1 // SPDX-License-Identifier: GPL-2.0 2 3 #define pr_fmt(fmt) "DMAR-IR: " fmt 4 5 #include <linux/interrupt.h> 6 #include <linux/dmar.h> 7 #include <linux/spinlock.h> 8 #include <linux/slab.h> 9 #include <linux/jiffies.h> 10 #include <linux/hpet.h> 11 #include <linux/pci.h> 12 #include <linux/irq.h> 13 #include <linux/intel-iommu.h> 14 #include <linux/acpi.h> 15 #include <linux/irqdomain.h> 16 #include <linux/crash_dump.h> 17 #include <asm/io_apic.h> 18 #include <asm/apic.h> 19 #include <asm/smp.h> 20 #include <asm/cpu.h> 21 #include <asm/irq_remapping.h> 22 #include <asm/pci-direct.h> 23 #include <asm/msidef.h> 24 25 #include "../irq_remapping.h" 26 27 enum irq_mode { 28 IRQ_REMAPPING, 29 IRQ_POSTING, 30 }; 31 32 struct ioapic_scope { 33 struct intel_iommu *iommu; 34 unsigned int id; 35 unsigned int bus; /* PCI bus number */ 36 unsigned int devfn; /* PCI devfn number */ 37 }; 38 39 struct hpet_scope { 40 struct intel_iommu *iommu; 41 u8 id; 42 unsigned int bus; 43 unsigned int devfn; 44 }; 45 46 struct irq_2_iommu { 47 struct intel_iommu *iommu; 48 u16 irte_index; 49 u16 sub_handle; 50 u8 irte_mask; 51 enum irq_mode mode; 52 }; 53 54 struct intel_ir_data { 55 struct irq_2_iommu irq_2_iommu; 56 struct irte irte_entry; 57 union { 58 struct msi_msg msi_entry; 59 }; 60 }; 61 62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0) 63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8) 64 65 static int __read_mostly eim_mode; 66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; 67 static struct hpet_scope ir_hpet[MAX_HPET_TBS]; 68 69 /* 70 * Lock ordering: 71 * ->dmar_global_lock 72 * ->irq_2_ir_lock 73 * ->qi->q_lock 74 * ->iommu->register_lock 75 * Note: 76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called 77 * in single-threaded environment with interrupt disabled, so no need to tabke 78 * the dmar_global_lock. 79 */ 80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock); 81 static const struct irq_domain_ops intel_ir_domain_ops; 82 83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu); 84 static int __init parse_ioapics_under_ir(void); 85 86 static bool ir_pre_enabled(struct intel_iommu *iommu) 87 { 88 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED); 89 } 90 91 static void clear_ir_pre_enabled(struct intel_iommu *iommu) 92 { 93 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 94 } 95 96 static void init_ir_status(struct intel_iommu *iommu) 97 { 98 u32 gsts; 99 100 gsts = readl(iommu->reg + DMAR_GSTS_REG); 101 if (gsts & DMA_GSTS_IRES) 102 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED; 103 } 104 105 static int alloc_irte(struct intel_iommu *iommu, 106 struct irq_2_iommu *irq_iommu, u16 count) 107 { 108 struct ir_table *table = iommu->ir_table; 109 unsigned int mask = 0; 110 unsigned long flags; 111 int index; 112 113 if (!count || !irq_iommu) 114 return -1; 115 116 if (count > 1) { 117 count = __roundup_pow_of_two(count); 118 mask = ilog2(count); 119 } 120 121 if (mask > ecap_max_handle_mask(iommu->ecap)) { 122 pr_err("Requested mask %x exceeds the max invalidation handle" 123 " mask value %Lx\n", mask, 124 ecap_max_handle_mask(iommu->ecap)); 125 return -1; 126 } 127 128 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 129 index = bitmap_find_free_region(table->bitmap, 130 INTR_REMAP_TABLE_ENTRIES, mask); 131 if (index < 0) { 132 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id); 133 } else { 134 irq_iommu->iommu = iommu; 135 irq_iommu->irte_index = index; 136 irq_iommu->sub_handle = 0; 137 irq_iommu->irte_mask = mask; 138 irq_iommu->mode = IRQ_REMAPPING; 139 } 140 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 141 142 return index; 143 } 144 145 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) 146 { 147 struct qi_desc desc; 148 149 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) 150 | QI_IEC_SELECTIVE; 151 desc.qw1 = 0; 152 desc.qw2 = 0; 153 desc.qw3 = 0; 154 155 return qi_submit_sync(iommu, &desc, 1, 0); 156 } 157 158 static int modify_irte(struct irq_2_iommu *irq_iommu, 159 struct irte *irte_modified) 160 { 161 struct intel_iommu *iommu; 162 unsigned long flags; 163 struct irte *irte; 164 int rc, index; 165 166 if (!irq_iommu) 167 return -1; 168 169 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 170 171 iommu = irq_iommu->iommu; 172 173 index = irq_iommu->irte_index + irq_iommu->sub_handle; 174 irte = &iommu->ir_table->base[index]; 175 176 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) 177 if ((irte->pst == 1) || (irte_modified->pst == 1)) { 178 bool ret; 179 180 ret = cmpxchg_double(&irte->low, &irte->high, 181 irte->low, irte->high, 182 irte_modified->low, irte_modified->high); 183 /* 184 * We use cmpxchg16 to atomically update the 128-bit IRTE, 185 * and it cannot be updated by the hardware or other processors 186 * behind us, so the return value of cmpxchg16 should be the 187 * same as the old value. 