1 // SPDX-License-Identifier: GPL-2.0 2 3 #define pr_fmt(fmt) "DMAR-IR: " fmt 4 5 #include <linux/interrupt.h> 6 #include <linux/dmar.h> 7 #include <linux/spinlock.h> 8 #include <linux/slab.h> 9 #include <linux/jiffies.h> 10 #include <linux/hpet.h> 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/acpi.h> 14 #include <linux/irqdomain.h> 15 #include <linux/crash_dump.h> 16 #include <asm/io_apic.h> 17 #include <asm/apic.h> 18 #include <asm/smp.h> 19 #include <asm/cpu.h> 20 #include <asm/irq_remapping.h> 21 #include <asm/pci-direct.h> 22 23 #include "iommu.h" 24 #include "../irq_remapping.h" 25 #include "cap_audit.h" 26 27 enum irq_mode { 28 IRQ_REMAPPING, 29 IRQ_POSTING, 30 }; 31 32 struct ioapic_scope { 33 struct intel_iommu *iommu; 34 unsigned int id; 35 unsigned int bus; /* PCI bus number */ 36 unsigned int devfn; /* PCI devfn number */ 37 }; 38 39 struct hpet_scope { 40 struct intel_iommu *iommu; 41 u8 id; 42 unsigned int bus; 43 unsigned int devfn; 44 }; 45 46 struct irq_2_iommu { 47 struct intel_iommu *iommu; 48 u16 irte_index; 49 u16 sub_handle; 50 u8 irte_mask; 51 enum irq_mode mode; 52 }; 53 54 struct intel_ir_data { 55 struct irq_2_iommu irq_2_iommu; 56 struct irte irte_entry; 57 union { 58 struct msi_msg msi_entry; 59 }; 60 }; 61 62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0) 63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8) 64 65 static int __read_mostly eim_mode; 66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; 67 static struct hpet_scope ir_hpet[MAX_HPET_TBS]; 68 69 /* 70 * Lock ordering: 71 * ->dmar_global_lock 72 * ->irq_2_ir_lock 73 * ->qi->q_lock 74 * ->iommu->register_lock 75 * Note: 76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called 77 * in single-threaded environment with interrupt disabled, so no need to tabke 78 * the dmar_global_lock. 79 */ 80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock); 81 static const struct irq_domain_ops intel_ir_domain_ops; 82 83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu); 84 static int __init parse_ioapics_under_ir(void); 85 static const struct msi_parent_ops dmar_msi_parent_ops, virt_dmar_msi_parent_ops; 86 87 static bool ir_pre_enabled(struct intel_iommu *iommu) 88 { 89 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED); 90 } 91 92 static void clear_ir_pre_enabled(struct intel_iommu *iommu) 93 { 94 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 95 } 96 97 static void init_ir_status(struct intel_iommu *iommu) 98 { 99 u32 gsts; 100 101 gsts = readl(iommu->reg + DMAR_GSTS_REG); 102 if (gsts & DMA_GSTS_IRES) 103 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 104 } 105 106 static int alloc_irte(struct intel_iommu *iommu, 107 struct irq_2_iommu *irq_iommu, u16 count) 108 { 109 struct ir_table *table = iommu->ir_table; 110 unsigned int mask = 0; 111 unsigned long flags; 112 int index; 113 114 if (!count || !irq_iommu) 115 return -1; 116 117 if (count > 1) { 118 count = __roundup_pow_of_two(count); 119 mask = ilog2(count); 120 } 121 122 if (mask > ecap_max_handle_mask(iommu->ecap)) { 123 pr_err("Requested mask %x exceeds the max invalidation handle" 124 " mask value %Lx\n", mask, 125 ecap_max_handle_mask(iommu->ecap)); 126 return -1; 127 } 128 129 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 130 index = bitmap_find_free_region(table->bitmap, 131 INTR_REMAP_TABLE_ENTRIES, mask); 132 if (index < 0) { 133 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id); 134 } else { 135 irq_iommu->iommu = iommu; 136 irq_iommu->irte_index = index; 137 irq_iommu->sub_handle = 0; 138 irq_iommu->irte_mask = mask; 139 irq_iommu->mode = IRQ_REMAPPING; 140 } 141 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 142 143 return index; 144 } 145 146 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) 147 { 148 struct qi_desc desc; 149 150 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) 151 | QI_IEC_SELECTIVE; 152 desc.qw1 = 0; 153 desc.qw2 = 0; 154 desc.qw3 = 0; 155 156 return qi_submit_sync(iommu, &desc, 1, 0); 157 } 158 159 static int modify_irte(struct irq_2_iommu *irq_iommu, 160 struct irte *irte_modified) 161 { 162 struct intel_iommu *iommu; 163 unsigned long flags; 164 struct irte *irte; 165 int rc, index; 166 167 if (!irq_iommu) 168 return -1; 169 170 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 171 172 iommu = irq_iommu->iommu; 173 174 index = irq_iommu->irte_index + irq_iommu->sub_handle; 175 irte = &iommu->ir_table->base[index]; 176 177 if ((irte->pst == 1) || (irte_modified->pst == 1)) { 178 bool ret; 179 180 ret = cmpxchg_double(&irte->low, &irte->high, 181 irte->low, irte->high, 182 irte_modified->low, irte_modified->high); 183 /* 184 * We use cmpxchg16 to atomically update the 128-bit IRTE, 185 * and it cannot be updated by the hardware or other processors 186 * behind us, so the return value of cmpxchg16 should be the 187 * same as the old value. 