1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2014 Intel Corporation. 4 * 5 * Authors: David Woodhouse <dwmw2@infradead.org>, 6 * Ashok Raj <ashok.raj@intel.com>, 7 * Shaohua Li <shaohua.li@intel.com>, 8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>, 9 * Fenghua Yu <fenghua.yu@intel.com> 10 * Joerg Roedel <jroedel@suse.de> 11 */ 12 13 #define pr_fmt(fmt) "DMAR: " fmt 14 #define dev_fmt(fmt) pr_fmt(fmt) 15 16 #include <linux/crash_dump.h> 17 #include <linux/dma-direct.h> 18 #include <linux/dmi.h> 19 #include <linux/intel-svm.h> 20 #include <linux/memory.h> 21 #include <linux/pci.h> 22 #include <linux/pci-ats.h> 23 #include <linux/spinlock.h> 24 #include <linux/syscore_ops.h> 25 #include <linux/tboot.h> 26 27 #include "iommu.h" 28 #include "../dma-iommu.h" 29 #include "../irq_remapping.h" 30 #include "../iommu-sva-lib.h" 31 #include "pasid.h" 32 #include "cap_audit.h" 33 34 #define ROOT_SIZE VTD_PAGE_SIZE 35 #define CONTEXT_SIZE VTD_PAGE_SIZE 36 37 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) 38 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB) 39 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) 40 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) 41 42 #define IOAPIC_RANGE_START (0xfee00000) 43 #define IOAPIC_RANGE_END (0xfeefffff) 44 #define IOVA_START_ADDR (0x1000) 45 46 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57 47 48 #define MAX_AGAW_WIDTH 64 49 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT) 50 51 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1) 52 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1) 53 54 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR 55 to match. That way, we can use 'unsigned long' for PFNs with impunity. */ 56 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ 57 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) 58 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) 59 60 /* IO virtual address start page frame number */ 61 #define IOVA_START_PFN (1) 62 63 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 64 65 /* page table handling */ 66 #define LEVEL_STRIDE (9) 67 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) 68 69 static inline int agaw_to_level(int agaw) 70 { 71 return agaw + 2; 72 } 73 74 static inline int agaw_to_width(int agaw) 75 { 76 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH); 77 } 78 79 static inline int width_to_agaw(int width) 80 { 81 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE); 82 } 83 84 static inline unsigned int level_to_offset_bits(int level) 85 { 86 return (level - 1) * LEVEL_STRIDE; 87 } 88 89 static inline int pfn_level_offset(u64 pfn, int level) 90 { 91 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; 92 } 93 94 static inline u64 level_mask(int level) 95 { 96 return -1ULL << level_to_offset_bits(level); 97 } 98 99 static inline u64 level_size(int level) 100 { 101 return 1ULL << level_to_offset_bits(level); 102 } 103 104 static inline u64 align_to_level(u64 pfn, int level) 105 { 106 return (pfn + level_size(level) - 1) & level_mask(level); 107 } 108 109 static inline unsigned long lvl_to_nr_pages(unsigned int lvl) 110 { 111 return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH); 112 } 113 114 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things 115 are never going to work. */ 116 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) 117 { 118 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); 119 } 120 static inline unsigned long page_to_dma_pfn(struct page *pg) 121 { 122 return mm_to_dma_pfn(page_to_pfn(pg)); 123 } 124 static inline unsigned long virt_to_dma_pfn(void *p) 125 { 126 return page_to_dma_pfn(virt_to_page(p)); 127 } 128 129 static void __init check_tylersburg_isoch(void); 130 static int rwbf_quirk; 131 132 /* 133 * set to 1 to panic kernel if can't successfully enable VT-d 134 * (used when kernel is launched w/ TXT) 135 */ 136 static int force_on = 0; 137 static int intel_iommu_tboot_noforce; 138 static int no_platform_optin; 139 140 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) 141 142 /* 143 * Take a root_entry and return the Lower Context Table Pointer (LCTP) 144 * if marked present. 145 */ 146 static phys_addr_t root_entry_lctp(struct root_entry *re) 147 { 148 if (!(re->lo & 1)) 149 return 0; 150 151 return re->lo & VTD_PAGE_MASK; 152 } 153 154 /* 155 * Take a root_entry and return the Upper Context Table Pointer (UCTP) 156 * if marked present. 157 */ 158 static phys_addr_t root_entry_uctp(struct root_entry *re) 159 { 160 if (!(re->hi & 1)) 161 return 0; 162 163 return re->hi & VTD_PAGE_MASK; 164 } 165 166 static inline void context_set_present(struct context_entry *context) 167 { 168 context->lo |= 1; 169 } 170 171 static inline void context_set_fault_enable(struct context_entry *context) 172 { 173 context->lo &= (((u64)-1) << 2) | 1; 174 } 175 176 static inline void context_set_translation_type(struct context_entry *context, 177 unsigned long value) 178 { 179 context->lo &= (((u64)-1) << 4) | 3; 180 context->lo |= (value & 3) << 2; 181 } 182 183 static inline void context_set_address_root(struct context_entry *context, 184 unsigned long value) 185 { 186 context->lo &= ~VTD_PAGE_MASK; 187 context->lo |= value & VTD_PAGE_MASK; 188 } 189 190 static inline void context_set_address_width(struct context_entry *context, 191 unsigned long value) 192 { 193 context->hi |= value & 7; 194 } 195 196 static inline void context_set_domain_id(struct context_entry *context, 197 unsigned long value) 198 { 199 context->hi |= (value & ((1 << 16) - 1)) << 8; 200 } 201 202 static inline void context_set_pasid(struct context_entry *context) 203 { 204 context->lo |= CONTEXT_PASIDE; 205 } 206 207 static inline int context_domain_id(struct context_entry *c) 208 { 209 return((c->hi >> 8) & 0xffff); 210 } 211 212 static inline void context_clear_entry(struct context_entry *context) 213 { 214 context->lo = 0; 215 context->hi = 0; 216 } 217 218 static inline bool context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn) 219 { 220 if (!iommu->copied_tables) 221 return false; 222 223 return test_bit(((long)bus << 8) | devfn, iommu->copied_tables); 224 } 225 226 static inline void 227 set_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn) 228 { 229 set_bit(((long)bus << 8) | devfn, iommu->copied_tables); 230 } 231 232 static inline void 233 clear_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn) 234 { 235 clear_bit(((long)bus << 8) | devfn, iommu->copied_tables); 236 } 237 238 /* 239 * This domain is a statically identity mapping domain. 240 * 1. This domain creats a static 1:1 mapping to all usable memory. 241 * 2. It maps to each iommu if successful. 242 * 3. Each iommu mapps to this domain if successful. 243 */ 244 static struct dmar_domain *si_domain; 245 static int hw_pass_through = 1; 246 247 struct dmar_rmrr_unit { 248 struct list_head list; /* list of rmrr units */ 249 struct acpi_dmar_header *hdr; /* ACPI header */ 250 u64 base_address; /* reserved base address*/ 251 u64 end_address; /* reserved end address */ 252 struct dmar_dev_scope *devices; /* target devices */ 253 int devices_cnt; /* target device count */ 254 }; 255 256 struct dmar_atsr_unit { 257 struct list_head list; /* list of ATSR units */ 258 struct acpi_dmar_header *hdr; /* ACPI header */ 259 struct dmar_dev_scope *devices; /* target devices */ 260 int devices_cnt; /* target device count */ 261 u8 include_all:1; /* include all ports */ 262 }; 263 264 struct dmar_satc_unit { 265 struct list_head list; /* list of SATC units */ 266 struct acpi_dmar_header *hdr; /* ACPI header */ 267 struct dmar_dev_scope *devices; /* target devices */ 268 struct intel_iommu *iommu; /* the corresponding iommu */ 269 int devices_cnt; /* target device count */ 270 u8 atc_required:1; /* ATS is required */ 271 }; 272 273 static LIST_HEAD(dmar_atsr_units); 274 static LIST_HEAD(dmar_rmrr_units); 275 static LIST_HEAD(dmar_satc_units); 276 277 #define for_each_rmrr_units(rmrr) \ 278 list_for_each_entry(rmrr, &dmar_rmrr_units, list) 279 280 static void dmar_remove_one_dev_info(struct device *dev); 281 282 int dmar_disabled = !IS_ENABLED(CONFIG_INTEL_IOMMU_DEFAULT_ON); 283 int intel_iommu_sm = IS_ENABLED(CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON); 284 285 int intel_iommu_enabled = 0; 286 EXPORT_SYMBOL_GPL(intel_iommu_enabled); 287 288 static int dmar_map_gfx = 1; 289 static int intel_iommu_superpage = 1; 290 static int iommu_identity_mapping; 291 static int iommu_skip_te_disable; 292 293 #define IDENTMAP_GFX 2 294 #define IDENTMAP_AZALIA 4 295 296 const struct iommu_ops intel_iommu_ops; 297 298 static bool translation_pre_enabled(struct intel_iommu *iommu) 299 { 300 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED); 301 } 302 303 static void clear_translation_pre_enabled(struct intel_iommu *iommu) 304 { 305 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED; 306 } 307 308 static void init_translation_status(struct intel_iommu *iommu) 309 { 310 u32 gsts; 311 312 gsts = readl(iommu->reg + DMAR_GSTS_REG); 313 if (gsts & DMA_GSTS_TES) 314 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED; 315 } 316 317 static int __init intel_iommu_setup(char *str) 318 { 319 if (!str) 320 return -EINVAL; 321 322 while (*str) { 323 if (!strncmp(str, "on", 2)) { 324 dmar_disabled = 0; 325 pr_info("IOMMU enabled\n"); 326 } else if (!strncmp(str, "off", 3)) { 327 dmar_disabled = 1; 328 no_platform_optin = 1; 329 pr_info("IOMMU disabled\n"); 330 } else if (!strncmp(str, "igfx_off", 8)) { 331 dmar_map_gfx = 0; 332 pr_info("Disable GFX device mapping\n"); 333 } else if (!strncmp(str, "forcedac", 8)) { 334 pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n"); 335 iommu_dma_forcedac = true; 336 } else if (!strncmp(str, "strict", 6)) { 337 pr_warn("intel_iommu=strict deprecated; use iommu.strict=1 instead\n"); 338 iommu_set_dma_strict(); 339 } else if (!strncmp(str, "sp_off", 6)) { 340 pr_info("Disable supported super page\n"); 341 intel_iommu_superpage = 0; 342 } else if (!strncmp(str, "sm_on", 5)) { 343 pr_info("Enable scalable mode if hardware supports\n"); 344 intel_iommu_sm = 1; 345 } else if (!strncmp(str, "sm_off", 6)) { 346 pr_info("Scalable mode is disallowed\n"); 347 intel_iommu_sm = 0; 348 } else if (!strncmp(str, "tboot_noforce", 13)) { 349 pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n"); 350 intel_iommu_tboot_noforce = 1; 351 } else { 352 pr_notice("Unknown option - '%s'\n", str); 353 } 354 355 str += strcspn(str, ","); 356 while (*str == ',') 357 str++; 358 } 359 360 return 1; 361 } 362 __setup("intel_iommu=", intel_iommu_setup); 363 364 void *alloc_pgtable_page(int node) 365 { 366 struct page *page; 367 void *vaddr = NULL; 368 369 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); 370 if (page) 371 vaddr = page_address(page); 372 return vaddr; 373 } 374 375 void free_pgtable_page(void *vaddr) 376 { 377 free_page((unsigned long)vaddr); 378 } 379 380 static inline int domain_type_is_si(struct dmar_domain *domain) 381 { 382 return domain->domain.type == IOMMU_DOMAIN_IDENTITY; 383 } 384 385 static inline bool domain_use_first_level(struct dmar_domain *domain) 386 { 387 return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL; 388 } 389 390 static inline int domain_pfn_supported(struct dmar_domain *domain, 391 unsigned long pfn) 392 { 393 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; 394 395 return !(addr_width < BITS_PER_LONG && pfn >> addr_width); 396 } 397 398 /* 399 * Calculate the Supported Adjusted Guest Address Widths of an IOMMU. 400 * Refer to 11.4.2 of the VT-d spec for the encoding of each bit of 401 * the returned SAGAW. 402 */ 403 static unsigned long __iommu_calculate_sagaw(struct intel_iommu *iommu) 404 { 405 unsigned long fl_sagaw, sl_sagaw; 406 407 fl_sagaw = BIT(2) | (cap_fl5lp_support(iommu->cap) ? BIT(3) : 0); 408 sl_sagaw = cap_sagaw(iommu->cap); 409 410 /* Second level only. */ 411 if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) 412 return sl_sagaw; 413 414 /* First level only. */ 415 if (!ecap_slts(iommu->ecap)) 416 return fl_sagaw; 417 418 return fl_sagaw & sl_sagaw; 419 } 420 421 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) 422 { 423 unsigned long sagaw; 424 int agaw; 425 426 sagaw = __iommu_calculate_sagaw(iommu); 427 for (agaw = width_to_agaw(max_gaw); agaw >= 0; agaw--) { 428 if (test_bit(agaw, &sagaw)) 429 break; 430 } 431 432 return agaw; 433 } 434 435 /* 436 * Calculate max SAGAW for each iommu. 437 */ 438 int iommu_calculate_max_sagaw(struct intel_iommu *iommu) 439 { 440 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); 441 } 442 443 /* 444 * calculate agaw for each iommu. 445 * "SAGAW" may be different across iommus, use a default agaw, and 446 * get a supported less agaw for iommus that don't support the default agaw. 447 */ 448 int iommu_calculate_agaw(struct intel_iommu *iommu) 449 { 450 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); 451 } 452 453 static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu) 454 { 455 return sm_supported(iommu) ? 