1 // SPDX-License-Identifier: GPL-2.0 2 3 #define pr_fmt(fmt) "DMAR-IR: " fmt 4 5 #include <linux/interrupt.h> 6 #include <linux/dmar.h> 7 #include <linux/spinlock.h> 8 #include <linux/slab.h> 9 #include <linux/jiffies.h> 10 #include <linux/hpet.h> 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/acpi.h> 14 #include <linux/irqdomain.h> 15 #include <linux/crash_dump.h> 16 #include <asm/io_apic.h> 17 #include <asm/apic.h> 18 #include <asm/smp.h> 19 #include <asm/cpu.h> 20 #include <asm/irq_remapping.h> 21 #include <asm/pci-direct.h> 22 23 #include "iommu.h" 24 #include "../irq_remapping.h" 25 #include "cap_audit.h" 26 27 enum irq_mode { 28 IRQ_REMAPPING, 29 IRQ_POSTING, 30 }; 31 32 struct ioapic_scope { 33 struct intel_iommu *iommu; 34 unsigned int id; 35 unsigned int bus; /* PCI bus number */ 36 unsigned int devfn; /* PCI devfn number */ 37 }; 38 39 struct hpet_scope { 40 struct intel_iommu *iommu; 41 u8 id; 42 unsigned int bus; 43 unsigned int devfn; 44 }; 45 46 struct irq_2_iommu { 47 struct intel_iommu *iommu; 48 u16 irte_index; 49 u16 sub_handle; 50 u8 irte_mask; 51 enum irq_mode mode; 52 }; 53 54 struct intel_ir_data { 55 struct irq_2_iommu irq_2_iommu; 56 struct irte irte_entry; 57 union { 58 struct msi_msg msi_entry; 59 }; 60 }; 61 62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0) 63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8) 64 65 static int __read_mostly eim_mode; 66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; 67 static struct hpet_scope ir_hpet[MAX_HPET_TBS]; 68 69 /* 70 * Lock ordering: 71 * ->dmar_global_lock 72 * ->irq_2_ir_lock 73 * ->qi->q_lock 74 * ->iommu->register_lock 75 * Note: 76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called 77 * in single-threaded environment with interrupt disabled, so no need to tabke 78 * the dmar_global_lock. 79 */ 80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock); 81 static const struct irq_domain_ops intel_ir_domain_ops; 82 83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu); 84 static int __init parse_ioapics_under_ir(void); 85 86 static bool ir_pre_enabled(struct intel_iommu *iommu) 87 { 88 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED); 89 } 90 91 static void clear_ir_pre_enabled(struct intel_iommu *iommu) 92 { 93 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 94 } 95 96 static void init_ir_status(struct intel_iommu *iommu) 97 { 98 u32 gsts; 99 100 gsts = readl(iommu->reg + DMAR_GSTS_REG); 101 if (gsts & DMA_GSTS_IRES) 102 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 103 } 104 105 static int alloc_irte(struct intel_iommu *iommu, 106 struct irq_2_iommu *irq_iommu, u16 count) 107 { 108 struct ir_table *table = iommu->ir_table; 109 unsigned int mask = 0; 110 unsigned long flags; 111 int index; 112 113 if (!count || !irq_iommu) 114 return -1; 115 116 if (count > 1) { 117 count = __roundup_pow_of_two(count); 118 mask = ilog2(count); 119 } 120 121 if (mask > ecap_max_handle_mask(iommu->ecap)) { 122 pr_err("Requested mask %x exceeds the max invalidation handle" 123 " mask value %Lx\n", mask, 124 ecap_max_handle_mask(iommu->ecap)); 125 return -1; 126 } 127 128 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 129 index = bitmap_find_free_region(table->bitmap, 130 INTR_REMAP_TABLE_ENTRIES, mask); 131 if (index < 0) { 132 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id); 133 } else { 134 irq_iommu->iommu = iommu; 135 irq_iommu->irte_index = index; 136 irq_iommu->sub_handle = 0; 137 irq_iommu->irte_mask = mask; 138 irq_iommu->mode = IRQ_REMAPPING; 139 } 140 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 141 142 return index; 143 } 144 145 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) 146 { 147 struct qi_desc desc; 148 149 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) 150 | QI_IEC_SELECTIVE; 151 desc.qw1 = 0; 152 desc.qw2 = 0; 153 desc.qw3 = 0; 154 155 return qi_submit_sync(iommu, &desc, 1, 0); 156 } 157 158 static int modify_irte(struct irq_2_iommu *irq_iommu, 159 struct irte *irte_modified) 160 { 161 struct intel_iommu *iommu; 162 unsigned long flags; 163 struct irte *irte; 164 int rc, index; 165 166 if (!irq_iommu) 167 return -1; 168 169 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 170 171 iommu = irq_iommu->iommu; 172 173 index = irq_iommu->irte_index + irq_iommu->sub_handle; 174 irte = &iommu->ir_table->base[index]; 175 176 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) 177 if ((irte->pst == 1) || (irte_modified->pst == 1)) { 178 bool ret; 179 180 ret = cmpxchg_double(&irte->low, &irte->high, 181 irte->low, irte->high, 182 irte_modified->low, irte_modified->high); 183 /* 184 * We use cmpxchg16 to atomically update the 128-bit IRTE, 185 * and it cannot be updated by the hardware or other processors 186 * behind us, so the return value of cmpxchg16 should be the 187 * same as the old value. 