xref: /openbmc/linux/drivers/iommu/intel/irq_remapping.c (revision 32bc7297d855608fcb13af62a95739a079b4f8e2)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #define pr_fmt(fmt)     "DMAR-IR: " fmt
4 
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/acpi.h>
14 #include <linux/irqdomain.h>
15 #include <linux/crash_dump.h>
16 #include <asm/io_apic.h>
17 #include <asm/apic.h>
18 #include <asm/smp.h>
19 #include <asm/cpu.h>
20 #include <asm/irq_remapping.h>
21 #include <asm/pci-direct.h>
22 
23 #include "iommu.h"
24 #include "../irq_remapping.h"
25 #include "cap_audit.h"
26 
27 enum irq_mode {
28 	IRQ_REMAPPING,
29 	IRQ_POSTING,
30 };
31 
32 struct ioapic_scope {
33 	struct intel_iommu *iommu;
34 	unsigned int id;
35 	unsigned int bus;	/* PCI bus number */
36 	unsigned int devfn;	/* PCI devfn number */
37 };
38 
39 struct hpet_scope {
40 	struct intel_iommu *iommu;
41 	u8 id;
42 	unsigned int bus;
43 	unsigned int devfn;
44 };
45 
46 struct irq_2_iommu {
47 	struct intel_iommu *iommu;
48 	u16 irte_index;
49 	u16 sub_handle;
50 	u8  irte_mask;
51 	enum irq_mode mode;
52 };
53 
54 struct intel_ir_data {
55 	struct irq_2_iommu			irq_2_iommu;
56 	struct irte				irte_entry;
57 	union {
58 		struct msi_msg			msi_entry;
59 	};
60 };
61 
62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64 
65 static int __read_mostly eim_mode;
66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68 
69 /*
70  * Lock ordering:
71  * ->dmar_global_lock
72  *	->irq_2_ir_lock
73  *		->qi->q_lock
74  *	->iommu->register_lock
75  * Note:
76  * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
77  * in single-threaded environment with interrupt disabled, so no need to tabke
78  * the dmar_global_lock.
79  */
80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81 static const struct irq_domain_ops intel_ir_domain_ops;
82 
83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84 static int __init parse_ioapics_under_ir(void);
85 static const struct msi_parent_ops dmar_msi_parent_ops, virt_dmar_msi_parent_ops;
86 
87 static bool ir_pre_enabled(struct intel_iommu *iommu)
88 {
89 	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
90 }
91 
92 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
93 {
94 	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
95 }
96 
97 static void init_ir_status(struct intel_iommu *iommu)
98 {
99 	u32 gsts;
100 
101 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
102 	if (gsts & DMA_GSTS_IRES)
103 		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
104 }
105 
106 static int alloc_irte(struct intel_iommu *iommu,
107 		      struct irq_2_iommu *irq_iommu, u16 count)
108 {
109 	struct ir_table *table = iommu->ir_table;
110 	unsigned int mask = 0;
111 	unsigned long flags;
112 	int index;
113 
114 	if (!count || !irq_iommu)
115 		return -1;
116 
117 	if (count > 1) {
118 		count = __roundup_pow_of_two(count);
119 		mask = ilog2(count);
120 	}
121 
122 	if (mask > ecap_max_handle_mask(iommu->ecap)) {
123 		pr_err("Requested mask %x exceeds the max invalidation handle"
124 		       " mask value %Lx\n", mask,
125 		       ecap_max_handle_mask(iommu->ecap));
126 		return -1;
127 	}
128 
129 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
130 	index = bitmap_find_free_region(table->bitmap,
131 					INTR_REMAP_TABLE_ENTRIES, mask);
132 	if (index < 0) {
133 		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
134 	} else {
135 		irq_iommu->iommu = iommu;
136 		irq_iommu->irte_index =  index;
137 		irq_iommu->sub_handle = 0;
138 		irq_iommu->irte_mask = mask;
139 		irq_iommu->mode = IRQ_REMAPPING;
140 	}
141 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
142 
143 	return index;
144 }
145 
146 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
147 {
148 	struct qi_desc desc;
149 
150 	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
151 		   | QI_IEC_SELECTIVE;
152 	desc.qw1 = 0;
153 	desc.qw2 = 0;
154 	desc.qw3 = 0;
155 
156 	return qi_submit_sync(iommu, &desc, 1, 0);
157 }
158 
159 static int modify_irte(struct irq_2_iommu *irq_iommu,
160 		       struct irte *irte_modified)
161 {
162 	struct intel_iommu *iommu;
163 	unsigned long flags;
164 	struct irte *irte;
165 	int rc, index;
166 
167 	if (!irq_iommu)
168 		return -1;
169 
170 	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
171 
172 	iommu = irq_iommu->iommu;
173 
174 	index = irq_iommu->irte_index + irq_iommu->sub_handle;
175 	irte = &iommu->ir_table->base[index];
176 
177 	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
178 		/*
179 		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
180 		 * and it cannot be updated by the hardware or other processors
181 		 * behind us, so the return value of cmpxchg16 should be the
182 		 * same as the old value.