456 ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap); 457 } 458 459 static void domain_update_iommu_coherency(struct dmar_domain *domain) 460 { 461 struct iommu_domain_info *info; 462 struct dmar_drhd_unit *drhd; 463 struct intel_iommu *iommu; 464 bool found = false; 465 unsigned long i; 466 467 domain->iommu_coherency = true; 468 xa_for_each(&domain->iommu_array, i, info) { 469 found = true; 470 if (!iommu_paging_structure_coherency(info->iommu)) { 471 domain->iommu_coherency = false; 472 break; 473 } 474 } 475 if (found) 476 return; 477 478 /* No hardware attached; use lowest common denominator */ 479 rcu_read_lock(); 480 for_each_active_iommu(iommu, drhd) { 481 if (!iommu_paging_structure_coherency(iommu)) { 482 domain->iommu_coherency = false; 483 break; 484 } 485 } 486 rcu_read_unlock(); 487 } 488 489 static int domain_update_iommu_superpage(struct dmar_domain *domain, 490 struct intel_iommu *skip) 491 { 492 struct dmar_drhd_unit *drhd; 493 struct intel_iommu *iommu; 494 int mask = 0x3; 495 496 if (!intel_iommu_superpage) 497 return 0; 498 499 /* set iommu_superpage to the smallest common denominator */ 500 rcu_read_lock(); 501 for_each_active_iommu(iommu, drhd) { 502 if (iommu != skip) { 503 if (domain && domain_use_first_level(domain)) { 504 if (!cap_fl1gp_support(iommu->cap)) 505 mask = 0x1; 506 } else { 507 mask &= cap_super_page_val(iommu->cap); 508 } 509 510 if (!mask) 511 break; 512 } 513 } 514 rcu_read_unlock(); 515 516 return fls(mask); 517 } 518 519 static int domain_update_device_node(struct dmar_domain *domain) 520 { 521 struct device_domain_info *info; 522 int nid = NUMA_NO_NODE; 523 unsigned long flags; 524 525 spin_lock_irqsave(&domain->lock, flags); 526 list_for_each_entry(info, &domain->devices, link) { 527 /* 528 * There could possibly be multiple device numa nodes as devices 529 * within the same domain may sit behind different IOMMUs. There 530 * isn't perfect answer in such situation, so we select first 531 * come first served policy. 532 */ 533 nid = dev_to_node(info->dev); 534 if (nid != NUMA_NO_NODE) 535 break; 536 } 537 spin_unlock_irqrestore(&domain->lock, flags); 538 539 return nid; 540 } 541 542 static void domain_update_iotlb(struct dmar_domain *domain); 543 544 /* Return the super pagesize bitmap if supported. */ 545 static unsigned long domain_super_pgsize_bitmap(struct dmar_domain *domain) 546 { 547 unsigned long bitmap = 0; 548 549 /* 550 * 1-level super page supports page size of 2MiB, 2-level super page 551 * supports page size of both 2MiB and 1GiB. 552 */ 553 if (domain->iommu_superpage == 1) 554 bitmap |= SZ_2M; 555 else if (domain->iommu_superpage == 2) 556 bitmap |= SZ_2M | SZ_1G; 557 558 return bitmap; 559 } 560 561 /* Some capabilities may be different across iommus */ 562 static void domain_update_iommu_cap(struct dmar_domain *domain) 563 { 564 domain_update_iommu_coherency(domain); 565 domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL); 566 567 /* 568 * If RHSA is missing, we should default to the device numa domain 569 * as fall back. 570 */ 571 if (domain->nid == NUMA_NO_NODE) 572 domain->nid = domain_update_device_node(domain); 573 574 /* 575 * First-level translation restricts the input-address to a 576 * canonical address (i.e., address bits 63:N have the same 577 * value as address bit [N-1], where N is 48-bits with 4-level 578 * paging and 57-bits with 5-level paging). Hence, skip bit 579 * [N-1]. 580 */ 581 if (domain_use_first_level(domain)) 582 domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1); 583 else 584 domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw); 585 586 domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain); 587 domain_update_iotlb(domain); 588 } 589 590 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus, 591 u8 devfn, int alloc) 592 { 593 struct root_entry *root = &iommu->root_entry[bus]; 594 struct context_entry *context; 595 u64 *entry; 596 597 /* 598 * Except that the caller requested to allocate a new entry, 599 * returning a copied context entry makes no sense. 600 */ 601 if (!alloc && context_copied(iommu, bus, devfn)) 602 return NULL; 603 604 entry = &root->lo; 605 if (sm_supported(iommu)) { 606 if (devfn >= 0x80) { 607 devfn -= 0x80; 608 entry = &root->hi; 609 } 610 devfn *= 2; 611 } 612 if (*entry & 1) 613 context = phys_to_virt(*entry & VTD_PAGE_MASK); 614 else { 615 unsigned long phy_addr; 616 if (!alloc) 617 return NULL; 618 619 context = alloc_pgtable_page(iommu->node); 620 if (!context) 621 return NULL; 622 623 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); 624 phy_addr = virt_to_phys((void *)context); 625 *entry = phy_addr | 1; 626 __iommu_flush_cache(iommu, entry, sizeof(*entry)); 627 } 628 return &context[devfn]; 629 } 630 631 /** 632 * is_downstream_to_pci_bridge - test if a device belongs to the PCI 633 * sub-hierarchy of a candidate PCI-PCI bridge 634 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy 635 * @bridge: the candidate PCI-PCI bridge 636 * 637 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false. 638 */ 639 static bool 640 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge) 641 { 642 struct pci_dev *pdev, *pbridge; 643 644 if (!dev_is_pci(dev) || !dev_is_pci(bridge)) 645 return false; 646 647 pdev = to_pci_dev(dev); 648 pbridge = to_pci_dev(bridge); 649 650 if (pbridge->subordinate && 651 pbridge->subordinate->number <= pdev->bus->number && 652 pbridge->subordinate->busn_res.end >= pdev->bus->number) 653 return true; 654 655 return false; 656 } 657 658 static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev) 659 { 660 struct dmar_drhd_unit *drhd; 661 u32 vtbar; 662 int rc; 663 664 /* We know that this device on this chipset has its own IOMMU. 665 * If we find it under a different IOMMU, then the BIOS is lying 666 * to us. Hope that the IOMMU for this device is actually 667 * disabled, and it needs no translation... 668 */ 669 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); 670 if (rc) { 671 /* "can't" happen */ 672 dev_info(&pdev->dev, "failed to run vt-d quirk\n"); 673 return false; 674 } 675 vtbar &= 0xffff0000; 676 677 /* we know that the this iommu should be at offset 0xa000 from vtbar */ 678 drhd = dmar_find_matched_drhd_unit(pdev); 679 if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) { 680 pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"); 681 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 682 return true; 683 } 684 685 return false; 686 } 687 688 static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev) 689 { 690 if (!iommu || iommu->drhd->ignored) 691 return true; 692 693 if (dev_is_pci(dev)) { 694 struct pci_dev *pdev = to_pci_dev(dev); 695 696 if (pdev->vendor == PCI_VENDOR_ID_INTEL && 697 pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB && 698 quirk_ioat_snb_local_iommu(pdev)) 699 return true; 700 } 701 702 return false; 703 } 704 705 struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn) 706 { 707 struct dmar_drhd_unit *drhd = NULL; 708 struct pci_dev *pdev = NULL; 709 struct intel_iommu *iommu; 710 struct device *tmp; 711 u16 segment = 0; 712 int i; 713 714 if (!dev) 715 return NULL; 716 717 if (dev_is_pci(dev)) { 718 struct pci_dev *pf_pdev; 719 720 pdev = pci_real_dma_dev(to_pci_dev(dev)); 721 722 /* VFs aren't listed in scope tables; we need to look up 723 * the PF instead to find the IOMMU. */ 724 pf_pdev = pci_physfn(pdev); 725 dev = &pf_pdev->dev; 726 segment = pci_domain_nr(pdev->bus); 727 } else if (has_acpi_companion(dev)) 728 dev = &ACPI_COMPANION(dev)->dev; 729 730 rcu_read_lock(); 731 for_each_iommu(iommu, drhd) { 732 if (pdev && segment != drhd->segment) 733 continue; 734 735 for_each_active_dev_scope(drhd->devices, 736 drhd->devices_cnt, i, tmp) { 737 if (tmp == dev) { 738 /* For a VF use its original BDF# not that of the PF 739 * which we used for the IOMMU lookup. Strictly speaking 740 * we could do this for all PCI devices; we only need to 741 * get the BDF# from the scope table for ACPI matches. */ 742 if (pdev && pdev->is_virtfn) 743 goto got_pdev; 744 745 if (bus && devfn) { 746 *bus = drhd->devices[i].bus; 747 *devfn = drhd->devices[i].devfn; 748 } 749 goto out; 750 } 751 752 if (is_downstream_to_pci_bridge(dev, tmp)) 753 goto got_pdev; 754 } 755 756 if (pdev && drhd->include_all) { 757 got_pdev: 758 if (bus && devfn) { 759 *bus = pdev->bus->number; 760 *devfn = pdev->devfn; 761 } 762 goto out; 763 } 764 } 765 iommu = NULL; 766 out: 767 if (iommu_is_dummy(iommu, dev)) 768 iommu = NULL; 769 770 rcu_read_unlock(); 771 772 return iommu; 773 } 774 775 static void domain_flush_cache(struct dmar_domain *domain, 776 void *addr, int size) 777 { 778 if (!domain->iommu_coherency) 779 clflush_cache_range(addr, size); 780 } 781 782 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) 783 { 784 struct context_entry *context; 785 int ret = 0; 786 787 spin_lock(&iommu->lock); 788 context = iommu_context_addr(iommu, bus, devfn, 0); 789 if (context) 790 ret = context_present(context); 791 spin_unlock(&iommu->lock); 792 return ret; 793 } 794 795 static void free_context_table(struct intel_iommu *iommu) 796 { 797 struct context_entry *context; 798 int i; 799 800 if (!iommu->root_entry) 801 return; 802 803 for (i = 0; i < ROOT_ENTRY_NR; i++) { 804 context = iommu_context_addr(iommu, i, 0, 0); 805 if (context) 806 free_pgtable_page(context); 807 808 if (!sm_supported(iommu)) 809 continue; 810 811 context = iommu_context_addr(iommu, i, 0x80, 0); 812 if (context) 813 free_pgtable_page(context); 814 } 815 816 free_pgtable_page(iommu->root_entry); 817 iommu->root_entry = NULL; 818 } 819 820 #ifdef CONFIG_DMAR_DEBUG 821 static void pgtable_walk(struct intel_iommu *iommu, unsigned long pfn, 822 u8 bus, u8 devfn, struct dma_pte *parent, int level) 823 { 824 struct dma_pte *pte; 825 int offset; 826 827 while (1) { 828 offset = pfn_level_offset(pfn, level); 829 pte = &parent[offset]; 830 if (!pte || (dma_pte_superpage(pte) || !dma_pte_present(pte))) { 831 pr_info("PTE not present at level %d\n", level); 832 break; 833 } 834 835 pr_info("pte level: %d, pte value: 0x%016llx\n", level, pte->val); 836 837 if (level == 1) 838 break; 839 840 parent = phys_to_virt(dma_pte_addr(pte)); 841 level--; 842 } 843 } 844 845 void dmar_fault_dump_ptes(struct intel_iommu *iommu, u16 source_id, 846 unsigned long long addr, u32 pasid) 847 { 848 struct pasid_dir_entry *dir, *pde; 849 struct pasid_entry *entries, *pte; 850 struct context_entry *ctx_entry; 851 struct root_entry *rt_entry; 852 int i, dir_index, index, level; 853 u8 devfn = source_id & 0xff; 854 u8 bus = source_id >> 8; 855 struct dma_pte *pgtable; 856 857 pr_info("Dump %s table entries for IOVA 0x%llx\n", iommu->name, addr); 858 859 /* root entry dump */ 860 rt_entry = &iommu->root_entry[bus]; 861 if (!rt_entry) { 862 pr_info("root table entry is not present\n"); 863 return; 864 } 865 866 if (sm_supported(iommu)) 867 pr_info("scalable mode root entry: hi 0x%016llx, low 0x%016llx\n", 868 rt_entry->hi, rt_entry->lo); 869 else 870 pr_info("root entry: 0x%016llx", rt_entry->lo); 871 872 /* context entry dump */ 873 ctx_entry = iommu_context_addr(iommu, bus, devfn, 0); 874 if (!ctx_entry) { 875 pr_info("context table entry is not present\n"); 876 return; 877 } 878 879 pr_info("context entry: hi 0x%016llx, low 0x%016llx\n", 880 ctx_entry->hi, ctx_entry->lo); 881 882 /* legacy mode does not require PASID entries */ 883 if (!sm_supported(iommu)) { 884 level = agaw_to_level(ctx_entry->hi & 7); 885 pgtable = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK); 886 goto pgtable_walk; 887 } 888 889 /* get the pointer to pasid directory entry */ 890 dir = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK); 891 if (!dir) { 892 pr_info("pasid directory entry is not present\n"); 893 return; 894 } 895 /* For request-without-pasid, get the pasid from context entry */ 896 if (intel_iommu_sm && pasid == INVALID_IOASID) 897 pasid = PASID_RID2PASID; 898 899 dir_index = pasid >> PASID_PDE_SHIFT; 900 pde = &dir[dir_index]; 901 pr_info("pasid dir entry: 0x%016llx\n", pde->val); 902 903 /* get the pointer to the pasid table entry */ 904 entries = get_pasid_table_from_pde(pde); 905 if (!entries) { 906 pr_info("pasid table entry is not present\n"); 907 return; 908 } 909 index = pasid & PASID_PTE_MASK; 910 pte = &entries[index]; 911 for (i = 0; i < ARRAY_SIZE(pte->val); i++) 912 pr_info("pasid table entry[%d]: 0x%016llx\n", i, pte->val[i]); 913 914 if (pasid_pte_get_pgtt(pte) == PASID_ENTRY_PGTT_FL_ONLY) { 915 level = pte->val[2] & BIT_ULL(2) ? 5 : 4; 916 pgtable = phys_to_virt(pte->val[2] & VTD_PAGE_MASK); 917 } else { 918 level = agaw_to_level((pte->val[0] >> 2) & 0x7); 919 pgtable = phys_to_virt(pte->val[0] & VTD_PAGE_MASK); 920 } 921 922 pgtable_walk: 923 pgtable_walk(iommu, addr >> VTD_PAGE_SHIFT, bus, devfn, pgtable, level); 924 } 925 #endif 926 927 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, 928 unsigned long pfn, int *target_level) 929 { 930 struct dma_pte *parent, *pte; 931 int level = agaw_to_level(domain->agaw); 932 int offset; 933 934 BUG_ON(!domain->pgd); 935 936 if (!domain_pfn_supported(domain, pfn)) 937 /* Address beyond IOMMU's addressing capabilities. */ 938 return NULL; 939 940 parent = domain->pgd; 941 942 while (1) { 943 void *tmp_page; 944 945 offset = pfn_level_offset(pfn, level); 946 pte = &parent[offset]; 947 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) 948 break; 949 if (level == *target_level) 950 break; 951 952 if (!dma_pte_present(pte)) { 953 uint64_t pteval; 954 955 tmp_page = alloc_pgtable_page(domain->nid); 956 957 if (!tmp_page) 958 return NULL; 959 960 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); 961 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; 962 if (domain_use_first_level(domain)) { 963 pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US; 964 if (iommu_is_dma_domain(&domain->domain)) 965 pteval |= DMA_FL_PTE_ACCESS; 966 } 967 if (cmpxchg64(&pte->val, 0ULL, pteval)) 968 /* Someone else set it while we were thinking; use theirs. */ 969 free_pgtable_page(tmp_page); 970 else 971 domain_flush_cache(domain, pte, sizeof(*pte)); 972 } 973 if (level == 1) 974 break; 975 976 parent = phys_to_virt(dma_pte_addr(pte)); 977 level--; 978 } 979 980 if (!