188 */ 189 WARN_ON(!ret); 190 } else 191 #endif 192 { 193 set_64bit(&irte->low, irte_modified->low); 194 set_64bit(&irte->high, irte_modified->high); 195 } 196 __iommu_flush_cache(iommu, irte, sizeof(*irte)); 197 198 rc = qi_flush_iec(iommu, index, 0); 199 200 /* Update iommu mode according to the IRTE mode */ 201 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING; 202 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 203 204 return rc; 205 } 206 207 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id) 208 { 209 int i; 210 211 for (i = 0; i < MAX_HPET_TBS; i++) { 212 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu) 213 return ir_hpet[i].iommu; 214 } 215 return NULL; 216 } 217 218 static struct intel_iommu *map_ioapic_to_iommu(int apic) 219 { 220 int i; 221 222 for (i = 0; i < MAX_IO_APICS; i++) { 223 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu) 224 return ir_ioapic[i].iommu; 225 } 226 return NULL; 227 } 228 229 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev) 230 { 231 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev); 232 233 return drhd ? drhd->iommu->ir_msi_domain : NULL; 234 } 235 236 static int clear_entries(struct irq_2_iommu *irq_iommu) 237 { 238 struct irte *start, *entry, *end; 239 struct intel_iommu *iommu; 240 int index; 241 242 if (irq_iommu->sub_handle) 243 return 0; 244 245 iommu = irq_iommu->iommu; 246 index = irq_iommu->irte_index; 247 248 start = iommu->ir_table->base + index; 249 end = start + (1 << irq_iommu->irte_mask); 250 251 for (entry = start; entry < end; entry++) { 252 set_64bit(&entry->low, 0); 253 set_64bit(&entry->high, 0); 254 } 255 bitmap_release_region(iommu->ir_table->bitmap, index, 256 irq_iommu->irte_mask); 257 258 return qi_flush_iec(iommu, index, irq_iommu->irte_mask); 259 } 260 261 /* 262 * source validation type 263 */ 264 #define SVT_NO_VERIFY 0x0 /* no verification is required */ 265 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */ 266 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */ 267 268 /* 269 * source-id qualifier 270 */ 271 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */ 272 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore 273 * the third least significant bit 274 */ 275 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore 276 * the second and third least significant bits 277 */ 278 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore 279 * the least three significant bits 280 */ 281 282 /* 283 * set SVT, SQ and SID fields of irte to verify 284 * source ids of interrupt requests 285 */ 286 static void set_irte_sid(struct irte *irte, unsigned int svt, 287 unsigned int sq, unsigned int sid) 288 { 289 if (disable_sourceid_checking) 290 svt = SVT_NO_VERIFY; 291 irte->svt = svt; 292 irte->sq = sq; 293 irte->sid = sid; 294 } 295 296 /* 297 * Set an IRTE to match only the bus number. Interrupt requests that reference 298 * this IRTE must have a requester-id whose bus number is between or equal 299 * to the start_bus and end_bus arguments. 300 */ 301 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus, 302 unsigned int end_bus) 303 { 304 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16, 305 (start_bus << 8) | end_bus); 306 } 307 308 static int set_ioapic_sid(struct irte *irte, int apic) 309 { 310 int i; 311 u16 sid = 0; 312 313 if (!irte) 314 return -1; 315 316 down_read(&dmar_global_lock); 317 for (i = 0; i < MAX_IO_APICS; i++) { 318 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) { 319 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn; 320 break; 321 } 322 } 323 up_read(&dmar_global_lock); 324 325 if (sid == 0) { 326 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic); 327 return -1; 328 } 329 330 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid); 331 332 return 0; 333 } 334 335 static int set_hpet_sid(struct irte *irte, u8 id) 336 { 337 int i; 338 u16 sid = 0; 339 340 if (!irte) 341 return -1; 342 343 down_read(&dmar_global_lock); 344 for (i = 0; i < MAX_HPET_TBS; i++) { 345 if (ir_hpet[i].iommu && ir_hpet[i].id == id) { 346 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn; 347 break; 348 } 349 } 350 up_read(&dmar_global_lock); 351 352 if (sid == 0) { 353 pr_warn("Failed to set source-id of HPET block (%d)\n", id); 354 return -1; 355 } 356 357 /* 358 * Should really use SQ_ALL_16. Some platforms are broken. 359 * While we figure out the right quirks for these broken platforms, use 360 * SQ_13_IGNORE_3 for now. 361 */ 362 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid); 363 364 return 0; 365 } 366 367 struct set_msi_sid_data { 368 struct pci_dev *pdev; 369 u16 alias; 370 int count; 371 int busmatch_count; 372 }; 373 374 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque) 375 { 376 struct set_msi_sid_data *data = opaque; 377 378 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias)) 379 data->busmatch_count++; 380 381 data->pdev = pdev; 382 data->alias = alias; 383 data->count++; 384 385 return 0; 386 } 387 388 static int set_msi_sid(struct irte *irte, struct pci_dev *dev) 389 { 390 struct set_msi_sid_data data; 391 392 if (!irte || !dev) 393 return -1; 394 395 data.count = 0; 396 data.busmatch_count = 0; 397 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data); 398 399 /* 400 * DMA alias provides us with a PCI device and alias. The only case 401 * where the it will return an alias on a different bus than the 402 * device is the case of a PCIe-to-PCI bridge, where the alias is for 403 * the subordinate bus. In this case we can only verify the bus. 404 * 405 * If there are multiple aliases, all with the same bus number, 406 * then all we can do is verify the bus. This is typical in NTB 407 * hardware which use proxy IDs where the device will generate traffic 408 * from multiple devfn numbers on the same bus. 409 * 410 * If the alias device is on a different bus than our source device 411 * then we have a topology based alias, use it. 412 * 413 * Otherwise, the alias is for a device DMA quirk and we cannot 414 * assume that MSI uses the same requester ID. Therefore use the 415 * original device. 