183 		 */
184 		u128 old = irte->irte;
185 		WARN_ON(!try_cmpxchg128(&irte->irte, &old, irte_modified->irte));
186 	} else {
187 		WRITE_ONCE(irte->low, irte_modified->low);
188 		WRITE_ONCE(irte->high, irte_modified->high);
189 	}
190 	__iommu_flush_cache(iommu, irte, sizeof(*irte));
191 
192 	rc = qi_flush_iec(iommu, index, 0);
193 
194 	/* Update iommu mode according to the IRTE mode */
195 	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
196 	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
197 
198 	return rc;
199 }
200 
201 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
202 {
203 	int i;
204 
205 	for (i = 0; i < MAX_HPET_TBS; i++) {
206 		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
207 			return ir_hpet[i].iommu;
208 	}
209 	return NULL;
210 }
211 
212 static struct intel_iommu *map_ioapic_to_iommu(int apic)
213 {
214 	int i;
215 
216 	for (i = 0; i < MAX_IO_APICS; i++) {
217 		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
218 			return ir_ioapic[i].iommu;
219 	}
220 	return NULL;
221 }
222 
223 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
224 {
225 	struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
226 
227 	return drhd ? drhd->iommu->ir_domain : NULL;
228 }
229 
230 static int clear_entries(struct irq_2_iommu *irq_iommu)
231 {
232 	struct irte *start, *entry, *end;
233 	struct intel_iommu *iommu;
234 	int index;
235 
236 	if (irq_iommu->sub_handle)
237 		return 0;
238 
239 	iommu = irq_iommu->iommu;
240 	index = irq_iommu->irte_index;
241 
242 	start = iommu->ir_table->base + index;
243 	end = start + (1 << irq_iommu->irte_mask);
244 
245 	for (entry = start; entry < end; entry++) {
246 		WRITE_ONCE(entry->low, 0);
247 		WRITE_ONCE(entry->high, 0);
248 	}
249 	bitmap_release_region(iommu->ir_table->bitmap, index,
250 			      irq_iommu->irte_mask);
251 
252 	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
253 }
254 
255 /*
256  * source validation type
257  */
258 #define SVT_NO_VERIFY		0x0  /* no verification is required */
259 #define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
260 #define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
261 
262 /*
263  * source-id qualifier
264  */
265 #define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
266 #define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
267 			      * the third least significant bit
268 			      */
269 #define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
270 			      * the second and third least significant bits
271 			      */
272 #define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
273 			      * the least three significant bits
274 			      */
275 
276 /*
277  * set SVT, SQ and SID fields of irte to verify
278  * source ids of interrupt requests
279  */
280 static void set_irte_sid(struct irte *irte, unsigned int svt,
281 			 unsigned int sq, unsigned int sid)
282 {
283 	if (disable_sourceid_checking)
284 		svt = SVT_NO_VERIFY;
285 	irte->svt = svt;
286 	irte->sq = sq;
287 	irte->sid = sid;
288 }
289 
290 /*
291  * Set an IRTE to match only the bus number. Interrupt requests that reference
292  * this IRTE must have a requester-id whose bus number is between or equal
293  * to the start_bus and end_bus arguments.
294  */
295 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
296 				unsigned int end_bus)
297 {
298 	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
299 		     (start_bus << 8) | end_bus);
300 }
301 
302 static int set_ioapic_sid(struct irte *irte, int apic)
303 {
304 	int i;
305 	u16 sid = 0;
306 
307 	if (!irte)
308 		return -1;
309 
310 	for (i = 0; i < MAX_IO_APICS; i++) {
311 		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
312 			sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
313 			break;
314 		}
315 	}
316 
317 	if (sid == 0) {
318 		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
319 		return -1;
320 	}
321 
322 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
323 
324 	return 0;
325 }
326 
327 static int set_hpet_sid(struct irte *irte, u8 id)
328 {
329 	int i;
330 	u16 sid = 0;
331 
332 	if (!irte)
333 		return -1;
334 
335 	for (i = 0; i < MAX_HPET_TBS; i++) {
336 		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
337 			sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
338 			break;
339 		}
340 	}
341 
342 	if (sid == 0) {
343 		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
344 		return -1;
345 	}
346 
347 	/*
348 	 * Should really use SQ_ALL_16. Some platforms are broken.
349 	 * While we figure out the right quirks for these broken platforms, use
350 	 * SQ_13_IGNORE_3 for now.
351 	 */
352 	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
353 
354 	return 0;
355 }
356 
357 struct set_msi_sid_data {
358 	struct pci_dev *pdev;
359 	u16 alias;
360 	int count;
361 	int busmatch_count;
362 };
363 
364 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
365 {
366 	struct set_msi_sid_data *data = opaque;
367 
368 	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
369 		data->busmatch_count++;
370 
371 	data->pdev = pdev;
372 	data->alias = alias;
373 	data->count++;
374 
375 	return 0;
376 }
377 
378 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
379 {
380 	struct set_msi_sid_data data;
381 
382 	if (!irte || !dev)
383 		return -1;
384 
385 	data.count = 0;
386 	data.busmatch_count = 0;
387 	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
388 
389 	/*
390 	 * DMA alias provides us with a PCI device and alias.  The only case
391 	 * where the it will return an alias on a different bus than the
392 	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
393 	 * the subordinate bus.  In this case we can only verify the bus.
394 	 *
395 	 * If there are multiple aliases, all with the same bus number,
396 	 * then all we can do is verify the bus. This is typical in NTB
397 	 * hardware which use proxy IDs where the device will generate traffic
398 	 * from multiple devfn numbers on the same bus.
399 	 *
400 	 * If the alias device is on a different bus than our source device
401 	 * then we have a topology based alias, use it.
402 	 *
403 	 * Otherwise, the alias is for a device DMA quirk and we cannot
404 	 * assume that MSI uses the same requester ID.  Therefore use the
405 	 * original device.
