1 // SPDX-License-Identifier: GPL-2.0
2
3 #define pr_fmt(fmt) "DMAR-IR: " fmt
4
5 #include <linux/interrupt.h>
6 #include <linux/dmar.h>
7 #include <linux/spinlock.h>
8 #include <linux/slab.h>
9 #include <linux/jiffies.h>
10 #include <linux/hpet.h>
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/acpi.h>
14 #include <linux/irqdomain.h>
15 #include <linux/crash_dump.h>
16 #include <asm/io_apic.h>
17 #include <asm/apic.h>
18 #include <asm/smp.h>
19 #include <asm/cpu.h>
20 #include <asm/irq_remapping.h>
21 #include <asm/pci-direct.h>
22
23 #include "iommu.h"
24 #include "../irq_remapping.h"
25 #include "cap_audit.h"
26
27 enum irq_mode {
28 IRQ_REMAPPING,
29 IRQ_POSTING,
30 };
31
32 struct ioapic_scope {
33 struct intel_iommu *iommu;
34 unsigned int id;
35 unsigned int bus; /* PCI bus number */
36 unsigned int devfn; /* PCI devfn number */
37 };
38
39 struct hpet_scope {
40 struct intel_iommu *iommu;
41 u8 id;
42 unsigned int bus;
43 unsigned int devfn;
44 };
45
46 struct irq_2_iommu {
47 struct intel_iommu *iommu;
48 u16 irte_index;
49 u16 sub_handle;
50 u8 irte_mask;
51 enum irq_mode mode;
52 };
53
54 struct intel_ir_data {
55 struct irq_2_iommu irq_2_iommu;
56 struct irte irte_entry;
57 union {
58 struct msi_msg msi_entry;
59 };
60 };
61
62 #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
63 #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
64
65 static int __read_mostly eim_mode;
66 static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
67 static struct hpet_scope ir_hpet[MAX_HPET_TBS];
68
69 /*
70 * Lock ordering:
71 * ->dmar_global_lock
72 * ->irq_2_ir_lock
73 * ->qi->q_lock
74 * ->iommu->register_lock
75 * Note:
76 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
77 * in single-threaded environment with interrupt disabled, so no need to tabke
78 * the dmar_global_lock.
79 */
80 DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
81 static const struct irq_domain_ops intel_ir_domain_ops;
82
83 static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
84 static int __init parse_ioapics_under_ir(void);
85 static const struct msi_parent_ops dmar_msi_parent_ops, virt_dmar_msi_parent_ops;
86
ir_pre_enabled(struct intel_iommu * iommu)87 static bool ir_pre_enabled(struct intel_iommu *iommu)
88 {
89 return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
90 }
91
clear_ir_pre_enabled(struct intel_iommu * iommu)92 static void clear_ir_pre_enabled(struct intel_iommu *iommu)
93 {
94 iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
95 }
96
init_ir_status(struct intel_iommu * iommu)97 static void init_ir_status(struct intel_iommu *iommu)
98 {
99 u32 gsts;
100
101 gsts = readl(iommu->reg + DMAR_GSTS_REG);
102 if (gsts & DMA_GSTS_IRES)
103 iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
104 }
105
alloc_irte(struct intel_iommu * iommu,struct irq_2_iommu * irq_iommu,u16 count)106 static int alloc_irte(struct intel_iommu *iommu,
107 struct irq_2_iommu *irq_iommu, u16 count)
108 {
109 struct ir_table *table = iommu->ir_table;
110 unsigned int mask = 0;
111 unsigned long flags;
112 int index;
113
114 if (!count || !irq_iommu)
115 return -1;
116
117 if (count > 1) {
118 count = __roundup_pow_of_two(count);
119 mask = ilog2(count);
120 }
121
122 if (mask > ecap_max_handle_mask(iommu->ecap)) {
123 pr_err("Requested mask %x exceeds the max invalidation handle"
124 " mask value %Lx\n", mask,
125 ecap_max_handle_mask(iommu->ecap));
126 return -1;
127 }
128
129 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
130 index = bitmap_find_free_region(table->bitmap,
131 INTR_REMAP_TABLE_ENTRIES, mask);
132 if (index < 0) {
133 pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
134 } else {
135 irq_iommu->iommu = iommu;
136 irq_iommu->irte_index = index;
137 irq_iommu->sub_handle = 0;
138 irq_iommu->irte_mask = mask;
139 irq_iommu->mode = IRQ_REMAPPING;
140 }
141 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
142
143 return index;
144 }
145
qi_flush_iec(struct intel_iommu * iommu,int index,int mask)146 static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
147 {
148 struct qi_desc desc;
149
150 desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
151 | QI_IEC_SELECTIVE;
152 desc.qw1 = 0;
153 desc.qw2 = 0;
154 desc.qw3 = 0;
155
156 return qi_submit_sync(iommu, &desc, 1, 0);
157 }
158
modify_irte(struct irq_2_iommu * irq_iommu,struct irte * irte_modified)159 static int modify_irte(struct irq_2_iommu *irq_iommu,
160 struct irte *irte_modified)
161 {
162 struct intel_iommu *iommu;
163 unsigned long flags;
164 struct irte *irte;
165 int rc, index;
166
167 if (!irq_iommu)
168 return -1;
169
170 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
171
172 iommu = irq_iommu->iommu;
173
174 index = irq_iommu->irte_index + irq_iommu->sub_handle;
175 irte = &iommu->ir_table->base[index];
176
177 if ((irte->pst == 1) || (irte_modified->pst == 1)) {
178 /*
179 * We use cmpxchg16 to atomically update the 128-bit IRTE,
180 * and it cannot be updated by the hardware or other processors
181 * behind us, so the return value of cmpxchg16 should be the
182 * same as the old value.