416 */ 417 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number) 418 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias), 419 dev->bus->number); 420 else if (data.count >= 2 && data.busmatch_count == data.count) 421 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number); 422 else if (data.pdev->bus->number != dev->bus->number) 423 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias); 424 else 425 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, 426 pci_dev_id(dev)); 427 428 return 0; 429 } 430 431 static int iommu_load_old_irte(struct intel_iommu *iommu) 432 { 433 struct irte *old_ir_table; 434 phys_addr_t irt_phys; 435 unsigned int i; 436 size_t size; 437 u64 irta; 438 439 /* Check whether the old ir-table has the same size as ours */ 440 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG); 441 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK) 442 != INTR_REMAP_TABLE_REG_SIZE) 443 return -EINVAL; 444 445 irt_phys = irta & VTD_PAGE_MASK; 446 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte); 447 448 /* Map the old IR table */ 449 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB); 450 if (!old_ir_table) 451 return -ENOMEM; 452 453 /* Copy data over */ 454 memcpy(iommu->ir_table->base, old_ir_table, size); 455 456 __iommu_flush_cache(iommu, iommu->ir_table->base, size); 457 458 /* 459 * Now check the table for used entries and mark those as 460 * allocated in the bitmap 461 */ 462 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) { 463 if (iommu->ir_table->base[i].present) 464 bitmap_set(iommu->ir_table->bitmap, i, 1); 465 } 466 467 memunmap(old_ir_table); 468 469 return 0; 470 } 471 472 473 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode) 474 { 475 unsigned long flags; 476 u64 addr; 477 u32 sts; 478 479 addr = virt_to_phys((void *)iommu->ir_table->base); 480 481 raw_spin_lock_irqsave(&iommu->register_lock, flags); 482 483 dmar_writeq(iommu->reg + DMAR_IRTA_REG, 484 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); 485 486 /* Set interrupt-remapping table pointer */ 487 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG); 488 489 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 490 readl, (sts & DMA_GSTS_IRTPS), sts); 491 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 492 493 /* 494 * Global invalidation of interrupt entry cache to make sure the 495 * hardware uses the new irq remapping table. 496 */ 497 qi_global_iec(iommu); 498 } 499 500 static void iommu_enable_irq_remapping(struct intel_iommu *iommu) 501 { 502 unsigned long flags; 503 u32 sts; 504 505 raw_spin_lock_irqsave(&iommu->register_lock, flags); 506 507 /* Enable interrupt-remapping */ 508 iommu->gcmd |= DMA_GCMD_IRE; 509 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 510 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 511 readl, (sts & DMA_GSTS_IRES), sts); 512 513 /* Block compatibility-format MSIs */ 514 if (sts & DMA_GSTS_CFIS) { 515 iommu->gcmd &= ~DMA_GCMD_CFI; 516 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 517 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 518 readl, !(sts & DMA_GSTS_CFIS), sts); 519 } 520 521 /* 522 * With CFI clear in the Global Command register, we should be 523 * protected from dangerous (i.e. compatibility) interrupts 524 * regardless of x2apic status. Check just to be sure. 525 */ 526 if (sts & DMA_GSTS_CFIS) 527 WARN(1, KERN_WARNING 528 "Compatibility-format IRQs enabled despite intr remapping;\n" 529 "you are vulnerable to IRQ injection.\n"); 530 531 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 532 } 533 534 static int intel_setup_irq_remapping(struct intel_iommu *iommu) 535 { 536 struct ir_table *ir_table; 537 struct fwnode_handle *fn; 538 unsigned long *bitmap; 539 struct page *pages; 540 541 if (iommu->ir_table) 542 return 0; 543 544 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL); 545 if (!ir_table) 546 return -ENOMEM; 547 548 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO, 549 INTR_REMAP_PAGE_ORDER); 550 if (!pages) { 551 pr_err("IR%d: failed to allocate pages of order %d\n", 552 iommu->seq_id, INTR_REMAP_PAGE_ORDER); 553 goto out_free_table; 554 } 555 556 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC); 557 if (bitmap == NULL) { 558 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id); 559 goto out_free_pages; 560 } 561 562 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id); 563 if (!fn) 564 goto out_free_bitmap; 565 566 iommu->ir_domain = 567 irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 568 0, INTR_REMAP_TABLE_ENTRIES, 569 fn, &intel_ir_domain_ops, 570 iommu); 571 if (!iommu->ir_domain) { 572 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id); 573 goto out_free_fwnode; 574 } 575 iommu->ir_msi_domain = 576 arch_create_remap_msi_irq_domain(iommu->ir_domain, 577 "INTEL-IR-MSI", 578 iommu->seq_id); 579 580 ir_table->base = page_address(pages); 581 ir_table->bitmap = bitmap; 582 iommu->ir_table = ir_table; 583 584 /* 585 * If the queued invalidation is already initialized, 586 * shouldn't disable it. 587 */ 588 if (!iommu->qi) { 589 /* 590 * Clear previous faults. 