*target_level) 981 *target_level = level; 982 983 return pte; 984 } 985 986 /* return address's pte at specific level */ 987 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, 988 unsigned long pfn, 989 int level, int *large_page) 990 { 991 struct dma_pte *parent, *pte; 992 int total = agaw_to_level(domain->agaw); 993 int offset; 994 995 parent = domain->pgd; 996 while (level <= total) { 997 offset = pfn_level_offset(pfn, total); 998 pte = &parent[offset]; 999 if (level == total) 1000 return pte; 1001 1002 if (!dma_pte_present(pte)) { 1003 *large_page = total; 1004 break; 1005 } 1006 1007 if (dma_pte_superpage(pte)) { 1008 *large_page = total; 1009 return pte; 1010 } 1011 1012 parent = phys_to_virt(dma_pte_addr(pte)); 1013 total--; 1014 } 1015 return NULL; 1016 } 1017 1018 /* clear last level pte, a tlb flush should be followed */ 1019 static void dma_pte_clear_range(struct dmar_domain *domain, 1020 unsigned long start_pfn, 1021 unsigned long last_pfn) 1022 { 1023 unsigned int large_page; 1024 struct dma_pte *first_pte, *pte; 1025 1026 BUG_ON(!domain_pfn_supported(domain, start_pfn)); 1027 BUG_ON(!domain_pfn_supported(domain, last_pfn)); 1028 BUG_ON(start_pfn > last_pfn); 1029 1030 /* we don't need lock here; nobody else touches the iova range */ 1031 do { 1032 large_page = 1; 1033 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); 1034 if (!pte) { 1035 start_pfn = align_to_level(start_pfn + 1, large_page + 1); 1036 continue; 1037 } 1038 do { 1039 dma_clear_pte(pte); 1040 start_pfn += lvl_to_nr_pages(large_page); 1041 pte++; 1042 } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); 1043 1044 domain_flush_cache(domain, first_pte, 1045 (void *)pte - (void *)first_pte); 1046 1047 } while (start_pfn && start_pfn <= last_pfn); 1048 } 1049 1050 static void dma_pte_free_level(struct dmar_domain *domain, int level, 1051 int retain_level, struct dma_pte *pte, 1052 unsigned long pfn, unsigned long start_pfn, 1053 unsigned long last_pfn) 1054 { 1055 pfn = max(start_pfn, pfn); 1056 pte = &pte[pfn_level_offset(pfn, level)]; 1057 1058 do { 1059 unsigned long level_pfn; 1060 struct dma_pte *level_pte; 1061 1062 if (!dma_pte_present(pte) || dma_pte_superpage(pte)) 1063 goto next; 1064 1065 level_pfn = pfn & level_mask(level); 1066 level_pte = phys_to_virt(dma_pte_addr(pte)); 1067 1068 if (level > 2) { 1069 dma_pte_free_level(domain, level - 1, retain_level, 1070 level_pte, level_pfn, start_pfn, 1071 last_pfn); 1072 } 1073 1074 /* 1075 * Free the page table if we're below the level we want to 1076 * retain and the range covers the entire table. 1077 */ 1078 if (level < retain_level && !(start_pfn > level_pfn || 1079 last_pfn < level_pfn + level_size(level) - 1)) { 1080 dma_clear_pte(pte); 1081 domain_flush_cache(domain, pte, sizeof(*pte)); 1082 free_pgtable_page(level_pte); 1083 } 1084 next: 1085 pfn += level_size(level); 1086 } while (!first_pte_in_page(++pte) && pfn <= last_pfn); 1087 } 1088 1089 /* 1090 * clear last level (leaf) ptes and free page table pages below the 1091 * level we wish to keep intact. 1092 */ 1093 static void dma_pte_free_pagetable(struct dmar_domain *domain, 1094 unsigned long start_pfn, 1095 unsigned long last_pfn, 1096 int retain_level) 1097 { 1098 dma_pte_clear_range(domain, start_pfn, last_pfn); 1099 1100 /* We don't need lock here; nobody else touches the iova range */ 1101 dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level, 1102 domain->pgd, 0, start_pfn, last_pfn); 1103 1104 /* free pgd */ 1105 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { 1106 free_pgtable_page(domain->pgd); 1107 domain->pgd = NULL; 1108 } 1109 } 1110 1111 /* When a page at a given level is being unlinked from its parent, we don't 1112 need to *modify* it at all. All we need to do is make a list of all the 1113 pages which can be freed just as soon as we've flushed the IOTLB and we 1114 know the hardware page-walk will no longer touch them. 1115 The 'pte' argument is the *parent* PTE, pointing to the page that is to 1116 be freed. */ 1117 static void dma_pte_list_pagetables(struct dmar_domain *domain, 1118 int level, struct dma_pte *pte, 1119 struct list_head *freelist) 1120 { 1121 struct page *pg; 1122 1123 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT); 1124 list_add_tail(&pg->lru, freelist); 1125 1126 if (level == 1) 1127 return; 1128 1129 pte = page_address(pg); 1130 do { 1131 if (dma_pte_present(pte) && !dma_pte_superpage(pte)) 1132 dma_pte_list_pagetables(domain, level - 1, pte, freelist); 1133 pte++; 1134 } while (!first_pte_in_page(pte)); 1135 } 1136 1137 static void dma_pte_clear_level(struct dmar_domain *domain, int level, 1138 struct dma_pte *pte, unsigned long pfn, 1139 unsigned long start_pfn, unsigned long last_pfn, 1140 struct list_head *freelist) 1141 { 1142 struct dma_pte *first_pte = NULL, *last_pte = NULL; 1143 1144 pfn = max(start_pfn, pfn); 1145 pte = &pte[pfn_level_offset(pfn, level)]; 1146 1147 do { 1148 unsigned long level_pfn = pfn & level_mask(level); 1149 1150 if (!dma_pte_present(pte)) 1151 goto next; 1152 1153 /* If range covers entire pagetable, free it */ 1154 if (start_pfn <= level_pfn && 1155 last_pfn >= level_pfn + level_size(level) - 1) { 1156 /* These suborbinate page tables are going away entirely. Don't 1157 bother to clear them; we're just going to *free* them. */ 1158 if (level > 1 && !dma_pte_superpage(pte)) 1159 dma_pte_list_pagetables(domain, level - 1, pte, freelist); 1160 1161 dma_clear_pte(pte); 1162 if (!first_pte) 1163 first_pte = pte; 1164 last_pte = pte; 1165 } else if (level > 1) { 1166 /* Recurse down into a level that isn't *entirely* obsolete */ 1167 dma_pte_clear_level(domain, level - 1, 1168 phys_to_virt(dma_pte_addr(pte)), 1169 level_pfn, start_pfn, last_pfn, 1170 freelist); 1171 } 1172 next: 1173 pfn = level_pfn + level_size(level); 1174 } while (!first_pte_in_page(++pte) && pfn <= last_pfn); 1175 1176 if (first_pte) 1177 domain_flush_cache(domain, first_pte, 1178 (void *)++last_pte - (void *)first_pte); 1179 } 1180 1181 /* We can't just free the pages because the IOMMU may still be walking 1182 the page tables, and may have cached the intermediate levels. The 1183 pages can only be freed after the IOTLB flush has been done. */ 1184 static void domain_unmap(struct dmar_domain *domain, unsigned long start_pfn, 1185 unsigned long last_pfn, struct list_head *freelist) 1186 { 1187 BUG_ON(!domain_pfn_supported(domain, start_pfn)); 1188 BUG_ON(!domain_pfn_supported(domain, last_pfn)); 1189 BUG_ON(start_pfn > last_pfn); 1190 1191 /* we don't need lock here; nobody else touches the iova range */ 1192 dma_pte_clear_level(domain, agaw_to_level(domain->agaw), 1193 domain->pgd, 0, start_pfn, last_pfn, freelist); 1194 1195 /* free pgd */ 1196 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { 1197 struct page *pgd_page = virt_to_page(domain->pgd); 1198 list_add_tail(&pgd_page->lru, freelist); 1199 domain->pgd = NULL; 1200 } 1201 } 1202 1203 /* iommu handling */ 1204 static int iommu_alloc_root_entry(struct intel_iommu *iommu) 1205 { 1206 struct root_entry *root; 1207 1208 root = (struct root_entry *)alloc_pgtable_page(iommu->node); 1209 if (!root) { 1210 pr_err("Allocating root entry for %s failed\n", 1211 iommu->name); 1212 return -ENOMEM; 1213 } 1214 1215 __iommu_flush_cache(iommu, root, ROOT_SIZE); 1216 iommu->root_entry = root; 1217 1218 return 0; 1219 } 1220 1221 static void iommu_set_root_entry(struct intel_iommu *iommu) 1222 { 1223 u64 addr; 1224 u32 sts; 1225 unsigned long flag; 1226 1227 addr = virt_to_phys(iommu->root_entry); 1228 if (sm_supported(iommu)) 1229 addr |= DMA_RTADDR_SMT; 1230 1231 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1232 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr); 1233 1234 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); 1235 1236 /* Make sure hardware complete it */ 1237 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1238 readl, (sts & DMA_GSTS_RTPS), sts); 1239 1240 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1241 1242 /* 1243 * Hardware invalidates all DMA remapping hardware translation 1244 * caches as part of SRTP flow. 1245 */ 1246 if (cap_esrtps(iommu->cap)) 1247 return; 1248 1249 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); 1250 if (sm_supported(iommu)) 1251 qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0); 1252 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); 1253 } 1254 1255 void iommu_flush_write_buffer(struct intel_iommu *iommu) 1256 { 1257 u32 val; 1258 unsigned long flag; 1259 1260 if (!rwbf_quirk && !cap_rwbf(iommu->cap)) 1261 return; 1262 1263 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1264 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); 1265 1266 /* Make sure hardware complete it */ 1267 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1268 readl, (!(val & DMA_GSTS_WBFS)), val); 1269 1270 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1271 } 1272 1273 /* return value determine if we need a write buffer flush */ 1274 static void __iommu_flush_context(struct intel_iommu *iommu, 1275 u16 did, u16 source_id, u8 function_mask, 1276 u64 type) 1277 { 1278 u64 val = 0; 1279 unsigned long flag; 1280 1281 switch (type) { 1282 case DMA_CCMD_GLOBAL_INVL: 1283 val = DMA_CCMD_GLOBAL_INVL; 1284 break; 1285 case DMA_CCMD_DOMAIN_INVL: 1286 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); 1287 break; 1288 case DMA_CCMD_DEVICE_INVL: 1289 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) 1290 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); 1291 break; 1292 default: 1293 BUG(); 1294 } 1295 val |= DMA_CCMD_ICC; 1296 1297 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1298 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); 1299 1300 /* Make sure hardware complete it */ 1301 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, 1302 dmar_readq, (!(val & DMA_CCMD_ICC)), val); 1303 1304 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1305 } 1306 1307 /* return value determine if we need a write buffer flush */ 1308 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, 1309 u64 addr, unsigned int size_order, u64 type) 1310 { 1311 int tlb_offset = ecap_iotlb_offset(iommu->ecap); 1312 u64 val = 0, val_iva = 0; 1313 unsigned long flag; 1314 1315 switch (type) { 1316 case DMA_TLB_GLOBAL_FLUSH: 1317 /* global flush doesn't need set IVA_REG */ 1318 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; 1319 break; 1320 case DMA_TLB_DSI_FLUSH: 1321 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); 1322 break; 1323 case DMA_TLB_PSI_FLUSH: 1324 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); 1325 /* IH bit is passed in as part of address */ 1326 val_iva = size_order | addr; 1327 break; 1328 default: 1329 BUG(); 1330 } 1331 /* Note: set drain read/write */ 1332 #if 0 1333 /* 1334 * This is probably to be super secure.. Looks like we can 1335 * ignore it without any impact. 1336 */ 1337 if (cap_read_drain(iommu->cap)) 1338 val |= DMA_TLB_READ_DRAIN; 1339 #endif 1340 if (cap_write_drain(iommu->cap)) 1341 val |= DMA_TLB_WRITE_DRAIN; 1342 1343 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1344 /* Note: Only uses first TLB reg currently */ 1345 if (val_iva) 1346 dmar_writeq(iommu->reg + tlb_offset, val_iva); 1347 dmar_writeq(iommu->reg + tlb_offset + 8, val); 1348 1349 /* Make sure hardware complete it */ 1350 IOMMU_WAIT_OP(iommu, tlb_offset + 8, 1351 dmar_readq, (!(val & DMA_TLB_IVT)), val); 1352 1353 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1354 1355 /* check IOTLB invalidation granularity */ 1356 if (DMA_TLB_IAIG(val) == 0) 1357 pr_err("Flush IOTLB failed\n"); 1358 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) 1359 pr_debug("TLB flush request %Lx, actual %Lx\n", 1360 (unsigned long long)DMA_TLB_IIRG(type), 1361 (unsigned long long)DMA_TLB_IAIG(val)); 1362 } 1363 1364 static struct device_domain_info * 1365 domain_lookup_dev_info(struct dmar_domain *domain, 1366 struct intel_iommu *iommu, u8 bus, u8 devfn) 1367 { 1368 struct device_domain_info *info; 1369 unsigned long flags; 1370 1371 spin_lock_irqsave(&domain->lock, flags); 1372 list_for_each_entry(info, &domain->devices, link) { 1373 if (info->iommu == iommu && info->bus == bus && 1374 info->devfn == devfn) { 1375 spin_unlock_irqrestore(&domain->lock, flags); 1376 return info; 1377 } 1378 } 1379 spin_unlock_irqrestore(&domain->lock, flags); 1380 1381 return NULL; 1382 } 1383 1384 static void domain_update_iotlb(struct dmar_domain *domain) 1385 { 1386 struct device_domain_info *info; 1387 bool has_iotlb_device = false; 1388 unsigned long flags; 1389 1390 spin_lock_irqsave(&domain->lock, flags); 1391 list_for_each_entry(info, &domain->devices, link) { 1392 if (info->ats_enabled) { 1393 has_iotlb_device = true; 1394 break; 1395 } 1396 } 1397 domain->has_iotlb_device = has_iotlb_device; 1398 spin_unlock_irqrestore(&domain->lock, flags); 1399 } 1400 1401 static void iommu_enable_pci_caps(struct device_domain_info *info) 1402 { 1403 struct pci_dev *pdev; 1404 1405 if (!info || !dev_is_pci(info->dev)) 1406 return; 1407 1408 pdev = to_pci_dev(info->dev); 1409 /* For IOMMU that supports device IOTLB throttling (DIT), we assign 1410 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge 1411 * queue depth at PF level. If DIT is not set, PFSID will be treated as 1412 * reserved, which should be set to 0. 1413 */ 1414 if (!ecap_dit(info->iommu->ecap)) 1415 info->pfsid = 0; 1416 else { 1417 struct pci_dev *pf_pdev; 1418 1419 /* pdev will be returned if device is not a vf */ 1420 pf_pdev = pci_physfn(pdev); 1421 info->pfsid = pci_dev_id(pf_pdev); 1422 } 1423 1424 /* The PCIe spec, in its wisdom, declares that the behaviour of 1425 the device if you enable PASID support after ATS support is 1426 undefined. So always enable PASID support on devices which 1427 have it, even if we can't yet know if we're ever going to 1428 use it. */ 1429 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1)) 1430 info->pasid_enabled = 1; 1431 1432 if (info->pri_supported && 1433 (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) && 1434 !pci_reset_pri(pdev) && !pci_enable_pri(pdev, PRQ_DEPTH)) 1435 info->pri_enabled = 1; 1436 1437 if (info->ats_supported && pci_ats_page_aligned(pdev) && 1438 !