188 */ 189 WARN_ON(!ret); 190 } else { 191 WRITE_ONCE(irte->low, irte_modified->low); 192 WRITE_ONCE(irte->high, irte_modified->high); 193 } 194 __iommu_flush_cache(iommu, irte, sizeof(*irte)); 195 196 rc = qi_flush_iec(iommu, index, 0); 197 198 /* Update iommu mode according to the IRTE mode */ 199 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING; 200 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 201 202 return rc; 203 } 204 205 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id) 206 { 207 int i; 208 209 for (i = 0; i < MAX_HPET_TBS; i++) { 210 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu) 211 return ir_hpet[i].iommu; 212 } 213 return NULL; 214 } 215 216 static struct intel_iommu *map_ioapic_to_iommu(int apic) 217 { 218 int i; 219 220 for (i = 0; i < MAX_IO_APICS; i++) { 221 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu) 222 return ir_ioapic[i].iommu; 223 } 224 return NULL; 225 } 226 227 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev) 228 { 229 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev); 230 231 return drhd ? drhd->iommu->ir_domain : NULL; 232 } 233 234 static int clear_entries(struct irq_2_iommu *irq_iommu) 235 { 236 struct irte *start, *entry, *end; 237 struct intel_iommu *iommu; 238 int index; 239 240 if (irq_iommu->sub_handle) 241 return 0; 242 243 iommu = irq_iommu->iommu; 244 index = irq_iommu->irte_index; 245 246 start = iommu->ir_table->base + index; 247 end = start + (1 << irq_iommu->irte_mask); 248 249 for (entry = start; entry < end; entry++) { 250 WRITE_ONCE(entry->low, 0); 251 WRITE_ONCE(entry->high, 0); 252 } 253 bitmap_release_region(iommu->ir_table->bitmap, index, 254 irq_iommu->irte_mask); 255 256 return qi_flush_iec(iommu, index, irq_iommu->irte_mask); 257 } 258 259 /* 260 * source validation type 261 */ 262 #define SVT_NO_VERIFY 0x0 /* no verification is required */ 263 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */ 264 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */ 265 266 /* 267 * source-id qualifier 268 */ 269 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */ 270 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore 271 * the third least significant bit 272 */ 273 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore 274 * the second and third least significant bits 275 */ 276 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore 277 * the least three significant bits 278 */ 279 280 /* 281 * set SVT, SQ and SID fields of irte to verify 282 * source ids of interrupt requests 283 */ 284 static void set_irte_sid(struct irte *irte, unsigned int svt, 285 unsigned int sq, unsigned int sid) 286 { 287 if (disable_sourceid_checking) 288 svt = SVT_NO_VERIFY; 289 irte->svt = svt; 290 irte->sq = sq; 291 irte->sid = sid; 292 } 293 294 /* 295 * Set an IRTE to match only the bus number. Interrupt requests that reference 296 * this IRTE must have a requester-id whose bus number is between or equal 297 * to the start_bus and end_bus arguments. 298 */ 299 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus, 300 unsigned int end_bus) 301 { 302 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16, 303 (start_bus << 8) | end_bus); 304 } 305 306 static int set_ioapic_sid(struct irte *irte, int apic) 307 { 308 int i; 309 u16 sid = 0; 310 311 if (!irte) 312 return -1; 313 314 for (i = 0; i < MAX_IO_APICS; i++) { 315 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) { 316 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn; 317 break; 318 } 319 } 320 321 if (sid == 0) { 322 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic); 323 return -1; 324 } 325 326 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid); 327 328 return 0; 329 } 330 331 static int set_hpet_sid(struct irte *irte, u8 id) 332 { 333 int i; 334 u16 sid = 0; 335 336 if (!irte) 337 return -1; 338 339 for (i = 0; i < MAX_HPET_TBS; i++) { 340 if (ir_hpet[i].iommu && ir_hpet[i].id == id) { 341 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn; 342 break; 343 } 344 } 345 346 if (sid == 0) { 347 pr_warn("Failed to set source-id of HPET block (%d)\n", id); 348 return -1; 349 } 350 351 /* 352 * Should really use SQ_ALL_16. Some platforms are broken. 353 * While we figure out the right quirks for these broken platforms, use 354 * SQ_13_IGNORE_3 for now. 355 */ 356 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid); 357 358 return 0; 359 } 360 361 struct set_msi_sid_data { 362 struct pci_dev *pdev; 363 u16 alias; 364 int count; 365 int busmatch_count; 366 }; 367 368 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque) 369 { 370 struct set_msi_sid_data *data = opaque; 371 372 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias)) 373 data->busmatch_count++; 374 375 data->pdev = pdev; 376 data->alias = alias; 377 data->count++; 378 379 return 0; 380 } 381 382 static int set_msi_sid(struct irte *irte, struct pci_dev *dev) 383 { 384 struct set_msi_sid_data data; 385 386 if (!irte || !dev) 387 return -1; 388 389 data.count = 0; 390 data.busmatch_count = 0; 391 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data); 392 393 /* 394 * DMA alias provides us with a PCI device and alias. The only case 395 * where the it will return an alias on a different bus than the 396 * device is the case of a PCIe-to-PCI bridge, where the alias is for 397 * the subordinate bus. In this case we can only verify the bus. 398 * 399 * If there are multiple aliases, all with the same bus number, 400 * then all we can do is verify the bus. This is typical in NTB 401 * hardware which use proxy IDs where the device will generate traffic 402 * from multiple devfn numbers on the same bus. 403 * 404 * If the alias device is on a different bus than our source device 405 * then we have a topology based alias, use it. 406 * 407 * Otherwise, the alias is for a device DMA quirk and we cannot 408 * assume that MSI uses the same requester ID. Therefore use the 409 * original device. 