1 // SPDX-License-Identifier: GPL-2.0 2 3 #define pr_fmt(fmt) "DMAR-IR: " fmt 4 5 #include <linux/interrupt.h> 6 #include <linux/dmar.h> 7 #include <linux/spinlock.h> 8 #include <linux/slab.h> 9 #include <linux/jiffies.h> 10 #include <linux/hpet.h> 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/intel-iommu.h> 14 #include <linux/acpi.h> 15 #include <linux/irqdomain.h> 16 #include <linux/crash_dump.h> 17 #include <asm/io_apic.h> 18 #include <asm/apic.h> 19 #include <asm/smp.h> 20 #include <asm/cpu.h> 21 #include <asm/irq_remapping.h> 22 #include <asm/pci-direct.h> 23 24 #include "../irq_remapping.h" 25 26 enum irq_mode { 27 IRQ_REMAPPING, 28 IRQ_POSTING, 29 }; 30 31 struct ioapic_scope { 32 struct intel_iommu *iommu; 33 unsigned int id; 34 unsigned int bus; /* PCI bus number */ 35 unsigned int devfn; /* PCI devfn number */ 36 }; 37 38 struct hpet_scope { 39 struct intel_iommu *iommu; 40 u8 id; 41 unsigned int bus; 42 unsigned int devfn; 43 }; 44 45 struct irq_2_iommu { 46 struct intel_iommu *iommu; 47 u16 irte_index; 48 u16 sub_handle; 49 u8 irte_mask; 50 enum irq_mode mode; 51 }; 52 53 struct intel_ir_data { 54 struct irq_2_iommu irq_2_iommu; 55 struct irte irte_entry; 56 union { 57 struct msi_msg msi_entry; 58 }; 59 }; 60 61 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0) 62 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8) 63 64 static int __read_mostly eim_mode; 65 static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; 66 static struct hpet_scope ir_hpet[MAX_HPET_TBS]; 67 68 /* 69 * Lock ordering: 70 * ->dmar_global_lock 71 * ->irq_2_ir_lock 72 * ->qi->q_lock 73 * ->iommu->register_lock 74 * Note: 75 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called 76 * in single-threaded environment with interrupt disabled, so no need to tabke 77 * the dmar_global_lock. 78 */ 79 DEFINE_RAW_SPINLOCK(irq_2_ir_lock); 80 static const struct irq_domain_ops intel_ir_domain_ops; 81 82 static void iommu_disable_irq_remapping(struct intel_iommu *iommu); 83 static int __init parse_ioapics_under_ir(void); 84 85 static bool ir_pre_enabled(struct intel_iommu *iommu) 86 { 87 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED); 88 } 89 90 static void clear_ir_pre_enabled(struct intel_iommu *iommu) 91 { 92 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 93 } 94 95 static void init_ir_status(struct intel_iommu *iommu) 96 { 97 u32 gsts; 98 99 gsts = readl(iommu->reg + DMAR_GSTS_REG); 100 if (gsts & DMA_GSTS_IRES) 101 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 102 } 103 104 static int alloc_irte(struct intel_iommu *iommu, 105 struct irq_2_iommu *irq_iommu, u16 count) 106 { 107 struct ir_table *table = iommu->ir_table; 108 unsigned int mask = 0; 109 unsigned long flags; 110 int index; 111 112 if (!count || !irq_iommu) 113 return -1; 114 115 if (count > 1) { 116 count = __roundup_pow_of_two(count); 117 mask = ilog2(count); 118 } 119 120 if (mask > ecap_max_handle_mask(iommu->ecap)) { 121 pr_err("Requested mask %x exceeds the max invalidation handle" 122 " mask value %Lx\n", mask, 123 ecap_max_handle_mask(iommu->ecap)); 124 return -1; 125 } 126 127 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 128 index = bitmap_find_free_region(table->bitmap, 129 INTR_REMAP_TABLE_ENTRIES, mask); 130 if (index < 0) { 131 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id); 132 } else { 133 irq_iommu->iommu = iommu; 134 irq_iommu->irte_index = index; 135 irq_iommu->sub_handle = 0; 136 irq_iommu->irte_mask = mask; 137 irq_iommu->mode = IRQ_REMAPPING; 138 } 139 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 140 141 return index; 142 } 143 144 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) 145 { 146 struct qi_desc desc; 147 148 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) 149 | QI_IEC_SELECTIVE; 150 desc.qw1 = 0; 151 desc.qw2 = 0; 152 desc.qw3 = 0; 153 154 return qi_submit_sync(iommu, &desc, 1, 0); 155 } 156 157 static int modify_irte(struct irq_2_iommu *irq_iommu, 158 struct irte *irte_modified) 159 { 160 struct intel_iommu *iommu; 161 unsigned long flags; 162 struct irte *irte; 163 int rc, index; 164 165 if (!irq_iommu) 166 return -1; 167 168 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 169 170 iommu = irq_iommu->iommu; 171 172 index = irq_iommu->irte_index + irq_iommu->sub_handle; 173 irte = &iommu->ir_table->base[index]; 174 175 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) 176 if ((irte->pst == 1) || (irte_modified->pst == 1)) { 177 bool ret; 178 179 ret = cmpxchg_double(&irte->low, &irte->high, 180 irte->low, irte->high, 181 irte_modified->low, irte_modified->high); 182 /* 183 * We use cmpxchg16 to atomically update the 128-bit IRTE, 184 * and it cannot be updated by the hardware or other processors 185 * behind us, so the return value of cmpxchg16 should be the 186 * same as the old value. 