406 	 */
407 	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
408 		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
409 				    dev->bus->number);
410 	else if (data.count >= 2 && data.busmatch_count == data.count)
411 		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
412 	else if (data.pdev->bus->number != dev->bus->number)
413 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
414 	else
415 		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
416 			     pci_dev_id(dev));
417 
418 	return 0;
419 }
420 
421 static int iommu_load_old_irte(struct intel_iommu *iommu)
422 {
423 	struct irte *old_ir_table;
424 	phys_addr_t irt_phys;
425 	unsigned int i;
426 	size_t size;
427 	u64 irta;
428 
429 	/* Check whether the old ir-table has the same size as ours */
430 	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
431 	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
432 	     != INTR_REMAP_TABLE_REG_SIZE)
433 		return -EINVAL;
434 
435 	irt_phys = irta & VTD_PAGE_MASK;
436 	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
437 
438 	/* Map the old IR table */
439 	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
440 	if (!old_ir_table)
441 		return -ENOMEM;
442 
443 	/* Copy data over */
444 	memcpy(iommu->ir_table->base, old_ir_table, size);
445 
446 	__iommu_flush_cache(iommu, iommu->ir_table->base, size);
447 
448 	/*
449 	 * Now check the table for used entries and mark those as
450 	 * allocated in the bitmap
451 	 */
452 	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
453 		if (iommu->ir_table->base[i].present)
454 			bitmap_set(iommu->ir_table->bitmap, i, 1);
455 	}
456 
457 	memunmap(old_ir_table);
458 
459 	return 0;
460 }
461 
462 
463 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
464 {
465 	unsigned long flags;
466 	u64 addr;
467 	u32 sts;
468 
469 	addr = virt_to_phys((void *)iommu->ir_table->base);
470 
471 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
472 
473 	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
474 		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
475 
476 	/* Set interrupt-remapping table pointer */
477 	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
478 
479 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
480 		      readl, (sts & DMA_GSTS_IRTPS), sts);
481 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
482 
483 	/*
484 	 * Global invalidation of interrupt entry cache to make sure the
485 	 * hardware uses the new irq remapping table.
486 	 */
487 	if (!cap_esirtps(iommu->cap))
488 		qi_global_iec(iommu);
489 }
490 
491 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
492 {
493 	unsigned long flags;
494 	u32 sts;
495 
496 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
497 
498 	/* Enable interrupt-remapping */
499 	iommu->gcmd |= DMA_GCMD_IRE;
500 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
501 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
502 		      readl, (sts & DMA_GSTS_IRES), sts);
503 
504 	/* Block compatibility-format MSIs */
505 	if (sts & DMA_GSTS_CFIS) {
506 		iommu->gcmd &= ~DMA_GCMD_CFI;
507 		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
508 		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
509 			      readl, !(sts & DMA_GSTS_CFIS), sts);
510 	}
511 
512 	/*
513 	 * With CFI clear in the Global Command register, we should be
514 	 * protected from dangerous (i.e. compatibility) interrupts
515 	 * regardless of x2apic status.  Check just to be sure.
516 	 */
517 	if (sts & DMA_GSTS_CFIS)
518 		WARN(1, KERN_WARNING
519 			"Compatibility-format IRQs enabled despite intr remapping;\n"
520 			"you are vulnerable to IRQ injection.\n");
521 
522 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
523 }
524 
525 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
526 {
527 	struct ir_table *ir_table;
528 	struct fwnode_handle *fn;
529 	unsigned long *bitmap;
530 	struct page *pages;
531 
532 	if (iommu->ir_table)
533 		return 0;
534 
535 	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
536 	if (!ir_table)
537 		return -ENOMEM;
538 
539 	pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
540 				 INTR_REMAP_PAGE_ORDER);
541 	if (!pages) {
542 		pr_err("IR%d: failed to allocate pages of order %d\n",
543 		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
544 		goto out_free_table;
545 	}
546 
547 	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_KERNEL);
548 	if (bitmap == NULL) {
549 		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
550 		goto out_free_pages;
551 	}
552 
553 	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
554 	if (!fn)
555 		goto out_free_bitmap;
556 
557 	iommu->ir_domain =
558 		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
559 					    0, INTR_REMAP_TABLE_ENTRIES,
560 					    fn, &intel_ir_domain_ops,
561 					    iommu);
562 	if (!iommu->ir_domain) {
563 		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
564 		goto out_free_fwnode;
565 	}
566 
567 	irq_domain_update_bus_token(iommu->ir_domain,  DOMAIN_BUS_DMAR);
568 	iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
569 				   IRQ_DOMAIN_FLAG_ISOLATED_MSI;
570 
571 	if (cap_caching_mode(iommu->cap))
572 		iommu->ir_domain->msi_parent_ops = &virt_dmar_msi_parent_ops;
573 	else
574 		iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops;
575 
576 	ir_table->base = page_address(pages);
577 	ir_table->bitmap = bitmap;
578 	iommu->ir_table = ir_table;
579 
580 	/*
581 	 * If the queued invalidation is already initialized,
582 	 * shouldn't disable it.
583 	 */
584 	if (!iommu->qi) {
585 		/*
586 		 * Clear previous faults.