410 */ 411 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number) 412 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias), 413 dev->bus->number); 414 else if (data.count >= 2 && data.busmatch_count == data.count) 415 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number); 416 else if (data.pdev->bus->number != dev->bus->number) 417 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias); 418 else 419 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, 420 pci_dev_id(dev)); 421 422 return 0; 423 } 424 425 static int iommu_load_old_irte(struct intel_iommu *iommu) 426 { 427 struct irte *old_ir_table; 428 phys_addr_t irt_phys; 429 unsigned int i; 430 size_t size; 431 u64 irta; 432 433 /* Check whether the old ir-table has the same size as ours */ 434 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG); 435 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK) 436 != INTR_REMAP_TABLE_REG_SIZE) 437 return -EINVAL; 438 439 irt_phys = irta & VTD_PAGE_MASK; 440 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte); 441 442 /* Map the old IR table */ 443 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB); 444 if (!old_ir_table) 445 return -ENOMEM; 446 447 /* Copy data over */ 448 memcpy(iommu->ir_table->base, old_ir_table, size); 449 450 __iommu_flush_cache(iommu, iommu->ir_table->base, size); 451 452 /* 453 * Now check the table for used entries and mark those as 454 * allocated in the bitmap 455 */ 456 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) { 457 if (iommu->ir_table->base[i].present) 458 bitmap_set(iommu->ir_table->bitmap, i, 1); 459 } 460 461 memunmap(old_ir_table); 462 463 return 0; 464 } 465 466 467 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode) 468 { 469 unsigned long flags; 470 u64 addr; 471 u32 sts; 472 473 addr = virt_to_phys((void *)iommu->ir_table->base); 474 475 raw_spin_lock_irqsave(&iommu->register_lock, flags); 476 477 dmar_writeq(iommu->reg + DMAR_IRTA_REG, 478 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); 479 480 /* Set interrupt-remapping table pointer */ 481 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG); 482 483 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 484 readl, (sts & DMA_GSTS_IRTPS), sts); 485 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 486 487 /* 488 * Global invalidation of interrupt entry cache to make sure the 489 * hardware uses the new irq remapping table. 490 */ 491 if (!cap_esirtps(iommu->cap)) 492 qi_global_iec(iommu); 493 } 494 495 static void iommu_enable_irq_remapping(struct intel_iommu *iommu) 496 { 497 unsigned long flags; 498 u32 sts; 499 500 raw_spin_lock_irqsave(&iommu->register_lock, flags); 501 502 /* Enable interrupt-remapping */ 503 iommu->gcmd |= DMA_GCMD_IRE; 504 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 505 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 506 readl, (sts & DMA_GSTS_IRES), sts); 507 508 /* Block compatibility-format MSIs */ 509 if (sts & DMA_GSTS_CFIS) { 510 iommu->gcmd &= ~DMA_GCMD_CFI; 511 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 512 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 513 readl, !(sts & DMA_GSTS_CFIS), sts); 514 } 515 516 /* 517 * With CFI clear in the Global Command register, we should be 518 * protected from dangerous (i.e. compatibility) interrupts 519 * regardless of x2apic status. Check just to be sure. 520 */ 521 if (sts & DMA_GSTS_CFIS) 522 WARN(1, KERN_WARNING 523 "Compatibility-format IRQs enabled despite intr remapping;\n" 524 "you are vulnerable to IRQ injection.\n"); 525 526 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 527 } 528 529 static int intel_setup_irq_remapping(struct intel_iommu *iommu) 530 { 531 struct ir_table *ir_table; 532 struct fwnode_handle *fn; 533 unsigned long *bitmap; 534 struct page *pages; 535 536 if (iommu->ir_table) 537 return 0; 538 539 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL); 540 if (!ir_table) 541 return -ENOMEM; 542 543 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO, 544 INTR_REMAP_PAGE_ORDER); 545 if (!pages) { 546 pr_err("IR%d: failed to allocate pages of order %d\n", 547 iommu->seq_id, INTR_REMAP_PAGE_ORDER); 548 goto out_free_table; 549 } 550 551 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC); 552 if (bitmap == NULL) { 553 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id); 554 goto out_free_pages; 555 } 556 557 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id); 558 if (!fn) 559 goto out_free_bitmap; 560 561 iommu->ir_domain = 562 irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 563 0, INTR_REMAP_TABLE_ENTRIES, 564 fn, &intel_ir_domain_ops, 565 iommu); 566 if (!iommu->ir_domain) { 567 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id); 568 goto out_free_fwnode; 569 } 570 571 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_DMAR); 572 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT | 573 IRQ_DOMAIN_FLAG_ISOLATED_MSI; 574 575 if (cap_caching_mode(iommu->cap)) 576 iommu->ir_domain->msi_parent_ops = &virt_dmar_msi_parent_ops; 577 else 578 iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops; 579 580 ir_table->base = page_address(pages); 581 ir_table->bitmap = bitmap; 582 iommu->ir_table = ir_table; 583 584 /* 585 * If the queued invalidation is already initialized, 586 * shouldn't disable it. 587 */ 588 if (!iommu->qi) { 589 /* 590 * Clear previous faults. 