187 */ 188 WARN_ON(!ret); 189 } else 190 #endif 191 { 192 set_64bit(&irte->low, irte_modified->low); 193 set_64bit(&irte->high, irte_modified->high); 194 } 195 __iommu_flush_cache(iommu, irte, sizeof(*irte)); 196 197 rc = qi_flush_iec(iommu, index, 0); 198 199 /* Update iommu mode according to the IRTE mode */ 200 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING; 201 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 202 203 return rc; 204 } 205 206 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id) 207 { 208 int i; 209 210 for (i = 0; i < MAX_HPET_TBS; i++) { 211 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu) 212 return ir_hpet[i].iommu; 213 } 214 return NULL; 215 } 216 217 static struct intel_iommu *map_ioapic_to_iommu(int apic) 218 { 219 int i; 220 221 for (i = 0; i < MAX_IO_APICS; i++) { 222 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu) 223 return ir_ioapic[i].iommu; 224 } 225 return NULL; 226 } 227 228 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev) 229 { 230 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev); 231 232 return drhd ? drhd->iommu->ir_msi_domain : NULL; 233 } 234 235 static int clear_entries(struct irq_2_iommu *irq_iommu) 236 { 237 struct irte *start, *entry, *end; 238 struct intel_iommu *iommu; 239 int index; 240 241 if (irq_iommu->sub_handle) 242 return 0; 243 244 iommu = irq_iommu->iommu; 245 index = irq_iommu->irte_index; 246 247 start = iommu->ir_table->base + index; 248 end = start + (1 << irq_iommu->irte_mask); 249 250 for (entry = start; entry < end; entry++) { 251 set_64bit(&entry->low, 0); 252 set_64bit(&entry->high, 0); 253 } 254 bitmap_release_region(iommu->ir_table->bitmap, index, 255 irq_iommu->irte_mask); 256 257 return qi_flush_iec(iommu, index, irq_iommu->irte_mask); 258 } 259 260 /* 261 * source validation type 262 */ 263 #define SVT_NO_VERIFY 0x0 /* no verification is required */ 264 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */ 265 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */ 266 267 /* 268 * source-id qualifier 269 */ 270 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */ 271 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore 272 * the third least significant bit 273 */ 274 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore 275 * the second and third least significant bits 276 */ 277 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore 278 * the least three significant bits 279 */ 280 281 /* 282 * set SVT, SQ and SID fields of irte to verify 283 * source ids of interrupt requests 284 */ 285 static void set_irte_sid(struct irte *irte, unsigned int svt, 286 unsigned int sq, unsigned int sid) 287 { 288 if (disable_sourceid_checking) 289 svt = SVT_NO_VERIFY; 290 irte->svt = svt; 291 irte->sq = sq; 292 irte->sid = sid; 293 } 294 295 /* 296 * Set an IRTE to match only the bus number. Interrupt requests that reference 297 * this IRTE must have a requester-id whose bus number is between or equal 298 * to the start_bus and end_bus arguments. 299 */ 300 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus, 301 unsigned int end_bus) 302 { 303 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16, 304 (start_bus << 8) | end_bus); 305 } 306 307 static int set_ioapic_sid(struct irte *irte, int apic) 308 { 309 int i; 310 u16 sid = 0; 311 312 if (!irte) 313 return -1; 314 315 down_read(&dmar_global_lock); 316 for (i = 0; i < MAX_IO_APICS; i++) { 317 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) { 318 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn; 319 break; 320 } 321 } 322 up_read(&dmar_global_lock); 323 324 if (sid == 0) { 325 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic); 326 return -1; 327 } 328 329 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid); 330 331 return 0; 332 } 333 334 static int set_hpet_sid(struct irte *irte, u8 id) 335 { 336 int i; 337 u16 sid = 0; 338 339 if (!irte) 340 return -1; 341 342 down_read(&dmar_global_lock); 343 for (i = 0; i < MAX_HPET_TBS; i++) { 344 if (ir_hpet[i].iommu && ir_hpet[i].id == id) { 345 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn; 346 break; 347 } 348 } 349 up_read(&dmar_global_lock); 350 351 if (sid == 0) { 352 pr_warn("Failed to set source-id of HPET block (%d)\n", id); 353 return -1; 354 } 355 356 /* 357 * Should really use SQ_ALL_16. Some platforms are broken. 358 * While we figure out the right quirks for these broken platforms, use 359 * SQ_13_IGNORE_3 for now. 360 */ 361 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid); 362 363 return 0; 364 } 365 366 struct set_msi_sid_data { 367 struct pci_dev *pdev; 368 u16 alias; 369 int count; 370 int busmatch_count; 371 }; 372 373 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque) 374 { 375 struct set_msi_sid_data *data = opaque; 376 377 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias)) 378 data->busmatch_count++; 379 380 data->pdev = pdev; 381 data->alias = alias; 382 data->count++; 383 384 return 0; 385 } 386 387 static int set_msi_sid(struct irte *irte, struct pci_dev *dev) 388 { 389 struct set_msi_sid_data data; 390 391 if (!irte || !dev) 392 return -1; 393 394 data.count = 0; 395 data.busmatch_count = 0; 396 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data); 397 398 /* 399 * DMA alias provides us with a PCI device and alias. The only case 400 * where the it will return an alias on a different bus than the 401 * device is the case of a PCIe-to-PCI bridge, where the alias is for 402 * the subordinate bus. In this case we can only verify the bus. 403 * 404 * If there are multiple aliases, all with the same bus number, 405 * then all we can do is verify the bus. This is typical in NTB 406 * hardware which use proxy IDs where the device will generate traffic 407 * from multiple devfn numbers on the same bus. 408 * 409 * If the alias device is on a different bus than our source device 410 * then we have a topology based alias, use it. 411 * 412 * Otherwise, the alias is for a device DMA quirk and we cannot 413 * assume that MSI uses the same requester ID. Therefore use the 414 * original device. 