587 		 */
588 		dmar_fault(-1, iommu);
589 		dmar_disable_qi(iommu);
590 
591 		if (dmar_enable_qi(iommu)) {
592 			pr_err("Failed to enable queued invalidation\n");
593 			goto out_free_ir_domain;
594 		}
595 	}
596 
597 	init_ir_status(iommu);
598 
599 	if (ir_pre_enabled(iommu)) {
600 		if (!is_kdump_kernel()) {
601 			pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
602 				iommu->name);
603 			clear_ir_pre_enabled(iommu);
604 			iommu_disable_irq_remapping(iommu);
605 		} else if (iommu_load_old_irte(iommu))
606 			pr_err("Failed to copy IR table for %s from previous kernel\n",
607 			       iommu->name);
608 		else
609 			pr_info("Copied IR table for %s from previous kernel\n",
610 				iommu->name);
611 	}
612 
613 	iommu_set_irq_remapping(iommu, eim_mode);
614 
615 	return 0;
616 
617 out_free_ir_domain:
618 	irq_domain_remove(iommu->ir_domain);
619 	iommu->ir_domain = NULL;
620 out_free_fwnode:
621 	irq_domain_free_fwnode(fn);
622 out_free_bitmap:
623 	bitmap_free(bitmap);
624 out_free_pages:
625 	__free_pages(pages, INTR_REMAP_PAGE_ORDER);
626 out_free_table:
627 	kfree(ir_table);
628 
629 	iommu->ir_table  = NULL;
630 
631 	return -ENOMEM;
632 }
633 
634 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
635 {
636 	struct fwnode_handle *fn;
637 
638 	if (iommu && iommu->ir_table) {
639 		if (iommu->ir_domain) {
640 			fn = iommu->ir_domain->fwnode;
641 
642 			irq_domain_remove(iommu->ir_domain);
643 			irq_domain_free_fwnode(fn);
644 			iommu->ir_domain = NULL;
645 		}
646 		free_pages((unsigned long)iommu->ir_table->base,
647 			   INTR_REMAP_PAGE_ORDER);
648 		bitmap_free(iommu->ir_table->bitmap);
649 		kfree(iommu->ir_table);
650 		iommu->ir_table = NULL;
651 	}
652 }
653 
654 /*
655  * Disable Interrupt Remapping.
656  */
657 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
658 {
659 	unsigned long flags;
660 	u32 sts;
661 
662 	if (!ecap_ir_support(iommu->ecap))
663 		return;
664 
665 	/*
666 	 * global invalidation of interrupt entry cache before disabling
667 	 * interrupt-remapping.
668 	 */
669 	if (!cap_esirtps(iommu->cap))
670 		qi_global_iec(iommu);
671 
672 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
673 
674 	sts = readl(iommu->reg + DMAR_GSTS_REG);
675 	if (!(sts & DMA_GSTS_IRES))
676 		goto end;
677 
678 	iommu->gcmd &= ~DMA_GCMD_IRE;
679 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
680 
681 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
682 		      readl, !(sts & DMA_GSTS_IRES), sts);
683 
684 end:
685 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
686 }
687 
688 static int __init dmar_x2apic_optout(void)
689 {
690 	struct acpi_table_dmar *dmar;
691 	dmar = (struct acpi_table_dmar *)dmar_tbl;
692 	if (!dmar || no_x2apic_optout)
693 		return 0;
694 	return dmar->flags & DMAR_X2APIC_OPT_OUT;
695 }
696 
697 static void __init intel_cleanup_irq_remapping(void)
698 {
699 	struct dmar_drhd_unit *drhd;
700 	struct intel_iommu *iommu;
701 
702 	for_each_iommu(iommu, drhd) {
703 		if (ecap_ir_support(iommu->ecap)) {
704 			iommu_disable_irq_remapping(iommu);
705 			intel_teardown_irq_remapping(iommu);
706 		}
707 	}
708 
709 	if (x2apic_supported())
710 		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
711 }
712 
713 static int __init intel_prepare_irq_remapping(void)
714 {
715 	struct dmar_drhd_unit *drhd;
716 	struct intel_iommu *iommu;
717 	int eim = 0;
718 
719 	if (irq_remap_broken) {
720 		pr_warn("This system BIOS has enabled interrupt remapping\n"
721 			"on a chipset that contains an erratum making that\n"
722 			"feature unstable.  To maintain system stability\n"
723 			"interrupt remapping is being disabled.  Please\n"
724 			"contact your BIOS vendor for an update\n");
725 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
726 		return -ENODEV;
727 	}
728 
729 	if (dmar_table_init() < 0)
730 		return -ENODEV;
731 
732 	if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL))
733 		return -ENODEV;
734 
735 	if (!dmar_ir_support())
736 		return -ENODEV;
737 
738 	if (parse_ioapics_under_ir()) {
739 		pr_info("Not enabling interrupt remapping\n");
740 		goto error;
741 	}
742 
743 	/* First make sure all IOMMUs support IRQ remapping */
744 	for_each_iommu(iommu, drhd)
745 		if (!ecap_ir_support(iommu->ecap))
746 			goto error;
747 
748 	/* Detect remapping mode: lapic or x2apic */
749 	if (x2apic_supported()) {
750 		eim = !dmar_x2apic_optout();
751 		if (!eim) {
752 			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
753 			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
754 		}
755 	}
756 
757 	for_each_iommu(iommu, drhd) {
758 		if (eim && !ecap_eim_support(iommu->ecap)) {
759 			pr_info("%s does not support EIM\n", iommu->name);
760 			eim = 0;
761 		}
762 	}
763 
764 	eim_mode = eim;
765 	if (eim)
766 		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
767 
768 	/* Do the initializations early */
769 	for_each_iommu(iommu, drhd) {
770 		if (intel_setup_irq_remapping(iommu)) {
771 			pr_err("Failed to setup irq remapping for %s\n",
772 			       iommu->name);
773 			goto error;
774 		}
775 	}
776 
777 	return 0;
778 
779 error:
780 	intel_cleanup_irq_remapping();
781 	return -ENODEV;
782 }
783 
784 /*
785  * Set Posted-Interrupts capability.
786  */
787 static inline void set_irq_posting_cap(void)
788 {
789 	struct dmar_drhd_unit *drhd;
790 	struct intel_iommu *iommu;
791 
792 	if (!disable_irq_post) {
793 		/*
794 		 * If IRTE is in posted format, the 'pda' field goes across the
795 		 * 64-bit boundary, we need use cmpxchg16b to atomically update
796 		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
797 		 * is supported. Actually, hardware platforms supporting PI
798 		 * should have X86_FEATURE_CX16 support, this has been confirmed
799 		 * with Intel hardware guys.