188 */ 189 WARN_ON(!ret); 190 } else 191 #endif 192 { 193 set_64bit(&irte->low, irte_modified->low); 194 set_64bit(&irte->high, irte_modified->high); 195 } 196 __iommu_flush_cache(iommu, irte, sizeof(*irte)); 197 198 rc = qi_flush_iec(iommu, index, 0); 199 200 /* Update iommu mode according to the IRTE mode */ 201 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING; 202 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 203 204 return rc; 205 } 206 207 static struct irq_domain *map_hpet_to_ir(u8 hpet_id) 208 { 209 int i; 210 211 for (i = 0; i < MAX_HPET_TBS; i++) { 212 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu) 213 return ir_hpet[i].iommu->ir_domain; 214 } 215 return NULL; 216 } 217 218 static struct intel_iommu *map_ioapic_to_iommu(int apic) 219 { 220 int i; 221 222 for (i = 0; i < MAX_IO_APICS; i++) { 223 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu) 224 return ir_ioapic[i].iommu; 225 } 226 return NULL; 227 } 228 229 static struct irq_domain *map_ioapic_to_ir(int apic) 230 { 231 struct intel_iommu *iommu = map_ioapic_to_iommu(apic); 232 233 return iommu ? iommu->ir_domain : NULL; 234 } 235 236 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev) 237 { 238 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev); 239 240 return drhd ? drhd->iommu->ir_msi_domain : NULL; 241 } 242 243 static int clear_entries(struct irq_2_iommu *irq_iommu) 244 { 245 struct irte *start, *entry, *end; 246 struct intel_iommu *iommu; 247 int index; 248 249 if (irq_iommu->sub_handle) 250 return 0; 251 252 iommu = irq_iommu->iommu; 253 index = irq_iommu->irte_index; 254 255 start = iommu->ir_table->base + index; 256 end = start + (1 << irq_iommu->irte_mask); 257 258 for (entry = start; entry < end; entry++) { 259 set_64bit(&entry->low, 0); 260 set_64bit(&entry->high, 0); 261 } 262 bitmap_release_region(iommu->ir_table->bitmap, index, 263 irq_iommu->irte_mask); 264 265 return qi_flush_iec(iommu, index, irq_iommu->irte_mask); 266 } 267 268 /* 269 * source validation type 270 */ 271 #define SVT_NO_VERIFY 0x0 /* no verification is required */ 272 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */ 273 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */ 274 275 /* 276 * source-id qualifier 277 */ 278 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */ 279 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore 280 * the third least significant bit 281 */ 282 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore 283 * the second and third least significant bits 284 */ 285 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore 286 * the least three significant bits 287 */ 288 289 /* 290 * set SVT, SQ and SID fields of irte to verify 291 * source ids of interrupt requests 292 */ 293 static void set_irte_sid(struct irte *irte, unsigned int svt, 294 unsigned int sq, unsigned int sid) 295 { 296 if (disable_sourceid_checking) 297 svt = SVT_NO_VERIFY; 298 irte->svt = svt; 299 irte->sq = sq; 300 irte->sid = sid; 301 } 302 303 /* 304 * Set an IRTE to match only the bus number. Interrupt requests that reference 305 * this IRTE must have a requester-id whose bus number is between or equal 306 * to the start_bus and end_bus arguments. 307 */ 308 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus, 309 unsigned int end_bus) 310 { 311 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16, 312 (start_bus << 8) | end_bus); 313 } 314 315 static int set_ioapic_sid(struct irte *irte, int apic) 316 { 317 int i; 318 u16 sid = 0; 319 320 if (!irte) 321 return -1; 322 323 down_read(&dmar_global_lock); 324 for (i = 0; i < MAX_IO_APICS; i++) { 325 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) { 326 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn; 327 break; 328 } 329 } 330 up_read(&dmar_global_lock); 331 332 if (sid == 0) { 333 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic); 334 return -1; 335 } 336 337 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid); 338 339 return 0; 340 } 341 342 static int set_hpet_sid(struct irte *irte, u8 id) 343 { 344 int i; 345 u16 sid = 0; 346 347 if (!irte) 348 return -1; 349 350 down_read(&dmar_global_lock); 351 for (i = 0; i < MAX_HPET_TBS; i++) { 352 if (ir_hpet[i].iommu && ir_hpet[i].id == id) { 353 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn; 354 break; 355 } 356 } 357 up_read(&dmar_global_lock); 358 359 if (sid == 0) { 360 pr_warn("Failed to set source-id of HPET block (%d)\n", id); 361 return -1; 362 } 363 364 /* 365 * Should really use SQ_ALL_16. Some platforms are broken. 366 * While we figure out the right quirks for these broken platforms, use 367 * SQ_13_IGNORE_3 for now. 368 */ 369 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid); 370 371 return 0; 372 } 373 374 struct set_msi_sid_data { 375 struct pci_dev *pdev; 376 u16 alias; 377 int count; 378 int busmatch_count; 379 }; 380 381 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque) 382 { 383 struct set_msi_sid_data *data = opaque; 384 385 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias)) 386 data->busmatch_count++; 387 388 data->pdev = pdev; 389 data->alias = alias; 390 data->count++; 391 392 return 0; 393 } 394 395 static int set_msi_sid(struct irte *irte, struct pci_dev *dev) 396 { 397 struct set_msi_sid_data data; 398 399 if (!irte || !dev) 400 return -1; 401 402 data.count = 0; 403 data.busmatch_count = 0; 404 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data); 405 406 /* 407 * DMA alias provides us with a PCI device and alias. The only case 408 * where the it will return an alias on a different bus than the 409 * device is the case of a PCIe-to-PCI bridge, where the alias is for 410 * the subordinate bus. In this case we can only verify the bus. 411 * 412 * If there are multiple aliases, all with the same bus number, 413 * then all we can do is verify the bus. This is typical in NTB 414 * hardware which use proxy IDs where the device will generate traffic 415 * from multiple devfn numbers on the same bus. 416 * 417 * If the alias device is on a different bus than our source device 418 * then we have a topology based alias, use it. 419 * 420 * Otherwise, the alias is for a device DMA quirk and we cannot 421 * assume that MSI uses the same requester ID. Therefore use the 422 * original device. 