415 */ 416 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number) 417 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias), 418 dev->bus->number); 419 else if (data.count >= 2 && data.busmatch_count == data.count) 420 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number); 421 else if (data.pdev->bus->number != dev->bus->number) 422 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias); 423 else 424 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, 425 pci_dev_id(dev)); 426 427 return 0; 428 } 429 430 static int iommu_load_old_irte(struct intel_iommu *iommu) 431 { 432 struct irte *old_ir_table; 433 phys_addr_t irt_phys; 434 unsigned int i; 435 size_t size; 436 u64 irta; 437 438 /* Check whether the old ir-table has the same size as ours */ 439 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG); 440 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK) 441 != INTR_REMAP_TABLE_REG_SIZE) 442 return -EINVAL; 443 444 irt_phys = irta & VTD_PAGE_MASK; 445 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte); 446 447 /* Map the old IR table */ 448 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB); 449 if (!old_ir_table) 450 return -ENOMEM; 451 452 /* Copy data over */ 453 memcpy(iommu->ir_table->base, old_ir_table, size); 454 455 __iommu_flush_cache(iommu, iommu->ir_table->base, size); 456 457 /* 458 * Now check the table for used entries and mark those as 459 * allocated in the bitmap 460 */ 461 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) { 462 if (iommu->ir_table->base[i].present) 463 bitmap_set(iommu->ir_table->bitmap, i, 1); 464 } 465 466 memunmap(old_ir_table); 467 468 return 0; 469 } 470 471 472 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode) 473 { 474 unsigned long flags; 475 u64 addr; 476 u32 sts; 477 478 addr = virt_to_phys((void *)iommu->ir_table->base); 479 480 raw_spin_lock_irqsave(&iommu->register_lock, flags); 481 482 dmar_writeq(iommu->reg + DMAR_IRTA_REG, 483 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); 484 485 /* Set interrupt-remapping table pointer */ 486 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG); 487 488 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 489 readl, (sts & DMA_GSTS_IRTPS), sts); 490 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 491 492 /* 493 * Global invalidation of interrupt entry cache to make sure the 494 * hardware uses the new irq remapping table. 495 */ 496 qi_global_iec(iommu); 497 } 498 499 static void iommu_enable_irq_remapping(struct intel_iommu *iommu) 500 { 501 unsigned long flags; 502 u32 sts; 503 504 raw_spin_lock_irqsave(&iommu->register_lock, flags); 505 506 /* Enable interrupt-remapping */ 507 iommu->gcmd |= DMA_GCMD_IRE; 508 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 509 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 510 readl, (sts & DMA_GSTS_IRES), sts); 511 512 /* Block compatibility-format MSIs */ 513 if (sts & DMA_GSTS_CFIS) { 514 iommu->gcmd &= ~DMA_GCMD_CFI; 515 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 516 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 517 readl, !(sts & DMA_GSTS_CFIS), sts); 518 } 519 520 /* 521 * With CFI clear in the Global Command register, we should be 522 * protected from dangerous (i.e. compatibility) interrupts 523 * regardless of x2apic status. Check just to be sure. 524 */ 525 if (sts & DMA_GSTS_CFIS) 526 WARN(1, KERN_WARNING 527 "Compatibility-format IRQs enabled despite intr remapping;\n" 528 "you are vulnerable to IRQ injection.\n"); 529 530 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 531 } 532 533 static int intel_setup_irq_remapping(struct intel_iommu *iommu) 534 { 535 struct ir_table *ir_table; 536 struct fwnode_handle *fn; 537 unsigned long *bitmap; 538 struct page *pages; 539 540 if (iommu->ir_table) 541 return 0; 542 543 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL); 544 if (!ir_table) 545 return -ENOMEM; 546 547 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO, 548 INTR_REMAP_PAGE_ORDER); 549 if (!pages) { 550 pr_err("IR%d: failed to allocate pages of order %d\n", 551 iommu->seq_id, INTR_REMAP_PAGE_ORDER); 552 goto out_free_table; 553 } 554 555 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC); 556 if (bitmap == NULL) { 557 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id); 558 goto out_free_pages; 559 } 560 561 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id); 562 if (!fn) 563 goto out_free_bitmap; 564 565 iommu->ir_domain = 566 irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 567 0, INTR_REMAP_TABLE_ENTRIES, 568 fn, &intel_ir_domain_ops, 569 iommu); 570 if (!iommu->ir_domain) { 571 irq_domain_free_fwnode(fn); 572 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id); 573 goto out_free_bitmap; 574 } 575 iommu->ir_msi_domain = 576 arch_create_remap_msi_irq_domain(iommu->ir_domain, 577 "INTEL-IR-MSI", 578 iommu->seq_id); 579 580 ir_table->base = page_address(pages); 581 ir_table->bitmap = bitmap; 582 iommu->ir_table = ir_table; 583 584 /* 585 * If the queued invalidation is already initialized, 586 * shouldn't disable it. 587 */ 588 if (!iommu->qi) { 589 /* 590 * Clear previous faults. 