591 */ 592 dmar_fault(-1, iommu); 593 dmar_disable_qi(iommu); 594 595 if (dmar_enable_qi(iommu)) { 596 pr_err("Failed to enable queued invalidation\n"); 597 goto out_free_ir_domain; 598 } 599 } 600 601 init_ir_status(iommu); 602 603 if (ir_pre_enabled(iommu)) { 604 if (!is_kdump_kernel()) { 605 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n", 606 iommu->name); 607 clear_ir_pre_enabled(iommu); 608 iommu_disable_irq_remapping(iommu); 609 } else if (iommu_load_old_irte(iommu)) 610 pr_err("Failed to copy IR table for %s from previous kernel\n", 611 iommu->name); 612 else 613 pr_info("Copied IR table for %s from previous kernel\n", 614 iommu->name); 615 } 616 617 iommu_set_irq_remapping(iommu, eim_mode); 618 619 return 0; 620 621 out_free_ir_domain: 622 if (iommu->ir_msi_domain) 623 irq_domain_remove(iommu->ir_msi_domain); 624 iommu->ir_msi_domain = NULL; 625 irq_domain_remove(iommu->ir_domain); 626 iommu->ir_domain = NULL; 627 out_free_fwnode: 628 irq_domain_free_fwnode(fn); 629 out_free_bitmap: 630 bitmap_free(bitmap); 631 out_free_pages: 632 __free_pages(pages, INTR_REMAP_PAGE_ORDER); 633 out_free_table: 634 kfree(ir_table); 635 636 iommu->ir_table = NULL; 637 638 return -ENOMEM; 639 } 640 641 static void intel_teardown_irq_remapping(struct intel_iommu *iommu) 642 { 643 struct fwnode_handle *fn; 644 645 if (iommu && iommu->ir_table) { 646 if (iommu->ir_msi_domain) { 647 fn = iommu->ir_msi_domain->fwnode; 648 649 irq_domain_remove(iommu->ir_msi_domain); 650 irq_domain_free_fwnode(fn); 651 iommu->ir_msi_domain = NULL; 652 } 653 if (iommu->ir_domain) { 654 fn = iommu->ir_domain->fwnode; 655 656 irq_domain_remove(iommu->ir_domain); 657 irq_domain_free_fwnode(fn); 658 iommu->ir_domain = NULL; 659 } 660 free_pages((unsigned long)iommu->ir_table->base, 661 INTR_REMAP_PAGE_ORDER); 662 bitmap_free(iommu->ir_table->bitmap); 663 kfree(iommu->ir_table); 664 iommu->ir_table = NULL; 665 } 666 } 667 668 /* 669 * Disable Interrupt Remapping. 670 */ 671 static void iommu_disable_irq_remapping(struct intel_iommu *iommu) 672 { 673 unsigned long flags; 674 u32 sts; 675 676 if (!ecap_ir_support(iommu->ecap)) 677 return; 678 679 /* 680 * global invalidation of interrupt entry cache before disabling 681 * interrupt-remapping. 682 */ 683 qi_global_iec(iommu); 684 685 raw_spin_lock_irqsave(&iommu->register_lock, flags); 686 687 sts = readl(iommu->reg + DMAR_GSTS_REG); 688 if (!(sts & DMA_GSTS_IRES)) 689 goto end; 690 691 iommu->gcmd &= ~DMA_GCMD_IRE; 692 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 693 694 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 695 readl, !(sts & DMA_GSTS_IRES), sts); 696 697 end: 698 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 699 } 700 701 static int __init dmar_x2apic_optout(void) 702 { 703 struct acpi_table_dmar *dmar; 704 dmar = (struct acpi_table_dmar *)dmar_tbl; 705 if (!dmar || no_x2apic_optout) 706 return 0; 707 return dmar->flags & DMAR_X2APIC_OPT_OUT; 708 } 709 710 static void __init intel_cleanup_irq_remapping(void) 711 { 712 struct dmar_drhd_unit *drhd; 713 struct intel_iommu *iommu; 714 715 for_each_iommu(iommu, drhd) { 716 if (ecap_ir_support(iommu->ecap)) { 717 iommu_disable_irq_remapping(iommu); 718 intel_teardown_irq_remapping(iommu); 719 } 720 } 721 722 if (x2apic_supported()) 723 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n"); 724 } 725 726 static int __init intel_prepare_irq_remapping(void) 727 { 728 struct dmar_drhd_unit *drhd; 729 struct intel_iommu *iommu; 730 int eim = 0; 731 732 if (irq_remap_broken) { 733 pr_warn("This system BIOS has enabled interrupt remapping\n" 734 "on a chipset that contains an erratum making that\n" 735 "feature unstable. To maintain system stability\n" 736 "interrupt remapping is being disabled. Please\n" 737 "contact your BIOS vendor for an update\n"); 738 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 739 return -ENODEV; 740 } 741 742 if (dmar_table_init() < 0) 743 return -ENODEV; 744 745 if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL)) 746 return -ENODEV; 747 748 if (!dmar_ir_support()) 749 return -ENODEV; 750 751 if (parse_ioapics_under_ir()) { 752 pr_info("Not enabling interrupt remapping\n"); 753 goto error; 754 } 755 756 /* First make sure all IOMMUs support IRQ remapping */ 757 for_each_iommu(iommu, drhd) 758 if (!ecap_ir_support(iommu->ecap)) 759 goto error; 760 761 /* Detect remapping mode: lapic or x2apic */ 762 if (x2apic_supported()) { 763 eim = !dmar_x2apic_optout(); 764 if (!eim) { 765 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit."); 766 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n"); 767 } 768 } 769 770 for_each_iommu(iommu, drhd) { 771 if (eim && !ecap_eim_support(iommu->ecap)) { 772 pr_info("%s does not support EIM\n", iommu->name); 773 eim = 0; 774 } 775 } 776 777 eim_mode = eim; 778 if (eim) 779 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n"); 780 781 /* Do the initializations early */ 782 for_each_iommu(iommu, drhd) { 783 if (intel_setup_irq_remapping(iommu)) { 784 pr_err("Failed to setup irq remapping for %s\n", 785 iommu->name); 786 goto error; 787 } 788 } 789 790 return 0; 791 792 error: 793 intel_cleanup_irq_remapping(); 794 return -ENODEV; 795 } 796 797 /* 798 * Set Posted-Interrupts capability. 