800 		 */
801 		if (boot_cpu_has(X86_FEATURE_CX16))
802 			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
803 
804 		for_each_iommu(iommu, drhd)
805 			if (!cap_pi_support(iommu->cap)) {
806 				intel_irq_remap_ops.capability &=
807 						~(1 << IRQ_POSTING_CAP);
808 				break;
809 			}
810 	}
811 }
812 
813 static int __init intel_enable_irq_remapping(void)
814 {
815 	struct dmar_drhd_unit *drhd;
816 	struct intel_iommu *iommu;
817 	bool setup = false;
818 
819 	/*
820 	 * Setup Interrupt-remapping for all the DRHD's now.
821 	 */
822 	for_each_iommu(iommu, drhd) {
823 		if (!ir_pre_enabled(iommu))
824 			iommu_enable_irq_remapping(iommu);
825 		setup = true;
826 	}
827 
828 	if (!setup)
829 		goto error;
830 
831 	irq_remapping_enabled = 1;
832 
833 	set_irq_posting_cap();
834 
835 	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
836 
837 	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
838 
839 error:
840 	intel_cleanup_irq_remapping();
841 	return -1;
842 }
843 
844 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
845 				   struct intel_iommu *iommu,
846 				   struct acpi_dmar_hardware_unit *drhd)
847 {
848 	struct acpi_dmar_pci_path *path;
849 	u8 bus;
850 	int count, free = -1;
851 
852 	bus = scope->bus;
853 	path = (struct acpi_dmar_pci_path *)(scope + 1);
854 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
855 		/ sizeof(struct acpi_dmar_pci_path);
856 
857 	while (--count > 0) {
858 		/*
859 		 * Access PCI directly due to the PCI
860 		 * subsystem isn't initialized yet.
861 		 */
862 		bus = read_pci_config_byte(bus, path->device, path->function,
863 					   PCI_SECONDARY_BUS);
864 		path++;
865 	}
866 
867 	for (count = 0; count < MAX_HPET_TBS; count++) {
868 		if (ir_hpet[count].iommu == iommu &&
869 		    ir_hpet[count].id == scope->enumeration_id)
870 			return 0;
871 		else if (ir_hpet[count].iommu == NULL && free == -1)
872 			free = count;
873 	}
874 	if (free == -1) {
875 		pr_warn("Exceeded Max HPET blocks\n");
876 		return -ENOSPC;
877 	}
878 
879 	ir_hpet[free].iommu = iommu;
880 	ir_hpet[free].id    = scope->enumeration_id;
881 	ir_hpet[free].bus   = bus;
882 	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
883 	pr_info("HPET id %d under DRHD base 0x%Lx\n",
884 		scope->enumeration_id, drhd->address);
885 
886 	return 0;
887 }
888 
889 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
890 				     struct intel_iommu *iommu,
891 				     struct acpi_dmar_hardware_unit *drhd)
892 {
893 	struct acpi_dmar_pci_path *path;
894 	u8 bus;
895 	int count, free = -1;
896 
897 	bus = scope->bus;
898 	path = (struct acpi_dmar_pci_path *)(scope + 1);
899 	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
900 		/ sizeof(struct acpi_dmar_pci_path);
901 
902 	while (--count > 0) {
903 		/*
904 		 * Access PCI directly due to the PCI
905 		 * subsystem isn't initialized yet.
906 		 */
907 		bus = read_pci_config_byte(bus, path->device, path->function,
908 					   PCI_SECONDARY_BUS);
909 		path++;
910 	}
911 
912 	for (count = 0; count < MAX_IO_APICS; count++) {
913 		if (ir_ioapic[count].iommu == iommu &&
914 		    ir_ioapic[count].id == scope->enumeration_id)
915 			return 0;
916 		else if (ir_ioapic[count].iommu == NULL && free == -1)
917 			free = count;
918 	}
919 	if (free == -1) {
920 		pr_warn("Exceeded Max IO APICS\n");
921 		return -ENOSPC;
922 	}
923 
924 	ir_ioapic[free].bus   = bus;
925 	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
926 	ir_ioapic[free].iommu = iommu;
927 	ir_ioapic[free].id    = scope->enumeration_id;
928 	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
929 		scope->enumeration_id, drhd->address, iommu->seq_id);
930 
931 	return 0;
932 }
933 
934 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
935 				      struct intel_iommu *iommu)
936 {
937 	int ret = 0;
938 	struct acpi_dmar_hardware_unit *drhd;
939 	struct acpi_dmar_device_scope *scope;
940 	void *start, *end;
941 
942 	drhd = (struct acpi_dmar_hardware_unit *)header;
943 	start = (void *)(drhd + 1);
944 	end = ((void *)drhd) + header->length;
945 
946 	while (start < end && ret == 0) {
947 		scope = start;
948 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
949 			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
950 		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
951 			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
952 		start += scope->length;
953 	}
954 
955 	return ret;
956 }
957 
958 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
959 {
960 	int i;
961 
962 	for (i = 0; i < MAX_HPET_TBS; i++)
963 		if (ir_hpet[i].iommu == iommu)
964 			ir_hpet[i].iommu = NULL;
965 
966 	for (i = 0; i < MAX_IO_APICS; i++)
967 		if (ir_ioapic[i].iommu == iommu)
968 			ir_ioapic[i].iommu = NULL;
969 }
970 
971 /*
972  * Finds the assocaition between IOAPIC's and its Interrupt-remapping
973  * hardware unit.