423 */ 424 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number) 425 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias), 426 dev->bus->number); 427 else if (data.count >= 2 && data.busmatch_count == data.count) 428 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number); 429 else if (data.pdev->bus->number != dev->bus->number) 430 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias); 431 else 432 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, 433 pci_dev_id(dev)); 434 435 return 0; 436 } 437 438 static int iommu_load_old_irte(struct intel_iommu *iommu) 439 { 440 struct irte *old_ir_table; 441 phys_addr_t irt_phys; 442 unsigned int i; 443 size_t size; 444 u64 irta; 445 446 /* Check whether the old ir-table has the same size as ours */ 447 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG); 448 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK) 449 != INTR_REMAP_TABLE_REG_SIZE) 450 return -EINVAL; 451 452 irt_phys = irta & VTD_PAGE_MASK; 453 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte); 454 455 /* Map the old IR table */ 456 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB); 457 if (!old_ir_table) 458 return -ENOMEM; 459 460 /* Copy data over */ 461 memcpy(iommu->ir_table->base, old_ir_table, size); 462 463 __iommu_flush_cache(iommu, iommu->ir_table->base, size); 464 465 /* 466 * Now check the table for used entries and mark those as 467 * allocated in the bitmap 468 */ 469 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) { 470 if (iommu->ir_table->base[i].present) 471 bitmap_set(iommu->ir_table->bitmap, i, 1); 472 } 473 474 memunmap(old_ir_table); 475 476 return 0; 477 } 478 479 480 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode) 481 { 482 unsigned long flags; 483 u64 addr; 484 u32 sts; 485 486 addr = virt_to_phys((void *)iommu->ir_table->base); 487 488 raw_spin_lock_irqsave(&iommu->register_lock, flags); 489 490 dmar_writeq(iommu->reg + DMAR_IRTA_REG, 491 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); 492 493 /* Set interrupt-remapping table pointer */ 494 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG); 495 496 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 497 readl, (sts & DMA_GSTS_IRTPS), sts); 498 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 499 500 /* 501 * Global invalidation of interrupt entry cache to make sure the 502 * hardware uses the new irq remapping table. 503 */ 504 qi_global_iec(iommu); 505 } 506 507 static void iommu_enable_irq_remapping(struct intel_iommu *iommu) 508 { 509 unsigned long flags; 510 u32 sts; 511 512 raw_spin_lock_irqsave(&iommu->register_lock, flags); 513 514 /* Enable interrupt-remapping */ 515 iommu->gcmd |= DMA_GCMD_IRE; 516 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 517 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 518 readl, (sts & DMA_GSTS_IRES), sts); 519 520 /* Block compatibility-format MSIs */ 521 if (sts & DMA_GSTS_CFIS) { 522 iommu->gcmd &= ~DMA_GCMD_CFI; 523 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 524 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 525 readl, !(sts & DMA_GSTS_CFIS), sts); 526 } 527 528 /* 529 * With CFI clear in the Global Command register, we should be 530 * protected from dangerous (i.e. compatibility) interrupts 531 * regardless of x2apic status. Check just to be sure. 532 */ 533 if (sts & DMA_GSTS_CFIS) 534 WARN(1, KERN_WARNING 535 "Compatibility-format IRQs enabled despite intr remapping;\n" 536 "you are vulnerable to IRQ injection.\n"); 537 538 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 539 } 540 541 static int intel_setup_irq_remapping(struct intel_iommu *iommu) 542 { 543 struct ir_table *ir_table; 544 struct fwnode_handle *fn; 545 unsigned long *bitmap; 546 struct page *pages; 547 548 if (iommu->ir_table) 549 return 0; 550 551 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL); 552 if (!ir_table) 553 return -ENOMEM; 554 555 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO, 556 INTR_REMAP_PAGE_ORDER); 557 if (!pages) { 558 pr_err("IR%d: failed to allocate pages of order %d\n", 559 iommu->seq_id, INTR_REMAP_PAGE_ORDER); 560 goto out_free_table; 561 } 562 563 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_ATOMIC); 564 if (bitmap == NULL) { 565 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id); 566 goto out_free_pages; 567 } 568 569 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id); 570 if (!fn) 571 goto out_free_bitmap; 572 573 iommu->ir_domain = 574 irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 575 0, INTR_REMAP_TABLE_ENTRIES, 576 fn, &intel_ir_domain_ops, 577 iommu); 578 if (!iommu->ir_domain) { 579 irq_domain_free_fwnode(fn); 580 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id); 581 goto out_free_bitmap; 582 } 583 iommu->ir_msi_domain = 584 arch_create_remap_msi_irq_domain(iommu->ir_domain, 585 "INTEL-IR-MSI", 586 iommu->seq_id); 587 588 ir_table->base = page_address(pages); 589 ir_table->bitmap = bitmap; 590 iommu->ir_table = ir_table; 591 592 /* 593 * If the queued invalidation is already initialized, 594 * shouldn't disable it. 595 */ 596 if (!iommu->qi) { 597 /* 598 * Clear previous faults. 