591 */ 592 dmar_fault(-1, iommu); 593 dmar_disable_qi(iommu); 594 595 if (dmar_enable_qi(iommu)) { 596 pr_err("Failed to enable queued invalidation\n"); 597 goto out_free_bitmap; 598 } 599 } 600 601 init_ir_status(iommu); 602 603 if (ir_pre_enabled(iommu)) { 604 if (!is_kdump_kernel()) { 605 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n", 606 iommu->name); 607 clear_ir_pre_enabled(iommu); 608 iommu_disable_irq_remapping(iommu); 609 } else if (iommu_load_old_irte(iommu)) 610 pr_err("Failed to copy IR table for %s from previous kernel\n", 611 iommu->name); 612 else 613 pr_info("Copied IR table for %s from previous kernel\n", 614 iommu->name); 615 } 616 617 iommu_set_irq_remapping(iommu, eim_mode); 618 619 return 0; 620 621 out_free_bitmap: 622 bitmap_free(bitmap); 623 out_free_pages: 624 __free_pages(pages, INTR_REMAP_PAGE_ORDER); 625 out_free_table: 626 kfree(ir_table); 627 628 iommu->ir_table = NULL; 629 630 return -ENOMEM; 631 } 632 633 static void intel_teardown_irq_remapping(struct intel_iommu *iommu) 634 { 635 struct fwnode_handle *fn; 636 637 if (iommu && iommu->ir_table) { 638 if (iommu->ir_msi_domain) { 639 fn = iommu->ir_msi_domain->fwnode; 640 641 irq_domain_remove(iommu->ir_msi_domain); 642 irq_domain_free_fwnode(fn); 643 iommu->ir_msi_domain = NULL; 644 } 645 if (iommu->ir_domain) { 646 fn = iommu->ir_domain->fwnode; 647 648 irq_domain_remove(iommu->ir_domain); 649 irq_domain_free_fwnode(fn); 650 iommu->ir_domain = NULL; 651 } 652 free_pages((unsigned long)iommu->ir_table->base, 653 INTR_REMAP_PAGE_ORDER); 654 bitmap_free(iommu->ir_table->bitmap); 655 kfree(iommu->ir_table); 656 iommu->ir_table = NULL; 657 } 658 } 659 660 /* 661 * Disable Interrupt Remapping. 662 */ 663 static void iommu_disable_irq_remapping(struct intel_iommu *iommu) 664 { 665 unsigned long flags; 666 u32 sts; 667 668 if (!ecap_ir_support(iommu->ecap)) 669 return; 670 671 /* 672 * global invalidation of interrupt entry cache before disabling 673 * interrupt-remapping. 674 */ 675 qi_global_iec(iommu); 676 677 raw_spin_lock_irqsave(&iommu->register_lock, flags); 678 679 sts = readl(iommu->reg + DMAR_GSTS_REG); 680 if (!(sts & DMA_GSTS_IRES)) 681 goto end; 682 683 iommu->gcmd &= ~DMA_GCMD_IRE; 684 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 685 686 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 687 readl, !(sts & DMA_GSTS_IRES), sts); 688 689 end: 690 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 691 } 692 693 static int __init dmar_x2apic_optout(void) 694 { 695 struct acpi_table_dmar *dmar; 696 dmar = (struct acpi_table_dmar *)dmar_tbl; 697 if (!dmar || no_x2apic_optout) 698 return 0; 699 return dmar->flags & DMAR_X2APIC_OPT_OUT; 700 } 701 702 static void __init intel_cleanup_irq_remapping(void) 703 { 704 struct dmar_drhd_unit *drhd; 705 struct intel_iommu *iommu; 706 707 for_each_iommu(iommu, drhd) { 708 if (ecap_ir_support(iommu->ecap)) { 709 iommu_disable_irq_remapping(iommu); 710 intel_teardown_irq_remapping(iommu); 711 } 712 } 713 714 if (x2apic_supported()) 715 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n"); 716 } 717 718 static int __init intel_prepare_irq_remapping(void) 719 { 720 struct dmar_drhd_unit *drhd; 721 struct intel_iommu *iommu; 722 int eim = 0; 723 724 if (irq_remap_broken) { 725 pr_warn("This system BIOS has enabled interrupt remapping\n" 726 "on a chipset that contains an erratum making that\n" 727 "feature unstable. To maintain system stability\n" 728 "interrupt remapping is being disabled. Please\n" 729 "contact your BIOS vendor for an update\n"); 730 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 731 return -ENODEV; 732 } 733 734 if (dmar_table_init() < 0) 735 return -ENODEV; 736 737 if (!dmar_ir_support()) 738 return -ENODEV; 739 740 if (parse_ioapics_under_ir()) { 741 pr_info("Not enabling interrupt remapping\n"); 742 goto error; 743 } 744 745 /* First make sure all IOMMUs support IRQ remapping */ 746 for_each_iommu(iommu, drhd) 747 if (!ecap_ir_support(iommu->ecap)) 748 goto error; 749 750 /* Detect remapping mode: lapic or x2apic */ 751 if (x2apic_supported()) { 752 eim = !dmar_x2apic_optout(); 753 if (!eim) { 754 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit."); 755 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n"); 756 } 757 } 758 759 for_each_iommu(iommu, drhd) { 760 if (eim && !ecap_eim_support(iommu->ecap)) { 761 pr_info("%s does not support EIM\n", iommu->name); 762 eim = 0; 763 } 764 } 765 766 eim_mode = eim; 767 if (eim) 768 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n"); 769 770 /* Do the initializations early */ 771 for_each_iommu(iommu, drhd) { 772 if (intel_setup_irq_remapping(iommu)) { 773 pr_err("Failed to setup irq remapping for %s\n", 774 iommu->name); 775 goto error; 776 } 777 } 778 779 return 0; 780 781 error: 782 intel_cleanup_irq_remapping(); 783 return -ENODEV; 784 } 785 786 /* 787 * Set Posted-Interrupts capability. 