799 */ 800 static inline void set_irq_posting_cap(void) 801 { 802 struct dmar_drhd_unit *drhd; 803 struct intel_iommu *iommu; 804 805 if (!disable_irq_post) { 806 /* 807 * If IRTE is in posted format, the 'pda' field goes across the 808 * 64-bit boundary, we need use cmpxchg16b to atomically update 809 * it. We only expose posted-interrupt when X86_FEATURE_CX16 810 * is supported. Actually, hardware platforms supporting PI 811 * should have X86_FEATURE_CX16 support, this has been confirmed 812 * with Intel hardware guys. 813 */ 814 if (boot_cpu_has(X86_FEATURE_CX16)) 815 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP; 816 817 for_each_iommu(iommu, drhd) 818 if (!cap_pi_support(iommu->cap)) { 819 intel_irq_remap_ops.capability &= 820 ~(1 << IRQ_POSTING_CAP); 821 break; 822 } 823 } 824 } 825 826 static int __init intel_enable_irq_remapping(void) 827 { 828 struct dmar_drhd_unit *drhd; 829 struct intel_iommu *iommu; 830 bool setup = false; 831 832 /* 833 * Setup Interrupt-remapping for all the DRHD's now. 834 */ 835 for_each_iommu(iommu, drhd) { 836 if (!ir_pre_enabled(iommu)) 837 iommu_enable_irq_remapping(iommu); 838 setup = true; 839 } 840 841 if (!setup) 842 goto error; 843 844 irq_remapping_enabled = 1; 845 846 set_irq_posting_cap(); 847 848 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic"); 849 850 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE; 851 852 error: 853 intel_cleanup_irq_remapping(); 854 return -1; 855 } 856 857 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope, 858 struct intel_iommu *iommu, 859 struct acpi_dmar_hardware_unit *drhd) 860 { 861 struct acpi_dmar_pci_path *path; 862 u8 bus; 863 int count, free = -1; 864 865 bus = scope->bus; 866 path = (struct acpi_dmar_pci_path *)(scope + 1); 867 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 868 / sizeof(struct acpi_dmar_pci_path); 869 870 while (--count > 0) { 871 /* 872 * Access PCI directly due to the PCI 873 * subsystem isn't initialized yet. 874 */ 875 bus = read_pci_config_byte(bus, path->device, path->function, 876 PCI_SECONDARY_BUS); 877 path++; 878 } 879 880 for (count = 0; count < MAX_HPET_TBS; count++) { 881 if (ir_hpet[count].iommu == iommu && 882 ir_hpet[count].id == scope->enumeration_id) 883 return 0; 884 else if (ir_hpet[count].iommu == NULL && free == -1) 885 free = count; 886 } 887 if (free == -1) { 888 pr_warn("Exceeded Max HPET blocks\n"); 889 return -ENOSPC; 890 } 891 892 ir_hpet[free].iommu = iommu; 893 ir_hpet[free].id = scope->enumeration_id; 894 ir_hpet[free].bus = bus; 895 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function); 896 pr_info("HPET id %d under DRHD base 0x%Lx\n", 897 scope->enumeration_id, drhd->address); 898 899 return 0; 900 } 901 902 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope, 903 struct intel_iommu *iommu, 904 struct acpi_dmar_hardware_unit *drhd) 905 { 906 struct acpi_dmar_pci_path *path; 907 u8 bus; 908 int count, free = -1; 909 910 bus = scope->bus; 911 path = (struct acpi_dmar_pci_path *)(scope + 1); 912 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 913 / sizeof(struct acpi_dmar_pci_path); 914 915 while (--count > 0) { 916 /* 917 * Access PCI directly due to the PCI 918 * subsystem isn't initialized yet. 919 */ 920 bus = read_pci_config_byte(bus, path->device, path->function, 921 PCI_SECONDARY_BUS); 922 path++; 923 } 924 925 for (count = 0; count < MAX_IO_APICS; count++) { 926 if (ir_ioapic[count].iommu == iommu && 927 ir_ioapic[count].id == scope->enumeration_id) 928 return 0; 929 else if (ir_ioapic[count].iommu == NULL && free == -1) 930 free = count; 931 } 932 if (free == -1) { 933 pr_warn("Exceeded Max IO APICS\n"); 934 return -ENOSPC; 935 } 936 937 ir_ioapic[free].bus = bus; 938 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function); 939 ir_ioapic[free].iommu = iommu; 940 ir_ioapic[free].id = scope->enumeration_id; 941 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n", 942 scope->enumeration_id, drhd->address, iommu->seq_id); 943 944 return 0; 945 } 946 947 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header, 948 struct intel_iommu *iommu) 949 { 950 int ret = 0; 951 struct acpi_dmar_hardware_unit *drhd; 952 struct acpi_dmar_device_scope *scope; 953 void *start, *end; 954 955 drhd = (struct acpi_dmar_hardware_unit *)header; 956 start = (void *)(drhd + 1); 957 end = ((void *)drhd) + header->length; 958 959 while (start < end && ret == 0) { 960 scope = start; 961 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) 962 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd); 963 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) 964 ret = ir_parse_one_hpet_scope(scope, iommu, drhd); 965 start += scope->length; 966 } 967 968 return ret; 969 } 970 971 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu) 972 { 973 int i; 974 975 for (i = 0; i < MAX_HPET_TBS; i++) 976 if (ir_hpet[i].iommu == iommu) 977 ir_hpet[i].iommu = NULL; 978 979 for (i = 0; i < MAX_IO_APICS; i++) 980 if (ir_ioapic[i].iommu == iommu) 981 ir_ioapic[i].iommu = NULL; 982 } 983 984 /* 985 * Finds the assocaition between IOAPIC's and its Interrupt-remapping 986 * hardware unit. 987 */ 988 static int __init parse_ioapics_under_ir(void) 989 { 990 struct dmar_drhd_unit *drhd; 991 struct intel_iommu *iommu; 992 bool ir_supported = false; 993 int ioapic_idx; 994 995 for_each_iommu(iommu, drhd) { 996 int ret; 997 998 if (!ecap_ir_support(iommu->ecap)) 999 continue; 1000 1001 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu); 1002 if (ret) 1003 return ret; 1004 1005 ir_supported = true; 1006 } 1007 1008 if (!ir_supported) 1009 return -ENODEV; 1010 1011 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) { 1012 int ioapic_id = mpc_ioapic_id(ioapic_idx); 1013 if (!map_ioapic_to_iommu(ioapic_id)) { 1014 pr_err(FW_BUG "ioapic %d has no mapping iommu, " 1015 "interrupt remapping will be disabled\n", 1016 ioapic_id); 1017 return -1; 1018 } 1019 } 1020 1021 return 0; 1022 } 1023 1024 static int __init ir_dev_scope_init(void) 1025 { 1026 int ret; 1027 1028 if (!irq_remapping_enabled) 1029 return 0; 1030 1031 down_write(&dmar_global_lock); 1032 ret = dmar_dev_scope_init(); 1033 up_write(&dmar_global_lock); 1034 1035 return ret; 1036 } 1037 rootfs_initcall(ir_dev_scope_init); 1038 1039 static void disable_irq_remapping(void) 1040 { 1041 struct dmar_drhd_unit *drhd; 1042 struct intel_iommu *iommu = NULL; 1043 1044 /* 1045 * Disable Interrupt-remapping for all the DRHD's now. 1046 */ 1047 for_each_iommu(iommu, drhd) { 1048 if (!ecap_ir_support(iommu->ecap)) 1049 continue; 1050 1051 iommu_disable_irq_remapping(iommu); 1052 } 1053 1054 /* 1055 * Clear Posted-Interrupts capability. 1056 */ 1057 if (!disable_irq_post) 1058 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP); 1059 } 1060 1061 static int reenable_irq_remapping(int eim) 1062 { 1063 struct dmar_drhd_unit *drhd; 1064 bool setup = false; 1065 struct intel_iommu *iommu = NULL; 1066 1067 for_each_iommu(iommu, drhd) 1068 if (iommu->qi) 1069 dmar_reenable_qi(iommu); 1070 1071 /* 1072 * Setup Interrupt-remapping for all the DRHD's now. 1073 */ 1074 for_each_iommu(iommu, drhd) { 1075 if (!ecap_ir_support(iommu->ecap)) 1076 continue; 1077 1078 /* Set up interrupt remapping for iommu.*/ 1079 iommu_set_irq_remapping(iommu, eim); 1080 iommu_enable_irq_remapping(iommu); 1081 setup = true; 1082 } 1083 1084 if (!setup) 1085 goto error; 1086 1087 set_irq_posting_cap(); 1088 1089 return 0; 1090 1091 error: 1092 /* 1093 * handle error condition gracefully here! 1094 */ 1095 return -1; 1096 } 1097 1098 /* 1099 * Store the MSI remapping domain pointer in the device if enabled. 1100 * 1101 * This is called from dmar_pci_bus_add_dev() so it works even when DMA 1102 * remapping is disabled. Only update the pointer if the device is not 1103 * already handled by a non default PCI/MSI interrupt domain. This protects 1104 * e.g. VMD devices. 1105 */ 1106 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info) 1107 { 1108 if (!irq_remapping_enabled || pci_dev_has_special_msi_domain(info->dev)) 1109 return; 1110 1111 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev)); 1112 } 1113 1114 static void prepare_irte(struct irte *irte, int vector, unsigned int dest) 1115 { 1116 memset(irte, 0, sizeof(*irte)); 1117 1118 irte->present = 1; 1119 irte->dst_mode = apic->dest_mode_logical; 1120 /* 1121 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the 1122 * actual level or edge trigger will be setup in the IO-APIC 1123 * RTE. This will help simplify level triggered irq migration. 1124 * For more details, see the comments (in io_apic.c) explainig IO-APIC 1125 * irq migration in the presence of interrupt-remapping. 1126 */ 1127 irte->trigger_mode = 0; 1128 irte->dlvry_mode = apic->delivery_mode; 1129 irte->vector = vector; 1130 irte->dest_id = IRTE_DEST(dest); 1131 irte->redir_hint = 1; 1132 } 1133 1134 struct irq_remap_ops intel_irq_remap_ops = { 1135 .prepare = intel_prepare_irq_remapping, 1136 .enable = intel_enable_irq_remapping, 1137 .disable = disable_irq_remapping, 1138 .reenable = reenable_irq_remapping, 1139 .enable_faulting = enable_drhd_fault_handling, 1140 }; 1141 1142 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force) 1143 { 1144 struct intel_ir_data *ir_data = irqd->chip_data; 1145 struct irte *irte = &ir_data->irte_entry; 1146 struct irq_cfg *cfg = irqd_cfg(irqd); 1147 1148 /* 1149 * Atomically updates the IRTE with the new destination, vector 1150 * and flushes the interrupt entry cache. 1151 */ 1152 irte->vector = cfg->vector; 1153 irte->dest_id = IRTE_DEST(cfg->dest_apicid); 1154 1155 /* Update the hardware only if the interrupt is in remapped mode. */ 1156 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING) 1157 modify_irte(&ir_data->irq_2_iommu, irte); 1158 } 1159 1160 /* 1161 * Migrate the IO-APIC irq in the presence of intr-remapping. 1162 * 1163 * For both level and edge triggered, irq migration is a simple atomic 1164 * update(of vector and cpu destination) of IRTE and flush the hardware cache. 1165 * 1166 * For level triggered, we eliminate the io-apic RTE modification (with the 1167 * updated vector information), by using a virtual vector (io-apic pin number). 1168 * Real vector that is used for interrupting cpu will be coming from 1169 * the interrupt-remapping table entry. 