183 */
184 u128 old = irte->irte;
185 WARN_ON(!try_cmpxchg128(&irte->irte, &old, irte_modified->irte));
186 } else {
187 WRITE_ONCE(irte->low, irte_modified->low);
188 WRITE_ONCE(irte->high, irte_modified->high);
189 }
190 __iommu_flush_cache(iommu, irte, sizeof(*irte));
191
192 rc = qi_flush_iec(iommu, index, 0);
193
194 /* Update iommu mode according to the IRTE mode */
195 irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
196 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
197
198 return rc;
199 }
200
map_hpet_to_iommu(u8 hpet_id)201 static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
202 {
203 int i;
204
205 for (i = 0; i < MAX_HPET_TBS; i++) {
206 if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
207 return ir_hpet[i].iommu;
208 }
209 return NULL;
210 }
211
map_ioapic_to_iommu(int apic)212 static struct intel_iommu *map_ioapic_to_iommu(int apic)
213 {
214 int i;
215
216 for (i = 0; i < MAX_IO_APICS; i++) {
217 if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
218 return ir_ioapic[i].iommu;
219 }
220 return NULL;
221 }
222
map_dev_to_ir(struct pci_dev * dev)223 static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
224 {
225 struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
226
227 return drhd ? drhd->iommu->ir_domain : NULL;
228 }
229
clear_entries(struct irq_2_iommu * irq_iommu)230 static int clear_entries(struct irq_2_iommu *irq_iommu)
231 {
232 struct irte *start, *entry, *end;
233 struct intel_iommu *iommu;
234 int index;
235
236 if (irq_iommu->sub_handle)
237 return 0;
238
239 iommu = irq_iommu->iommu;
240 index = irq_iommu->irte_index;
241
242 start = iommu->ir_table->base + index;
243 end = start + (1 << irq_iommu->irte_mask);
244
245 for (entry = start; entry < end; entry++) {
246 WRITE_ONCE(entry->low, 0);
247 WRITE_ONCE(entry->high, 0);
248 }
249 bitmap_release_region(iommu->ir_table->bitmap, index,
250 irq_iommu->irte_mask);
251
252 return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
253 }
254
255 /*
256 * source validation type
257 */
258 #define SVT_NO_VERIFY 0x0 /* no verification is required */
259 #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */
260 #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */
261
262 /*
263 * source-id qualifier
264 */
265 #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */
266 #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore
267 * the third least significant bit
268 */
269 #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore
270 * the second and third least significant bits
271 */
272 #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore
273 * the least three significant bits
274 */
275
276 /*
277 * set SVT, SQ and SID fields of irte to verify
278 * source ids of interrupt requests
279 */
set_irte_sid(struct irte * irte,unsigned int svt,unsigned int sq,unsigned int sid)280 static void set_irte_sid(struct irte *irte, unsigned int svt,
281 unsigned int sq, unsigned int sid)
282 {
283 if (disable_sourceid_checking)
284 svt = SVT_NO_VERIFY;
285 irte->svt = svt;
286 irte->sq = sq;
287 irte->sid = sid;
288 }
289
290 /*
291 * Set an IRTE to match only the bus number. Interrupt requests that reference
292 * this IRTE must have a requester-id whose bus number is between or equal
293 * to the start_bus and end_bus arguments.
294 */
set_irte_verify_bus(struct irte * irte,unsigned int start_bus,unsigned int end_bus)295 static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
296 unsigned int end_bus)
297 {
298 set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
299 (start_bus << 8) | end_bus);
300 }
301
set_ioapic_sid(struct irte * irte,int apic)302 static int set_ioapic_sid(struct irte *irte, int apic)
303 {
304 int i;
305 u16 sid = 0;
306
307 if (!irte)
308 return -1;
309
310 for (i = 0; i < MAX_IO_APICS; i++) {
311 if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
312 sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
313 break;
314 }
315 }
316
317 if (sid == 0) {
318 pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
319 return -1;
320 }
321
322 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
323
324 return 0;
325 }
326
set_hpet_sid(struct irte * irte,u8 id)327 static int set_hpet_sid(struct irte *irte, u8 id)
328 {
329 int i;
330 u16 sid = 0;
331
332 if (!irte)
333 return -1;
334
335 for (i = 0; i < MAX_HPET_TBS; i++) {
336 if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
337 sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
338 break;
339 }
340 }
341
342 if (sid == 0) {
343 pr_warn("Failed to set source-id of HPET block (%d)\n", id);
344 return -1;
345 }
346
347 /*
348 * Should really use SQ_ALL_16. Some platforms are broken.
349 * While we figure out the right quirks for these broken platforms, use
350 * SQ_13_IGNORE_3 for now.
351 */
352 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
353
354 return 0;
355 }
356
357 struct set_msi_sid_data {
358 struct pci_dev *pdev;
359 u16 alias;
360 int count;
361 int busmatch_count;
362 };
363
set_msi_sid_cb(struct pci_dev * pdev,u16 alias,void * opaque)364 static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
365 {
366 struct set_msi_sid_data *data = opaque;
367
368 if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
369 data->busmatch_count++;
370
371 data->pdev = pdev;
372 data->alias = alias;
373 data->count++;
374
375 return 0;
376 }
377
set_msi_sid(struct irte * irte,struct pci_dev * dev)378 static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
379 {
380 struct set_msi_sid_data data;
381
382 if (!irte || !dev)
383 return -1;
384
385 data.count = 0;
386 data.busmatch_count = 0;
387 pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
388
389 /*
390 * DMA alias provides us with a PCI device and alias. The only case
391 * where the it will return an alias on a different bus than the
392 * device is the case of a PCIe-to-PCI bridge, where the alias is for
393 * the subordinate bus. In this case we can only verify the bus.
394 *
395 * If there are multiple aliases, all with the same bus number,
396 * then all we can do is verify the bus. This is typical in NTB
397 * hardware which use proxy IDs where the device will generate traffic
398 * from multiple devfn numbers on the same bus.