788 */ 789 static inline void set_irq_posting_cap(void) 790 { 791 struct dmar_drhd_unit *drhd; 792 struct intel_iommu *iommu; 793 794 if (!disable_irq_post) { 795 /* 796 * If IRTE is in posted format, the 'pda' field goes across the 797 * 64-bit boundary, we need use cmpxchg16b to atomically update 798 * it. We only expose posted-interrupt when X86_FEATURE_CX16 799 * is supported. Actually, hardware platforms supporting PI 800 * should have X86_FEATURE_CX16 support, this has been confirmed 801 * with Intel hardware guys. 802 */ 803 if (boot_cpu_has(X86_FEATURE_CX16)) 804 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP; 805 806 for_each_iommu(iommu, drhd) 807 if (!cap_pi_support(iommu->cap)) { 808 intel_irq_remap_ops.capability &= 809 ~(1 << IRQ_POSTING_CAP); 810 break; 811 } 812 } 813 } 814 815 static int __init intel_enable_irq_remapping(void) 816 { 817 struct dmar_drhd_unit *drhd; 818 struct intel_iommu *iommu; 819 bool setup = false; 820 821 /* 822 * Setup Interrupt-remapping for all the DRHD's now. 823 */ 824 for_each_iommu(iommu, drhd) { 825 if (!ir_pre_enabled(iommu)) 826 iommu_enable_irq_remapping(iommu); 827 setup = true; 828 } 829 830 if (!setup) 831 goto error; 832 833 irq_remapping_enabled = 1; 834 835 set_irq_posting_cap(); 836 837 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic"); 838 839 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE; 840 841 error: 842 intel_cleanup_irq_remapping(); 843 return -1; 844 } 845 846 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope, 847 struct intel_iommu *iommu, 848 struct acpi_dmar_hardware_unit *drhd) 849 { 850 struct acpi_dmar_pci_path *path; 851 u8 bus; 852 int count, free = -1; 853 854 bus = scope->bus; 855 path = (struct acpi_dmar_pci_path *)(scope + 1); 856 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 857 / sizeof(struct acpi_dmar_pci_path); 858 859 while (--count > 0) { 860 /* 861 * Access PCI directly due to the PCI 862 * subsystem isn't initialized yet. 863 */ 864 bus = read_pci_config_byte(bus, path->device, path->function, 865 PCI_SECONDARY_BUS); 866 path++; 867 } 868 869 for (count = 0; count < MAX_HPET_TBS; count++) { 870 if (ir_hpet[count].iommu == iommu && 871 ir_hpet[count].id == scope->enumeration_id) 872 return 0; 873 else if (ir_hpet[count].iommu == NULL && free == -1) 874 free = count; 875 } 876 if (free == -1) { 877 pr_warn("Exceeded Max HPET blocks\n"); 878 return -ENOSPC; 879 } 880 881 ir_hpet[free].iommu = iommu; 882 ir_hpet[free].id = scope->enumeration_id; 883 ir_hpet[free].bus = bus; 884 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function); 885 pr_info("HPET id %d under DRHD base 0x%Lx\n", 886 scope->enumeration_id, drhd->address); 887 888 return 0; 889 } 890 891 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope, 892 struct intel_iommu *iommu, 893 struct acpi_dmar_hardware_unit *drhd) 894 { 895 struct acpi_dmar_pci_path *path; 896 u8 bus; 897 int count, free = -1; 898 899 bus = scope->bus; 900 path = (struct acpi_dmar_pci_path *)(scope + 1); 901 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 902 / sizeof(struct acpi_dmar_pci_path); 903 904 while (--count > 0) { 905 /* 906 * Access PCI directly due to the PCI 907 * subsystem isn't initialized yet. 908 */ 909 bus = read_pci_config_byte(bus, path->device, path->function, 910 PCI_SECONDARY_BUS); 911 path++; 912 } 913 914 for (count = 0; count < MAX_IO_APICS; count++) { 915 if (ir_ioapic[count].iommu == iommu && 916 ir_ioapic[count].id == scope->enumeration_id) 917 return 0; 918 else if (ir_ioapic[count].iommu == NULL && free == -1) 919 free = count; 920 } 921 if (free == -1) { 922 pr_warn("Exceeded Max IO APICS\n"); 923 return -ENOSPC; 924 } 925 926 ir_ioapic[free].bus = bus; 927 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function); 928 ir_ioapic[free].iommu = iommu; 929 ir_ioapic[free].id = scope->enumeration_id; 930 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n", 931 scope->enumeration_id, drhd->address, iommu->seq_id); 932 933 return 0; 934 } 935 936 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header, 937 struct intel_iommu *iommu) 938 { 939 int ret = 0; 940 struct acpi_dmar_hardware_unit *drhd; 941 struct acpi_dmar_device_scope *scope; 942 void *start, *end; 943 944 drhd = (struct acpi_dmar_hardware_unit *)header; 945 start = (void *)(drhd + 1); 946 end = ((void *)drhd) + header->length; 947 948 while (start < end && ret == 0) { 949 scope = start; 950 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) 951 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd); 952 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) 953 ret = ir_parse_one_hpet_scope(scope, iommu, drhd); 954 start += scope->length; 955 } 956 957 return ret; 958 } 959 960 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu) 961 { 962 int i; 963 964 for (i = 0; i < MAX_HPET_TBS; i++) 965 if (ir_hpet[i].iommu == iommu) 966 ir_hpet[i].iommu = NULL; 967 968 for (i = 0; i < MAX_IO_APICS; i++) 969 if (ir_ioapic[i].iommu == iommu) 970 