591 */ 592 dmar_fault(-1, iommu); 593 dmar_disable_qi(iommu); 594 595 if (dmar_enable_qi(iommu)) { 596 pr_err("Failed to enable queued invalidation\n"); 597 goto out_free_ir_domain; 598 } 599 } 600 601 init_ir_status(iommu); 602 603 if (ir_pre_enabled(iommu)) { 604 if (!is_kdump_kernel()) { 605 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n", 606 iommu->name); 607 clear_ir_pre_enabled(iommu); 608 iommu_disable_irq_remapping(iommu); 609 } else if (iommu_load_old_irte(iommu)) 610 pr_err("Failed to copy IR table for %s from previous kernel\n", 611 iommu->name); 612 else 613 pr_info("Copied IR table for %s from previous kernel\n", 614 iommu->name); 615 } 616 617 iommu_set_irq_remapping(iommu, eim_mode); 618 619 return 0; 620 621 out_free_ir_domain: 622 irq_domain_remove(iommu->ir_domain); 623 iommu->ir_domain = NULL; 624 out_free_fwnode: 625 irq_domain_free_fwnode(fn); 626 out_free_bitmap: 627 bitmap_free(bitmap); 628 out_free_pages: 629 __free_pages(pages, INTR_REMAP_PAGE_ORDER); 630 out_free_table: 631 kfree(ir_table); 632 633 iommu->ir_table = NULL; 634 635 return -ENOMEM; 636 } 637 638 static void intel_teardown_irq_remapping(struct intel_iommu *iommu) 639 { 640 struct fwnode_handle *fn; 641 642 if (iommu && iommu->ir_table) { 643 if (iommu->ir_domain) { 644 fn = iommu->ir_domain->fwnode; 645 646 irq_domain_remove(iommu->ir_domain); 647 irq_domain_free_fwnode(fn); 648 iommu->ir_domain = NULL; 649 } 650 free_pages((unsigned long)iommu->ir_table->base, 651 INTR_REMAP_PAGE_ORDER); 652 bitmap_free(iommu->ir_table->bitmap); 653 kfree(iommu->ir_table); 654 iommu->ir_table = NULL; 655 } 656 } 657 658 /* 659 * Disable Interrupt Remapping. 660 */ 661 static void iommu_disable_irq_remapping(struct intel_iommu *iommu) 662 { 663 unsigned long flags; 664 u32 sts; 665 666 if (!ecap_ir_support(iommu->ecap)) 667 return; 668 669 /* 670 * global invalidation of interrupt entry cache before disabling 671 * interrupt-remapping. 672 */ 673 if (!cap_esirtps(iommu->cap)) 674 qi_global_iec(iommu); 675 676 raw_spin_lock_irqsave(&iommu->register_lock, flags); 677 678 sts = readl(iommu->reg + DMAR_GSTS_REG); 679 if (!(sts & DMA_GSTS_IRES)) 680 goto end; 681 682 iommu->gcmd &= ~DMA_GCMD_IRE; 683 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 684 685 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 686 readl, !(sts & DMA_GSTS_IRES), sts); 687 688 end: 689 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 690 } 691 692 static int __init dmar_x2apic_optout(void) 693 { 694 struct acpi_table_dmar *dmar; 695 dmar = (struct acpi_table_dmar *)dmar_tbl; 696 if (!dmar || no_x2apic_optout) 697 return 0; 698 return dmar->flags & DMAR_X2APIC_OPT_OUT; 699 } 700 701 static void __init intel_cleanup_irq_remapping(void) 702 { 703 struct dmar_drhd_unit *drhd; 704 struct intel_iommu *iommu; 705 706 for_each_iommu(iommu, drhd) { 707 if (ecap_ir_support(iommu->ecap)) { 708 iommu_disable_irq_remapping(iommu); 709 intel_teardown_irq_remapping(iommu); 710 } 711 } 712 713 if (x2apic_supported()) 714 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n"); 715 } 716 717 static int __init intel_prepare_irq_remapping(void) 718 { 719 struct dmar_drhd_unit *drhd; 720 struct intel_iommu *iommu; 721 int eim = 0; 722 723 if (irq_remap_broken) { 724 pr_warn("This system BIOS has enabled interrupt remapping\n" 725 "on a chipset that contains an erratum making that\n" 726 "feature unstable. To maintain system stability\n" 727 "interrupt remapping is being disabled. Please\n" 728 "contact your BIOS vendor for an update\n"); 729 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 730 return -ENODEV; 731 } 732 733 if (dmar_table_init() < 0) 734 return -ENODEV; 735 736 if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL)) 737 return -ENODEV; 738 739 if (!dmar_ir_support()) 740 return -ENODEV; 741 742 if (parse_ioapics_under_ir()) { 743 pr_info("Not enabling interrupt remapping\n"); 744 goto error; 745 } 746 747 /* First make sure all IOMMUs support IRQ remapping */ 748 for_each_iommu(iommu, drhd) 749 if (!ecap_ir_support(iommu->ecap)) 750 goto error; 751 752 /* Detect remapping mode: lapic or x2apic */ 753 if (x2apic_supported()) { 754 eim = !dmar_x2apic_optout(); 755 if (!eim) { 756 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit."); 757 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n"); 758 } 759 } 760 761 for_each_iommu(iommu, drhd) { 762 if (eim && !ecap_eim_support(iommu->ecap)) { 763 pr_info("%s does not support EIM\n", iommu->name); 764 eim = 0; 765 } 766 } 767 768 eim_mode = eim; 769 if (eim) 770 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n"); 771 772 /* Do the initializations early */ 773 for_each_iommu(iommu, drhd) { 774 if (intel_setup_irq_remapping(iommu)) { 775 pr_err("Failed to setup irq remapping for %s\n", 776 iommu->name); 777 goto error; 778 } 779 } 780 781 return 0; 782 783 error: 784 intel_cleanup_irq_remapping(); 785 return -ENODEV; 786 } 787 788 /* 789 * Set Posted-Interrupts capability. 