599 */ 600 dmar_fault(-1, iommu); 601 dmar_disable_qi(iommu); 602 603 if (dmar_enable_qi(iommu)) { 604 pr_err("Failed to enable queued invalidation\n"); 605 goto out_free_bitmap; 606 } 607 } 608 609 init_ir_status(iommu); 610 611 if (ir_pre_enabled(iommu)) { 612 if (!is_kdump_kernel()) { 613 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n", 614 iommu->name); 615 clear_ir_pre_enabled(iommu); 616 iommu_disable_irq_remapping(iommu); 617 } else if (iommu_load_old_irte(iommu)) 618 pr_err("Failed to copy IR table for %s from previous kernel\n", 619 iommu->name); 620 else 621 pr_info("Copied IR table for %s from previous kernel\n", 622 iommu->name); 623 } 624 625 iommu_set_irq_remapping(iommu, eim_mode); 626 627 return 0; 628 629 out_free_bitmap: 630 bitmap_free(bitmap); 631 out_free_pages: 632 __free_pages(pages, INTR_REMAP_PAGE_ORDER); 633 out_free_table: 634 kfree(ir_table); 635 636 iommu->ir_table = NULL; 637 638 return -ENOMEM; 639 } 640 641 static void intel_teardown_irq_remapping(struct intel_iommu *iommu) 642 { 643 struct fwnode_handle *fn; 644 645 if (iommu && iommu->ir_table) { 646 if (iommu->ir_msi_domain) { 647 fn = iommu->ir_msi_domain->fwnode; 648 649 irq_domain_remove(iommu->ir_msi_domain); 650 irq_domain_free_fwnode(fn); 651 iommu->ir_msi_domain = NULL; 652 } 653 if (iommu->ir_domain) { 654 fn = iommu->ir_domain->fwnode; 655 656 irq_domain_remove(iommu->ir_domain); 657 irq_domain_free_fwnode(fn); 658 iommu->ir_domain = NULL; 659 } 660 free_pages((unsigned long)iommu->ir_table->base, 661 INTR_REMAP_PAGE_ORDER); 662 bitmap_free(iommu->ir_table->bitmap); 663 kfree(iommu->ir_table); 664 iommu->ir_table = NULL; 665 } 666 } 667 668 /* 669 * Disable Interrupt Remapping. 670 */ 671 static void iommu_disable_irq_remapping(struct intel_iommu *iommu) 672 { 673 unsigned long flags; 674 u32 sts; 675 676 if (!ecap_ir_support(iommu->ecap)) 677 return; 678 679 /* 680 * global invalidation of interrupt entry cache before disabling 681 * interrupt-remapping. 682 */ 683 qi_global_iec(iommu); 684 685 raw_spin_lock_irqsave(&iommu->register_lock, flags); 686 687 sts = readl(iommu->reg + DMAR_GSTS_REG); 688 if (!(sts & DMA_GSTS_IRES)) 689 goto end; 690 691 iommu->gcmd &= ~DMA_GCMD_IRE; 692 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 693 694 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 695 readl, !(sts & DMA_GSTS_IRES), sts); 696 697 end: 698 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 699 } 700 701 static int __init dmar_x2apic_optout(void) 702 { 703 struct acpi_table_dmar *dmar; 704 dmar = (struct acpi_table_dmar *)dmar_tbl; 705 if (!dmar || no_x2apic_optout) 706 return 0; 707 return dmar->flags & DMAR_X2APIC_OPT_OUT; 708 } 709 710 static void __init intel_cleanup_irq_remapping(void) 711 { 712 struct dmar_drhd_unit *drhd; 713 struct intel_iommu *iommu; 714 715 for_each_iommu(iommu, drhd) { 716 if (ecap_ir_support(iommu->ecap)) { 717 iommu_disable_irq_remapping(iommu); 718 intel_teardown_irq_remapping(iommu); 719 } 720 } 721 722 if (x2apic_supported()) 723 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n"); 724 } 725 726 static int __init intel_prepare_irq_remapping(void) 727 { 728 struct dmar_drhd_unit *drhd; 729 struct intel_iommu *iommu; 730 int eim = 0; 731 732 if (irq_remap_broken) { 733 pr_warn("This system BIOS has enabled interrupt remapping\n" 734 "on a chipset that contains an erratum making that\n" 735 "feature unstable. To maintain system stability\n" 736 "interrupt remapping is being disabled. Please\n" 737 "contact your BIOS vendor for an update\n"); 738 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 739 return -ENODEV; 740 } 741 742 if (dmar_table_init() < 0) 743 return -ENODEV; 744 745 if (!dmar_ir_support()) 746 return -ENODEV; 747 748 if (parse_ioapics_under_ir()) { 749 pr_info("Not enabling interrupt remapping\n"); 750 goto error; 751 } 752 753 /* First make sure all IOMMUs support IRQ remapping */ 754 for_each_iommu(iommu, drhd) 755 if (!ecap_ir_support(iommu->ecap)) 756 goto error; 757 758 /* Detect remapping mode: lapic or x2apic */ 759 if (x2apic_supported()) { 760 eim = !dmar_x2apic_optout(); 761 if (!eim) { 762 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit."); 763 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n"); 764 } 765 } 766 767 for_each_iommu(iommu, drhd) { 768 if (eim && !ecap_eim_support(iommu->ecap)) { 769 pr_info("%s does not support EIM\n", iommu->name); 770 eim = 0; 771 } 772 } 773 774 eim_mode = eim; 775 if (eim) 776 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n"); 777 778 /* Do the initializations early */ 779 for_each_iommu(iommu, drhd) { 780 if (intel_setup_irq_remapping(iommu)) { 781 pr_err("Failed to setup irq remapping for %s\n", 782 iommu->name); 783 goto error; 784 } 785 } 786 787 return 0; 788 789 error: 790 intel_cleanup_irq_remapping(); 791 return -ENODEV; 792 } 793 794 /* 795 * Set Posted-Interrupts capability. 