352 irq_domain_reset_irq_data(irq_data); 1353 kfree(data); 1354 } 1355 } 1356 } 1357 1358 static int intel_irq_remapping_alloc(struct irq_domain *domain, 1359 unsigned int virq, unsigned int nr_irqs, 1360 void *arg) 1361 { 1362 struct intel_iommu *iommu = domain->host_data; 1363 struct irq_alloc_info *info = arg; 1364 struct intel_ir_data *data, *ird; 1365 struct irq_data *irq_data; 1366 struct irq_cfg *irq_cfg; 1367 int i, ret, index; 1368 1369 if (!info || !iommu) 1370 return -EINVAL; 1371 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI && 1372 info->type != X86_IRQ_ALLOC_TYPE_MSIX) 1373 return -EINVAL; 1374 1375 /* 1376 * With IRQ remapping enabled, don't need contiguous CPU vectors 1377 * to support multiple MSI interrupts. 1378 */ 1379 if (info->type == X86_IRQ_ALLOC_TYPE_MSI) 1380 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 1381 1382 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 1383 if (ret < 0) 1384 return ret; 1385 1386 ret = -ENOMEM; 1387 data = kzalloc(sizeof(*data), GFP_KERNEL); 1388 if (!data) 1389 goto out_free_parent; 1390 1391 down_read(&dmar_global_lock); 1392 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs); 1393 up_read(&dmar_global_lock); 1394 if (index < 0) { 1395 pr_warn("Failed to allocate IRTE\n"); 1396 kfree(data); 1397 goto out_free_parent; 1398 } 1399 1400 for (i = 0; i < nr_irqs; i++) { 1401 irq_data = irq_domain_get_irq_data(domain, virq + i); 1402 irq_cfg = irqd_cfg(irq_data); 1403 if (!irq_data || !irq_cfg) { 1404 ret = -EINVAL; 1405 goto out_free_data; 1406 } 1407 1408 if (i > 0) { 1409 ird = kzalloc(sizeof(*ird), GFP_KERNEL); 1410 if (!ird) 1411 goto out_free_data; 1412 /* Initialize the common data */ 1413 ird->irq_2_iommu = data->irq_2_iommu; 1414 ird->irq_2_iommu.sub_handle = i; 1415 } else { 1416 ird = data; 1417 } 1418 1419 irq_data->hwirq = (index << 16) + i; 1420 irq_data->chip_data = ird; 1421 irq_data->chip = &intel_ir_chip; 1422 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i); 1423 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 1424 } 1425 return 0; 1426 1427 out_free_data: 1428 intel_free_irq_resources(domain, virq, i); 1429 out_free_parent: 1430 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1431 return ret; 1432 } 1433 1434 static void intel_irq_remapping_free(struct irq_domain *domain, 1435 unsigned int virq, unsigned int nr_irqs) 1436 { 1437 intel_free_irq_resources(domain, virq, nr_irqs); 1438 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1439 } 1440 1441 static int intel_irq_remapping_activate(struct irq_domain *domain, 1442 struct irq_data *irq_data, bool reserve) 1443 { 1444 intel_ir_reconfigure_irte(irq_data, true); 1445 return 0; 1446 } 1447 1448 static void intel_irq_remapping_deactivate(struct irq_domain *domain, 1449 struct irq_data *irq_data) 1450 { 1451 struct intel_ir_data *data = irq_data->chip_data; 1452 struct irte entry; 1453 1454 memset(&entry, 0, sizeof(entry)); 1455 modify_irte(&data->irq_2_iommu, &entry); 1456 } 1457 1458 static const struct irq_domain_ops intel_ir_domain_ops = { 1459 .alloc = intel_irq_remapping_alloc, 1460 .free = intel_irq_remapping_free, 1461 .activate = intel_irq_remapping_activate, 1462 .deactivate = intel_irq_remapping_deactivate, 1463 }; 1464 1465 /* 1466 * Support of Interrupt Remapping Unit Hotplug 1467 */ 1468 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu) 1469 { 1470 int ret; 1471 int eim = x2apic_enabled(); 1472 1473 if (eim && !ecap_eim_support(iommu->ecap)) { 1474 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n", 1475 iommu->reg_phys, iommu->ecap); 1476 return -ENODEV; 1477 } 1478 1479 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) { 1480 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n", 1481 iommu->reg_phys); 1482 return -ENODEV; 1483 } 1484 1485 /* TODO: check all IOAPICs are covered by IOMMU */ 1486 1487 /* Setup Interrupt-remapping now. */ 1488 ret = intel_setup_irq_remapping(iommu); 1489 if (ret) { 1490 pr_err("Failed to setup irq remapping for %s\n", 1491 iommu->name); 1492 intel_teardown_irq_remapping(iommu); 1493 ir_remove_ioapic_hpet_scope(iommu); 1494 } else { 1495 iommu_enable_irq_remapping(iommu); 1496 } 1497 1498 return ret; 1499 } 1500 1501 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 1502 { 1503 int ret = 0; 1504 struct intel_iommu *iommu = dmaru->iommu; 1505 1506 if (!irq_remapping_enabled) 1507 return 0; 1508 if (iommu == NULL) 1509 return -EINVAL; 1510 if (!ecap_ir_support(iommu->ecap)) 1511 return 0; 1512 if (irq_remapping_cap(IRQ_POSTING_CAP) && 1513 !cap_pi_support(iommu->cap)) 1514 return -EBUSY; 1515 1516 if (insert) { 1517 if (!iommu->ir_table) 1518 ret = dmar_ir_add(dmaru, iommu); 1519 } else { 1520 if (iommu->ir_table) { 1521 if (!bitmap_empty(iommu->ir_table->bitmap, 1522 INTR_REMAP_TABLE_ENTRIES)) { 1523 ret = -EBUSY; 1524 } else { 1525 iommu_disable_irq_remapping(iommu); 1526 intel_teardown_irq_remapping(iommu); 1527 ir_remove_ioapic_hpet_scope(iommu); 1528 } 1529 } 1530 } 1531 1532 return ret; 1533 } 1534