1170 * 1171 * As the migration is a simple atomic update of IRTE, the same mechanism 1172 * is used to migrate MSI irq's in the presence of interrupt-remapping. 1173 */ 1174 static int 1175 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask, 1176 bool force) 1177 { 1178 struct irq_data *parent = data->parent_data; 1179 struct irq_cfg *cfg = irqd_cfg(data); 1180 int ret; 1181 1182 ret = parent->chip->irq_set_affinity(parent, mask, force); 1183 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 1184 return ret; 1185 1186 intel_ir_reconfigure_irte(data, false); 1187 /* 1188 * After this point, all the interrupts will start arriving 1189 * at the new destination. So, time to cleanup the previous 1190 * vector allocation. 1191 */ 1192 send_cleanup_vector(cfg); 1193 1194 return IRQ_SET_MASK_OK_DONE; 1195 } 1196 1197 static void intel_ir_compose_msi_msg(struct irq_data *irq_data, 1198 struct msi_msg *msg) 1199 { 1200 struct intel_ir_data *ir_data = irq_data->chip_data; 1201 1202 *msg = ir_data->msi_entry; 1203 } 1204 1205 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info) 1206 { 1207 struct intel_ir_data *ir_data = data->chip_data; 1208 struct vcpu_data *vcpu_pi_info = info; 1209 1210 /* stop posting interrupts, back to remapping mode */ 1211 if (!vcpu_pi_info) { 1212 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry); 1213 } else { 1214 struct irte irte_pi; 1215 1216 /* 1217 * We are not caching the posted interrupt entry. We 1218 * copy the data from the remapped entry and modify 1219 * the fields which are relevant for posted mode. The 1220 * cached remapped entry is used for switching back to 1221 * remapped mode. 1222 */ 1223 memset(&irte_pi, 0, sizeof(irte_pi)); 1224 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry); 1225 1226 /* Update the posted mode fields */ 1227 irte_pi.p_pst = 1; 1228 irte_pi.p_urgent = 0; 1229 irte_pi.p_vector = vcpu_pi_info->vector; 1230 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >> 1231 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT); 1232 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) & 1233 ~(-1UL << PDA_HIGH_BIT); 1234 1235 modify_irte(&ir_data->irq_2_iommu, &irte_pi); 1236 } 1237 1238 return 0; 1239 } 1240 1241 static struct irq_chip intel_ir_chip = { 1242 .name = "INTEL-IR", 1243 .irq_ack = apic_ack_irq, 1244 .irq_set_affinity = intel_ir_set_affinity, 1245 .irq_compose_msi_msg = intel_ir_compose_msi_msg, 1246 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity, 1247 }; 1248 1249 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle) 1250 { 1251 memset(msg, 0, sizeof(*msg)); 1252 1253 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW; 1254 msg->arch_addr_lo.dmar_subhandle_valid = true; 1255 msg->arch_addr_lo.dmar_format = true; 1256 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF; 1257 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000); 1258 1259 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 1260 1261 msg->arch_data.dmar_subhandle = subhandle; 1262 } 1263 1264 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data, 1265 struct irq_cfg *irq_cfg, 1266 struct irq_alloc_info *info, 1267 int index, int sub_handle) 1268 { 1269 struct irte *irte = &data->irte_entry; 1270 1271 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid); 1272 1273 switch (info->type) { 1274 case X86_IRQ_ALLOC_TYPE_IOAPIC: 1275 /* Set source-id of interrupt request */ 1276 set_ioapic_sid(irte, info->devid); 1277 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n", 1278 info->devid, irte->present, irte->fpd, 1279 irte->dst_mode, irte->redir_hint, 1280 irte->trigger_mode, irte->dlvry_mode, 1281 irte->avail, irte->vector, irte->dest_id, 1282 irte->sid, irte->sq, irte->svt); 1283 sub_handle = info->ioapic.pin; 1284 break; 1285 case X86_IRQ_ALLOC_TYPE_HPET: 1286 set_hpet_sid(irte, info->devid); 1287 break; 1288 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 1289 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 1290 set_msi_sid(irte, 1291 pci_real_dma_dev(msi_desc_to_pci_dev(info->desc))); 1292 break; 1293 default: 1294 BUG_ON(1); 1295 break; 1296 } 1297 fill_msi_msg(&data->msi_entry, index, sub_handle); 1298 } 1299 1300 static void intel_free_irq_resources(struct irq_domain *domain, 1301 unsigned int virq, unsigned int nr_irqs) 1302 { 1303 struct irq_data *irq_data; 1304 struct intel_ir_data *data; 1305 struct irq_2_iommu *irq_iommu; 1306 unsigned long flags; 1307 int i; 1308 for (i = 0; i < nr_irqs; i++) { 1309 irq_data = irq_domain_get_irq_data(domain, virq + i); 1310 if (irq_data && irq_data->chip_data) { 1311 data = irq_data->chip_data; 1312 irq_iommu = &data->irq_2_iommu; 1313 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 1314 clear_entries(irq_iommu); 1315 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 1316 irq_domain_reset_irq_data(irq_data); 1317 kfree(data); 1318 } 1319 } 1320 } 1321 1322 static int intel_irq_remapping_alloc(struct irq_domain *domain, 1323 unsigned int virq, unsigned int nr_irqs, 1324 void *arg) 1325 { 1326 struct intel_iommu *iommu = domain->host_data; 1327 struct irq_alloc_info *info = arg; 1328 struct intel_ir_data *data, *ird; 1329 struct irq_data *irq_data; 1330 struct irq_cfg *irq_cfg; 1331 int i, ret, index; 1332 1333 if (!info || !iommu) 1334 return -EINVAL; 1335 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI && 1336 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX) 1337 return -EINVAL; 1338 1339 /* 1340 * With IRQ remapping enabled, don't need contiguous CPU vectors 1341 * to support multiple MSI interrupts. 