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) { 1439 info->ats_enabled = 1; 1440 domain_update_iotlb(info->domain); 1441 info->ats_qdep = pci_ats_queue_depth(pdev); 1442 } 1443 } 1444 1445 static void iommu_disable_dev_iotlb(struct device_domain_info *info) 1446 { 1447 struct pci_dev *pdev; 1448 1449 if (!dev_is_pci(info->dev)) 1450 return; 1451 1452 pdev = to_pci_dev(info->dev); 1453 1454 if (info->ats_enabled) { 1455 pci_disable_ats(pdev); 1456 info->ats_enabled = 0; 1457 domain_update_iotlb(info->domain); 1458 } 1459 1460 if (info->pri_enabled) { 1461 pci_disable_pri(pdev); 1462 info->pri_enabled = 0; 1463 } 1464 1465 if (info->pasid_enabled) { 1466 pci_disable_pasid(pdev); 1467 info->pasid_enabled = 0; 1468 } 1469 } 1470 1471 static void __iommu_flush_dev_iotlb(struct device_domain_info *info, 1472 u64 addr, unsigned int mask) 1473 { 1474 u16 sid, qdep; 1475 1476 if (!info || !info->ats_enabled) 1477 return; 1478 1479 sid = info->bus << 8 | info->devfn; 1480 qdep = info->ats_qdep; 1481 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid, 1482 qdep, addr, mask); 1483 } 1484 1485 static void iommu_flush_dev_iotlb(struct dmar_domain *domain, 1486 u64 addr, unsigned mask) 1487 { 1488 struct device_domain_info *info; 1489 unsigned long flags; 1490 1491 if (!domain->has_iotlb_device) 1492 return; 1493 1494 spin_lock_irqsave(&domain->lock, flags); 1495 list_for_each_entry(info, &domain->devices, link) 1496 __iommu_flush_dev_iotlb(info, addr, mask); 1497 spin_unlock_irqrestore(&domain->lock, flags); 1498 } 1499 1500 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, 1501 struct dmar_domain *domain, 1502 unsigned long pfn, unsigned int pages, 1503 int ih, int map) 1504 { 1505 unsigned int aligned_pages = __roundup_pow_of_two(pages); 1506 unsigned int mask = ilog2(aligned_pages); 1507 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; 1508 u16 did = domain_id_iommu(domain, iommu); 1509 1510 BUG_ON(pages == 0); 1511 1512 if (ih) 1513 ih = 1 << 6; 1514 1515 if (domain_use_first_level(domain)) { 1516 qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, pages, ih); 1517 } else { 1518 unsigned long bitmask = aligned_pages - 1; 1519 1520 /* 1521 * PSI masks the low order bits of the base address. If the 1522 * address isn't aligned to the mask, then compute a mask value 1523 * needed to ensure the target range is flushed. 1524 */ 1525 if (unlikely(bitmask & pfn)) { 1526 unsigned long end_pfn = pfn + pages - 1, shared_bits; 1527 1528 /* 1529 * Since end_pfn <= pfn + bitmask, the only way bits 1530 * higher than bitmask can differ in pfn and end_pfn is 1531 * by carrying. This means after masking out bitmask, 1532 * high bits starting with the first set bit in 1533 * shared_bits are all equal in both pfn and end_pfn. 1534 */ 1535 shared_bits = ~(pfn ^ end_pfn) & ~bitmask; 1536 mask = shared_bits ? __ffs(shared_bits) : BITS_PER_LONG; 1537 } 1538 1539 /* 1540 * Fallback to domain selective flush if no PSI support or 1541 * the size is too big. 1542 */ 1543 if (!cap_pgsel_inv(iommu->cap) || 1544 mask > cap_max_amask_val(iommu->cap)) 1545 iommu->flush.flush_iotlb(iommu, did, 0, 0, 1546 DMA_TLB_DSI_FLUSH); 1547 else 1548 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask, 1549 DMA_TLB_PSI_FLUSH); 1550 } 1551 1552 /* 1553 * In caching mode, changes of pages from non-present to present require 1554 * flush. However, device IOTLB doesn't need to be flushed in this case. 1555 */ 1556 if (!cap_caching_mode(iommu->cap) || !map) 1557 iommu_flush_dev_iotlb(domain, addr, mask); 1558 } 1559 1560 /* Notification for newly created mappings */ 1561 static inline void __mapping_notify_one(struct intel_iommu *iommu, 1562 struct dmar_domain *domain, 1563 unsigned long pfn, unsigned int pages) 1564 { 1565 /* 1566 * It's a non-present to present mapping. Only flush if caching mode 1567 * and second level. 1568 */ 1569 if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain)) 1570 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1); 1571 else 1572 iommu_flush_write_buffer(iommu); 1573 } 1574 1575 static void intel_flush_iotlb_all(struct iommu_domain *domain) 1576 { 1577 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 1578 struct iommu_domain_info *info; 1579 unsigned long idx; 1580 1581 xa_for_each(&dmar_domain->iommu_array, idx, info) { 1582 struct intel_iommu *iommu = info->iommu; 1583 u16 did = domain_id_iommu(dmar_domain, iommu); 1584 1585 if (domain_use_first_level(dmar_domain)) 1586 qi_flush_piotlb(iommu, did, PASID_RID2PASID, 0, -1, 0); 1587 else 1588 iommu->flush.flush_iotlb(iommu, did, 0, 0, 1589 DMA_TLB_DSI_FLUSH); 1590 1591 if (!cap_caching_mode(iommu->cap)) 1592 iommu_flush_dev_iotlb(dmar_domain, 0, MAX_AGAW_PFN_WIDTH); 1593 } 1594 } 1595 1596 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) 1597 { 1598 u32 pmen; 1599 unsigned long flags; 1600 1601 if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap)) 1602 return; 1603 1604 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1605 pmen = readl(iommu->reg + DMAR_PMEN_REG); 1606 pmen &= ~DMA_PMEN_EPM; 1607 writel(pmen, iommu->reg + DMAR_PMEN_REG); 1608 1609 /* wait for the protected region status bit to clear */ 1610 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, 1611 readl, !(pmen & DMA_PMEN_PRS), pmen); 1612 1613 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1614 } 1615 1616 static void iommu_enable_translation(struct intel_iommu *iommu) 1617 { 1618 u32 sts; 1619 unsigned long flags; 1620 1621 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1622 iommu->gcmd |= DMA_GCMD_TE; 1623 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1624 1625 /* Make sure hardware complete it */ 1626 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1627 readl, (sts & DMA_GSTS_TES), sts); 1628 1629 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1630 } 1631 1632 static void iommu_disable_translation(struct intel_iommu *iommu) 1633 { 1634 u32 sts; 1635 unsigned long flag; 1636 1637 if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated && 1638 (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap))) 1639 return; 1640 1641 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1642 iommu->gcmd &= ~DMA_GCMD_TE; 1643 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1644 1645 /* Make sure hardware complete it */ 1646 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1647 readl, (!(sts & DMA_GSTS_TES)), sts); 1648 1649 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1650 } 1651 1652 static int iommu_init_domains(struct intel_iommu *iommu) 1653 { 1654 u32 ndomains; 1655 1656 ndomains = cap_ndoms(iommu->cap); 1657 pr_debug("%s: Number of Domains supported <%d>\n", 1658 iommu->name, ndomains); 1659 1660 spin_lock_init(&iommu->lock); 1661 1662 iommu->domain_ids = bitmap_zalloc(ndomains, GFP_KERNEL); 1663 if (!iommu->domain_ids) 1664 return -ENOMEM; 1665 1666 /* 1667 * If Caching mode is set, then invalid translations are tagged 1668 * with domain-id 0, hence we need to pre-allocate it. We also 1669 * use domain-id 0 as a marker for non-allocated domain-id, so 1670 * make sure it is not used for a real domain. 1671 */ 1672 set_bit(0, iommu->domain_ids); 1673 1674 /* 1675 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid 1676 * entry for first-level or pass-through translation modes should 1677 * be programmed with a domain id different from those used for 1678 * second-level or nested translation. We reserve a domain id for 1679 * this purpose. 1680 */ 1681 if (sm_supported(iommu)) 1682 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids); 1683 1684 return 0; 1685 } 1686 1687 static void disable_dmar_iommu(struct intel_iommu *iommu) 1688 { 1689 if (!iommu->domain_ids) 1690 return; 1691 1692 /* 1693 * All iommu domains must have been detached from the devices, 1694 * hence there should be no domain IDs in use. 1695 */ 1696 if (WARN_ON(bitmap_weight(iommu->domain_ids, cap_ndoms(iommu->cap)) 1697 > NUM_RESERVED_DID)) 1698 return; 1699 1700 if (iommu->gcmd & DMA_GCMD_TE) 1701 iommu_disable_translation(iommu); 1702 } 1703 1704 static void free_dmar_iommu(struct intel_iommu *iommu) 1705 { 1706 if (iommu->domain_ids) { 1707 bitmap_free(iommu->domain_ids); 1708 iommu->domain_ids = NULL; 1709 } 1710 1711 if (iommu->copied_tables) { 1712 bitmap_free(iommu->copied_tables); 1713 iommu->copied_tables = NULL; 1714 } 1715 1716 /* free context mapping */ 1717 free_context_table(iommu); 1718 1719 #ifdef CONFIG_INTEL_IOMMU_SVM 1720 if (pasid_supported(iommu)) { 1721 if (ecap_prs(iommu->ecap)) 1722 intel_svm_finish_prq(iommu); 1723 } 1724 if (vccap_pasid(iommu->vccap)) 1725 ioasid_unregister_allocator(&iommu->pasid_allocator); 1726 1727 #endif 1728 } 1729 1730 /* 1731 * Check and return whether first level is used by default for 1732 * DMA translation. 1733 */ 1734 static bool first_level_by_default(unsigned int type) 1735 { 1736 /* Only SL is available in legacy mode */ 1737 if (!scalable_mode_support()) 1738 return false; 1739 1740 /* Only level (either FL or SL) is available, just use it */ 1741 if (intel_cap_flts_sanity() ^ intel_cap_slts_sanity()) 1742 return intel_cap_flts_sanity(); 1743 1744 /* Both levels are available, decide it based on domain type */ 1745 return type != IOMMU_DOMAIN_UNMANAGED; 1746 } 1747 1748 static struct dmar_domain *alloc_domain(unsigned int type) 1749 { 1750 struct dmar_domain *domain; 1751 1752 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 1753 if (!domain) 1754 return NULL; 1755 1756 domain->nid = NUMA_NO_NODE; 1757 if (first_level_by_default(type)) 1758 domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL; 1759 domain->has_iotlb_device = false; 1760 INIT_LIST_HEAD(&domain->devices); 1761 spin_lock_init(&domain->lock); 1762 xa_init(&domain->iommu_array); 1763 1764 return domain; 1765 } 1766 1767 static int domain_attach_iommu(struct dmar_domain *domain, 1768 struct intel_iommu *iommu) 1769 { 1770 struct iommu_domain_info *info, *curr; 1771 unsigned long ndomains; 1772 int num, ret = -ENOSPC; 1773 1774 info = kzalloc(sizeof(*info), GFP_KERNEL); 1775 if (!info) 1776 return -ENOMEM; 1777 1778 spin_lock(&iommu->lock); 1779 curr = xa_load(&domain->iommu_array, iommu->seq_id); 1780 if (curr) { 1781 curr->refcnt++; 1782 spin_unlock(&iommu->lock); 1783 kfree(info); 1784 return 0; 1785 } 1786 1787 ndomains = cap_ndoms(iommu->cap); 1788 num = find_first_zero_bit(iommu->domain_ids, ndomains); 1789 if (num >= ndomains) { 1790 pr_err("%s: No free domain ids\n", iommu->name); 1791 goto err_unlock; 1792 } 1793 1794 set_bit(num, iommu->domain_ids); 1795 info->refcnt = 1; 1796 info->did = num; 1797 info->iommu = iommu; 1798 curr = xa_cmpxchg(&domain->iommu_array, iommu->seq_id, 1799 NULL, info, GFP_ATOMIC); 1800 if (curr) { 1801 ret = xa_err(curr) ? : -EBUSY; 1802 goto err_clear; 1803 } 1804 domain_update_iommu_cap(domain); 1805 1806 spin_unlock(&iommu->lock); 1807 return 0; 1808 1809 err_clear: 1810 clear_bit(info->did, iommu->domain_ids); 1811 err_unlock: 1812 spin_unlock(&iommu->lock); 1813 kfree(info); 1814 return ret; 1815 } 1816 1817 static void domain_detach_iommu(struct dmar_domain *domain, 1818 struct intel_iommu *iommu) 1819 { 1820 struct iommu_domain_info *info; 1821 1822 spin_lock(&iommu->lock); 1823 info = xa_load(&domain->iommu_array, iommu->seq_id); 1824 if (--info->refcnt == 0) { 1825 clear_bit(info->did, iommu->domain_ids); 1826 xa_erase(&domain->iommu_array, iommu->seq_id); 1827 domain->nid = NUMA_NO_NODE; 1828 domain_update_iommu_cap(domain); 1829 kfree(info); 1830 } 1831 spin_unlock(&iommu->lock); 1832 } 1833 1834 static inline int guestwidth_to_adjustwidth(int gaw) 1835 { 1836 int agaw; 1837 int r = (gaw - 12) % 9; 1838 1839 if (r == 0) 1840 agaw = gaw; 1841 else 1842 agaw = gaw + 9 - r; 1843 if (agaw > 64) 1844 agaw = 64; 1845 return agaw; 1846 } 1847 1848 static void domain_exit(struct dmar_domain *domain) 1849 { 1850 if (domain->pgd) { 1851 LIST_HEAD(freelist); 1852 1853 domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw), &freelist); 1854 put_pages_list(&freelist); 1855 } 1856 1857 if (WARN_ON(!list_empty(&domain->devices))) 1858 return; 1859 1860 kfree(domain); 1861 } 1862 1863 /* 1864 * Get the PASID directory size for scalable mode context entry. 1865 * Value of X in the PDTS field of a scalable mode context entry 1866 * indicates PASID directory with 2^(X + 7) entries. 1867 */ 1868 static inline unsigned long context_get_sm_pds(struct pasid_table *table) 1869 { 1870 unsigned long pds, max_pde; 1871 1872 max_pde = table->max_pasid >> PASID_PDE_SHIFT; 1873 pds = find_first_bit(&max_pde, MAX_NR_PASID_BITS); 1874 if (pds < 7) 1875 return 0; 1876 1877 return pds - 7; 1878 } 1879 1880 /* 1881 * Set the RID_PASID field of a scalable mode context entry. The 1882 * IOMMU hardware will use the PASID value set in this field for 1883 * DMA translations of DMA requests without PASID. 1884 */ 1885 static inline void 1886 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid) 1887 { 1888 context->hi |= pasid & ((1 << 20) - 1); 1889 } 1890 1891 /* 1892 * Set the DTE(Device-TLB Enable) field of a scalable mode context 1893 * entry. 1894 */ 1895 static inline void context_set_sm_dte(struct context_entry *context) 1896 { 1897 context->lo |= (1 << 2); 1898 } 1899 1900 /* 1901 * Set the PRE(Page Request Enable) field of a scalable mode context 1902 * entry. 1903 */ 1904 static inline void context_set_sm_pre(struct context_entry *context) 1905 { 1906 context->lo |= (1 << 4); 1907 } 1908 1909 /* Convert value to context PASID directory size field coding. */ 1910 #define context_pdts(pds) (((pds) & 0x7) << 9) 1911 1912 static int domain_context_mapping_one(struct dmar_domain *domain, 1913 struct intel_iommu *iommu, 1914 struct pasid_table *table, 1915 u8 bus, u8 devfn) 1916 { 1917 struct device_domain_info *info = 1918 domain_lookup_dev_info(domain, iommu, bus, devfn); 1919 u16 did = domain_id_iommu(domain, iommu); 1920 int translation = CONTEXT_TT_MULTI_LEVEL; 1921 struct context_entry *context; 1922 int ret; 1923 1924 WARN_ON(did == 0); 1925 1926 if (hw_pass_through && domain_type_is_si(domain)) 1927 translation = CONTEXT_TT_PASS_THROUGH; 1928 1929 pr_debug("Set context mapping for %02x:%02x.