399 *
400 * If the alias device is on a different bus than our source device
401 * then we have a topology based alias, use it.
402 *
403 * Otherwise, the alias is for a device DMA quirk and we cannot
404 * assume that MSI uses the same requester ID. Therefore use the
405 * original device.
406 */
407 if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
408 set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
409 dev->bus->number);
410 else if (data.count >= 2 && data.busmatch_count == data.count)
411 set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
412 else if (data.pdev->bus->number != dev->bus->number)
413 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
414 else
415 set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
416 pci_dev_id(dev));
417
418 return 0;
419 }
420
iommu_load_old_irte(struct intel_iommu * iommu)421 static int iommu_load_old_irte(struct intel_iommu *iommu)
422 {
423 struct irte *old_ir_table;
424 phys_addr_t irt_phys;
425 unsigned int i;
426 size_t size;
427 u64 irta;
428
429 /* Check whether the old ir-table has the same size as ours */
430 irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
431 if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
432 != INTR_REMAP_TABLE_REG_SIZE)
433 return -EINVAL;
434
435 irt_phys = irta & VTD_PAGE_MASK;
436 size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
437
438 /* Map the old IR table */
439 old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
440 if (!old_ir_table)
441 return -ENOMEM;
442
443 /* Copy data over */
444 memcpy(iommu->ir_table->base, old_ir_table, size);
445
446 __iommu_flush_cache(iommu, iommu->ir_table->base, size);
447
448 /*
449 * Now check the table for used entries and mark those as
450 * allocated in the bitmap
451 */
452 for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
453 if (iommu->ir_table->base[i].present)
454 bitmap_set(iommu->ir_table->bitmap, i, 1);
455 }
456
457 memunmap(old_ir_table);
458
459 return 0;
460 }
461
462
iommu_set_irq_remapping(struct intel_iommu * iommu,int mode)463 static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
464 {
465 unsigned long flags;
466 u64 addr;
467 u32 sts;
468
469 addr = virt_to_phys((void *)iommu->ir_table->base);
470
471 raw_spin_lock_irqsave(&iommu->register_lock, flags);
472
473 dmar_writeq(iommu->reg + DMAR_IRTA_REG,
474 (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
475
476 /* Set interrupt-remapping table pointer */
477 writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
478
479 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
480 readl, (sts & DMA_GSTS_IRTPS), sts);
481 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
482
483 /*
484 * Global invalidation of interrupt entry cache to make sure the
485 * hardware uses the new irq remapping table.
486 */
487 if (!cap_esirtps(iommu->cap))
488 qi_global_iec(iommu);
489 }
490
iommu_enable_irq_remapping(struct intel_iommu * iommu)491 static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
492 {
493 unsigned long flags;
494 u32 sts;
495
496 raw_spin_lock_irqsave(&iommu->register_lock, flags);
497
498 /* Enable interrupt-remapping */
499 iommu->gcmd |= DMA_GCMD_IRE;
500 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
501 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
502 readl, (sts & DMA_GSTS_IRES), sts);
503
504 /* Block compatibility-format MSIs */
505 if (sts & DMA_GSTS_CFIS) {
506 iommu->gcmd &= ~DMA_GCMD_CFI;
507 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
508 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
509 readl, !(sts & DMA_GSTS_CFIS), sts);
510 }
511
512 /*
513 * With CFI clear in the Global Command register, we should be
514 * protected from dangerous (i.e. compatibility) interrupts
515 * regardless of x2apic status. Check just to be sure.
516 */
517 if (sts & DMA_GSTS_CFIS)
518 WARN(1, KERN_WARNING
519 "Compatibility-format IRQs enabled despite intr remapping;\n"
520 "you are vulnerable to IRQ injection.\n");
521
522 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
523 }
524
intel_setup_irq_remapping(struct intel_iommu * iommu)525 static int intel_setup_irq_remapping(struct intel_iommu *iommu)
526 {
527 struct ir_table *ir_table;
528 struct fwnode_handle *fn;
529 unsigned long *bitmap;
530 struct page *pages;
531
532 if (iommu->ir_table)
533 return 0;
534
535 ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
536 if (!ir_table)
537 return -ENOMEM;
538
539 pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
540 INTR_REMAP_PAGE_ORDER);
541 if (!pages) {
542 pr_err("IR%d: failed to allocate pages of order %d\n",
543 iommu->seq_id, INTR_REMAP_PAGE_ORDER);
544 goto out_free_table;
545 }
546
547 bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_KERNEL);
548 if (bitmap == NULL) {
549 pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
550 goto out_free_pages;
551 }
552
553 fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
554 if (!fn)
555 goto out_free_bitmap;
556
557 iommu->ir_domain =
558 irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
559 0, INTR_REMAP_TABLE_ENTRIES,
560 fn, &intel_ir_domain_ops,
561 iommu);
562 if (!iommu->ir_domain) {
563 pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
564 goto out_free_fwnode;
565 }
566
567 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_DMAR);
568 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
569 IRQ_DOMAIN_FLAG_ISOLATED_MSI;
570
571 if (cap_caching_mode(iommu->cap))
572 iommu->ir_domain->msi_parent_ops = &virt_dmar_msi_parent_ops;
573 else
574 iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops;
575
576 ir_table->base = page_address(pages);
577 ir_table->bitmap = bitmap;
578 iommu->ir_table = ir_table;
579
580 /*
581 * If the queued invalidation is already initialized,
582 * shouldn't disable it.
583 */
584 if (!iommu->qi) {
585 /*
586 * Clear previous faults.