790 */ 791 static inline void set_irq_posting_cap(void) 792 { 793 struct dmar_drhd_unit *drhd; 794 struct intel_iommu *iommu; 795 796 if (!disable_irq_post) { 797 /* 798 * If IRTE is in posted format, the 'pda' field goes across the 799 * 64-bit boundary, we need use cmpxchg16b to atomically update 800 * it. We only expose posted-interrupt when X86_FEATURE_CX16 801 * is supported. Actually, hardware platforms supporting PI 802 * should have X86_FEATURE_CX16 support, this has been confirmed 803 * with Intel hardware guys. 804 */ 805 if (boot_cpu_has(X86_FEATURE_CX16)) 806 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP; 807 808 for_each_iommu(iommu, drhd) 809 if (!cap_pi_support(iommu->cap)) { 810 intel_irq_remap_ops.capability &= 811 ~(1 << IRQ_POSTING_CAP); 812 break; 813 } 814 } 815 } 816 817 static int __init intel_enable_irq_remapping(void) 818 { 819 struct dmar_drhd_unit *drhd; 820 struct intel_iommu *iommu; 821 bool setup = false; 822 823 /* 824 * Setup Interrupt-remapping for all the DRHD's now. 825 */ 826 for_each_iommu(iommu, drhd) { 827 if (!ir_pre_enabled(iommu)) 828 iommu_enable_irq_remapping(iommu); 829 setup = true; 830 } 831 832 if (!setup) 833 goto error; 834 835 irq_remapping_enabled = 1; 836 837 set_irq_posting_cap(); 838 839 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic"); 840 841 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE; 842 843 error: 844 intel_cleanup_irq_remapping(); 845 return -1; 846 } 847 848 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope, 849 struct intel_iommu *iommu, 850 struct acpi_dmar_hardware_unit *drhd) 851 { 852 struct acpi_dmar_pci_path *path; 853 u8 bus; 854 int count, free = -1; 855 856 bus = scope->bus; 857 path = (struct acpi_dmar_pci_path *)(scope + 1); 858 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 859 / sizeof(struct acpi_dmar_pci_path); 860 861 while (--count > 0) { 862 /* 863 * Access PCI directly due to the PCI 864 * subsystem isn't initialized yet. 865 */ 866 bus = read_pci_config_byte(bus, path->device, path->function, 867 PCI_SECONDARY_BUS); 868 path++; 869 } 870 871 for (count = 0; count < MAX_HPET_TBS; count++) { 872 if (ir_hpet[count].iommu == iommu && 873 ir_hpet[count].id == scope->enumeration_id) 874 return 0; 875 else if (ir_hpet[count].iommu == NULL && free == -1) 876 free = count; 877 } 878 if (free == -1) { 879 pr_warn("Exceeded Max HPET blocks\n"); 880 return -ENOSPC; 881 } 882 883 ir_hpet[free].iommu = iommu; 884 ir_hpet[free].id = scope->enumeration_id; 885 ir_hpet[free].bus = bus; 886 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function); 887 pr_info("HPET id %d under DRHD base 0x%Lx\n", 888 scope->enumeration_id, drhd->address); 889 890 return 0; 891 } 892 893 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope, 894 struct intel_iommu *iommu, 895 struct acpi_dmar_hardware_unit *drhd) 896 { 897 struct acpi_dmar_pci_path *path; 898 u8 bus; 899 int count, free = -1; 900 901 bus = scope->bus; 902 path = (struct acpi_dmar_pci_path *)(scope + 1); 903 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 904 / sizeof(struct acpi_dmar_pci_path); 905 906 while (--count > 0) { 907 /* 908 * Access PCI directly due to the PCI 909 * subsystem isn't initialized yet. 910 */ 911 bus = read_pci_config_byte(bus, path->device, path->function, 912 PCI_SECONDARY_BUS); 913 path++; 914 } 915 916 for (count = 0; count < MAX_IO_APICS; count++) { 917 if (ir_ioapic[count].iommu == iommu && 918 ir_ioapic[count].id == scope->enumeration_id) 919 return 0; 920 else if (ir_ioapic[count].iommu == NULL && free == -1) 921 free = count; 922 } 923 if (free == -1) { 924 pr_warn("Exceeded Max IO APICS\n"); 925 return -ENOSPC; 926 } 927 928 ir_ioapic[free].bus = bus; 929 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function); 930 ir_ioapic[free].iommu = iommu; 931 ir_ioapic[free].id = scope->enumeration_id; 932 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n", 933 scope->enumeration_id, drhd->address, iommu->seq_id); 934 935 return 0; 936 } 937 938 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header, 939 struct intel_iommu *iommu) 940 { 941 int ret = 0; 942 struct acpi_dmar_hardware_unit *drhd; 943 struct acpi_dmar_device_scope *scope; 944 void *start, *end; 945 946 drhd = (struct acpi_dmar_hardware_unit *)header; 947 start = (void *)(drhd + 1); 948 end = ((void *)drhd) + header->length; 949 950 while (start < end && ret == 0) { 951 scope = start; 952 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) 953 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd); 954 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) 955 ret = ir_parse_one_hpet_scope(scope, iommu, drhd); 956 start += scope->length; 957 } 958 959 return ret; 960 } 961 962 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu) 963 { 964 int i; 965 966 for (i = 0; i < MAX_HPET_TBS; i++) 967 if (ir_hpet[i].iommu == iommu) 968 ir_hpet[i].iommu = NULL; 969 970 for (i = 0; i < MAX_IO_APICS; i++) 971 if (ir_ioapic[i].iommu == iommu) 972 ir_ioapic[i].iommu = NULL; 973 } 974 975 /* 976 * Finds the assocaition between IOAPIC's and its