796 */ 797 static inline void set_irq_posting_cap(void) 798 { 799 struct dmar_drhd_unit *drhd; 800 struct intel_iommu *iommu; 801 802 if (!disable_irq_post) { 803 /* 804 * If IRTE is in posted format, the 'pda' field goes across the 805 * 64-bit boundary, we need use cmpxchg16b to atomically update 806 * it. We only expose posted-interrupt when X86_FEATURE_CX16 807 * is supported. Actually, hardware platforms supporting PI 808 * should have X86_FEATURE_CX16 support, this has been confirmed 809 * with Intel hardware guys. 810 */ 811 if (boot_cpu_has(X86_FEATURE_CX16)) 812 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP; 813 814 for_each_iommu(iommu, drhd) 815 if (!cap_pi_support(iommu->cap)) { 816 intel_irq_remap_ops.capability &= 817 ~(1 << IRQ_POSTING_CAP); 818 break; 819 } 820 } 821 } 822 823 static int __init intel_enable_irq_remapping(void) 824 { 825 struct dmar_drhd_unit *drhd; 826 struct intel_iommu *iommu; 827 bool setup = false; 828 829 /* 830 * Setup Interrupt-remapping for all the DRHD's now. 831 */ 832 for_each_iommu(iommu, drhd) { 833 if (!ir_pre_enabled(iommu)) 834 iommu_enable_irq_remapping(iommu); 835 setup = true; 836 } 837 838 if (!setup) 839 goto error; 840 841 irq_remapping_enabled = 1; 842 843 set_irq_posting_cap(); 844 845 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic"); 846 847 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE; 848 849 error: 850 intel_cleanup_irq_remapping(); 851 return -1; 852 } 853 854 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope, 855 struct intel_iommu *iommu, 856 struct acpi_dmar_hardware_unit *drhd) 857 { 858 struct acpi_dmar_pci_path *path; 859 u8 bus; 860 int count, free = -1; 861 862 bus = scope->bus; 863 path = (struct acpi_dmar_pci_path *)(scope + 1); 864 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 865 / sizeof(struct acpi_dmar_pci_path); 866 867 while (--count > 0) { 868 /* 869 * Access PCI directly due to the PCI 870 * subsystem isn't initialized yet. 871 */ 872 bus = read_pci_config_byte(bus, path->device, path->function, 873 PCI_SECONDARY_BUS); 874 path++; 875 } 876 877 for (count = 0; count < MAX_HPET_TBS; count++) { 878 if (ir_hpet[count].iommu == iommu && 879 ir_hpet[count].id == scope->enumeration_id) 880 return 0; 881 else if (ir_hpet[count].iommu == NULL && free == -1) 882 free = count; 883 } 884 if (free == -1) { 885 pr_warn("Exceeded Max HPET blocks\n"); 886 return -ENOSPC; 887 } 888 889 ir_hpet[free].iommu = iommu; 890 ir_hpet[free].id = scope->enumeration_id; 891 ir_hpet[free].bus = bus; 892 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function); 893 pr_info("HPET id %d under DRHD base 0x%Lx\n", 894 scope->enumeration_id, drhd->address); 895 896 return 0; 897 } 898 899 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope, 900 struct intel_iommu *iommu, 901 struct acpi_dmar_hardware_unit *drhd) 902 { 903 struct acpi_dmar_pci_path *path; 904 u8 bus; 905 int count, free = -1; 906 907 bus = scope->bus; 908 path = (struct acpi_dmar_pci_path *)(scope + 1); 909 count = (scope->length - sizeof(struct acpi_dmar_device_scope)) 910 / sizeof(struct acpi_dmar_pci_path); 911 912 while (--count > 0) { 913 /* 914 * Access PCI directly due to the PCI 915 * subsystem isn't initialized yet. 916 */ 917 bus = read_pci_config_byte(bus, path->device, path->function, 918 PCI_SECONDARY_BUS); 919 path++; 920 } 921 922 for (count = 0; count < MAX_IO_APICS; count++) { 923 if (ir_ioapic[count].iommu == iommu && 924 ir_ioapic[count].id == scope->enumeration_id) 925 return 0; 926 else if (ir_ioapic[count].iommu == NULL && free == -1) 927 free = count; 928 } 929 if (free == -1) { 930 pr_warn("Exceeded Max IO APICS\n"); 931 return -ENOSPC; 932 } 933 934 ir_ioapic[free].bus = bus; 935 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function); 936 ir_ioapic[free].iommu = iommu; 937 ir_ioapic[free].id = scope->enumeration_id; 938 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n", 939 scope->enumeration_id, drhd->address, iommu->seq_id); 940 941 return 0; 942 } 943 944 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header, 945 struct intel_iommu *iommu) 946 { 947 int ret = 0; 948 struct acpi_dmar_hardware_unit *drhd; 949 struct acpi_dmar_device_scope *scope; 950 void *start, *end; 951 952 drhd = (struct acpi_dmar_hardware_unit *)header; 953 start = (void *)(drhd + 1); 954 end = ((void *)drhd) + header->length; 955 956 while (start < end && ret == 0) { 957 scope = start; 958 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) 959 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd); 960 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) 961 ret = ir_parse_one_hpet_scope(scope, iommu, drhd); 962 start += scope->length; 963 } 964 965 return ret; 966 } 967 968 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu) 969 { 970 int i; 971 972 for (i = 0; i < MAX_HPET_TBS; i++) 973 if (ir_hpet[i].iommu == iommu) 974 ir_hpet[i].iommu = NULL; 975 976 for (i = 0; i < MAX_IO_APICS; i++) 977 if (ir_ioapic[i].iommu == iommu) 978 ir_ioapic[i].iommu = NULL; 979 } 980 981 /* 982 * Finds the assocaition between IOAPIC's and its Interrupt-remapping 983 * hardware unit. 984 */ 985 static int __init parse_ioapics_under_ir(void) 986 { 987 struct dmar_drhd_unit *drhd; 988 struct intel_iommu *iommu; 989 bool ir_supported = false; 990 int ioapic_idx; 991 992 for_each_iommu(iommu, drhd) { 993 int ret; 994 995 if (!ecap_ir_support(iommu->ecap)) 996 continue; 997 998 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu); 999 if (ret) 1000 return ret; 1001 1002 ir_supported = true; 1003 } 1004 1005 if (!ir_supported) 1006 return -ENODEV; 1007 1008 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) { 1009 int ioapic_id = mpc_ioapic_id(ioapic_idx); 1010 if (!map_ioapic_to_iommu(ioapic_id)) { 1011 pr_err(FW_BUG "ioapic %d has no mapping iommu, " 1012 "interrupt remapping will be disabled\n", 1013 ioapic_id); 1014 return -1; 1015 } 1016 } 1017 1018 return 0; 1019 } 1020 1021 static int __init ir_dev_scope_init(void) 1022 { 1023 int ret; 1024 1025 if (!irq_remapping_enabled) 1026 return 0; 1027 1028 down_write(&dmar_global_lock); 1029 ret = dmar_dev_scope_init(); 1030 up_write(&dmar_global_lock); 1031 1032 return ret; 1033 } 1034 rootfs_initcall(ir_dev_scope_init); 1035 1036 static void disable_irq_remapping(void) 1037 { 1038 struct dmar_drhd_unit *drhd; 1039 struct intel_iommu *iommu = NULL; 1040 1041 /* 1042 * Disable Interrupt-remapping for all the DRHD's now. 1043 */ 1044 for_each_iommu(iommu, drhd) { 1045 if (!ecap_ir_support(iommu->ecap)) 1046 continue; 1047 1048 iommu_disable_irq_remapping(iommu); 1049 } 1050 1051 /* 1052 * Clear Posted-Interrupts capability. 1053 */ 1054 if (!disable_irq_post) 1055 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP); 1056 } 1057 1058 static int reenable_irq_remapping(int eim) 1059 { 1060 struct dmar_drhd_unit *drhd; 1061 bool setup = false; 1062 struct intel_iommu *iommu = NULL; 1063 1064 for_each_iommu(iommu, drhd) 1065 if (iommu->qi) 1066 dmar_reenable_qi(iommu); 1067 1068 /* 1069 * Setup Interrupt-remapping for all the DRHD's now. 1070 */ 1071 for_each_iommu(iommu, drhd) { 1072 if (!ecap_ir_support(iommu->ecap)) 1073 continue; 1074 1075 /* Set up interrupt remapping for iommu.*/ 1076 iommu_set_irq_remapping(iommu, eim); 1077 iommu_enable_irq_remapping(iommu); 1078 setup = true; 1079 } 1080 1081 if (!setup) 1082 goto error; 1083 1084 set_irq_posting_cap(); 1085 1086 return 0; 1087 1088 error: 1089 /* 1090 * handle error condition gracefully here! 1091 */ 1092 return -1; 1093 } 1094 1095 /* 1096 * Store the MSI remapping domain pointer in the device if enabled. 1097 * 1098 * This is called from dmar_pci_bus_add_dev() so it works even when DMA 1099 * remapping is disabled. Only update the pointer if the device is not 1100 * already handled by a non default PCI/MSI interrupt domain. This protects 1101 * e.g. VMD devices. 1102 */ 1103 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info) 1104 { 1105 if (!irq_remapping_enabled || pci_dev_has_special_msi_domain(info->dev)) 1106 return; 1107 1108 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev)); 1109 } 1110 1111 static void prepare_irte(struct irte *irte, int vector, unsigned int dest) 1112 { 1113 memset(irte, 0, sizeof(*irte)); 1114 1115 irte->present = 1; 1116 irte->dst_mode = apic->irq_dest_mode; 1117 /* 1118 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the 1119 * actual level or edge trigger will be setup in the IO-APIC 1120 * RTE. This will help simplify level triggered irq migration. 1121 * For more details, see the comments (in io_apic.c) explainig IO-APIC 1122 * irq migration in the presence of interrupt-remapping. 1123 */ 1124 irte->trigger_mode = 0; 1125 irte->dlvry_mode = apic->irq_delivery_mode; 1126 irte->vector = vector; 1127 irte->dest_id = IRTE_DEST(dest); 1128 irte->redir_hint = 1; 1129 } 1130 1131 static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info) 1132 { 1133 if (!info) 1134 return NULL; 1135 1136 switch (info->type) { 1137 case X86_IRQ_ALLOC_TYPE_IOAPIC_GET_PARENT: 1138 return map_ioapic_to_ir(info->devid); 1139 case X86_IRQ_ALLOC_TYPE_HPET_GET_PARENT: 1140 return map_hpet_to_ir(info->devid); 1141 default: 1142 WARN_ON_ONCE(1); 1143 return NULL; 1144 } 1145 } 1146 1147 struct irq_remap_ops intel_irq_remap_ops = { 1148 .prepare = intel_prepare_irq_remapping, 1149 .enable = intel_enable_irq_remapping, 1150 .disable = disable_irq_remapping, 1151 .reenable = reenable_irq_remapping, 1152 .enable_faulting = enable_drhd_fault_handling, 1153 .get_irq_domain = intel_get_irq_domain, 1154 }; 1155 1156 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force) 1157 { 1158 struct intel_ir_data *ir_data = irqd->chip_data; 1159 struct irte *irte = &ir_data->irte_entry; 1160 struct irq_cfg *cfg = irqd_cfg(irqd); 1161 1162 /* 1163 * Atomically updates the IRTE with the new destination, vector 1164 * and flushes the interrupt entry cache. 1165 */ 1166 irte->vector = cfg->vector; 1167 irte->dest_id = IRTE_DEST(cfg->dest_apicid); 1168 1169 /* Update the hardware only if the interrupt is in remapped mode. */ 1170 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING) 1171 modify_irte(&ir_data->irq_2_iommu, irte); 1172 } 1173 1174 /* 1175 * Migrate the IO-APIC irq in the presence of intr-remapping. 1176 * 1177 * For both level and edge triggered, irq migration is a simple atomic 1178 * update(of vector and cpu destination) of IRTE and flush the hardware cache. 