587 */
588 dmar_fault(-1, iommu);
589 dmar_disable_qi(iommu);
590
591 if (dmar_enable_qi(iommu)) {
592 pr_err("Failed to enable queued invalidation\n");
593 goto out_free_ir_domain;
594 }
595 }
596
597 init_ir_status(iommu);
598
599 if (ir_pre_enabled(iommu)) {
600 if (!is_kdump_kernel()) {
601 pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
602 iommu->name);
603 clear_ir_pre_enabled(iommu);
604 iommu_disable_irq_remapping(iommu);
605 } else if (iommu_load_old_irte(iommu))
606 pr_err("Failed to copy IR table for %s from previous kernel\n",
607 iommu->name);
608 else
609 pr_info("Copied IR table for %s from previous kernel\n",
610 iommu->name);
611 }
612
613 iommu_set_irq_remapping(iommu, eim_mode);
614
615 return 0;
616
617 out_free_ir_domain:
618 irq_domain_remove(iommu->ir_domain);
619 iommu->ir_domain = NULL;
620 out_free_fwnode:
621 irq_domain_free_fwnode(fn);
622 out_free_bitmap:
623 bitmap_free(bitmap);
624 out_free_pages:
625 __free_pages(pages, INTR_REMAP_PAGE_ORDER);
626 out_free_table:
627 kfree(ir_table);
628
629 iommu->ir_table = NULL;
630
631 return -ENOMEM;
632 }
633
intel_teardown_irq_remapping(struct intel_iommu * iommu)634 static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
635 {
636 struct fwnode_handle *fn;
637
638 if (iommu && iommu->ir_table) {
639 if (iommu->ir_domain) {
640 fn = iommu->ir_domain->fwnode;
641
642 irq_domain_remove(iommu->ir_domain);
643 irq_domain_free_fwnode(fn);
644 iommu->ir_domain = NULL;
645 }
646 free_pages((unsigned long)iommu->ir_table->base,
647 INTR_REMAP_PAGE_ORDER);
648 bitmap_free(iommu->ir_table->bitmap);
649 kfree(iommu->ir_table);
650 iommu->ir_table = NULL;
651 }
652 }
653
654 /*
655 * Disable Interrupt Remapping.
656 */
iommu_disable_irq_remapping(struct intel_iommu * iommu)657 static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
658 {
659 unsigned long flags;
660 u32 sts;
661
662 if (!ecap_ir_support(iommu->ecap))
663 return;
664
665 /*
666 * global invalidation of interrupt entry cache before disabling
667 * interrupt-remapping.
668 */
669 if (!cap_esirtps(iommu->cap))
670 qi_global_iec(iommu);
671
672 raw_spin_lock_irqsave(&iommu->register_lock, flags);
673
674 sts = readl(iommu->reg + DMAR_GSTS_REG);
675 if (!(sts & DMA_GSTS_IRES))
676 goto end;
677
678 iommu->gcmd &= ~DMA_GCMD_IRE;
679 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
680
681 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
682 readl, !(sts & DMA_GSTS_IRES), sts);
683
684 end:
685 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
686 }
687
dmar_x2apic_optout(void)688 static int __init dmar_x2apic_optout(void)
689 {
690 struct acpi_table_dmar *dmar;
691 dmar = (struct acpi_table_dmar *)dmar_tbl;
692 if (!dmar || no_x2apic_optout)
693 return 0;
694 return dmar->flags & DMAR_X2APIC_OPT_OUT;
695 }
696
intel_cleanup_irq_remapping(void)697 static void __init intel_cleanup_irq_remapping(void)
698 {
699 struct dmar_drhd_unit *drhd;
700 struct intel_iommu *iommu;
701
702 for_each_iommu(iommu, drhd) {
703 if (ecap_ir_support(iommu->ecap)) {
704 iommu_disable_irq_remapping(iommu);
705 intel_teardown_irq_remapping(iommu);
706 }
707 }
708
709 if (x2apic_supported())
710 pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
711 }
712
intel_prepare_irq_remapping(void)713 static int __init intel_prepare_irq_remapping(void)
714 {
715 struct dmar_drhd_unit *drhd;
716 struct intel_iommu *iommu;
717 int eim = 0;
718
719 if (irq_remap_broken) {
720 pr_warn("This system BIOS has enabled interrupt remapping\n"
721 "on a chipset that contains an erratum making that\n"
722 "feature unstable. To maintain system stability\n"
723 "interrupt remapping is being disabled. Please\n"
724 "contact your BIOS vendor for an update\n");
725 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
726 return -ENODEV;
727 }
728
729 if (dmar_table_init() < 0)
730 return -ENODEV;
731
732 if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL))
733 return -ENODEV;
734
735 if (!dmar_ir_support())
736 return -ENODEV;
737
738 if (parse_ioapics_under_ir()) {
739 pr_info("Not enabling interrupt remapping\n");
740 goto error;
741 }
742
743 /* First make sure all IOMMUs support IRQ remapping */
744 for_each_iommu(iommu, drhd)
745 if (!ecap_ir_support(iommu->ecap))
746 goto error;
747
748 /* Detect remapping mode: lapic or x2apic */
749 if (x2apic_supported()) {
750 eim = !dmar_x2apic_optout();
751 if (!eim) {
752 pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
753 pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
754 }
755 }
756
757 for_each_iommu(iommu, drhd) {
758 if (eim && !ecap_eim_support(iommu->ecap)) {
759 pr_info("%s does not support EIM\n", iommu->name);
760 eim = 0;
761 }
762 }
763
764 eim_mode = eim;
765 if (eim)
766 pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
767
768 /* Do the initializations early */
769 for_each_iommu(iommu, drhd) {
770 if (intel_setup_irq_remapping(iommu)) {
771 pr_err("Failed to setup irq remapping for %s\n",
772 iommu->name);
773 goto error;
774 }
775 }
776
777 return 0;
778
779 error:
780 intel_cleanup_irq_remapping();
781 return -ENODEV;
782 }
783
784 /*
785 * Set Posted-Interrupts capability.