Interrupt-remapping 977 * hardware unit. 978 */ 979 static int __init parse_ioapics_under_ir(void) 980 { 981 struct dmar_drhd_unit *drhd; 982 struct intel_iommu *iommu; 983 bool ir_supported = false; 984 int ioapic_idx; 985 986 for_each_iommu(iommu, drhd) { 987 int ret; 988 989 if (!ecap_ir_support(iommu->ecap)) 990 continue; 991 992 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu); 993 if (ret) 994 return ret; 995 996 ir_supported = true; 997 } 998 999 if (!ir_supported) 1000 return -ENODEV; 1001 1002 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) { 1003 int ioapic_id = mpc_ioapic_id(ioapic_idx); 1004 if (!map_ioapic_to_iommu(ioapic_id)) { 1005 pr_err(FW_BUG "ioapic %d has no mapping iommu, " 1006 "interrupt remapping will be disabled\n", 1007 ioapic_id); 1008 return -1; 1009 } 1010 } 1011 1012 return 0; 1013 } 1014 1015 static int __init ir_dev_scope_init(void) 1016 { 1017 int ret; 1018 1019 if (!irq_remapping_enabled) 1020 return 0; 1021 1022 down_write(&dmar_global_lock); 1023 ret = dmar_dev_scope_init(); 1024 up_write(&dmar_global_lock); 1025 1026 return ret; 1027 } 1028 rootfs_initcall(ir_dev_scope_init); 1029 1030 static void disable_irq_remapping(void) 1031 { 1032 struct dmar_drhd_unit *drhd; 1033 struct intel_iommu *iommu = NULL; 1034 1035 /* 1036 * Disable Interrupt-remapping for all the DRHD's now. 1037 */ 1038 for_each_iommu(iommu, drhd) { 1039 if (!ecap_ir_support(iommu->ecap)) 1040 continue; 1041 1042 iommu_disable_irq_remapping(iommu); 1043 } 1044 1045 /* 1046 * Clear Posted-Interrupts capability. 1047 */ 1048 if (!disable_irq_post) 1049 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP); 1050 } 1051 1052 static int reenable_irq_remapping(int eim) 1053 { 1054 struct dmar_drhd_unit *drhd; 1055 bool setup = false; 1056 struct intel_iommu *iommu = NULL; 1057 1058 for_each_iommu(iommu, drhd) 1059 if (iommu->qi) 1060 dmar_reenable_qi(iommu); 1061 1062 /* 1063 * Setup Interrupt-remapping for all the DRHD's now. 1064 */ 1065 for_each_iommu(iommu, drhd) { 1066 if (!ecap_ir_support(iommu->ecap)) 1067 continue; 1068 1069 /* Set up interrupt remapping for iommu.*/ 1070 iommu_set_irq_remapping(iommu, eim); 1071 iommu_enable_irq_remapping(iommu); 1072 setup = true; 1073 } 1074 1075 if (!setup) 1076 goto error; 1077 1078 set_irq_posting_cap(); 1079 1080 return 0; 1081 1082 error: 1083 /* 1084 * handle error condition gracefully here! 1085 */ 1086 return -1; 1087 } 1088 1089 /* 1090 * Store the MSI remapping domain pointer in the device if enabled. 1091 * 1092 * This is called from dmar_pci_bus_add_dev() so it works even when DMA 1093 * remapping is disabled. Only update the pointer if the device is not 1094 * already handled by a non default PCI/MSI interrupt domain. This protects 1095 * e.g. VMD devices. 1096 */ 1097 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info) 1098 { 1099 if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev)) 1100 return; 1101 1102 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev)); 1103 } 1104 1105 static void prepare_irte(struct irte *irte, int vector, unsigned int dest) 1106 { 1107 memset(irte, 0, sizeof(*irte)); 1108 1109 irte->present = 1; 1110 irte->dst_mode = apic->dest_mode_logical; 1111 /* 1112 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the 1113 * actual level or edge trigger will be setup in the IO-APIC 1114 * RTE. This will help simplify level triggered irq migration. 1115 * For more details, see the comments (in io_apic.c) explainig IO-APIC 1116 * irq migration in the presence of interrupt-remapping. 1117 */ 1118 irte->trigger_mode = 0; 1119 irte->dlvry_mode = apic->delivery_mode; 1120 irte->vector = vector; 1121 irte->dest_id = IRTE_DEST(dest); 1122 irte->redir_hint = 1; 1123 } 1124 1125 struct irq_remap_ops intel_irq_remap_ops = { 1126 .prepare = intel_prepare_irq_remapping, 1127 .enable = intel_enable_irq_remapping, 1128 .disable = disable_irq_remapping, 1129 .reenable = reenable_irq_remapping, 1130 .enable_faulting = enable_drhd_fault_handling, 1131 }; 1132 1133 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force) 1134 { 1135 struct intel_ir_data *ir_data = irqd->chip_data; 1136 struct irte *irte = &ir_data->irte_entry; 1137 struct irq_cfg *cfg = irqd_cfg(irqd); 1138 1139 /* 1140 * Atomically updates the IRTE with the new destination, vector 1141 * and flushes the interrupt entry cache. 1142 */ 1143 irte->vector = cfg->vector; 1144 irte->dest_id = IRTE_DEST(cfg->dest_apicid); 1145 1146 /* Update the hardware only if the interrupt is in remapped mode. */ 1147 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING) 1148 modify_irte(&ir_data->irq_2_iommu, irte); 1149 } 1150 1151 /* 1152 * Migrate the IO-APIC irq in the presence of intr-remapping. 1153 * 1154 * For both level and edge triggered, irq migration is a simple atomic 1155 * update(of vector and cpu destination) of IRTE and flush the hardware cache. 1156 * 1157 * For level triggered, we eliminate the io-apic RTE modification (with the 1158 * updated vector information), by using a virtual vector (io-apic pin number). 1159 * Real vector that is used for interrupting cpu will be coming from 1160 * the interrupt-remapping table entry. 1161 * 1162 * As the migration is a simple atomic update of IRTE, the same mechanism 1163 * is used to migrate MSI irq's in the presence of interrupt-remapping. 