1179 * 1180 * For level triggered, we eliminate the io-apic RTE modification (with the 1181 * updated vector information), by using a virtual vector (io-apic pin number). 1182 * Real vector that is used for interrupting cpu will be coming from 1183 * the interrupt-remapping table entry. 1184 * 1185 * As the migration is a simple atomic update of IRTE, the same mechanism 1186 * is used to migrate MSI irq's in the presence of interrupt-remapping. 1187 */ 1188 static int 1189 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask, 1190 bool force) 1191 { 1192 struct irq_data *parent = data->parent_data; 1193 struct irq_cfg *cfg = irqd_cfg(data); 1194 int ret; 1195 1196 ret = parent->chip->irq_set_affinity(parent, mask, force); 1197 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) 1198 return ret; 1199 1200 intel_ir_reconfigure_irte(data, false); 1201 /* 1202 * After this point, all the interrupts will start arriving 1203 * at the new destination. So, time to cleanup the previous 1204 * vector allocation. 1205 */ 1206 send_cleanup_vector(cfg); 1207 1208 return IRQ_SET_MASK_OK_DONE; 1209 } 1210 1211 static void intel_ir_compose_msi_msg(struct irq_data *irq_data, 1212 struct msi_msg *msg) 1213 { 1214 struct intel_ir_data *ir_data = irq_data->chip_data; 1215 1216 *msg = ir_data->msi_entry; 1217 } 1218 1219 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info) 1220 { 1221 struct intel_ir_data *ir_data = data->chip_data; 1222 struct vcpu_data *vcpu_pi_info = info; 1223 1224 /* stop posting interrupts, back to remapping mode */ 1225 if (!vcpu_pi_info) { 1226 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry); 1227 } else { 1228 struct irte irte_pi; 1229 1230 /* 1231 * We are not caching the posted interrupt entry. We 1232 * copy the data from the remapped entry and modify 1233 * the fields which are relevant for posted mode. The 1234 * cached remapped entry is used for switching back to 1235 * remapped mode. 1236 */ 1237 memset(&irte_pi, 0, sizeof(irte_pi)); 1238 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry); 1239 1240 /* Update the posted mode fields */ 1241 irte_pi.p_pst = 1; 1242 irte_pi.p_urgent = 0; 1243 irte_pi.p_vector = vcpu_pi_info->vector; 1244 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >> 1245 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT); 1246 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) & 1247 ~(-1UL << PDA_HIGH_BIT); 1248 1249 modify_irte(&ir_data->irq_2_iommu, &irte_pi); 1250 } 1251 1252 return 0; 1253 } 1254 1255 static struct irq_chip intel_ir_chip = { 1256 .name = "INTEL-IR", 1257 .irq_ack = apic_ack_irq, 1258 .irq_set_affinity = intel_ir_set_affinity, 1259 .irq_compose_msi_msg = intel_ir_compose_msi_msg, 1260 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity, 1261 }; 1262 1263 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data, 1264 struct irq_cfg *irq_cfg, 1265 struct irq_alloc_info *info, 1266 int index, int sub_handle) 1267 { 1268 struct IR_IO_APIC_route_entry *entry; 1269 struct irte *irte = &data->irte_entry; 1270 struct msi_msg *msg = &data->msi_entry; 1271 1272 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid); 1273 switch (info->type) { 1274 case X86_IRQ_ALLOC_TYPE_IOAPIC: 1275 /* Set source-id of interrupt request */ 1276 set_ioapic_sid(irte, info->devid); 1277 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n", 1278 info->devid, irte->present, irte->fpd, 1279 irte->dst_mode, irte->redir_hint, 1280 irte->trigger_mode, irte->dlvry_mode, 1281 irte->avail, irte->vector, irte->dest_id, 1282 irte->sid, irte->sq, irte->svt); 1283 1284 entry = (struct IR_IO_APIC_route_entry *)info->ioapic.entry; 1285 info->ioapic.entry = NULL; 1286 memset(entry, 0, sizeof(*entry)); 1287 entry->index2 = (index >> 15) & 0x1; 1288 entry->zero = 0; 1289 entry->format = 1; 1290 entry->index = (index & 0x7fff); 1291 /* 1292 * IO-APIC RTE will be configured with virtual vector. 1293 * irq handler will do the explicit EOI to the io-apic. 1294 */ 1295 entry->vector = info->ioapic.pin; 1296 entry->mask = 0; /* enable IRQ */ 1297 entry->trigger = info->ioapic.trigger; 1298 entry->polarity = info->ioapic.polarity; 1299 if (info->ioapic.trigger) 1300 entry->mask = 1; /* Mask level triggered irqs. */ 1301 break; 1302 1303 case X86_IRQ_ALLOC_TYPE_HPET: 1304 case X86_IRQ_ALLOC_TYPE_PCI_MSI: 1305 case X86_IRQ_ALLOC_TYPE_PCI_MSIX: 1306 if (info->type == X86_IRQ_ALLOC_TYPE_HPET) 1307 set_hpet_sid(irte, info->devid); 1308 else 1309 set_msi_sid(irte, msi_desc_to_pci_dev(info->desc)); 1310 1311 msg->address_hi = MSI_ADDR_BASE_HI; 1312 msg->data = sub_handle; 1313 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT | 1314 MSI_ADDR_IR_SHV | 1315 MSI_ADDR_IR_INDEX1(index) | 1316 MSI_ADDR_IR_INDEX2(index); 1317 break; 1318 1319 default: 1320 BUG_ON(1); 1321 break; 1322 } 1323 } 1324 1325 static void intel_free_irq_resources(struct irq_domain *domain, 1326 unsigned int virq, unsigned int nr_irqs) 1327 { 1328 struct irq_data *irq_data; 1329 struct intel_ir_data *data; 1330 struct irq_2_iommu *irq_iommu; 1331 unsigned long flags; 1332 int i; 1333 for (i = 0; i < nr_irqs; i++) { 1334 irq_data = irq_domain_get_irq_data(domain, virq + i); 1335 if (irq_data && irq_data->chip_data) { 1336 