786 */
set_irq_posting_cap(void)787 static inline void set_irq_posting_cap(void)
788 {
789 struct dmar_drhd_unit *drhd;
790 struct intel_iommu *iommu;
791
792 if (!disable_irq_post) {
793 /*
794 * If IRTE is in posted format, the 'pda' field goes across the
795 * 64-bit boundary, we need use cmpxchg16b to atomically update
796 * it. We only expose posted-interrupt when X86_FEATURE_CX16
797 * is supported. Actually, hardware platforms supporting PI
798 * should have X86_FEATURE_CX16 support, this has been confirmed
799 * with Intel hardware guys.
800 */
801 if (boot_cpu_has(X86_FEATURE_CX16))
802 intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
803
804 for_each_iommu(iommu, drhd)
805 if (!cap_pi_support(iommu->cap)) {
806 intel_irq_remap_ops.capability &=
807 ~(1 << IRQ_POSTING_CAP);
808 break;
809 }
810 }
811 }
812
intel_enable_irq_remapping(void)813 static int __init intel_enable_irq_remapping(void)
814 {
815 struct dmar_drhd_unit *drhd;
816 struct intel_iommu *iommu;
817 bool setup = false;
818
819 /*
820 * Setup Interrupt-remapping for all the DRHD's now.
821 */
822 for_each_iommu(iommu, drhd) {
823 if (!ir_pre_enabled(iommu))
824 iommu_enable_irq_remapping(iommu);
825 setup = true;
826 }
827
828 if (!setup)
829 goto error;
830
831 irq_remapping_enabled = 1;
832
833 set_irq_posting_cap();
834
835 pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
836
837 return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
838
839 error:
840 intel_cleanup_irq_remapping();
841 return -1;
842 }
843
ir_parse_one_hpet_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)844 static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
845 struct intel_iommu *iommu,
846 struct acpi_dmar_hardware_unit *drhd)
847 {
848 struct acpi_dmar_pci_path *path;
849 u8 bus;
850 int count, free = -1;
851
852 bus = scope->bus;
853 path = (struct acpi_dmar_pci_path *)(scope + 1);
854 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
855 / sizeof(struct acpi_dmar_pci_path);
856
857 while (--count > 0) {
858 /*
859 * Access PCI directly due to the PCI
860 * subsystem isn't initialized yet.
861 */
862 bus = read_pci_config_byte(bus, path->device, path->function,
863 PCI_SECONDARY_BUS);
864 path++;
865 }
866
867 for (count = 0; count < MAX_HPET_TBS; count++) {
868 if (ir_hpet[count].iommu == iommu &&
869 ir_hpet[count].id == scope->enumeration_id)
870 return 0;
871 else if (ir_hpet[count].iommu == NULL && free == -1)
872 free = count;
873 }
874 if (free == -1) {
875 pr_warn("Exceeded Max HPET blocks\n");
876 return -ENOSPC;
877 }
878
879 ir_hpet[free].iommu = iommu;
880 ir_hpet[free].id = scope->enumeration_id;
881 ir_hpet[free].bus = bus;
882 ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
883 pr_info("HPET id %d under DRHD base 0x%Lx\n",
884 scope->enumeration_id, drhd->address);
885
886 return 0;
887 }
888
ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope * scope,struct intel_iommu * iommu,struct acpi_dmar_hardware_unit * drhd)889 static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
890 struct intel_iommu *iommu,
891 struct acpi_dmar_hardware_unit *drhd)
892 {
893 struct acpi_dmar_pci_path *path;
894 u8 bus;
895 int count, free = -1;
896
897 bus = scope->bus;
898 path = (struct acpi_dmar_pci_path *)(scope + 1);
899 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
900 / sizeof(struct acpi_dmar_pci_path);
901
902 while (--count > 0) {
903 /*
904 * Access PCI directly due to the PCI
905 * subsystem isn't initialized yet.
906 */
907 bus = read_pci_config_byte(bus, path->device, path->function,
908 PCI_SECONDARY_BUS);
909 path++;
910 }
911
912 for (count = 0; count < MAX_IO_APICS; count++) {
913 if (ir_ioapic[count].iommu == iommu &&
914 ir_ioapic[count].id == scope->enumeration_id)
915 return 0;
916 else if (ir_ioapic[count].iommu == NULL && free == -1)
917 free = count;
918 }
919 if (free == -1) {
920 pr_warn("Exceeded Max IO APICS\n");
921 return -ENOSPC;
922 }
923
924 ir_ioapic[free].bus = bus;
925 ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
926 ir_ioapic[free].iommu = iommu;
927 ir_ioapic[free].id = scope->enumeration_id;
928 pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n",
929 scope->enumeration_id, drhd->address, iommu->seq_id);
930
931 return 0;
932 }
933
ir_parse_ioapic_hpet_scope(struct acpi_dmar_header * header,struct intel_iommu * iommu)934 static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
935 struct intel_iommu *iommu)
936 {
937 int ret = 0;
938 struct acpi_dmar_hardware_unit *drhd;
939 struct acpi_dmar_device_scope *scope;
940 void *start, *end;
941
942 drhd = (struct acpi_dmar_hardware_unit *)header;
943 start = (void *)(drhd + 1);
944 end = ((void *)drhd) + header->length;
945
946 while (start < end && ret == 0) {
947 scope = start;
948 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
949 ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
950 else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
951 ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
952 start += scope->length;
953 }
954
955 return ret;
956 }
957
ir_remove_ioapic_hpet_scope(struct intel_iommu * iommu)958 static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
959 {
960 int i;
961
962 for (i = 0; i < MAX_HPET_TBS; i++)
963 if (ir_hpet[i].iommu == iommu)
964 ir_hpet[i].iommu = NULL;
965
966 for (i = 0; i < MAX_IO_APICS; i++)
967 if (ir_ioapic[i].iommu == iommu)
968 ir_ioapic[i].iommu = NULL;
969 }
970
971 /*
972 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
973 * hardware unit.