1164 */ 1165 static int 1166 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask, 1167 bool force) 1168 { 1169 struct irq_data *parent = data->parent_data; 1170 struct irq_cfg *cfg = irqd_cfg(data); 1171 int ret; 1172 1173 ret = parent->chip->irq_set_affinity(parent, mask, force); 1174 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 1175 return ret; 1176 1177 intel_ir_reconfigure_irte(data, false); 1178 /* 1179 * After this point, all the interrupts will start arriving 1180 * at the new destination. So, time to cleanup the previous 1181 * vector allocation. 1182 */ 1183 send_cleanup_vector(cfg); 1184 1185 return IRQ_SET_MASK_OK_DONE; 1186 } 1187 1188 static void intel_ir_compose_msi_msg(struct irq_data *irq_data, 1189 struct msi_msg *msg) 1190 { 1191 struct intel_ir_data *ir_data = irq_data->chip_data; 1192 1193 *msg = ir_data->msi_entry; 1194 } 1195 1196 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info) 1197 { 1198 struct intel_ir_data *ir_data = data->chip_data; 1199 struct vcpu_data *vcpu_pi_info = info; 1200 1201 /* stop posting interrupts, back to remapping mode */ 1202 if (!vcpu_pi_info) { 1203 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry); 1204 } else { 1205 struct irte irte_pi; 1206 1207 /* 1208 * We are not caching the posted interrupt entry. We 1209 * copy the data from the remapped entry and modify 1210 * the fields which are relevant for posted mode. The 1211 * cached remapped entry is used for switching back to 1212 * remapped mode. 1213 */ 1214 memset(&irte_pi, 0, sizeof(irte_pi)); 1215 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry); 1216 1217 /* Update the posted mode fields */ 1218 irte_pi.p_pst = 1; 1219 irte_pi.p_urgent = 0; 1220 irte_pi.p_vector = vcpu_pi_info->vector; 1221 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >> 1222 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT); 1223 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) & 1224 ~(-1UL << PDA_HIGH_BIT); 1225 1226 modify_irte(&ir_data->irq_2_iommu, &irte_pi); 1227 } 1228 1229 return 0; 1230 } 1231 1232 static struct irq_chip intel_ir_chip = { 1233 .name = "INTEL-IR", 1234 .irq_ack = apic_ack_irq, 1235 .irq_set_affinity = intel_ir_set_affinity, 1236 .irq_compose_msi_msg = intel_ir_compose_msi_msg, 1237 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity, 1238 }; 1239 1240 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle) 1241 { 1242 memset(msg, 0, sizeof(*msg)); 1243 1244 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW; 1245 msg->arch_addr_lo.dmar_subhandle_valid = true; 1246 msg->arch_addr_lo.dmar_format = true; 1247 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF; 1248 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000); 1249 1250 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 1251 1252 msg->arch_data.dmar_subhandle = subhandle; 1253 } 1254 1255 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data, 1256 struct irq_cfg *irq_cfg, 1257 struct irq_alloc_info *info, 1258 int index, int sub_handle) 1259 { 1260 struct irte *irte = &data->irte_entry; 1261 1262 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid); 1263 1264 switch (info->type) { 1265 case X86_IRQ_ALLOC_TYPE_IOAPIC: 1266 /* Set source-id of interrupt request */ 1267 set_ioapic_sid(irte, info->devid); 1268 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n", 1269 info->devid, irte->present, irte->fpd, 1270 irte->dst_mode, irte->redir_hint, 1271 irte->trigger_mode, irte->dlvry_mode, 1272 irte->avail, irte->vector, irte->dest_id, 1273 irte->sid, irte->sq, irte->svt); 1274 sub_handle = info->ioapic.pin; 1275 break; 1276 case X86_IRQ_ALLOC_TYPE_HPET: 1277 set_hpet_sid(irte, info->devid); 1278 break; 1279 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 1280 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 1281 set_msi_sid(irte, 1282 pci_real_dma_dev(msi_desc_to_pci_dev(info->desc))); 1283 break; 1284 default: 1285 BUG_ON(1); 1286 break; 1287 } 1288 fill_msi_msg(&data->msi_entry, index, sub_handle); 1289 } 1290 1291 static void intel_free_irq_resources(struct irq_domain *domain, 1292 unsigned int virq, unsigned int nr_irqs) 1293 { 1294 struct irq_data *irq_data; 1295 struct intel_ir_data *data; 1296 struct irq_2_iommu *irq_iommu; 1297 unsigned long flags; 1298 int i; 1299 for (i = 0; i < nr_irqs; i++) { 1300 irq_data = irq_domain_get_irq_data(domain, virq + i); 1301 if (irq_data && irq_data->chip_data) { 1302 data = irq_data->chip_data; 1303 irq_iommu = &data->irq_2_iommu; 1304 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 1305 clear_entries(irq_iommu); 1306 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 1307 irq_domain_reset_irq_data(irq_data); 1308 kfree(data); 1309 } 1310 } 1311 } 1312 1313 static int intel_irq_remapping_alloc(struct irq_domain *domain, 1314 unsigned int virq, unsigned int nr_irqs, 1315 void *arg) 1316 { 1317 struct intel_iommu *iommu = domain->host_data; 1318 struct irq_alloc_info *info = arg; 1319 struct intel_ir_data *data, *ird; 1320 struct irq_data *irq_data; 1321 struct irq_cfg *irq_cfg; 1322 int i, ret, index; 1323 1324 if (!info || !iommu) 1325 return -EINVAL; 1326 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI) 