%d\n", 1930 bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); 1931 1932 BUG_ON(!domain->pgd); 1933 1934 spin_lock(&iommu->lock); 1935 ret = -ENOMEM; 1936 context = iommu_context_addr(iommu, bus, devfn, 1); 1937 if (!context) 1938 goto out_unlock; 1939 1940 ret = 0; 1941 if (context_present(context) && !context_copied(iommu, bus, devfn)) 1942 goto out_unlock; 1943 1944 /* 1945 * For kdump cases, old valid entries may be cached due to the 1946 * in-flight DMA and copied pgtable, but there is no unmapping 1947 * behaviour for them, thus we need an explicit cache flush for 1948 * the newly-mapped device. For kdump, at this point, the device 1949 * is supposed to finish reset at its driver probe stage, so no 1950 * in-flight DMA will exist, and we don't need to worry anymore 1951 * hereafter. 1952 */ 1953 if (context_copied(iommu, bus, devfn)) { 1954 u16 did_old = context_domain_id(context); 1955 1956 if (did_old < cap_ndoms(iommu->cap)) { 1957 iommu->flush.flush_context(iommu, did_old, 1958 (((u16)bus) << 8) | devfn, 1959 DMA_CCMD_MASK_NOBIT, 1960 DMA_CCMD_DEVICE_INVL); 1961 iommu->flush.flush_iotlb(iommu, did_old, 0, 0, 1962 DMA_TLB_DSI_FLUSH); 1963 } 1964 1965 clear_context_copied(iommu, bus, devfn); 1966 } 1967 1968 context_clear_entry(context); 1969 1970 if (sm_supported(iommu)) { 1971 unsigned long pds; 1972 1973 WARN_ON(!table); 1974 1975 /* Setup the PASID DIR pointer: */ 1976 pds = context_get_sm_pds(table); 1977 context->lo = (u64)virt_to_phys(table->table) | 1978 context_pdts(pds); 1979 1980 /* Setup the RID_PASID field: */ 1981 context_set_sm_rid2pasid(context, PASID_RID2PASID); 1982 1983 /* 1984 * Setup the Device-TLB enable bit and Page request 1985 * Enable bit: 1986 */ 1987 if (info && info->ats_supported) 1988 context_set_sm_dte(context); 1989 if (info && info->pri_supported) 1990 context_set_sm_pre(context); 1991 if (info && info->pasid_supported) 1992 context_set_pasid(context); 1993 } else { 1994 struct dma_pte *pgd = domain->pgd; 1995 int agaw; 1996 1997 context_set_domain_id(context, did); 1998 1999 if (translation != CONTEXT_TT_PASS_THROUGH) { 2000 /* 2001 * Skip top levels of page tables for iommu which has 2002 * less agaw than default. Unnecessary for PT mode. 2003 */ 2004 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { 2005 ret = -ENOMEM; 2006 pgd = phys_to_virt(dma_pte_addr(pgd)); 2007 if (!dma_pte_present(pgd)) 2008 goto out_unlock; 2009 } 2010 2011 if (info && info->ats_supported) 2012 translation = CONTEXT_TT_DEV_IOTLB; 2013 else 2014 translation = CONTEXT_TT_MULTI_LEVEL; 2015 2016 context_set_address_root(context, virt_to_phys(pgd)); 2017 context_set_address_width(context, agaw); 2018 } else { 2019 /* 2020 * In pass through mode, AW must be programmed to 2021 * indicate the largest AGAW value supported by 2022 * hardware. And ASR is ignored by hardware. 2023 */ 2024 context_set_address_width(context, iommu->msagaw); 2025 } 2026 2027 context_set_translation_type(context, translation); 2028 } 2029 2030 context_set_fault_enable(context); 2031 context_set_present(context); 2032 if (!ecap_coherent(iommu->ecap)) 2033 clflush_cache_range(context, sizeof(*context)); 2034 2035 /* 2036 * It's a non-present to present mapping. If hardware doesn't cache 2037 * non-present entry we only need to flush the write-buffer. If the 2038 * _does_ cache non-present entries, then it does so in the special 2039 * domain #0, which we have to flush: 2040 */ 2041 if (cap_caching_mode(iommu->cap)) { 2042 iommu->flush.flush_context(iommu, 0, 2043 (((u16)bus) << 8) | devfn, 2044 DMA_CCMD_MASK_NOBIT, 2045 DMA_CCMD_DEVICE_INVL); 2046 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH); 2047 } else { 2048 iommu_flush_write_buffer(iommu); 2049 } 2050 iommu_enable_pci_caps(info); 2051 2052 ret = 0; 2053 2054 out_unlock: 2055 spin_unlock(&iommu->lock); 2056 2057 return ret; 2058 } 2059 2060 struct domain_context_mapping_data { 2061 struct dmar_domain *domain; 2062 struct intel_iommu *iommu; 2063 struct pasid_table *table; 2064 }; 2065 2066 static int domain_context_mapping_cb(struct pci_dev *pdev, 2067 u16 alias, void *opaque) 2068 { 2069 struct domain_context_mapping_data *data = opaque; 2070 2071 return domain_context_mapping_one(data->domain, data->iommu, 2072 data->table, PCI_BUS_NUM(alias), 2073 alias & 0xff); 2074 } 2075 2076 static int 2077 domain_context_mapping(struct dmar_domain *domain, struct device *dev) 2078 { 2079 struct domain_context_mapping_data data; 2080 struct pasid_table *table; 2081 struct intel_iommu *iommu; 2082 u8 bus, devfn; 2083 2084 iommu = device_to_iommu(dev, &bus, &devfn); 2085 if (!iommu) 2086 return -ENODEV; 2087 2088 table = intel_pasid_get_table(dev); 2089 2090 if (!dev_is_pci(dev)) 2091 return domain_context_mapping_one(domain, iommu, table, 2092 bus, devfn); 2093 2094 data.domain = domain; 2095 data.iommu = iommu; 2096 data.table = table; 2097 2098 return pci_for_each_dma_alias(to_pci_dev(dev), 2099 &domain_context_mapping_cb, &data); 2100 } 2101 2102 static int domain_context_mapped_cb(struct pci_dev *pdev, 2103 u16 alias, void *opaque) 2104 { 2105 struct intel_iommu *iommu = opaque; 2106 2107 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff); 2108 } 2109 2110 static int domain_context_mapped(struct device *dev) 2111 { 2112 struct intel_iommu *iommu; 2113 u8 bus, devfn; 2114 2115 iommu = device_to_iommu(dev, &bus, &devfn); 2116 if (!iommu) 2117 return -ENODEV; 2118 2119 if (!dev_is_pci(dev)) 2120 return device_context_mapped(iommu, bus, devfn); 2121 2122 return !pci_for_each_dma_alias(to_pci_dev(dev), 2123 domain_context_mapped_cb, iommu); 2124 } 2125 2126 /* Returns a number of VTD pages, but aligned to MM page size */ 2127 static inline unsigned long aligned_nrpages(unsigned long host_addr, 2128 size_t size) 2129 { 2130 host_addr &= ~PAGE_MASK; 2131 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; 2132 } 2133 2134 /* Return largest possible superpage level for a given mapping */ 2135 static inline int hardware_largepage_caps(struct dmar_domain *domain, 2136 unsigned long iov_pfn, 2137 unsigned long phy_pfn, 2138 unsigned long pages) 2139 { 2140 int support, level = 1; 2141 unsigned long pfnmerge; 2142 2143 support = domain->iommu_superpage; 2144 2145 /* To use a large page, the virtual *and* physical addresses 2146 must be aligned to 2MiB/1GiB/etc. Lower bits set in either 2147 of them will mean we have to use smaller pages. So just 2148 merge them and check both at once. */ 2149 pfnmerge = iov_pfn | phy_pfn; 2150 2151 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { 2152 pages >>= VTD_STRIDE_SHIFT; 2153 if (!pages) 2154 break; 2155 pfnmerge >>= VTD_STRIDE_SHIFT; 2156 level++; 2157 support--; 2158 } 2159 return level; 2160 } 2161 2162 /* 2163 * Ensure that old small page tables are removed to make room for superpage(s). 2164 * We're going to add new large pages, so make sure we don't remove their parent 2165 * tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared. 2166 */ 2167 static void switch_to_super_page(struct dmar_domain *domain, 2168 unsigned long start_pfn, 2169 unsigned long end_pfn, int level) 2170 { 2171 unsigned long lvl_pages = lvl_to_nr_pages(level); 2172 struct iommu_domain_info *info; 2173 struct dma_pte *pte = NULL; 2174 unsigned long i; 2175 2176 while (start_pfn <= end_pfn) { 2177 if (!pte) 2178 pte = pfn_to_dma_pte(domain, start_pfn, &level); 2179 2180 if (dma_pte_present(pte)) { 2181 dma_pte_free_pagetable(domain, start_pfn, 2182 start_pfn + lvl_pages - 1, 2183 level + 1); 2184 2185 xa_for_each(&domain->iommu_array, i, info) 2186 iommu_flush_iotlb_psi(info->iommu, domain, 2187 start_pfn, lvl_pages, 2188 0, 0); 2189 } 2190 2191 pte++; 2192 start_pfn += lvl_pages; 2193 if (first_pte_in_page(pte)) 2194 pte = NULL; 2195 } 2196 } 2197 2198 static int 2199 __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, 2200 unsigned long phys_pfn, unsigned long nr_pages, int prot) 2201 { 2202 struct dma_pte *first_pte = NULL, *pte = NULL; 2203 unsigned int largepage_lvl = 0; 2204 unsigned long lvl_pages = 0; 2205 phys_addr_t pteval; 2206 u64 attr; 2207 2208 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)); 2209 2210 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) 2211 return -EINVAL; 2212 2213 attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP); 2214 attr |= DMA_FL_PTE_PRESENT; 2215 if (domain_use_first_level(domain)) { 2216 attr |= DMA_FL_PTE_XD | DMA_FL_PTE_US | DMA_FL_PTE_ACCESS; 2217 if (prot & DMA_PTE_WRITE) 2218 attr |= DMA_FL_PTE_DIRTY; 2219 } 2220 2221 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr; 2222 2223 while (nr_pages > 0) { 2224 uint64_t tmp; 2225 2226 if (!pte) { 2227 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, 2228 phys_pfn, nr_pages); 2229 2230 pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl); 2231 if (!pte) 2232 return -ENOMEM; 2233 first_pte = pte; 2234 2235 lvl_pages = lvl_to_nr_pages(largepage_lvl); 2236 2237 /* It is large page*/ 2238 if (largepage_lvl > 1) { 2239 unsigned long end_pfn; 2240 unsigned long pages_to_remove; 2241 2242 pteval |= DMA_PTE_LARGE_PAGE; 2243 pages_to_remove = min_t(unsigned long, nr_pages, 2244 nr_pte_to_next_page(pte) * lvl_pages); 2245 end_pfn = iov_pfn + pages_to_remove - 1; 2246 switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl); 2247 } else { 2248 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; 2249 } 2250 2251 } 2252 /* We don't need lock here, nobody else 2253 * touches the iova range 2254 */ 2255 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); 2256 if (tmp) { 2257 static int dumps = 5; 2258 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", 2259 iov_pfn, tmp, (unsigned long long)pteval); 2260 if (dumps) { 2261 dumps--; 2262 debug_dma_dump_mappings(NULL); 2263 } 2264 WARN_ON(1); 2265 } 2266 2267 nr_pages -= lvl_pages; 2268 iov_pfn += lvl_pages; 2269 phys_pfn += lvl_pages; 2270 pteval += lvl_pages * VTD_PAGE_SIZE; 2271 2272 /* If the next PTE would be the first in a new page, then we 2273 * need to flush the cache on the entries we've just written. 2274 * And then we'll need to recalculate 'pte', so clear it and 2275 * let it get set again in the if (!pte) block above. 2276 * 2277 * If we're done (!nr_pages) we need to flush the cache too. 2278 * 2279 * Also if we've been setting superpages, we may need to 2280 * recalculate 'pte' and switch back to smaller pages for the 2281 * end of the mapping, if the trailing size is not enough to 2282 * use another superpage (i.e. nr_pages < lvl_pages). 2283 */ 2284 pte++; 2285 if (!nr_pages || first_pte_in_page(pte) || 2286 (largepage_lvl > 1 && nr_pages < lvl_pages)) { 2287 domain_flush_cache(domain, first_pte, 2288 (void *)pte - (void *)first_pte); 2289 pte = NULL; 2290 } 2291 } 2292 2293 return 0; 2294 } 2295 2296 static void domain_context_clear_one(struct device_domain_info *info, u8 bus, u8 devfn) 2297 { 2298 struct intel_iommu *iommu = info->iommu; 2299 struct context_entry *context; 2300 u16 did_old; 2301 2302 if (!iommu) 2303 return; 2304 2305 spin_lock(&iommu->lock); 2306 context = iommu_context_addr(iommu, bus, devfn, 0); 2307 if (!context) { 2308 spin_unlock(&iommu->lock); 2309 return; 2310 } 2311 2312 if (sm_supported(iommu)) { 2313 if (hw_pass_through && domain_type_is_si(info->domain)) 2314 did_old = FLPT_DEFAULT_DID; 2315 else 2316 did_old = domain_id_iommu(info->domain, iommu); 2317 } else { 2318 did_old = context_domain_id(context); 2319 } 2320 2321 context_clear_entry(context); 2322 __iommu_flush_cache(iommu, context, sizeof(*context)); 2323 spin_unlock(&iommu->lock); 2324 iommu->flush.flush_context(iommu, 2325 did_old, 2326 (((u16)bus) << 8) | devfn, 2327 DMA_CCMD_MASK_NOBIT, 2328 DMA_CCMD_DEVICE_INVL); 2329 2330 if (sm_supported(iommu)) 2331 qi_flush_pasid_cache(iommu, did_old, QI_PC_ALL_PASIDS, 0); 2332 2333 iommu->flush.flush_iotlb(iommu, 2334 did_old, 2335 0, 2336 0, 2337 DMA_TLB_DSI_FLUSH); 2338 2339 __iommu_flush_dev_iotlb(info, 0, MAX_AGAW_PFN_WIDTH); 2340 } 2341 2342 static int domain_setup_first_level(struct intel_iommu *iommu, 2343 struct dmar_domain *domain, 2344 struct device *dev, 2345 u32 pasid) 2346 { 2347 struct dma_pte *pgd = domain->pgd; 2348 int agaw, level; 2349 int flags = 0; 2350 2351 /* 2352 * Skip top levels of page tables for iommu which has 2353 * less agaw than default. Unnecessary for PT mode. 2354 */ 2355 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { 2356 pgd = phys_to_virt(dma_pte_addr(pgd)); 2357 if (!dma_pte_present(pgd)) 2358 return -ENOMEM; 2359 } 2360 2361 level = agaw_to_level(agaw); 2362 if (level != 4 && level != 5) 2363 return -EINVAL; 2364 2365 if (pasid != PASID_RID2PASID) 2366 flags |= PASID_FLAG_SUPERVISOR_MODE; 2367 if (level == 5) 2368 flags |= PASID_FLAG_FL5LP; 2369 2370 if (domain->force_snooping) 2371 flags |= PASID_FLAG_PAGE_SNOOP; 2372 2373 return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid, 2374 domain_id_iommu(domain, iommu), 2375 flags); 2376 } 2377 2378 static bool dev_is_real_dma_subdevice(struct device *dev) 2379 { 2380 return dev && dev_is_pci(dev) && 2381 pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev); 2382 } 2383 2384 static int iommu_domain_identity_map(struct dmar_domain *domain, 2385 unsigned long first_vpfn, 2386 unsigned long last_vpfn) 2387 { 2388 /* 2389 * RMRR range might have overlap with physical memory range, 2390 * clear it first 2391 */ 2392 dma_pte_clear_range(domain, first_vpfn, last_vpfn); 2393 2394 return __domain_mapping(domain, first_vpfn, 2395 first_vpfn, last_vpfn - first_vpfn + 1, 2396 DMA_PTE_READ|DMA_PTE_WRITE); 2397 } 2398 2399 static int md_domain_init(struct dmar_domain *domain, int guest_width); 2400 2401 static int __init si_domain_init(int hw) 2402 { 2403 struct dmar_rmrr_unit *rmrr; 2404 struct device *dev; 2405 int i, nid, ret; 2406 2407 si_domain = alloc_domain(IOMMU_DOMAIN_IDENTITY); 2408 if (!si_domain) 2409 return -EFAULT; 2410 2411 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { 2412 domain_exit(si_domain); 2413 return -EFAULT; 2414 } 2415 2416 if (hw) 2417 return 0; 2418 2419 for_each_online_node(nid) { 2420 unsigned long start_pfn, end_pfn; 2421 int i; 2422 2423 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 2424 ret = iommu_domain_identity_map(si_domain, 2425 mm_to_dma_pfn(start_pfn), 2426 mm_to_dma_pfn(end_pfn)); 2427 if (ret) 2428 return ret; 2429 } 2430 } 2431 2432 /* 2433 * Identity map the RMRRs so that devices with RMRRs could also use 2434 * the si_domain. 