974 */
parse_ioapics_under_ir(void)975 static int __init parse_ioapics_under_ir(void)
976 {
977 struct dmar_drhd_unit *drhd;
978 struct intel_iommu *iommu;
979 bool ir_supported = false;
980 int ioapic_idx;
981
982 for_each_iommu(iommu, drhd) {
983 int ret;
984
985 if (!ecap_ir_support(iommu->ecap))
986 continue;
987
988 ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
989 if (ret)
990 return ret;
991
992 ir_supported = true;
993 }
994
995 if (!ir_supported)
996 return -ENODEV;
997
998 for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
999 int ioapic_id = mpc_ioapic_id(ioapic_idx);
1000 if (!map_ioapic_to_iommu(ioapic_id)) {
1001 pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1002 "interrupt remapping will be disabled\n",
1003 ioapic_id);
1004 return -1;
1005 }
1006 }
1007
1008 return 0;
1009 }
1010
ir_dev_scope_init(void)1011 static int __init ir_dev_scope_init(void)
1012 {
1013 int ret;
1014
1015 if (!irq_remapping_enabled)
1016 return 0;
1017
1018 down_write(&dmar_global_lock);
1019 ret = dmar_dev_scope_init();
1020 up_write(&dmar_global_lock);
1021
1022 return ret;
1023 }
1024 rootfs_initcall(ir_dev_scope_init);
1025
disable_irq_remapping(void)1026 static void disable_irq_remapping(void)
1027 {
1028 struct dmar_drhd_unit *drhd;
1029 struct intel_iommu *iommu = NULL;
1030
1031 /*
1032 * Disable Interrupt-remapping for all the DRHD's now.
1033 */
1034 for_each_iommu(iommu, drhd) {
1035 if (!ecap_ir_support(iommu->ecap))
1036 continue;
1037
1038 iommu_disable_irq_remapping(iommu);
1039 }
1040
1041 /*
1042 * Clear Posted-Interrupts capability.
1043 */
1044 if (!disable_irq_post)
1045 intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1046 }
1047
reenable_irq_remapping(int eim)1048 static int reenable_irq_remapping(int eim)
1049 {
1050 struct dmar_drhd_unit *drhd;
1051 bool setup = false;
1052 struct intel_iommu *iommu = NULL;
1053
1054 for_each_iommu(iommu, drhd)
1055 if (iommu->qi)
1056 dmar_reenable_qi(iommu);
1057
1058 /*
1059 * Setup Interrupt-remapping for all the DRHD's now.
1060 */
1061 for_each_iommu(iommu, drhd) {
1062 if (!ecap_ir_support(iommu->ecap))
1063 continue;
1064
1065 /* Set up interrupt remapping for iommu.*/
1066 iommu_set_irq_remapping(iommu, eim);
1067 iommu_enable_irq_remapping(iommu);
1068 setup = true;
1069 }
1070
1071 if (!setup)
1072 goto error;
1073
1074 set_irq_posting_cap();
1075
1076 return 0;
1077
1078 error:
1079 /*
1080 * handle error condition gracefully here!
1081 */
1082 return -1;
1083 }
1084
1085 /*
1086 * Store the MSI remapping domain pointer in the device if enabled.
1087 *
1088 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1089 * remapping is disabled. Only update the pointer if the device is not
1090 * already handled by a non default PCI/MSI interrupt domain. This protects
1091 * e.g. VMD devices.
1092 */
intel_irq_remap_add_device(struct dmar_pci_notify_info * info)1093 void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1094 {
1095 if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev))
1096 return;
1097
1098 dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1099 }
1100
prepare_irte(struct irte * irte,int vector,unsigned int dest)1101 static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1102 {
1103 memset(irte, 0, sizeof(*irte));
1104
1105 irte->present = 1;
1106 irte->dst_mode = apic->dest_mode_logical;
1107 /*
1108 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1109 * actual level or edge trigger will be setup in the IO-APIC
1110 * RTE. This will help simplify level triggered irq migration.
1111 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1112 * irq migration in the presence of interrupt-remapping.
1113 */
1114 irte->trigger_mode = 0;
1115 irte->dlvry_mode = apic->delivery_mode;
1116 irte->vector = vector;
1117 irte->dest_id = IRTE_DEST(dest);
1118 irte->redir_hint = 1;
1119 }
1120
1121 struct irq_remap_ops intel_irq_remap_ops = {
1122 .prepare = intel_prepare_irq_remapping,
1123 .enable = intel_enable_irq_remapping,
1124 .disable = disable_irq_remapping,
1125 .reenable = reenable_irq_remapping,
1126 .enable_faulting = enable_drhd_fault_handling,
1127 };
1128
intel_ir_reconfigure_irte(struct irq_data * irqd,bool force)1129 static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1130 {
1131 struct intel_ir_data *ir_data = irqd->chip_data;
1132 struct irte *irte = &ir_data->irte_entry;
1133 struct irq_cfg *cfg = irqd_cfg(irqd);
1134
1135 /*
1136 * Atomically updates the IRTE with the new destination, vector
1137 * and flushes the interrupt entry cache.
1138 */
1139 irte->vector = cfg->vector;
1140 irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1141
1142 /* Update the hardware only if the interrupt is in remapped mode. */
1143 if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1144 modify_irte(&ir_data->irq_2_iommu, irte);
1145 }
1146
1147 /*
1148 * Migrate the IO-APIC irq in the presence of intr-remapping.
1149 *
1150 * For both level and edge triggered, irq migration is a simple atomic
1151 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1152 *
1153 * For level triggered, we eliminate the io-apic RTE modification (with the
1154 * updated vector information), by using a virtual vector (io-apic pin number).
1155 * Real vector that is used for interrupting cpu will be coming from
1156 * the interrupt-remapping table entry.