1342 */ 1343 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) 1344 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 1345 1346 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 1347 if (ret < 0) 1348 return ret; 1349 1350 ret = -ENOMEM; 1351 data = kzalloc(sizeof(*data), GFP_KERNEL); 1352 if (!data) 1353 goto out_free_parent; 1354 1355 down_read(&dmar_global_lock); 1356 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs); 1357 up_read(&dmar_global_lock); 1358 if (index < 0) { 1359 pr_warn("Failed to allocate IRTE\n"); 1360 kfree(data); 1361 goto out_free_parent; 1362 } 1363 1364 for (i = 0; i < nr_irqs; i++) { 1365 irq_data = irq_domain_get_irq_data(domain, virq + i); 1366 irq_cfg = irqd_cfg(irq_data); 1367 if (!irq_data || !irq_cfg) { 1368 if (!i) 1369 kfree(data); 1370 ret = -EINVAL; 1371 goto out_free_data; 1372 } 1373 1374 if (i > 0) { 1375 ird = kzalloc(sizeof(*ird), GFP_KERNEL); 1376 if (!ird) 1377 goto out_free_data; 1378 /* Initialize the common data */ 1379 ird->irq_2_iommu = data->irq_2_iommu; 1380 ird->irq_2_iommu.sub_handle = i; 1381 } else { 1382 ird = data; 1383 } 1384 1385 irq_data->hwirq = (index << 16) + i; 1386 irq_data->chip_data = ird; 1387 irq_data->chip = &intel_ir_chip; 1388 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i); 1389 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 1390 } 1391 return 0; 1392 1393 out_free_data: 1394 intel_free_irq_resources(domain, virq, i); 1395 out_free_parent: 1396 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1397 return ret; 1398 } 1399 1400 static void intel_irq_remapping_free(struct irq_domain *domain, 1401 unsigned int virq, unsigned int nr_irqs) 1402 { 1403 intel_free_irq_resources(domain, virq, nr_irqs); 1404 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1405 } 1406 1407 static int intel_irq_remapping_activate(struct irq_domain *domain, 1408 struct irq_data *irq_data, bool reserve) 1409 { 1410 intel_ir_reconfigure_irte(irq_data, true); 1411 return 0; 1412 } 1413 1414 static void intel_irq_remapping_deactivate(struct irq_domain *domain, 1415 struct irq_data *irq_data) 1416 { 1417 struct intel_ir_data *data = irq_data->chip_data; 1418 struct irte entry; 1419 1420 memset(&entry, 0, sizeof(entry)); 1421 modify_irte(&data->irq_2_iommu, &entry); 1422 } 1423 1424 static int intel_irq_remapping_select(struct irq_domain *d, 1425 struct irq_fwspec *fwspec, 1426 enum irq_domain_bus_token bus_token) 1427 { 1428 struct intel_iommu *iommu = NULL; 1429 1430 if (x86_fwspec_is_ioapic(fwspec)) 1431 iommu = map_ioapic_to_iommu(fwspec->param[0]); 1432 else if (x86_fwspec_is_hpet(fwspec)) 1433 iommu = map_hpet_to_iommu(fwspec->param[0]); 1434 1435 return iommu && d == iommu->ir_domain; 1436 } 1437 1438 static const struct irq_domain_ops intel_ir_domain_ops = { 1439 .select = intel_irq_remapping_select, 1440 .alloc = intel_irq_remapping_alloc, 1441 .free = intel_irq_remapping_free, 1442 .activate = intel_irq_remapping_activate, 1443 .deactivate = intel_irq_remapping_deactivate, 1444 }; 1445 1446 /* 1447 * Support of Interrupt Remapping Unit Hotplug 1448 */ 1449 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu) 1450 { 1451 int ret; 1452 int eim = x2apic_enabled(); 1453 1454 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu); 1455 if (ret) 1456 return ret; 1457 1458 if (eim && !ecap_eim_support(iommu->ecap)) { 1459 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n", 1460 iommu->reg_phys, iommu->ecap); 1461 return -ENODEV; 1462 } 1463 1464 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) { 1465 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n", 1466 iommu->reg_phys); 1467 return -ENODEV; 1468 } 1469 1470 /* TODO: check all IOAPICs are covered by IOMMU */ 1471 1472 /* Setup Interrupt-remapping now. */ 1473 ret = intel_setup_irq_remapping(iommu); 1474 if (ret) { 1475 pr_err("Failed to setup irq remapping for %s\n", 1476 iommu->name); 1477 intel_teardown_irq_remapping(iommu); 1478 ir_remove_ioapic_hpet_scope(iommu); 1479 } else { 1480 iommu_enable_irq_remapping(iommu); 1481 } 1482 1483 return ret; 1484 } 1485 1486 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 1487 { 1488 int ret = 0; 1489 struct intel_iommu *iommu = dmaru->iommu; 1490 1491 if (!irq_remapping_enabled) 1492 return 0; 1493 if (iommu == NULL) 1494 return -EINVAL; 1495 if (!ecap_ir_support(iommu->ecap)) 1496 return 0; 1497 if (irq_remapping_cap(IRQ_POSTING_CAP) && 1498 !cap_pi_support(iommu->cap)) 1499 return -EBUSY; 1500 1501 if (insert) { 1502 if (!iommu->ir_table) 1503 ret = dmar_ir_add(dmaru, iommu); 1504 } else { 1505 if (iommu->ir_table) { 1506 if (!bitmap_empty(iommu->ir_table->bitmap, 1507 INTR_REMAP_TABLE_ENTRIES)) { 1508 ret = -EBUSY; 1509 } else { 1510 iommu_disable_irq_remapping(iommu); 1511 intel_teardown_irq_remapping(iommu); 1512 ir_remove_ioapic_hpet_scope(iommu); 1513 } 1514 } 1515 } 1516 1517 return ret; 1518 } 1519