ir_ioapic[i].iommu = NULL; 971 } 972 973 /* 974 * Finds the assocaition between IOAPIC's and its Interrupt-remapping 975 * hardware unit. 976 */ 977 static int __init parse_ioapics_under_ir(void) 978 { 979 struct dmar_drhd_unit *drhd; 980 struct intel_iommu *iommu; 981 bool ir_supported = false; 982 int ioapic_idx; 983 984 for_each_iommu(iommu, drhd) { 985 int ret; 986 987 if (!ecap_ir_support(iommu->ecap)) 988 continue; 989 990 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu); 991 if (ret) 992 return ret; 993 994 ir_supported = true; 995 } 996 997 if (!ir_supported) 998 return -ENODEV; 999 1000 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) { 1001 int ioapic_id = mpc_ioapic_id(ioapic_idx); 1002 if (!map_ioapic_to_iommu(ioapic_id)) { 1003 pr_err(FW_BUG "ioapic %d has no mapping iommu, " 1004 "interrupt remapping will be disabled\n", 1005 ioapic_id); 1006 return -1; 1007 } 1008 } 1009 1010 return 0; 1011 } 1012 1013 static int __init ir_dev_scope_init(void) 1014 { 1015 int ret; 1016 1017 if (!irq_remapping_enabled) 1018 return 0; 1019 1020 down_write(&dmar_global_lock); 1021 ret = dmar_dev_scope_init(); 1022 up_write(&dmar_global_lock); 1023 1024 return ret; 1025 } 1026 rootfs_initcall(ir_dev_scope_init); 1027 1028 static void disable_irq_remapping(void) 1029 { 1030 struct dmar_drhd_unit *drhd; 1031 struct intel_iommu *iommu = NULL; 1032 1033 /* 1034 * Disable Interrupt-remapping for all the DRHD's now. 1035 */ 1036 for_each_iommu(iommu, drhd) { 1037 if (!ecap_ir_support(iommu->ecap)) 1038 continue; 1039 1040 iommu_disable_irq_remapping(iommu); 1041 } 1042 1043 /* 1044 * Clear Posted-Interrupts capability. 1045 */ 1046 if (!disable_irq_post) 1047 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP); 1048 } 1049 1050 static int reenable_irq_remapping(int eim) 1051 { 1052 struct dmar_drhd_unit *drhd; 1053 bool setup = false; 1054 struct intel_iommu *iommu = NULL; 1055 1056 for_each_iommu(iommu, drhd) 1057 if (iommu->qi) 1058 dmar_reenable_qi(iommu); 1059 1060 /* 1061 * Setup Interrupt-remapping for all the DRHD's now. 1062 */ 1063 for_each_iommu(iommu, drhd) { 1064 if (!ecap_ir_support(iommu->ecap)) 1065 continue; 1066 1067 /* Set up interrupt remapping for iommu.*/ 1068 iommu_set_irq_remapping(iommu, eim); 1069 iommu_enable_irq_remapping(iommu); 1070 setup = true; 1071 } 1072 1073 if (!setup) 1074 goto error; 1075 1076 set_irq_posting_cap(); 1077 1078 return 0; 1079 1080 error: 1081 /* 1082 * handle error condition gracefully here! 1083 */ 1084 return -1; 1085 } 1086 1087 /* 1088 * Store the MSI remapping domain pointer in the device if enabled. 1089 * 1090 * This is called from dmar_pci_bus_add_dev() so it works even when DMA 1091 * remapping is disabled. Only update the pointer if the device is not 1092 * already handled by a non default PCI/MSI interrupt domain. This protects 1093 * e.g. VMD devices. 1094 */ 1095 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info) 1096 { 1097 if (!irq_remapping_enabled || pci_dev_has_special_msi_domain(info->dev)) 1098 return; 1099 1100 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev)); 1101 } 1102 1103 static void prepare_irte(struct irte *irte, int vector, unsigned int dest) 1104 { 1105 memset(irte, 0, sizeof(*irte)); 1106 1107 irte->present = 1; 1108 irte->dst_mode = apic->dest_mode_logical; 1109 /* 1110 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the 1111 * actual level or edge trigger will be setup in the IO-APIC 1112 * RTE. This will help simplify level triggered irq migration. 1113 * For more details, see the comments (in io_apic.c) explainig IO-APIC 1114 * irq migration in the presence of interrupt-remapping. 1115 */ 1116 irte->trigger_mode = 0; 1117 irte->dlvry_mode = apic->delivery_mode; 1118 irte->vector = vector; 1119 irte->dest_id = IRTE_DEST(dest); 1120 irte->redir_hint = 1; 1121 } 1122 1123 struct irq_remap_ops intel_irq_remap_ops = { 1124 .prepare = intel_prepare_irq_remapping, 1125 .enable = intel_enable_irq_remapping, 1126 .disable = disable_irq_remapping, 1127 .reenable = reenable_irq_remapping, 1128 .enable_faulting = enable_drhd_fault_handling, 1129 }; 1130 1131 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force) 1132 { 1133 struct intel_ir_data *ir_data = irqd->chip_data; 1134 struct irte *irte = &ir_data->irte_entry; 1135 struct irq_cfg *cfg = irqd_cfg(irqd); 1136 1137 /* 1138 * Atomically updates the IRTE with the new destination, vector 1139 * and flushes the interrupt entry cache. 1140 */ 1141 irte->vector = cfg->vector; 1142 irte->dest_id = IRTE_DEST(cfg->dest_apicid); 1143 1144 /* Update the hardware only if the interrupt is in remapped mode. */ 1145 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING) 1146 modify_irte(&ir_data->irq_2_iommu, irte); 1147 } 1148 1149 /* 1150 * Migrate the IO-APIC irq in the presence of intr-remapping. 1151 * 1152 * For both level and edge triggered, irq migration is a simple atomic 1153 * update(of vector and cpu destination) of IRTE and flush the hardware cache. 1154 * 1155 * For level triggered, we eliminate the io-apic RTE modification (with the 1156 * updated vector information), by using a virtual vector (io-apic pin number). 