1157 *
1158 * As the migration is a simple atomic update of IRTE, the same mechanism
1159 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1160 */
1161 static int
intel_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)1162 intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1163 bool force)
1164 {
1165 struct irq_data *parent = data->parent_data;
1166 struct irq_cfg *cfg = irqd_cfg(data);
1167 int ret;
1168
1169 ret = parent->chip->irq_set_affinity(parent, mask, force);
1170 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1171 return ret;
1172
1173 intel_ir_reconfigure_irte(data, false);
1174 /*
1175 * After this point, all the interrupts will start arriving
1176 * at the new destination. So, time to cleanup the previous
1177 * vector allocation.
1178 */
1179 vector_schedule_cleanup(cfg);
1180
1181 return IRQ_SET_MASK_OK_DONE;
1182 }
1183
intel_ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)1184 static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1185 struct msi_msg *msg)
1186 {
1187 struct intel_ir_data *ir_data = irq_data->chip_data;
1188
1189 *msg = ir_data->msi_entry;
1190 }
1191
intel_ir_set_vcpu_affinity(struct irq_data * data,void * info)1192 static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1193 {
1194 struct intel_ir_data *ir_data = data->chip_data;
1195 struct vcpu_data *vcpu_pi_info = info;
1196
1197 /* stop posting interrupts, back to remapping mode */
1198 if (!vcpu_pi_info) {
1199 modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1200 } else {
1201 struct irte irte_pi;
1202
1203 /*
1204 * We are not caching the posted interrupt entry. We
1205 * copy the data from the remapped entry and modify
1206 * the fields which are relevant for posted mode. The
1207 * cached remapped entry is used for switching back to
1208 * remapped mode.
1209 */
1210 memset(&irte_pi, 0, sizeof(irte_pi));
1211 dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1212
1213 /* Update the posted mode fields */
1214 irte_pi.p_pst = 1;
1215 irte_pi.p_urgent = 0;
1216 irte_pi.p_vector = vcpu_pi_info->vector;
1217 irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1218 (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1219 irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1220 ~(-1UL << PDA_HIGH_BIT);
1221
1222 modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1223 }
1224
1225 return 0;
1226 }
1227
1228 static struct irq_chip intel_ir_chip = {
1229 .name = "INTEL-IR",
1230 .irq_ack = apic_ack_irq,
1231 .irq_set_affinity = intel_ir_set_affinity,
1232 .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1233 .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1234 };
1235
fill_msi_msg(struct msi_msg * msg,u32 index,u32 subhandle)1236 static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1237 {
1238 memset(msg, 0, sizeof(*msg));
1239
1240 msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1241 msg->arch_addr_lo.dmar_subhandle_valid = true;
1242 msg->arch_addr_lo.dmar_format = true;
1243 msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1244 msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1245
1246 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1247
1248 msg->arch_data.dmar_subhandle = subhandle;
1249 }
1250
intel_irq_remapping_prepare_irte(struct intel_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int index,int sub_handle)1251 static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1252 struct irq_cfg *irq_cfg,
1253 struct irq_alloc_info *info,
1254 int index, int sub_handle)
1255 {
1256 struct irte *irte = &data->irte_entry;
1257
1258 prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1259
1260 switch (info->type) {
1261 case X86_IRQ_ALLOC_TYPE_IOAPIC:
1262 /* Set source-id of interrupt request */
1263 set_ioapic_sid(irte, info->devid);
1264 apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1265 info->devid, irte->present, irte->fpd,
1266 irte->dst_mode, irte->redir_hint,
1267 irte->trigger_mode, irte->dlvry_mode,
1268 irte->avail, irte->vector, irte->dest_id,
1269 irte->sid, irte->sq, irte->svt);
1270 sub_handle = info->ioapic.pin;
1271 break;
1272 case X86_IRQ_ALLOC_TYPE_HPET:
1273 set_hpet_sid(irte, info->devid);
1274 break;
1275 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1276 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1277 set_msi_sid(irte,
1278 pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1279 break;
1280 default:
1281 BUG_ON(1);
1282 break;
1283 }
1284 fill_msi_msg(&data->msi_entry, index, sub_handle);
1285 }
1286
intel_free_irq_resources(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1287 static void intel_free_irq_resources(struct irq_domain *domain,
1288 unsigned int virq, unsigned int nr_irqs)
1289 {
1290 struct irq_data *irq_data;
1291 struct intel_ir_data *data;
1292 struct irq_2_iommu *irq_iommu;
1293 unsigned long flags;
1294 int i;
1295 for (i = 0; i < nr_irqs; i++) {
1296 irq_data = irq_domain_get_irq_data(domain, virq + i);
1297 if (irq_data && irq_data->chip_data) {
1298 data = irq_data->chip_data;
1299 irq_iommu = &data->irq_2_iommu;
1300 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1301 clear_entries(irq_iommu);
1302 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1303 irq_domain_reset_irq_data(irq_data);
1304 kfree(data);
1305 }
1306 }
1307 }
1308
intel_irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1309 static int intel_irq_remapping_alloc(struct irq_domain *domain,
1310 unsigned int virq, unsigned int nr_irqs,
1311 void *arg)
1312 {
1313 struct intel_iommu *iommu = domain->host_data;
1314 struct irq_alloc_info *info = arg;
1315 struct intel_ir_data *data, *ird;
1316 struct irq_data *irq_data;
1317 struct irq_cfg *irq_cfg;
1318 int i, ret, index;
1319