2435 */ 2436 for_each_rmrr_units(rmrr) { 2437 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, 2438 i, dev) { 2439 unsigned long long start = rmrr->base_address; 2440 unsigned long long end = rmrr->end_address; 2441 2442 if (WARN_ON(end < start || 2443 end >> agaw_to_width(si_domain->agaw))) 2444 continue; 2445 2446 ret = iommu_domain_identity_map(si_domain, 2447 mm_to_dma_pfn(start >> PAGE_SHIFT), 2448 mm_to_dma_pfn(end >> PAGE_SHIFT)); 2449 if (ret) 2450 return ret; 2451 } 2452 } 2453 2454 return 0; 2455 } 2456 2457 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev) 2458 { 2459 struct device_domain_info *info = dev_iommu_priv_get(dev); 2460 struct intel_iommu *iommu; 2461 unsigned long flags; 2462 u8 bus, devfn; 2463 int ret; 2464 2465 iommu = device_to_iommu(dev, &bus, &devfn); 2466 if (!iommu) 2467 return -ENODEV; 2468 2469 ret = domain_attach_iommu(domain, iommu); 2470 if (ret) 2471 return ret; 2472 info->domain = domain; 2473 spin_lock_irqsave(&domain->lock, flags); 2474 list_add(&info->link, &domain->devices); 2475 spin_unlock_irqrestore(&domain->lock, flags); 2476 2477 /* PASID table is mandatory for a PCI device in scalable mode. */ 2478 if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) { 2479 ret = intel_pasid_alloc_table(dev); 2480 if (ret) { 2481 dev_err(dev, "PASID table allocation failed\n"); 2482 dmar_remove_one_dev_info(dev); 2483 return ret; 2484 } 2485 2486 /* Setup the PASID entry for requests without PASID: */ 2487 if (hw_pass_through && domain_type_is_si(domain)) 2488 ret = intel_pasid_setup_pass_through(iommu, domain, 2489 dev, PASID_RID2PASID); 2490 else if (domain_use_first_level(domain)) 2491 ret = domain_setup_first_level(iommu, domain, dev, 2492 PASID_RID2PASID); 2493 else 2494 ret = intel_pasid_setup_second_level(iommu, domain, 2495 dev, PASID_RID2PASID); 2496 if (ret) { 2497 dev_err(dev, "Setup RID2PASID failed\n"); 2498 dmar_remove_one_dev_info(dev); 2499 return ret; 2500 } 2501 } 2502 2503 ret = domain_context_mapping(domain, dev); 2504 if (ret) { 2505 dev_err(dev, "Domain context map failed\n"); 2506 dmar_remove_one_dev_info(dev); 2507 return ret; 2508 } 2509 2510 return 0; 2511 } 2512 2513 static bool device_has_rmrr(struct device *dev) 2514 { 2515 struct dmar_rmrr_unit *rmrr; 2516 struct device *tmp; 2517 int i; 2518 2519 rcu_read_lock(); 2520 for_each_rmrr_units(rmrr) { 2521 /* 2522 * Return TRUE if this RMRR contains the device that 2523 * is passed in. 2524 */ 2525 for_each_active_dev_scope(rmrr->devices, 2526 rmrr->devices_cnt, i, tmp) 2527 if (tmp == dev || 2528 is_downstream_to_pci_bridge(dev, tmp)) { 2529 rcu_read_unlock(); 2530 return true; 2531 } 2532 } 2533 rcu_read_unlock(); 2534 return false; 2535 } 2536 2537 /** 2538 * device_rmrr_is_relaxable - Test whether the RMRR of this device 2539 * is relaxable (ie. is allowed to be not enforced under some conditions) 2540 * @dev: device handle 2541 * 2542 * We assume that PCI USB devices with RMRRs have them largely 2543 * for historical reasons and that the RMRR space is not actively used post 2544 * boot. This exclusion may change if vendors begin to abuse it. 2545 * 2546 * The same exception is made for graphics devices, with the requirement that 2547 * any use of the RMRR regions will be torn down before assigning the device 2548 * to a guest. 2549 * 2550 * Return: true if the RMRR is relaxable, false otherwise 2551 */ 2552 static bool device_rmrr_is_relaxable(struct device *dev) 2553 { 2554 struct pci_dev *pdev; 2555 2556 if (!dev_is_pci(dev)) 2557 return false; 2558 2559 pdev = to_pci_dev(dev); 2560 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev)) 2561 return true; 2562 else 2563 return false; 2564 } 2565 2566 /* 2567 * There are a couple cases where we need to restrict the functionality of 2568 * devices associated with RMRRs. The first is when evaluating a device for 2569 * identity mapping because problems exist when devices are moved in and out 2570 * of domains and their respective RMRR information is lost. This means that 2571 * a device with associated RMRRs will never be in a "passthrough" domain. 2572 * The second is use of the device through the IOMMU API. This interface 2573 * expects to have full control of the IOVA space for the device. We cannot 2574 * satisfy both the requirement that RMRR access is maintained and have an 2575 * unencumbered IOVA space. We also have no ability to quiesce the device's 2576 * use of the RMRR space or even inform the IOMMU API user of the restriction. 2577 * We therefore prevent devices associated with an RMRR from participating in 2578 * the IOMMU API, which eliminates them from device assignment. 2579 * 2580 * In both cases, devices which have relaxable RMRRs are not concerned by this 2581 * restriction. See device_rmrr_is_relaxable comment. 2582 */ 2583 static bool device_is_rmrr_locked(struct device *dev) 2584 { 2585 if (!device_has_rmrr(dev)) 2586 return false; 2587 2588 if (device_rmrr_is_relaxable(dev)) 2589 return false; 2590 2591 return true; 2592 } 2593 2594 /* 2595 * Return the required default domain type for a specific device. 2596 * 2597 * @dev: the device in query 2598 * @startup: true if this is during early boot 2599 * 2600 * Returns: 2601 * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain 2602 * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain 2603 * - 0: both identity and dynamic domains work for this device 2604 */ 2605 static int device_def_domain_type(struct device *dev) 2606 { 2607 if (dev_is_pci(dev)) { 2608 struct pci_dev *pdev = to_pci_dev(dev); 2609 2610 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) 2611 return IOMMU_DOMAIN_IDENTITY; 2612 2613 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) 2614 return IOMMU_DOMAIN_IDENTITY; 2615 } 2616 2617 return 0; 2618 } 2619 2620 static void intel_iommu_init_qi(struct intel_iommu *iommu) 2621 { 2622 /* 2623 * Start from the sane iommu hardware state. 2624 * If the queued invalidation is already initialized by us 2625 * (for example, while enabling interrupt-remapping) then 2626 * we got the things already rolling from a sane state. 2627 */ 2628 if (!iommu->qi) { 2629 /* 2630 * Clear any previous faults. 2631 */ 2632 dmar_fault(-1, iommu); 2633 /* 2634 * Disable queued invalidation if supported and already enabled 2635 * before OS handover. 2636 */ 2637 dmar_disable_qi(iommu); 2638 } 2639 2640 if (dmar_enable_qi(iommu)) { 2641 /* 2642 * Queued Invalidate not enabled, use Register Based Invalidate 2643 */ 2644 iommu->flush.flush_context = __iommu_flush_context; 2645 iommu->flush.flush_iotlb = __iommu_flush_iotlb; 2646 pr_info("%s: Using Register based invalidation\n", 2647 iommu->name); 2648 } else { 2649 iommu->flush.flush_context = qi_flush_context; 2650 iommu->flush.flush_iotlb = qi_flush_iotlb; 2651 pr_info("%s: Using Queued invalidation\n", iommu->name); 2652 } 2653 } 2654 2655 static int copy_context_table(struct intel_iommu *iommu, 2656 struct root_entry *old_re, 2657 struct context_entry **tbl, 2658 int bus, bool ext) 2659 { 2660 int tbl_idx, pos = 0, idx, devfn, ret = 0, did; 2661 struct context_entry *new_ce = NULL, ce; 2662 struct context_entry *old_ce = NULL; 2663 struct root_entry re; 2664 phys_addr_t old_ce_phys; 2665 2666 tbl_idx = ext ? bus * 2 : bus; 2667 memcpy(&re, old_re, sizeof(re)); 2668 2669 for (devfn = 0; devfn < 256; devfn++) { 2670 /* First calculate the correct index */ 2671 idx = (ext ? devfn * 2 : devfn) % 256; 2672 2673 if (idx == 0) { 2674 /* First save what we may have and clean up */ 2675 if (new_ce) { 2676 tbl[tbl_idx] = new_ce; 2677 __iommu_flush_cache(iommu, new_ce, 2678 VTD_PAGE_SIZE); 2679 pos = 1; 2680 } 2681 2682 if (old_ce) 2683 memunmap(old_ce); 2684 2685 ret = 0; 2686 if (devfn < 0x80) 2687 old_ce_phys = root_entry_lctp(&re); 2688 else 2689 old_ce_phys = root_entry_uctp(&re); 2690 2691 if (!old_ce_phys) { 2692 if (ext && devfn == 0) { 2693 /* No LCTP, try UCTP */ 2694 devfn = 0x7f; 2695 continue; 2696 } else { 2697 goto out; 2698 } 2699 } 2700 2701 ret = -ENOMEM; 2702 old_ce = memremap(old_ce_phys, PAGE_SIZE, 2703 MEMREMAP_WB); 2704 if (!old_ce) 2705 goto out; 2706 2707 new_ce = alloc_pgtable_page(iommu->node); 2708 if (!new_ce) 2709 goto out_unmap; 2710 2711 ret = 0; 2712 } 2713 2714 /* Now copy the context entry */ 2715 memcpy(&ce, old_ce + idx, sizeof(ce)); 2716 2717 if (!context_present(&ce)) 2718 continue; 2719 2720 did = context_domain_id(&ce); 2721 if (did >= 0 && did < cap_ndoms(iommu->cap)) 2722 set_bit(did, iommu->domain_ids); 2723 2724 set_context_copied(iommu, bus, devfn); 2725 new_ce[idx] = ce; 2726 } 2727 2728 tbl[tbl_idx + pos] = new_ce; 2729 2730 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE); 2731 2732 out_unmap: 2733 memunmap(old_ce); 2734 2735 out: 2736 return ret; 2737 } 2738 2739 static int copy_translation_tables(struct intel_iommu *iommu) 2740 { 2741 struct context_entry **ctxt_tbls; 2742 struct root_entry *old_rt; 2743 phys_addr_t old_rt_phys; 2744 int ctxt_table_entries; 2745 u64 rtaddr_reg; 2746 int bus, ret; 2747 bool new_ext, ext; 2748 2749 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG); 2750 ext = !!(rtaddr_reg & DMA_RTADDR_SMT); 2751 new_ext = !!sm_supported(iommu); 2752 2753 /* 2754 * The RTT bit can only be changed when translation is disabled, 2755 * but disabling translation means to open a window for data 2756 * corruption. So bail out and don't copy anything if we would 2757 * have to change the bit. 2758 */ 2759 if (new_ext != ext) 2760 return -EINVAL; 2761 2762 iommu->copied_tables = bitmap_zalloc(BIT_ULL(16), GFP_KERNEL); 2763 if (!iommu->copied_tables) 2764 return -ENOMEM; 2765 2766 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK; 2767 if (!old_rt_phys) 2768 return -EINVAL; 2769 2770 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB); 2771 if (!old_rt) 2772 return -ENOMEM; 2773 2774 /* This is too big for the stack - allocate it from slab */ 2775 ctxt_table_entries = ext ? 512 : 256; 2776 ret = -ENOMEM; 2777 ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL); 2778 if (!ctxt_tbls) 2779 goto out_unmap; 2780 2781 for (bus = 0; bus < 256; bus++) { 2782 ret = copy_context_table(iommu, &old_rt[bus], 2783 ctxt_tbls, bus, ext); 2784 if (ret) { 2785 pr_err("%s: Failed to copy context table for bus %d\n", 2786 iommu->name, bus); 2787 continue; 2788 } 2789 } 2790 2791 spin_lock(&iommu->lock); 2792 2793 /* Context tables are copied, now write them to the root_entry table */ 2794 for (bus = 0; bus < 256; bus++) { 2795 int idx = ext ? bus * 2 : bus; 2796 u64 val; 2797 2798 if (ctxt_tbls[idx]) { 2799 val = virt_to_phys(ctxt_tbls[idx]) | 1; 2800 iommu->root_entry[bus].lo = val; 2801 } 2802 2803 if (!ext || !ctxt_tbls[idx + 1]) 2804 continue; 2805 2806 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1; 2807 iommu->root_entry[bus].hi = val; 2808 } 2809 2810 spin_unlock(&iommu->lock); 2811 2812 kfree(ctxt_tbls); 2813 2814 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE); 2815 2816 ret = 0; 2817 2818 out_unmap: 2819 memunmap(old_rt); 2820 2821 return ret; 2822 } 2823 2824 #ifdef CONFIG_INTEL_IOMMU_SVM 2825 static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data) 2826 { 2827 struct intel_iommu *iommu = data; 2828 ioasid_t ioasid; 2829 2830 if (!iommu) 2831 return INVALID_IOASID; 2832 /* 2833 * VT-d virtual command interface always uses the full 20 bit 2834 * PASID range. Host can partition guest PASID range based on 2835 * policies but it is out of guest's control. 2836 */ 2837 if (min < PASID_MIN || max > intel_pasid_max_id) 2838 return INVALID_IOASID; 2839 2840 if (vcmd_alloc_pasid(iommu, &ioasid)) 2841 return INVALID_IOASID; 2842 2843 return ioasid; 2844 } 2845 2846 static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data) 2847 { 2848 struct intel_iommu *iommu = data; 2849 2850 if (!iommu) 2851 return; 2852 /* 2853 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO 2854 * We can only free the PASID when all the devices are unbound. 2855 */ 2856 if (ioasid_find(NULL, ioasid, NULL)) { 2857 pr_alert("Cannot free active IOASID %d\n", ioasid); 2858 return; 2859 } 2860 vcmd_free_pasid(iommu, ioasid); 2861 } 2862 2863 static void register_pasid_allocator(struct intel_iommu *iommu) 2864 { 2865 /* 2866 * If we are running in the host, no need for custom allocator 2867 * in that PASIDs are allocated from the host system-wide. 2868 */ 2869 if (!cap_caching_mode(iommu->cap)) 2870 return; 2871 2872 if (!sm_supported(iommu)) { 2873 pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n"); 2874 return; 2875 } 2876 2877 /* 2878 * Register a custom PASID allocator if we are running in a guest, 2879 * guest PASID must be obtained via virtual command interface. 2880 * There can be multiple vIOMMUs in each guest but only one allocator 2881 * is active. All vIOMMU allocators will eventually be calling the same 2882 * host allocator. 2883 */ 2884 if (!vccap_pasid(iommu->vccap)) 2885 return; 2886 2887 pr_info("Register custom PASID allocator\n"); 2888 iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc; 2889 iommu->pasid_allocator.free = intel_vcmd_ioasid_free; 2890 iommu->pasid_allocator.pdata = (void *)iommu; 2891 if (ioasid_register_allocator(&iommu->pasid_allocator)) { 2892 pr_warn("Custom PASID allocator failed, scalable mode disabled\n"); 2893 /* 2894 * Disable scalable mode on this IOMMU if there 2895 * is no custom allocator. Mixing SM capable vIOMMU 2896 * and non-SM vIOMMU are not supported. 2897 */ 2898 intel_iommu_sm = 0; 2899 } 2900 } 2901 #endif 2902 2903 static int __init init_dmars(void) 2904 { 2905 struct dmar_drhd_unit *drhd; 2906 struct intel_iommu *iommu; 2907 int ret; 2908 2909 ret = intel_cap_audit(CAP_AUDIT_STATIC_DMAR, NULL); 2910 if (ret) 2911 goto free_iommu; 2912 2913 for_each_iommu(iommu, drhd) { 2914 if (drhd->ignored) { 2915 iommu_disable_translation(iommu); 2916 continue; 2917 } 2918 2919 /* 2920 * Find the max pasid size of all IOMMU's in the system. 