974  */
975 static int __init parse_ioapics_under_ir(void)
976 {
977 	struct dmar_drhd_unit *drhd;
978 	struct intel_iommu *iommu;
979 	bool ir_supported = false;
980 	int ioapic_idx;
981 
982 	for_each_iommu(iommu, drhd) {
983 		int ret;
984 
985 		if (!ecap_ir_support(iommu->ecap))
986 			continue;
987 
988 		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
989 		if (ret)
990 			return ret;
991 
992 		ir_supported = true;
993 	}
994 
995 	if (!ir_supported)
996 		return -ENODEV;
997 
998 	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
999 		int ioapic_id = mpc_ioapic_id(ioapic_idx);
1000 		if (!map_ioapic_to_iommu(ioapic_id)) {
1001 			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1002 			       "interrupt remapping will be disabled\n",
1003 			       ioapic_id);
1004 			return -1;
1005 		}
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 static int __init ir_dev_scope_init(void)
1012 {
1013 	int ret;
1014 
1015 	if (!irq_remapping_enabled)
1016 		return 0;
1017 
1018 	down_write(&dmar_global_lock);
1019 	ret = dmar_dev_scope_init();
1020 	up_write(&dmar_global_lock);
1021 
1022 	return ret;
1023 }
1024 rootfs_initcall(ir_dev_scope_init);
1025 
1026 static void disable_irq_remapping(void)
1027 {
1028 	struct dmar_drhd_unit *drhd;
1029 	struct intel_iommu *iommu = NULL;
1030 
1031 	/*
1032 	 * Disable Interrupt-remapping for all the DRHD's now.
1033 	 */
1034 	for_each_iommu(iommu, drhd) {
1035 		if (!ecap_ir_support(iommu->ecap))
1036 			continue;
1037 
1038 		iommu_disable_irq_remapping(iommu);
1039 	}
1040 
1041 	/*
1042 	 * Clear Posted-Interrupts capability.
1043 	 */
1044 	if (!disable_irq_post)
1045 		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1046 }
1047 
1048 static int reenable_irq_remapping(int eim)
1049 {
1050 	struct dmar_drhd_unit *drhd;
1051 	bool setup = false;
1052 	struct intel_iommu *iommu = NULL;
1053 
1054 	for_each_iommu(iommu, drhd)
1055 		if (iommu->qi)
1056 			dmar_reenable_qi(iommu);
1057 
1058 	/*
1059 	 * Setup Interrupt-remapping for all the DRHD's now.
1060 	 */
1061 	for_each_iommu(iommu, drhd) {
1062 		if (!ecap_ir_support(iommu->ecap))
1063 			continue;
1064 
1065 		/* Set up interrupt remapping for iommu.*/
1066 		iommu_set_irq_remapping(iommu, eim);
1067 		iommu_enable_irq_remapping(iommu);
1068 		setup = true;
1069 	}
1070 
1071 	if (!setup)
1072 		goto error;
1073 
1074 	set_irq_posting_cap();
1075 
1076 	return 0;
1077 
1078 error:
1079 	/*
1080 	 * handle error condition gracefully here!
1081 	 */
1082 	return -1;
1083 }
1084 
1085 /*
1086  * Store the MSI remapping domain pointer in the device if enabled.
1087  *
1088  * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1089  * remapping is disabled. Only update the pointer if the device is not
1090  * already handled by a non default PCI/MSI interrupt domain. This protects
1091  * e.g. VMD devices.
1092  */
1093 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1094 {
1095 	if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev))
1096 		return;
1097 
1098 	dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1099 }
1100 
1101 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1102 {
1103 	memset(irte, 0, sizeof(*irte));
1104 
1105 	irte->present = 1;
1106 	irte->dst_mode = apic->dest_mode_logical;
1107 	/*
1108 	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1109 	 * actual level or edge trigger will be setup in the IO-APIC
1110 	 * RTE. This will help simplify level triggered irq migration.
1111 	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1112 	 * irq migration in the presence of interrupt-remapping.
1113 	*/
1114 	irte->trigger_mode = 0;
1115 	irte->dlvry_mode = apic->delivery_mode;
1116 	irte->vector = vector;
1117 	irte->dest_id = IRTE_DEST(dest);
1118 	irte->redir_hint = 1;
1119 }
1120 
1121 struct irq_remap_ops intel_irq_remap_ops = {
1122 	.prepare		= intel_prepare_irq_remapping,
1123 	.enable			= intel_enable_irq_remapping,
1124 	.disable		= disable_irq_remapping,
1125 	.reenable		= reenable_irq_remapping,
1126 	.enable_faulting	= enable_drhd_fault_handling,
1127 };
1128 
1129 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1130 {
1131 	struct intel_ir_data *ir_data = irqd->chip_data;
1132 	struct irte *irte = &ir_data->irte_entry;
1133 	struct irq_cfg *cfg = irqd_cfg(irqd);
1134 
1135 	/*
1136 	 * Atomically updates the IRTE with the new destination, vector
1137 	 * and flushes the interrupt entry cache.
1138 	 */
1139 	irte->vector = cfg->vector;
1140 	irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1141 
1142 	/* Update the hardware only if the interrupt is in remapped mode. */
1143 	if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1144 		modify_irte(&ir_data->irq_2_iommu, irte);
1145 }
1146 
1147 /*
1148  * Migrate the IO-APIC irq in the presence of intr-remapping.
1149  *
1150  * For both level and edge triggered, irq migration is a simple atomic
1151  * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1152  *
1153  * For level triggered, we eliminate the io-apic RTE modification (with the
1154  * updated vector information), by using a virtual vector (io-apic pin number).
1155  * Real vector that is used for interrupting cpu will be coming from
1156  * the interrupt-remapping table entry.
1157  *
1158  * As the migration is a simple atomic update of IRTE, the same mechanism
1159  * is used to migrate MSI irq's in the presence of interrupt-remapping.