data = irq_data->chip_data; 1337 irq_iommu = &data->irq_2_iommu; 1338 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 1339 clear_entries(irq_iommu); 1340 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 1341 irq_domain_reset_irq_data(irq_data); 1342 kfree(data); 1343 } 1344 } 1345 } 1346 1347 static int intel_irq_remapping_alloc(struct irq_domain *domain, 1348 unsigned int virq, unsigned int nr_irqs, 1349 void *arg) 1350 { 1351 struct intel_iommu *iommu = domain->host_data; 1352 struct irq_alloc_info *info = arg; 1353 struct intel_ir_data *data, *ird; 1354 struct irq_data *irq_data; 1355 struct irq_cfg *irq_cfg; 1356 int i, ret, index; 1357 1358 if (!info || !iommu) 1359 return -EINVAL; 1360 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI && 1361 info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX) 1362 return -EINVAL; 1363 1364 /* 1365 * With IRQ remapping enabled, don't need contiguous CPU vectors 1366 * to support multiple MSI interrupts. 1367 */ 1368 if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) 1369 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; 1370 1371 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); 1372 if (ret < 0) 1373 return ret; 1374 1375 ret = -ENOMEM; 1376 data = kzalloc(sizeof(*data), GFP_KERNEL); 1377 if (!data) 1378 goto out_free_parent; 1379 1380 down_read(&dmar_global_lock); 1381 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs); 1382 up_read(&dmar_global_lock); 1383 if (index < 0) { 1384 pr_warn("Failed to allocate IRTE\n"); 1385 kfree(data); 1386 goto out_free_parent; 1387 } 1388 1389 for (i = 0; i < nr_irqs; i++) { 1390 irq_data = irq_domain_get_irq_data(domain, virq + i); 1391 irq_cfg = irqd_cfg(irq_data); 1392 if (!irq_data || !irq_cfg) { 1393 ret = -EINVAL; 1394 goto out_free_data; 1395 } 1396 1397 if (i > 0) { 1398 ird = kzalloc(sizeof(*ird), GFP_KERNEL); 1399 if (!ird) 1400 goto out_free_data; 1401 /* Initialize the common data */ 1402 ird->irq_2_iommu = data->irq_2_iommu; 1403 ird->irq_2_iommu.sub_handle = i; 1404 } else { 1405 ird = data; 1406 } 1407 1408 irq_data->hwirq = (index << 16) + i; 1409 irq_data->chip_data = ird; 1410 irq_data->chip = &intel_ir_chip; 1411 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i); 1412 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); 1413 } 1414 return 0; 1415 1416 out_free_data: 1417 intel_free_irq_resources(domain, virq, i); 1418 out_free_parent: 1419 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1420 return ret; 1421 } 1422 1423 static void intel_irq_remapping_free(struct irq_domain *domain, 1424 unsigned int virq, unsigned int nr_irqs) 1425 { 1426 intel_free_irq_resources(domain, virq, nr_irqs); 1427 irq_domain_free_irqs_common(domain, virq, nr_irqs); 1428 } 1429 1430 static int intel_irq_remapping_activate(struct irq_domain *domain, 1431 struct irq_data *irq_data, bool reserve) 1432 { 1433 intel_ir_reconfigure_irte(irq_data, true); 1434 return 0; 1435 } 1436 1437 static void intel_irq_remapping_deactivate(struct irq_domain *domain, 1438 struct irq_data *irq_data) 1439 { 1440 struct intel_ir_data *data = irq_data->chip_data; 1441 struct irte entry; 1442 1443 memset(&entry, 0, sizeof(entry)); 1444 modify_irte(&data->irq_2_iommu, &entry); 1445 } 1446 1447 static const struct irq_domain_ops intel_ir_domain_ops = { 1448 .alloc = intel_irq_remapping_alloc, 1449 .free = intel_irq_remapping_free, 1450 .activate = intel_irq_remapping_activate, 1451 .deactivate = intel_irq_remapping_deactivate, 1452 }; 1453 1454 /* 1455 * Support of Interrupt Remapping Unit Hotplug 1456 */ 1457 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu) 1458 { 1459 int ret; 1460 int eim = x2apic_enabled(); 1461 1462 if (eim && !ecap_eim_support(iommu->ecap)) { 1463 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n", 1464 iommu->reg_phys, iommu->ecap); 1465 return -ENODEV; 1466 } 1467 1468 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) { 1469 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n", 1470 iommu->reg_phys); 1471 return -ENODEV; 1472 } 1473 1474 /* TODO: check all IOAPICs are covered by IOMMU */ 1475 1476 /* Setup Interrupt-remapping now. */ 1477 ret = intel_setup_irq_remapping(iommu); 1478 if (ret) { 1479 pr_err("Failed to setup irq remapping for %s\n", 1480 iommu->name); 1481 intel_teardown_irq_remapping(iommu); 1482 ir_remove_ioapic_hpet_scope(iommu); 1483 } else { 1484 iommu_enable_irq_remapping(iommu); 1485 } 1486 1487 return ret; 1488 } 1489 1490 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 1491 { 1492 int ret = 0; 1493 struct intel_iommu *iommu = dmaru->iommu; 1494 1495 if (!irq_remapping_enabled) 1496 return 0; 1497 if (iommu == NULL) 1498 return -EINVAL; 1499 if (!ecap_ir_support(iommu->ecap)) 1500 return 0; 1501 if (irq_remapping_cap(IRQ_POSTING_CAP) && 1502 !cap_pi_support(iommu->cap)) 1503 return -EBUSY; 1504 1505 if (insert) { 1506 if (!iommu->ir_table) 1507 ret = dmar_ir_add(dmaru, iommu); 1508 } else { 1509 if (iommu->ir_table) { 1510 if (!bitmap_empty(iommu->ir_table->bitmap, 1511 INTR_REMAP_TABLE_ENTRIES)) { 1512 ret = -EBUSY; 1513 } else { 1514 iommu_disable_irq_remapping(iommu); 1515 intel_teardown_irq_remapping(iommu); 1516 ir_remove_ioapic_hpet_scope(iommu); 1517 } 1518 } 1519 } 1520 1521 return ret; 1522 } 1523