2921 * We need to ensure the system pasid table is no bigger 2922 * than the smallest supported. 2923 */ 2924 if (pasid_supported(iommu)) { 2925 u32 temp = 2 << ecap_pss(iommu->ecap); 2926 2927 intel_pasid_max_id = min_t(u32, temp, 2928 intel_pasid_max_id); 2929 } 2930 2931 intel_iommu_init_qi(iommu); 2932 2933 ret = iommu_init_domains(iommu); 2934 if (ret) 2935 goto free_iommu; 2936 2937 init_translation_status(iommu); 2938 2939 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) { 2940 iommu_disable_translation(iommu); 2941 clear_translation_pre_enabled(iommu); 2942 pr_warn("Translation was enabled for %s but we are not in kdump mode\n", 2943 iommu->name); 2944 } 2945 2946 /* 2947 * TBD: 2948 * we could share the same root & context tables 2949 * among all IOMMU's. Need to Split it later. 2950 */ 2951 ret = iommu_alloc_root_entry(iommu); 2952 if (ret) 2953 goto free_iommu; 2954 2955 if (translation_pre_enabled(iommu)) { 2956 pr_info("Translation already enabled - trying to copy translation structures\n"); 2957 2958 ret = copy_translation_tables(iommu); 2959 if (ret) { 2960 /* 2961 * We found the IOMMU with translation 2962 * enabled - but failed to copy over the 2963 * old root-entry table. Try to proceed 2964 * by disabling translation now and 2965 * allocating a clean root-entry table. 2966 * This might cause DMAR faults, but 2967 * probably the dump will still succeed. 2968 */ 2969 pr_err("Failed to copy translation tables from previous kernel for %s\n", 2970 iommu->name); 2971 iommu_disable_translation(iommu); 2972 clear_translation_pre_enabled(iommu); 2973 } else { 2974 pr_info("Copied translation tables from previous kernel for %s\n", 2975 iommu->name); 2976 } 2977 } 2978 2979 if (!ecap_pass_through(iommu->ecap)) 2980 hw_pass_through = 0; 2981 intel_svm_check(iommu); 2982 } 2983 2984 /* 2985 * Now that qi is enabled on all iommus, set the root entry and flush 2986 * caches. This is required on some Intel X58 chipsets, otherwise the 2987 * flush_context function will loop forever and the boot hangs. 2988 */ 2989 for_each_active_iommu(iommu, drhd) { 2990 iommu_flush_write_buffer(iommu); 2991 #ifdef CONFIG_INTEL_IOMMU_SVM 2992 register_pasid_allocator(iommu); 2993 #endif 2994 iommu_set_root_entry(iommu); 2995 } 2996 2997 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA 2998 dmar_map_gfx = 0; 2999 #endif 3000 3001 if (!dmar_map_gfx) 3002 iommu_identity_mapping |= IDENTMAP_GFX; 3003 3004 check_tylersburg_isoch(); 3005 3006 ret = si_domain_init(hw_pass_through); 3007 if (ret) 3008 goto free_iommu; 3009 3010 /* 3011 * for each drhd 3012 * enable fault log 3013 * global invalidate context cache 3014 * global invalidate iotlb 3015 * enable translation 3016 */ 3017 for_each_iommu(iommu, drhd) { 3018 if (drhd->ignored) { 3019 /* 3020 * we always have to disable PMRs or DMA may fail on 3021 * this device 3022 */ 3023 if (force_on) 3024 iommu_disable_protect_mem_regions(iommu); 3025 continue; 3026 } 3027 3028 iommu_flush_write_buffer(iommu); 3029 3030 #ifdef CONFIG_INTEL_IOMMU_SVM 3031 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { 3032 /* 3033 * Call dmar_alloc_hwirq() with dmar_global_lock held, 3034 * could cause possible lock race condition. 3035 */ 3036 up_write(&dmar_global_lock); 3037 ret = intel_svm_enable_prq(iommu); 3038 down_write(&dmar_global_lock); 3039 if (ret) 3040 goto free_iommu; 3041 } 3042 #endif 3043 ret = dmar_set_interrupt(iommu); 3044 if (ret) 3045 goto free_iommu; 3046 } 3047 3048 return 0; 3049 3050 free_iommu: 3051 for_each_active_iommu(iommu, drhd) { 3052 disable_dmar_iommu(iommu); 3053 free_dmar_iommu(iommu); 3054 } 3055 3056 return ret; 3057 } 3058 3059 static void __init init_no_remapping_devices(void) 3060 { 3061 struct dmar_drhd_unit *drhd; 3062 struct device *dev; 3063 int i; 3064 3065 for_each_drhd_unit(drhd) { 3066 if (!drhd->include_all) { 3067 for_each_active_dev_scope(drhd->devices, 3068 drhd->devices_cnt, i, dev) 3069 break; 3070 /* ignore DMAR unit if no devices exist */ 3071 if (i == drhd->devices_cnt) 3072 drhd->ignored = 1; 3073 } 3074 } 3075 3076 for_each_active_drhd_unit(drhd) { 3077 if (drhd->include_all) 3078 continue; 3079 3080 for_each_active_dev_scope(drhd->devices, 3081 drhd->devices_cnt, i, dev) 3082 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev))) 3083 break; 3084 if (i < drhd->devices_cnt) 3085 continue; 3086 3087 /* This IOMMU has *only* gfx devices. Either bypass it or 3088 set the gfx_mapped flag, as appropriate */ 3089 drhd->gfx_dedicated = 1; 3090 if (!dmar_map_gfx) 3091 drhd->ignored = 1; 3092 } 3093 } 3094 3095 #ifdef CONFIG_SUSPEND 3096 static int init_iommu_hw(void) 3097 { 3098 struct dmar_drhd_unit *drhd; 3099 struct intel_iommu *iommu = NULL; 3100 3101 for_each_active_iommu(iommu, drhd) 3102 if (iommu->qi) 3103 dmar_reenable_qi(iommu); 3104 3105 for_each_iommu(iommu, drhd) { 3106 if (drhd->ignored) { 3107 /* 3108 * we always have to disable PMRs or DMA may fail on 3109 * this device 3110 */ 3111 if (force_on) 3112 iommu_disable_protect_mem_regions(iommu); 3113 continue; 3114 } 3115 3116 iommu_flush_write_buffer(iommu); 3117 iommu_set_root_entry(iommu); 3118 iommu_enable_translation(iommu); 3119 iommu_disable_protect_mem_regions(iommu); 3120 } 3121 3122 return 0; 3123 } 3124 3125 static void iommu_flush_all(void) 3126 { 3127 struct dmar_drhd_unit *drhd; 3128 struct intel_iommu *iommu; 3129 3130 for_each_active_iommu(iommu, drhd) { 3131 iommu->flush.flush_context(iommu, 0, 0, 0, 3132 DMA_CCMD_GLOBAL_INVL); 3133 iommu->flush.flush_iotlb(iommu, 0, 0, 0, 3134 DMA_TLB_GLOBAL_FLUSH); 3135 } 3136 } 3137 3138 static int iommu_suspend(void) 3139 { 3140 struct dmar_drhd_unit *drhd; 3141 struct intel_iommu *iommu = NULL; 3142 unsigned long flag; 3143 3144 for_each_active_iommu(iommu, drhd) { 3145 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32), 3146 GFP_KERNEL); 3147 if (!iommu->iommu_state) 3148 goto nomem; 3149 } 3150 3151 iommu_flush_all(); 3152 3153 for_each_active_iommu(iommu, drhd) { 3154 iommu_disable_translation(iommu); 3155 3156 raw_spin_lock_irqsave(&iommu->register_lock, flag); 3157 3158 iommu->iommu_state[SR_DMAR_FECTL_REG] = 3159 readl(iommu->reg + DMAR_FECTL_REG); 3160 iommu->iommu_state[SR_DMAR_FEDATA_REG] = 3161 readl(iommu->reg + DMAR_FEDATA_REG); 3162 iommu->iommu_state[SR_DMAR_FEADDR_REG] = 3163 readl(iommu->reg + DMAR_FEADDR_REG); 3164 iommu->iommu_state[SR_DMAR_FEUADDR_REG] = 3165 readl(iommu->reg + DMAR_FEUADDR_REG); 3166 3167 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 3168 } 3169 return 0; 3170 3171 nomem: 3172 for_each_active_iommu(iommu, drhd) 3173 kfree(iommu->iommu_state); 3174 3175 return -ENOMEM; 3176 } 3177 3178 static void iommu_resume(void) 3179 { 3180 struct dmar_drhd_unit *drhd; 3181 struct intel_iommu *iommu = NULL; 3182 unsigned long flag; 3183 3184 if (init_iommu_hw()) { 3185 if (force_on) 3186 panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); 3187 else 3188 WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); 3189 return; 3190 } 3191 3192 for_each_active_iommu(iommu, drhd) { 3193 3194 raw_spin_lock_irqsave(&iommu->register_lock, flag); 3195 3196 writel(iommu->iommu_state[SR_DMAR_FECTL_REG], 3197 iommu->reg + DMAR_FECTL_REG); 3198 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], 3199 iommu->reg + DMAR_FEDATA_REG); 3200 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], 3201 iommu->reg + DMAR_FEADDR_REG); 3202 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], 3203 iommu->reg + DMAR_FEUADDR_REG); 3204 3205 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 3206 } 3207 3208 for_each_active_iommu(iommu, drhd) 3209 kfree(iommu->iommu_state); 3210 } 3211 3212 static struct syscore_ops iommu_syscore_ops = { 3213 .resume = iommu_resume, 3214 .suspend = iommu_suspend, 3215 }; 3216 3217 static void __init init_iommu_pm_ops(void) 3218 { 3219 register_syscore_ops(&iommu_syscore_ops); 3220 } 3221 3222 #else 3223 static inline void init_iommu_pm_ops(void) {} 3224 #endif /* CONFIG_PM */ 3225 3226 static int __init rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr) 3227 { 3228 if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) || 3229 !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) || 3230 rmrr->end_address <= rmrr->base_address || 3231 arch_rmrr_sanity_check(rmrr)) 3232 return -EINVAL; 3233 3234 return 0; 3235 } 3236 3237 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg) 3238 { 3239 struct acpi_dmar_reserved_memory *rmrr; 3240 struct dmar_rmrr_unit *rmrru; 3241 3242 rmrr = (struct acpi_dmar_reserved_memory *)header; 3243 if (rmrr_sanity_check(rmrr)) { 3244 pr_warn(FW_BUG 3245 "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n" 3246 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 3247 rmrr->base_address, rmrr->end_address, 3248 dmi_get_system_info(DMI_BIOS_VENDOR), 3249 dmi_get_system_info(DMI_BIOS_VERSION), 3250 dmi_get_system_info(DMI_PRODUCT_VERSION)); 3251 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 3252 } 3253 3254 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); 3255 if (!rmrru) 3256 goto out; 3257 3258 rmrru->hdr = header; 3259 3260 rmrru->base_address = rmrr->base_address; 3261 rmrru->end_address = rmrr->end_address; 3262 3263 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1), 3264 ((void *)rmrr) + rmrr->header.length, 3265 &rmrru->devices_cnt); 3266 if (rmrru->devices_cnt && rmrru->devices == NULL) 3267 goto free_rmrru; 3268 3269 list_add(&rmrru->list, &dmar_rmrr_units); 3270 3271 return 0; 3272 free_rmrru: 3273 kfree(rmrru); 3274 out: 3275 return -ENOMEM; 3276 } 3277 3278 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr) 3279 { 3280 struct dmar_atsr_unit *atsru; 3281 struct acpi_dmar_atsr *tmp; 3282 3283 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list, 3284 dmar_rcu_check()) { 3285 tmp = (struct acpi_dmar_atsr *)atsru->hdr; 3286 if (atsr->segment != tmp->segment) 3287 continue; 3288 if (atsr->header.length != tmp->header.length) 3289 continue; 3290 if (memcmp(atsr, tmp, atsr->header.length) == 0) 3291 return atsru; 3292 } 3293 3294 return NULL; 3295 } 3296 3297 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3298 { 3299 struct acpi_dmar_atsr *atsr; 3300 struct dmar_atsr_unit *atsru; 3301 3302 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) 3303 return 0; 3304 3305 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3306 atsru = dmar_find_atsr(atsr); 3307 if (atsru) 3308 return 0; 3309 3310 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL); 3311 if (!atsru) 3312 return -ENOMEM; 3313 3314 /* 3315 * If memory is allocated from slab by ACPI _DSM method, we need to 3316 * copy the memory content because the memory buffer will be freed 3317 * on return. 3318 */ 3319 atsru->hdr = (void *)(atsru + 1); 3320 memcpy(atsru->hdr, hdr, hdr->length); 3321 atsru->include_all = atsr->flags & 0x1; 3322 if (!atsru->include_all) { 3323 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1), 3324 (void *)atsr + atsr->header.length, 3325 &atsru->devices_cnt); 3326 if (atsru->devices_cnt && atsru->devices == NULL) { 3327 kfree(atsru); 3328 return -ENOMEM; 3329 } 3330 } 3331 3332 list_add_rcu(&atsru->list, &dmar_atsr_units); 3333 3334 return 0; 3335 } 3336 3337 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru) 3338 { 3339 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt); 3340 kfree(atsru); 3341 } 3342 3343 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3344 { 3345 struct acpi_dmar_atsr *atsr; 3346 struct dmar_atsr_unit *atsru; 3347 3348 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3349 atsru = dmar_find_atsr(atsr); 3350 if (atsru) { 3351 list_del_rcu(&atsru->list); 3352 synchronize_rcu(); 3353 intel_iommu_free_atsr(atsru); 3354 } 3355 3356 return 0; 3357 } 3358 3359 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3360 { 3361 int i; 3362 struct device *dev; 3363 struct acpi_dmar_atsr *atsr; 3364 struct dmar_atsr_unit *atsru; 3365 3366 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3367 atsru = dmar_find_atsr(atsr); 3368 if (!atsru) 3369 return 0; 3370 3371 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) { 3372 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt, 3373 i, dev) 3374 return -EBUSY; 3375 } 3376 3377 return 0; 3378 } 3379 3380 static struct dmar_satc_unit *dmar_find_satc(struct acpi_dmar_satc *satc) 3381 { 3382 struct dmar_satc_unit *satcu; 3383 struct acpi_dmar_satc *tmp; 3384 3385 list_for_each_entry_rcu(satcu, &dmar_satc_units, list, 3386 dmar_rcu_check()) { 3387 tmp = (struct acpi_dmar_satc *)satcu->hdr; 3388 if (satc->segment != tmp->segment) 3389 continue; 3390 if (satc->header.length != tmp->header.length) 3391 continue; 3392 if (memcmp(satc, tmp, satc->header.length) == 0) 3393 return satcu; 3394 } 3395 3396 return NULL; 3397 } 3398 3399 int dmar_parse_one_satc(struct acpi_dmar_header *hdr, void *arg) 3400 { 3401 struct acpi_dmar_satc *satc; 3402 struct dmar_satc_unit *satcu; 3403 3404 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) 3405 return 0; 3406 3407 satc = container_of(hdr, struct acpi_dmar_satc, header); 3408 satcu = dmar_find_satc(satc); 3409 if (satcu) 3410 return 0; 3411 3412 satcu = kzalloc(sizeof(*satcu) + hdr->length, GFP_KERNEL); 3413 if (!satcu) 3414 return -ENOMEM; 3415 3416 satcu->hdr = (void *)(satcu + 1); 3417 memcpy(satcu->hdr, hdr, hdr->length); 3418 satcu->atc_required = satc->flags & 0x1; 3419 satcu->devices = dmar_alloc_dev_scope((void *)(satc + 1), 3420 (void *)satc + satc->header.length, 3421 &satcu->devices_cnt); 3422 if (satcu->devices_cnt && !satcu->devices) { 3423 kfree(satcu); 3424 return -ENOMEM; 3425 } 3426 list_add_rcu(&satcu->list, &dmar_satc_units); 3427 3428 return 0; 3429 } 3430 3431 static int intel_iommu_add(struct dmar_drhd_unit *dmaru) 3432 { 3433 int sp, ret; 3434 struct intel_iommu *iommu = dmaru->iommu; 3435 3436 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_DMAR, iommu); 3437 if (ret) 3438 goto out; 3439 3440 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) { 3441 pr_warn("%s: Doesn't support hardware pass through.