1160  */
1161 static int
1162 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1163 		      bool force)
1164 {
1165 	struct irq_data *parent = data->parent_data;
1166 	struct irq_cfg *cfg = irqd_cfg(data);
1167 	int ret;
1168 
1169 	ret = parent->chip->irq_set_affinity(parent, mask, force);
1170 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1171 		return ret;
1172 
1173 	intel_ir_reconfigure_irte(data, false);
1174 	/*
1175 	 * After this point, all the interrupts will start arriving
1176 	 * at the new destination. So, time to cleanup the previous
1177 	 * vector allocation.
1178 	 */
1179 	send_cleanup_vector(cfg);
1180 
1181 	return IRQ_SET_MASK_OK_DONE;
1182 }
1183 
1184 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1185 				     struct msi_msg *msg)
1186 {
1187 	struct intel_ir_data *ir_data = irq_data->chip_data;
1188 
1189 	*msg = ir_data->msi_entry;
1190 }
1191 
1192 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1193 {
1194 	struct intel_ir_data *ir_data = data->chip_data;
1195 	struct vcpu_data *vcpu_pi_info = info;
1196 
1197 	/* stop posting interrupts, back to remapping mode */
1198 	if (!vcpu_pi_info) {
1199 		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1200 	} else {
1201 		struct irte irte_pi;
1202 
1203 		/*
1204 		 * We are not caching the posted interrupt entry. We
1205 		 * copy the data from the remapped entry and modify
1206 		 * the fields which are relevant for posted mode. The
1207 		 * cached remapped entry is used for switching back to
1208 		 * remapped mode.
1209 		 */
1210 		memset(&irte_pi, 0, sizeof(irte_pi));
1211 		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1212 
1213 		/* Update the posted mode fields */
1214 		irte_pi.p_pst = 1;
1215 		irte_pi.p_urgent = 0;
1216 		irte_pi.p_vector = vcpu_pi_info->vector;
1217 		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1218 				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1219 		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1220 				~(-1UL << PDA_HIGH_BIT);
1221 
1222 		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 static struct irq_chip intel_ir_chip = {
1229 	.name			= "INTEL-IR",
1230 	.irq_ack		= apic_ack_irq,
1231 	.irq_set_affinity	= intel_ir_set_affinity,
1232 	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1233 	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1234 };
1235 
1236 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1237 {
1238 	memset(msg, 0, sizeof(*msg));
1239 
1240 	msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1241 	msg->arch_addr_lo.dmar_subhandle_valid = true;
1242 	msg->arch_addr_lo.dmar_format = true;
1243 	msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1244 	msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1245 
1246 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1247 
1248 	msg->arch_data.dmar_subhandle = subhandle;
1249 }
1250 
1251 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1252 					     struct irq_cfg *irq_cfg,
1253 					     struct irq_alloc_info *info,
1254 					     int index, int sub_handle)
1255 {
1256 	struct irte *irte = &data->irte_entry;
1257 
1258 	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1259 
1260 	switch (info->type) {
1261 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1262 		/* Set source-id of interrupt request */
1263 		set_ioapic_sid(irte, info->devid);
1264 		apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1265 			info->devid, irte->present, irte->fpd,
1266 			irte->dst_mode, irte->redir_hint,
1267 			irte->trigger_mode, irte->dlvry_mode,
1268 			irte->avail, irte->vector, irte->dest_id,
1269 			irte->sid, irte->sq, irte->svt);
1270 		sub_handle = info->ioapic.pin;
1271 		break;
1272 	case X86_IRQ_ALLOC_TYPE_HPET:
1273 		set_hpet_sid(irte, info->devid);
1274 		break;
1275 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1276 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1277 		set_msi_sid(irte,
1278 			    pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1279 		break;
1280 	default:
1281 		BUG_ON(1);
1282 		break;
1283 	}
1284 	fill_msi_msg(&data->msi_entry, index, sub_handle);
1285 }
1286 
1287 static void intel_free_irq_resources(struct irq_domain *domain,
1288 				     unsigned int virq, unsigned int nr_irqs)
1289 {
1290 	struct irq_data *irq_data;
1291 	struct intel_ir_data *data;
1292 	struct irq_2_iommu *irq_iommu;
1293 	unsigned long flags;
1294 	int i;
1295 	for (i = 0; i < nr_irqs; i++) {
1296 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
1297 		if (irq_data && irq_data->chip_data) {
1298 			data = irq_data->chip_data;
1299 			irq_iommu = &data->irq_2_iommu;
1300 			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1301 			clear_entries(irq_iommu);
1302 			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1303 			irq_domain_reset_irq_data(irq_data);
1304 			kfree(data);
1305 		}
1306 	}
1307 }
1308 
1309 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1310 				     unsigned int virq, unsigned int nr_irqs,
1311 				     void *arg)
1312 {
1313 	struct intel_iommu *iommu = domain->host_data;
1314 	struct irq_alloc_info *info = arg;
1315 	struct intel_ir_data *data, *ird;
1316 	struct irq_data *irq_data;
1317 	struct irq_cfg *irq_cfg;
1318 	int i, ret, index;
1319 
1320 	if (!info || !iommu)
1321 		return -EINVAL;
1322 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
1323 		return -EINVAL;
1324 
1325 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1326 	if (ret < 0)