1320 if (!info || !iommu)
1321 return -EINVAL;
1322 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
1323 return -EINVAL;
1324
1325 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1326 if (ret < 0)
1327 return ret;
1328
1329 ret = -ENOMEM;
1330 data = kzalloc(sizeof(*data), GFP_KERNEL);
1331 if (!data)
1332 goto out_free_parent;
1333
1334 index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1335 if (index < 0) {
1336 pr_warn("Failed to allocate IRTE\n");
1337 kfree(data);
1338 goto out_free_parent;
1339 }
1340
1341 for (i = 0; i < nr_irqs; i++) {
1342 irq_data = irq_domain_get_irq_data(domain, virq + i);
1343 irq_cfg = irqd_cfg(irq_data);
1344 if (!irq_data || !irq_cfg) {
1345 if (!i)
1346 kfree(data);
1347 ret = -EINVAL;
1348 goto out_free_data;
1349 }
1350
1351 if (i > 0) {
1352 ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1353 if (!ird)
1354 goto out_free_data;
1355 /* Initialize the common data */
1356 ird->irq_2_iommu = data->irq_2_iommu;
1357 ird->irq_2_iommu.sub_handle = i;
1358 } else {
1359 ird = data;
1360 }
1361
1362 irq_data->hwirq = (index << 16) + i;
1363 irq_data->chip_data = ird;
1364 irq_data->chip = &intel_ir_chip;
1365 intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1366 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1367 }
1368 return 0;
1369
1370 out_free_data:
1371 intel_free_irq_resources(domain, virq, i);
1372 out_free_parent:
1373 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1374 return ret;
1375 }
1376
intel_irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1377 static void intel_irq_remapping_free(struct irq_domain *domain,
1378 unsigned int virq, unsigned int nr_irqs)
1379 {
1380 intel_free_irq_resources(domain, virq, nr_irqs);
1381 irq_domain_free_irqs_common(domain, virq, nr_irqs);
1382 }
1383
intel_irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)1384 static int intel_irq_remapping_activate(struct irq_domain *domain,
1385 struct irq_data *irq_data, bool reserve)
1386 {
1387 intel_ir_reconfigure_irte(irq_data, true);
1388 return 0;
1389 }
1390
intel_irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)1391 static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1392 struct irq_data *irq_data)
1393 {
1394 struct intel_ir_data *data = irq_data->chip_data;
1395 struct irte entry;
1396
1397 memset(&entry, 0, sizeof(entry));
1398 modify_irte(&data->irq_2_iommu, &entry);
1399 }
1400
intel_irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1401 static int intel_irq_remapping_select(struct irq_domain *d,
1402 struct irq_fwspec *fwspec,
1403 enum irq_domain_bus_token bus_token)
1404 {
1405 struct intel_iommu *iommu = NULL;
1406
1407 if (x86_fwspec_is_ioapic(fwspec))
1408 iommu = map_ioapic_to_iommu(fwspec->param[0]);
1409 else if (x86_fwspec_is_hpet(fwspec))
1410 iommu = map_hpet_to_iommu(fwspec->param[0]);
1411
1412 return iommu && d == iommu->ir_domain;
1413 }
1414
1415 static const struct irq_domain_ops intel_ir_domain_ops = {
1416 .select = intel_irq_remapping_select,
1417 .alloc = intel_irq_remapping_alloc,
1418 .free = intel_irq_remapping_free,
1419 .activate = intel_irq_remapping_activate,
1420 .deactivate = intel_irq_remapping_deactivate,
1421 };
1422
1423 static const struct msi_parent_ops dmar_msi_parent_ops = {
1424 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED |
1425 MSI_FLAG_MULTI_PCI_MSI |
1426 MSI_FLAG_PCI_IMS,
1427 .prefix = "IR-",
1428 .init_dev_msi_info = msi_parent_init_dev_msi_info,
1429 };
1430
1431 static const struct msi_parent_ops virt_dmar_msi_parent_ops = {
1432 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED |
1433 MSI_FLAG_MULTI_PCI_MSI,
1434 .prefix = "vIR-",
1435 .init_dev_msi_info = msi_parent_init_dev_msi_info,
1436 };
1437
1438 /*
1439 * Support of Interrupt Remapping Unit Hotplug
1440 */
dmar_ir_add(struct dmar_drhd_unit * dmaru,struct intel_iommu * iommu)1441 static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1442 {
1443 int ret;
1444 int eim = x2apic_enabled();
1445
1446 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu);
1447 if (ret)
1448 return ret;
1449
1450 if (eim && !ecap_eim_support(iommu->ecap)) {
1451 pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1452 iommu->reg_phys, iommu->ecap);
1453 return -ENODEV;
1454 }
1455
1456 if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1457 pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1458 iommu->reg_phys);
1459 return -ENODEV;
1460 }
1461
1462 /* TODO: check all IOAPICs are covered by IOMMU */
1463
1464 /* Setup Interrupt-remapping now. */
1465 ret = intel_setup_irq_remapping(iommu);
1466 if (ret) {
1467 pr_err("Failed to setup irq remapping for %s\n",
1468 iommu->name);
1469 intel_teardown_irq_remapping(iommu);
1470 ir_remove_ioapic_hpet_scope(iommu);
1471 } else {
1472 iommu_enable_irq_remapping(iommu);
1473 }
1474
1475 return ret;
1476 }
1477
dmar_ir_hotplug(struct dmar_drhd_unit * dmaru,bool insert)1478 int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1479 {
1480 int ret = 0;
1481 struct intel_iommu *iommu = dmaru->iommu;
1482
1483 if (!irq_remapping_enabled)
1484 return 0;
1485 if (iommu == NULL)
1486 return -EINVAL;
1487 if (!ecap_ir_support(iommu->ecap))
1488 return 0;
1489 if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1490 !cap_pi_support(iommu->cap))
1491 return -EBUSY;
1492
1493 if (insert) {
1494 if (!iommu->ir_table)
1495 ret = dmar_ir_add(dmaru, iommu);
1496 } else {
1497 if (iommu->ir_table) {
1498 if (!bitmap_empty(iommu->ir_table->bitmap,
1499 INTR_REMAP_TABLE_ENTRIES)) {
1500 ret = -EBUSY;
1501 } else {
1502 iommu_disable_irq_remapping(iommu);
1503 intel_teardown_irq_remapping(iommu);
1504 ir_remove_ioapic_hpet_scope(iommu);
1505 }
1506 }
1507 }
1508
1509 return ret;
1510 }
1511