1157 * Real vector that is used for interrupting cpu will be coming from 1158 * the interrupt-remapping table entry. 1159 * 1160 * As the migration is a simple atomic update of IRTE, the same mechanism 1161 * is used to migrate MSI irq's in the presence of interrupt-remapping. 1162 */ 1163 static int 1164 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask, 1165 bool force) 1166 { 1167 struct irq_data *parent = data->parent_data; 1168 struct irq_cfg *cfg = irqd_cfg(data); 1169 int ret; 1170 1171 ret = parent->chip->irq_set_affinity(parent, mask, force); 1172 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 1173 return ret; 1174 1175 intel_ir_reconfigure_irte(data, false); 1176 /* 1177 * After this point, all the interrupts will start arriving 1178 * at the new destination. So, time to cleanup the previous 1179 * vector allocation. 1180 */ 1181 send_cleanup_vector(cfg); 1182 1183 return IRQ_SET_MASK_OK_DONE; 1184 } 1185 1186 static void intel_ir_compose_msi_msg(struct irq_data *irq_data, 1187 struct msi_msg *msg) 1188 { 1189 struct intel_ir_data *ir_data = irq_data->chip_data; 1190 1191 *msg = ir_data->msi_entry; 1192 } 1193 1194 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info) 1195 { 1196 struct intel_ir_data *ir_data = data->chip_data; 1197 struct vcpu_data *vcpu_pi_info = info; 1198 1199 /* stop posting interrupts, back to remapping mode */ 1200 if (!vcpu_pi_info) { 1201 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry); 1202 } else { 1203 struct irte irte_pi; 1204 1205 /* 1206 * We are not caching the posted interrupt entry. We 1207 * copy the data from the remapped entry and modify 1208 * the fields which are relevant for posted mode. The 1209 * cached remapped entry is used for switching back to 1210 * remapped mode. 1211 */ 1212 memset(&irte_pi, 0, sizeof(irte_pi)); 1213 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry); 1214 1215 /* Update the posted mode fields */ 1216 irte_pi.p_pst = 1; 1217 irte_pi.p_urgent = 0; 1218 irte_pi.p_vector = vcpu_pi_info->vector; 1219 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >> 1220 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT); 1221 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) & 1222 ~(-1UL << PDA_HIGH_BIT); 1223 1224 modify_irte(&ir_data->irq_2_iommu, &irte_pi); 1225 } 1226 1227 return 0; 1228 } 1229 1230 static struct irq_chip intel_ir_chip = { 1231 .name = "INTEL-IR", 1232 .irq_ack = apic_ack_irq, 1233 .irq_set_affinity = intel_ir_set_affinity, 1234 .irq_compose_msi_msg = intel_ir_compose_msi_msg, 1235 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity, 1236 }; 1237 1238 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle) 1239 { 1240 memset(msg, 0, sizeof(*msg)); 1241 1242 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW; 1243 msg->arch_addr_lo.dmar_subhandle_valid = true; 1244 msg->arch_addr_lo.dmar_format = true; 1245 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF; 1246 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000); 1247 1248 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 1249 1250 msg->arch_data.dmar_subhandle = subhandle; 1251 } 1252 1253 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data, 1254 struct irq_cfg *irq_cfg, 1255 struct irq_alloc_info *info, 1256 int index, int sub_handle) 1257 { 1258 struct irte *irte = &data->irte_entry; 1259 1260 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid); 1261 1262 switch (info->type) { 1263 case X86_IRQ_ALLOC_TYPE_IOAPIC: 1264 /* Set source-id of interrupt request */ 1265 set_ioapic_sid(irte, info->devid); 1266 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n", 1267 info->devid, irte->present, irte->fpd, 1268 irte->dst_mode, irte->redir_hint, 1269 irte->trigger_mode, irte->dlvry_mode, 1270 irte->avail, irte->vector, irte->dest_id, 1271 irte->sid, irte->sq, irte->svt); 1272 sub_handle = info->ioapic.pin; 1273 break; 1274 case X86_IRQ_ALLOC_TYPE_HPET: 1275 set_hpet_sid(irte, info->devid); 1276 break; 1277 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 1278 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 1279 set_msi_sid(irte, msi_desc_to_pci_dev(info->desc)); 1280 break; 1281 default: 1282 BUG_ON(1); 1283 break; 1284 } 1285 fill_msi_msg(&data->msi_entry, index, sub_handle); 1286 } 1287 1288 static void intel_free_irq_resources(struct irq_domain *domain, 1289 unsigned int virq, unsigned int nr_irqs) 1290 { 1291 struct irq_data *irq_data; 1292 struct intel_ir_data *data; 1293 struct irq_2_iommu *irq_iommu; 1294 unsigned long flags; 1295 int i; 1296 for (i = 0; i < nr_irqs; i++) { 1297 irq_data = irq_domain_get_irq_data(domain, virq + i); 1298 if (irq_data && irq_data->chip_data) { 1299 data = irq_data->chip_data; 1300 irq_iommu = &data->irq_2_iommu; 1301 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 1302 clear_entries(irq_iommu); 1303 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 1304 irq_domain_reset_irq_data(irq_data); 1305 kfree(data); 1306 } 1307 } 1308 } 1309 1310 static int intel_irq_remapping_alloc(struct irq_domain *domain, 1311 unsigned int virq, unsigned int nr_irqs, 1312 void *arg) 1313 { 1314 struct intel_iommu *iommu = domain->host_data; 1315 struct irq_alloc_info *info = arg; 1316 struct intel_ir_data *data, *ird; 1317 struct irq_data *irq_data; 1318 struct irq_cfg *irq_cfg; 1319 int i, ret, index; 1320 1321 if (!info || !iommu) 1322 return -EINVAL; 1323 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI && 1324 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX) 1325 return -EINVAL; 1326 1327 /* 1328 * With IRQ remapping enabled, don't need contiguous CPU vectors 1329 * to support multiple MSI interrupts. 