1327 		return ret;
1328 
1329 	ret = -ENOMEM;
1330 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1331 	if (!data)
1332 		goto out_free_parent;
1333 
1334 	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1335 	if (index < 0) {
1336 		pr_warn("Failed to allocate IRTE\n");
1337 		kfree(data);
1338 		goto out_free_parent;
1339 	}
1340 
1341 	for (i = 0; i < nr_irqs; i++) {
1342 		irq_data = irq_domain_get_irq_data(domain, virq + i);
1343 		irq_cfg = irqd_cfg(irq_data);
1344 		if (!irq_data || !irq_cfg) {
1345 			if (!i)
1346 				kfree(data);
1347 			ret = -EINVAL;
1348 			goto out_free_data;
1349 		}
1350 
1351 		if (i > 0) {
1352 			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1353 			if (!ird)
1354 				goto out_free_data;
1355 			/* Initialize the common data */
1356 			ird->irq_2_iommu = data->irq_2_iommu;
1357 			ird->irq_2_iommu.sub_handle = i;
1358 		} else {
1359 			ird = data;
1360 		}
1361 
1362 		irq_data->hwirq = (index << 16) + i;
1363 		irq_data->chip_data = ird;
1364 		irq_data->chip = &intel_ir_chip;
1365 		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1366 		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1367 	}
1368 	return 0;
1369 
1370 out_free_data:
1371 	intel_free_irq_resources(domain, virq, i);
1372 out_free_parent:
1373 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1374 	return ret;
1375 }
1376 
1377 static void intel_irq_remapping_free(struct irq_domain *domain,
1378 				     unsigned int virq, unsigned int nr_irqs)
1379 {
1380 	intel_free_irq_resources(domain, virq, nr_irqs);
1381 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1382 }
1383 
1384 static int intel_irq_remapping_activate(struct irq_domain *domain,
1385 					struct irq_data *irq_data, bool reserve)
1386 {
1387 	intel_ir_reconfigure_irte(irq_data, true);
1388 	return 0;
1389 }
1390 
1391 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1392 					   struct irq_data *irq_data)
1393 {
1394 	struct intel_ir_data *data = irq_data->chip_data;
1395 	struct irte entry;
1396 
1397 	memset(&entry, 0, sizeof(entry));
1398 	modify_irte(&data->irq_2_iommu, &entry);
1399 }
1400 
1401 static int intel_irq_remapping_select(struct irq_domain *d,
1402 				      struct irq_fwspec *fwspec,
1403 				      enum irq_domain_bus_token bus_token)
1404 {
1405 	struct intel_iommu *iommu = NULL;
1406 
1407 	if (x86_fwspec_is_ioapic(fwspec))
1408 		iommu = map_ioapic_to_iommu(fwspec->param[0]);
1409 	else if (x86_fwspec_is_hpet(fwspec))
1410 		iommu = map_hpet_to_iommu(fwspec->param[0]);
1411 
1412 	return iommu && d == iommu->ir_domain;
1413 }
1414 
1415 static const struct irq_domain_ops intel_ir_domain_ops = {
1416 	.select = intel_irq_remapping_select,
1417 	.alloc = intel_irq_remapping_alloc,
1418 	.free = intel_irq_remapping_free,
1419 	.activate = intel_irq_remapping_activate,
1420 	.deactivate = intel_irq_remapping_deactivate,
1421 };
1422 
1423 static const struct msi_parent_ops dmar_msi_parent_ops = {
1424 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
1425 				  MSI_FLAG_MULTI_PCI_MSI |
1426 				  MSI_FLAG_PCI_IMS,
1427 	.prefix			= "IR-",
1428 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
1429 };
1430 
1431 static const struct msi_parent_ops virt_dmar_msi_parent_ops = {
1432 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED |
1433 				  MSI_FLAG_MULTI_PCI_MSI,
1434 	.prefix			= "vIR-",
1435 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
1436 };
1437 
1438 /*
1439  * Support of Interrupt Remapping Unit Hotplug
1440  */
1441 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1442 {
1443 	int ret;
1444 	int eim = x2apic_enabled();
1445 
1446 	ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu);
1447 	if (ret)
1448 		return ret;
1449 
1450 	if (eim && !ecap_eim_support(iommu->ecap)) {
1451 		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1452 			iommu->reg_phys, iommu->ecap);
1453 		return -ENODEV;
1454 	}
1455 
1456 	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1457 		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1458 			iommu->reg_phys);
1459 		return -ENODEV;
1460 	}
1461 
1462 	/* TODO: check all IOAPICs are covered by IOMMU */
1463 
1464 	/* Setup Interrupt-remapping now. */
1465 	ret = intel_setup_irq_remapping(iommu);
1466 	if (ret) {
1467 		pr_err("Failed to setup irq remapping for %s\n",
1468 		       iommu->name);
1469 		intel_teardown_irq_remapping(iommu);
1470 		ir_remove_ioapic_hpet_scope(iommu);
1471 	} else {
1472 		iommu_enable_irq_remapping(iommu);
1473 	}
1474 
1475 	return ret;
1476 }
1477 
1478 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1479 {
1480 	int ret = 0;
1481 	struct intel_iommu *iommu = dmaru->iommu;
1482 
1483 	if (!irq_remapping_enabled)
1484 		return 0;
1485 	if (iommu == NULL)
1486 		return -EINVAL;
1487 	if (!ecap_ir_support(iommu->ecap))
1488 		return 0;
1489 	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1490 	    !cap_pi_support(iommu->cap))
1491 		return -EBUSY;
1492 
1493 	if (insert) {
1494 		if (!iommu->ir_table)
1495 			ret = dmar_ir_add(dmaru, iommu);
1496 	} else {
1497 		if (iommu->ir_table) {
1498 			if (!bitmap_empty(iommu->ir_table->bitmap,
1499 					  INTR_REMAP_TABLE_ENTRIES)) {
1500 				ret = -EBUSY;
1501 			} else {
1502 				iommu_disable_irq_remapping(iommu);
1503 				intel_teardown_irq_remapping(iommu);
1504 				ir_remove_ioapic_hpet_scope(iommu);
1505 			}
1506 		}
1507 	}
1508 
1509 	return ret;
1510 }
1511