1327 return -EINVAL; 1328 1329 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 1330 if (ret < 0) 1331 return ret; 1332 1333 ret = -ENOMEM; 1334 data = kzalloc(sizeof(*data), GFP_KERNEL); 1335 if (!data) 1336 goto out_free_parent; 1337 1338 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs); 1339 if (index < 0) { 1340 pr_warn("Failed to allocate IRTE\n"); 1341 kfree(data); 1342 goto out_free_parent; 1343 } 1344 1345 for (i = 0; i < nr_irqs; i++) { 1346 irq_data = irq_domain_get_irq_data(domain, virq + i); 1347 irq_cfg = irqd_cfg(irq_data); 1348 if (!irq_data || !irq_cfg) { 1349 if (!i) 1350 kfree(data); 1351 ret = -EINVAL; 1352 goto out_free_data; 1353 } 1354 1355 if (i > 0) { 1356 ird = kzalloc(sizeof(*ird), GFP_KERNEL); 1357 if (!ird) 1358 goto out_free_data; 1359 /* Initialize the common data */ 1360 ird->irq_2_iommu = data->irq_2_iommu; 1361 ird->irq_2_iommu.sub_handle = i; 1362 } else { 1363 ird = data; 1364 } 1365 1366 irq_data->hwirq = (index << 16) + i; 1367 irq_data->chip_data = ird; 1368 irq_data->chip = &intel_ir_chip; 1369 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i); 1370 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 1371 } 1372 return 0; 1373 1374 out_free_data: 1375 intel_free_irq_resources(domain, virq, i); 1376 out_free_parent: 1377 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1378 return ret; 1379 } 1380 1381 static void intel_irq_remapping_free(struct irq_domain *domain, 1382 unsigned int virq, unsigned int nr_irqs) 1383 { 1384 intel_free_irq_resources(domain, virq, nr_irqs); 1385 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1386 } 1387 1388 static int intel_irq_remapping_activate(struct irq_domain *domain, 1389 struct irq_data *irq_data, bool reserve) 1390 { 1391 intel_ir_reconfigure_irte(irq_data, true); 1392 return 0; 1393 } 1394 1395 static void intel_irq_remapping_deactivate(struct irq_domain *domain, 1396 struct irq_data *irq_data) 1397 { 1398 struct intel_ir_data *data = irq_data->chip_data; 1399 struct irte entry; 1400 1401 memset(&entry, 0, sizeof(entry)); 1402 modify_irte(&data->irq_2_iommu, &entry); 1403 } 1404 1405 static int intel_irq_remapping_select(struct irq_domain *d, 1406 struct irq_fwspec *fwspec, 1407 enum irq_domain_bus_token bus_token) 1408 { 1409 struct intel_iommu *iommu = NULL; 1410 1411 if (x86_fwspec_is_ioapic(fwspec)) 1412 iommu = map_ioapic_to_iommu(fwspec->param[0]); 1413 else if (x86_fwspec_is_hpet(fwspec)) 1414 iommu = map_hpet_to_iommu(fwspec->param[0]); 1415 1416 return iommu && d == iommu->ir_domain; 1417 } 1418 1419 static const struct irq_domain_ops intel_ir_domain_ops = { 1420 .select = intel_irq_remapping_select, 1421 .alloc = intel_irq_remapping_alloc, 1422 .free = intel_irq_remapping_free, 1423 .activate = intel_irq_remapping_activate, 1424 .deactivate = intel_irq_remapping_deactivate, 1425 }; 1426 1427 static const struct msi_parent_ops dmar_msi_parent_ops = { 1428 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | 1429 MSI_FLAG_MULTI_PCI_MSI | 1430 MSI_FLAG_PCI_IMS, 1431 .prefix = "IR-", 1432 .init_dev_msi_info = msi_parent_init_dev_msi_info, 1433 }; 1434 1435 static const struct msi_parent_ops virt_dmar_msi_parent_ops = { 1436 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | 1437 MSI_FLAG_MULTI_PCI_MSI, 1438 .prefix = "vIR-", 1439 .init_dev_msi_info = msi_parent_init_dev_msi_info, 1440 }; 1441 1442 /* 1443 * Support of Interrupt Remapping Unit Hotplug 1444 */ 1445 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu) 1446 { 1447 int ret; 1448 int eim = x2apic_enabled(); 1449 1450 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu); 1451 if (ret) 1452 return ret; 1453 1454 if (eim && !ecap_eim_support(iommu->ecap)) { 1455 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n", 1456 iommu->reg_phys, iommu->ecap); 1457 return -ENODEV; 1458 } 1459 1460 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) { 1461 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n", 1462 iommu->reg_phys); 1463 return -ENODEV; 1464 } 1465 1466 /* TODO: check all IOAPICs are covered by IOMMU */ 1467 1468 /* Setup Interrupt-remapping now. */ 1469 ret = intel_setup_irq_remapping(iommu); 1470 if (ret) { 1471 pr_err("Failed to setup irq remapping for %s\n", 1472 iommu->name); 1473 intel_teardown_irq_remapping(iommu); 1474 ir_remove_ioapic_hpet_scope(iommu); 1475 } else { 1476 iommu_enable_irq_remapping(iommu); 1477 } 1478 1479 return ret; 1480 } 1481 1482 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 1483 { 1484 int ret = 0; 1485 struct intel_iommu *iommu = dmaru->iommu; 1486 1487 if (!irq_remapping_enabled) 1488 return 0; 1489 if (iommu == NULL) 1490 return -EINVAL; 1491 if (!ecap_ir_support(iommu->ecap)) 1492 return 0; 1493 if (irq_remapping_cap(IRQ_POSTING_CAP) && 1494 !cap_pi_support(iommu->cap)) 1495 return -EBUSY; 1496 1497 if (insert) { 1498 if (!iommu->ir_table) 1499 ret = dmar_ir_add(dmaru, iommu); 1500 } else { 1501 if (iommu->ir_table) { 1502 if (!bitmap_empty(iommu->ir_table->bitmap, 1503 INTR_REMAP_TABLE_ENTRIES)) { 1504 ret = -EBUSY; 1505 } else { 1506 iommu_disable_irq_remapping(iommu); 1507 intel_teardown_irq_remapping(iommu); 1508 ir_remove_ioapic_hpet_scope(iommu); 1509 } 1510 } 1511 } 1512 1513 return ret; 1514 } 1515