1330 */ 1331 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) 1332 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 1333 1334 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 1335 if (ret < 0) 1336 return ret; 1337 1338 ret = -ENOMEM; 1339 data = kzalloc(sizeof(*data), GFP_KERNEL); 1340 if (!data) 1341 goto out_free_parent; 1342 1343 down_read(&dmar_global_lock); 1344 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs); 1345 up_read(&dmar_global_lock); 1346 if (index < 0) { 1347 pr_warn("Failed to allocate IRTE\n"); 1348 kfree(data); 1349 goto out_free_parent; 1350 } 1351 1352 for (i = 0; i < nr_irqs; i++) { 1353 irq_data = irq_domain_get_irq_data(domain, virq + i); 1354 irq_cfg = irqd_cfg(irq_data); 1355 if (!irq_data || !irq_cfg) { 1356 ret = -EINVAL; 1357 goto out_free_data; 1358 } 1359 1360 if (i > 0) { 1361 ird = kzalloc(sizeof(*ird), GFP_KERNEL); 1362 if (!ird) 1363 goto out_free_data; 1364 /* Initialize the common data */ 1365 ird->irq_2_iommu = data->irq_2_iommu; 1366 ird->irq_2_iommu.sub_handle = i; 1367 } else { 1368 ird = data; 1369 } 1370 1371 irq_data->hwirq = (index << 16) + i; 1372 irq_data->chip_data = ird; 1373 irq_data->chip = &intel_ir_chip; 1374 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i); 1375 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 1376 } 1377 return 0; 1378 1379 out_free_data: 1380 intel_free_irq_resources(domain, virq, i); 1381 out_free_parent: 1382 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1383 return ret; 1384 } 1385 1386 static void intel_irq_remapping_free(struct irq_domain *domain, 1387 unsigned int virq, unsigned int nr_irqs) 1388 { 1389 intel_free_irq_resources(domain, virq, nr_irqs); 1390 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1391 } 1392 1393 static int intel_irq_remapping_activate(struct irq_domain *domain, 1394 struct irq_data *irq_data, bool reserve) 1395 { 1396 intel_ir_reconfigure_irte(irq_data, true); 1397 return 0; 1398 } 1399 1400 static void intel_irq_remapping_deactivate(struct irq_domain *domain, 1401 struct irq_data *irq_data) 1402 { 1403 struct intel_ir_data *data = irq_data->chip_data; 1404 struct irte entry; 1405 1406 memset(&entry, 0, sizeof(entry)); 1407 modify_irte(&data->irq_2_iommu, &entry); 1408 } 1409 1410 static int intel_irq_remapping_select(struct irq_domain *d, 1411 struct irq_fwspec *fwspec, 1412 enum irq_domain_bus_token bus_token) 1413 { 1414 struct intel_iommu *iommu = NULL; 1415 1416 if (x86_fwspec_is_ioapic(fwspec)) 1417 iommu = map_ioapic_to_iommu(fwspec->param[0]); 1418 else if (x86_fwspec_is_hpet(fwspec)) 1419 iommu = map_hpet_to_iommu(fwspec->param[0]); 1420 1421 return iommu && d == iommu->ir_domain; 1422 } 1423 1424 static const struct irq_domain_ops intel_ir_domain_ops = { 1425 .select = intel_irq_remapping_select, 1426 .alloc = intel_irq_remapping_alloc, 1427 .free = intel_irq_remapping_free, 1428 .activate = intel_irq_remapping_activate, 1429 .deactivate = intel_irq_remapping_deactivate, 1430 }; 1431 1432 /* 1433 * Support of Interrupt Remapping Unit Hotplug 1434 */ 1435 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu) 1436 { 1437 int ret; 1438 int eim = x2apic_enabled(); 1439 1440 if (eim && !ecap_eim_support(iommu->ecap)) { 1441 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n", 1442 iommu->reg_phys, iommu->ecap); 1443 return -ENODEV; 1444 } 1445 1446 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) { 1447 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n", 1448 iommu->reg_phys); 1449 return -ENODEV; 1450 } 1451 1452 /* TODO: check all IOAPICs are covered by IOMMU */ 1453 1454 /* Setup Interrupt-remapping now. */ 1455 ret = intel_setup_irq_remapping(iommu); 1456 if (ret) { 1457 pr_err("Failed to setup irq remapping for %s\n", 1458 iommu->name); 1459 intel_teardown_irq_remapping(iommu); 1460 ir_remove_ioapic_hpet_scope(iommu); 1461 } else { 1462 iommu_enable_irq_remapping(iommu); 1463 } 1464 1465 return ret; 1466 } 1467 1468 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 1469 { 1470 int ret = 0; 1471 struct intel_iommu *iommu = dmaru->iommu; 1472 1473 if (!irq_remapping_enabled) 1474 return 0; 1475 if (iommu == NULL) 1476 return -EINVAL; 1477 if (!ecap_ir_support(iommu->ecap)) 1478 return 0; 1479 if (irq_remapping_cap(IRQ_POSTING_CAP) && 1480 !cap_pi_support(iommu->cap)) 1481 return -EBUSY; 1482 1483 if (insert) { 1484 if (!iommu->ir_table) 1485 ret = dmar_ir_add(dmaru, iommu); 1486 } else { 1487 if (iommu->ir_table) { 1488 if (!bitmap_empty(iommu->ir_table->bitmap, 1489 INTR_REMAP_TABLE_ENTRIES)) { 1490 ret = -EBUSY; 1491 } else { 1492 iommu_disable_irq_remapping(iommu); 1493 intel_teardown_irq_remapping(iommu); 1494 ir_remove_ioapic_hpet_scope(iommu); 1495 } 1496 } 1497 } 1498 1499 return ret; 1500 } 1501