\n", 3442 iommu->name); 3443 return -ENXIO; 3444 } 3445 3446 sp = domain_update_iommu_superpage(NULL, iommu) - 1; 3447 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) { 3448 pr_warn("%s: Doesn't support large page.\n", 3449 iommu->name); 3450 return -ENXIO; 3451 } 3452 3453 /* 3454 * Disable translation if already enabled prior to OS handover. 3455 */ 3456 if (iommu->gcmd & DMA_GCMD_TE) 3457 iommu_disable_translation(iommu); 3458 3459 ret = iommu_init_domains(iommu); 3460 if (ret == 0) 3461 ret = iommu_alloc_root_entry(iommu); 3462 if (ret) 3463 goto out; 3464 3465 intel_svm_check(iommu); 3466 3467 if (dmaru->ignored) { 3468 /* 3469 * we always have to disable PMRs or DMA may fail on this device 3470 */ 3471 if (force_on) 3472 iommu_disable_protect_mem_regions(iommu); 3473 return 0; 3474 } 3475 3476 intel_iommu_init_qi(iommu); 3477 iommu_flush_write_buffer(iommu); 3478 3479 #ifdef CONFIG_INTEL_IOMMU_SVM 3480 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { 3481 ret = intel_svm_enable_prq(iommu); 3482 if (ret) 3483 goto disable_iommu; 3484 } 3485 #endif 3486 ret = dmar_set_interrupt(iommu); 3487 if (ret) 3488 goto disable_iommu; 3489 3490 iommu_set_root_entry(iommu); 3491 iommu_enable_translation(iommu); 3492 3493 iommu_disable_protect_mem_regions(iommu); 3494 return 0; 3495 3496 disable_iommu: 3497 disable_dmar_iommu(iommu); 3498 out: 3499 free_dmar_iommu(iommu); 3500 return ret; 3501 } 3502 3503 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 3504 { 3505 int ret = 0; 3506 struct intel_iommu *iommu = dmaru->iommu; 3507 3508 if (!intel_iommu_enabled) 3509 return 0; 3510 if (iommu == NULL) 3511 return -EINVAL; 3512 3513 if (insert) { 3514 ret = intel_iommu_add(dmaru); 3515 } else { 3516 disable_dmar_iommu(iommu); 3517 free_dmar_iommu(iommu); 3518 } 3519 3520 return ret; 3521 } 3522 3523 static void intel_iommu_free_dmars(void) 3524 { 3525 struct dmar_rmrr_unit *rmrru, *rmrr_n; 3526 struct dmar_atsr_unit *atsru, *atsr_n; 3527 struct dmar_satc_unit *satcu, *satc_n; 3528 3529 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) { 3530 list_del(&rmrru->list); 3531 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt); 3532 kfree(rmrru); 3533 } 3534 3535 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) { 3536 list_del(&atsru->list); 3537 intel_iommu_free_atsr(atsru); 3538 } 3539 list_for_each_entry_safe(satcu, satc_n, &dmar_satc_units, list) { 3540 list_del(&satcu->list); 3541 dmar_free_dev_scope(&satcu->devices, &satcu->devices_cnt); 3542 kfree(satcu); 3543 } 3544 } 3545 3546 static struct dmar_satc_unit *dmar_find_matched_satc_unit(struct pci_dev *dev) 3547 { 3548 struct dmar_satc_unit *satcu; 3549 struct acpi_dmar_satc *satc; 3550 struct device *tmp; 3551 int i; 3552 3553 dev = pci_physfn(dev); 3554 rcu_read_lock(); 3555 3556 list_for_each_entry_rcu(satcu, &dmar_satc_units, list) { 3557 satc = container_of(satcu->hdr, struct acpi_dmar_satc, header); 3558 if (satc->segment != pci_domain_nr(dev->bus)) 3559 continue; 3560 for_each_dev_scope(satcu->devices, satcu->devices_cnt, i, tmp) 3561 if (to_pci_dev(tmp) == dev) 3562 goto out; 3563 } 3564 satcu = NULL; 3565 out: 3566 rcu_read_unlock(); 3567 return satcu; 3568 } 3569 3570 static int dmar_ats_supported(struct pci_dev *dev, struct intel_iommu *iommu) 3571 { 3572 int i, ret = 1; 3573 struct pci_bus *bus; 3574 struct pci_dev *bridge = NULL; 3575 struct device *tmp; 3576 struct acpi_dmar_atsr *atsr; 3577 struct dmar_atsr_unit *atsru; 3578 struct dmar_satc_unit *satcu; 3579 3580 dev = pci_physfn(dev); 3581 satcu = dmar_find_matched_satc_unit(dev); 3582 if (satcu) 3583 /* 3584 * This device supports ATS as it is in SATC table. 3585 * When IOMMU is in legacy mode, enabling ATS is done 3586 * automatically by HW for the device that requires 3587 * ATS, hence OS should not enable this device ATS 3588 * to avoid duplicated TLB invalidation. 3589 */ 3590 return !(satcu->atc_required && !sm_supported(iommu)); 3591 3592 for (bus = dev->bus; bus; bus = bus->parent) { 3593 bridge = bus->self; 3594 /* If it's an integrated device, allow ATS */ 3595 if (!bridge) 3596 return 1; 3597 /* Connected via non-PCIe: no ATS */ 3598 if (!pci_is_pcie(bridge) || 3599 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) 3600 return 0; 3601 /* If we found the root port, look it up in the ATSR */ 3602 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) 3603 break; 3604 } 3605 3606 rcu_read_lock(); 3607 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) { 3608 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); 3609 if (atsr->segment != pci_domain_nr(dev->bus)) 3610 continue; 3611 3612 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp) 3613 if (tmp == &bridge->dev) 3614 goto out; 3615 3616 if (atsru->include_all) 3617 goto out; 3618 } 3619 ret = 0; 3620 out: 3621 rcu_read_unlock(); 3622 3623 return ret; 3624 } 3625 3626 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info) 3627 { 3628 int ret; 3629 struct dmar_rmrr_unit *rmrru; 3630 struct dmar_atsr_unit *atsru; 3631 struct dmar_satc_unit *satcu; 3632 struct acpi_dmar_atsr *atsr; 3633 struct acpi_dmar_reserved_memory *rmrr; 3634 struct acpi_dmar_satc *satc; 3635 3636 if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING) 3637 return 0; 3638 3639 list_for_each_entry(rmrru, &dmar_rmrr_units, list) { 3640 rmrr = container_of(rmrru->hdr, 3641 struct acpi_dmar_reserved_memory, header); 3642 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 3643 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1), 3644 ((void *)rmrr) + rmrr->header.length, 3645 rmrr->segment, rmrru->devices, 3646 rmrru->devices_cnt); 3647 if (ret < 0) 3648 return ret; 3649 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 3650 dmar_remove_dev_scope(info, rmrr->segment, 3651 rmrru->devices, rmrru->devices_cnt); 3652 } 3653 } 3654 3655 list_for_each_entry(atsru, &dmar_atsr_units, list) { 3656 if (atsru->include_all) 3657 continue; 3658 3659 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); 3660 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 3661 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1), 3662 (void *)atsr + atsr->header.length, 3663 atsr->segment, atsru->devices, 3664 atsru->devices_cnt); 3665 if (ret > 0) 3666 break; 3667 else if (ret < 0) 3668 return ret; 3669 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 3670 if (dmar_remove_dev_scope(info, atsr->segment, 3671 atsru->devices, atsru->devices_cnt)) 3672 break; 3673 } 3674 } 3675 list_for_each_entry(satcu, &dmar_satc_units, list) { 3676 satc = container_of(satcu->hdr, struct acpi_dmar_satc, header); 3677 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 3678 ret = dmar_insert_dev_scope(info, (void *)(satc + 1), 3679 (void *)satc + satc->header.length, 3680 satc->segment, satcu->devices, 3681 satcu->devices_cnt); 3682 if (ret > 0) 3683 break; 3684 else if (ret < 0) 3685 return ret; 3686 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 3687 if (dmar_remove_dev_scope(info, satc->segment, 3688 satcu->devices, satcu->devices_cnt)) 3689 break; 3690 } 3691 } 3692 3693 return 0; 3694 } 3695 3696 static int intel_iommu_memory_notifier(struct notifier_block *nb, 3697 unsigned long val, void *v) 3698 { 3699 struct memory_notify *mhp = v; 3700 unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn); 3701 unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn + 3702 mhp->nr_pages - 1); 3703 3704 switch (val) { 3705 case MEM_GOING_ONLINE: 3706 if (iommu_domain_identity_map(si_domain, 3707 start_vpfn, last_vpfn)) { 3708 pr_warn("Failed to build identity map for [%lx-%lx]\n", 3709 start_vpfn, last_vpfn); 3710 return NOTIFY_BAD; 3711 } 3712 break; 3713 3714 case MEM_OFFLINE: 3715 case MEM_CANCEL_ONLINE: 3716 { 3717 struct dmar_drhd_unit *drhd; 3718 struct intel_iommu *iommu; 3719 LIST_HEAD(freelist); 3720 3721 domain_unmap(si_domain, start_vpfn, last_vpfn, &freelist); 3722 3723 rcu_read_lock(); 3724 for_each_active_iommu(iommu, drhd) 3725 iommu_flush_iotlb_psi(iommu, si_domain, 3726 start_vpfn, mhp->nr_pages, 3727 list_empty(&freelist), 0); 3728 rcu_read_unlock(); 3729 put_pages_list(&freelist); 3730 } 3731 break; 3732 } 3733 3734 return NOTIFY_OK; 3735 } 3736 3737 static struct notifier_block intel_iommu_memory_nb = { 3738 .notifier_call = intel_iommu_memory_notifier, 3739 .priority = 0 3740 }; 3741 3742 static void intel_disable_iommus(void) 3743 { 3744 struct intel_iommu *iommu = NULL; 3745 struct dmar_drhd_unit *drhd; 3746 3747 for_each_iommu(iommu, drhd) 3748 iommu_disable_translation(iommu); 3749 } 3750 3751 void intel_iommu_shutdown(void) 3752 { 3753 struct dmar_drhd_unit *drhd; 3754 struct intel_iommu *iommu = NULL; 3755 3756 if (no_iommu || dmar_disabled) 3757 return; 3758 3759 down_write(&dmar_global_lock); 3760 3761 /* Disable PMRs explicitly here. */ 3762 for_each_iommu(iommu, drhd) 3763 iommu_disable_protect_mem_regions(iommu); 3764 3765 /* Make sure the IOMMUs are switched off */ 3766 intel_disable_iommus(); 3767 3768 up_write(&dmar_global_lock); 3769 } 3770 3771 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev) 3772 { 3773 struct iommu_device *iommu_dev = dev_to_iommu_device(dev); 3774 3775 return container_of(iommu_dev, struct intel_iommu, iommu); 3776 } 3777 3778 static ssize_t version_show(struct device *dev, 3779 struct device_attribute *attr, char *buf) 3780 { 3781 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3782 u32 ver = readl(iommu->reg + DMAR_VER_REG); 3783 return sprintf(buf, "%d:%d\n", 3784 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver)); 3785 } 3786 static DEVICE_ATTR_RO(version); 3787 3788 static ssize_t address_show(struct device *dev, 3789 struct device_attribute *attr, char *buf) 3790 { 3791 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3792 return sprintf(buf, "%llx\n", iommu->reg_phys); 3793 } 3794 static DEVICE_ATTR_RO(address); 3795 3796 static ssize_t cap_show(struct device *dev, 3797 struct device_attribute *attr, char *buf) 3798 { 3799 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3800 return sprintf(buf, "%llx\n", iommu->cap); 3801 } 3802 static DEVICE_ATTR_RO(cap); 3803 3804 static ssize_t ecap_show(struct device *dev, 3805 struct device_attribute *attr, char *buf) 3806 { 3807 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3808 return sprintf(buf, "%llx\n", iommu->ecap); 3809 } 3810 static DEVICE_ATTR_RO(ecap); 3811 3812 static ssize_t domains_supported_show(struct device *dev, 3813 struct device_attribute *attr, char *buf) 3814 { 3815 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3816 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap)); 3817 } 3818 static DEVICE_ATTR_RO(domains_supported); 3819 3820 static ssize_t domains_used_show(struct device *dev, 3821 struct device_attribute *attr, char *buf) 3822 { 3823 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3824 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids, 3825 cap_ndoms(iommu->cap))); 3826 } 3827 static DEVICE_ATTR_RO(domains_used); 3828 3829 static struct attribute *intel_iommu_attrs[] = { 3830 &dev_attr_version.attr, 3831 &dev_attr_address.attr, 3832 &dev_attr_cap.attr, 3833 &dev_attr_ecap.attr, 3834 &dev_attr_domains_supported.attr, 3835 &dev_attr_domains_used.attr, 3836 NULL, 3837 }; 3838 3839 static struct attribute_group intel_iommu_group = { 3840 .name = "intel-iommu", 3841 .attrs = intel_iommu_attrs, 3842 }; 3843 3844 const struct attribute_group *intel_iommu_groups[] = { 3845 &intel_iommu_group, 3846 NULL, 3847 }; 3848 3849 static inline bool has_external_pci(void) 3850 { 3851 struct pci_dev *pdev = NULL; 3852 3853 for_each_pci_dev(pdev) 3854 if (pdev->external_facing) 3855 return true; 3856 3857 return false; 3858 } 3859 3860 static int __init platform_optin_force_iommu(void) 3861 { 3862 if (!dmar_platform_optin() || no_platform_optin || !has_external_pci()) 3863 return 0; 3864 3865 if (no_iommu || dmar_disabled) 3866 pr_info("Intel-IOMMU force enabled due to platform opt in\n"); 3867 3868 /* 3869 * If Intel-IOMMU is disabled by default, we will apply identity 3870 * map for all devices except those marked as being untrusted. 3871 */ 3872 if (dmar_disabled) 3873 iommu_set_default_passthrough(false); 3874 3875 dmar_disabled = 0; 3876 no_iommu = 0; 3877 3878 return 1; 3879 } 3880 3881 static int __init probe_acpi_namespace_devices(void) 3882 { 3883 struct dmar_drhd_unit *drhd; 3884 /* To avoid a -Wunused-but-set-variable warning. */ 3885 struct intel_iommu *iommu __maybe_unused; 3886 struct device *dev; 3887 int i, ret = 0; 3888 3889 for_each_active_iommu(iommu, drhd) { 3890 for_each_active_dev_scope(drhd->devices, 3891 drhd->devices_cnt, i, dev) { 3892 struct acpi_device_physical_node *pn; 3893 struct iommu_group *group; 3894 struct acpi_device *adev; 3895 3896 if (dev->bus != &acpi_bus_type) 3897 continue; 3898 3899 adev = to_acpi_device(dev); 3900 mutex_lock(&adev->physical_node_lock); 3901 list_for_each_entry(pn, 3902 &adev->physical_node_list, node) { 3903 group = iommu_group_get(pn->dev); 3904 if (group) { 3905 iommu_group_put(group); 3906 continue; 3907 } 3908 3909 ret = iommu_probe_device(pn->dev); 3910 if (ret) 3911 break; 3912 } 3913 mutex_unlock(&adev->physical_node_lock); 3914 3915 if (ret) 3916 return ret; 3917 } 3918 } 3919 3920 return 0; 3921 } 3922 3923 static __init int tboot_force_iommu(void) 3924 { 3925 if (!tboot_enabled()) 3926 return 0; 3927 3928 if (no_iommu || dmar_disabled) 3929 pr_warn("Forcing Intel-IOMMU to enabled\n"); 3930 3931 dmar_disabled = 0; 3932 no_iommu = 0; 3933 3934 return 1; 3935 } 3936 3937 int __init intel_iommu_init(void) 3938 { 3939 int ret = -ENODEV; 3940 struct dmar_drhd_unit *drhd; 3941 struct intel_iommu *iommu; 3942 3943 /* 3944 * Intel IOMMU is required for a TXT/tboot launch or platform 3945 * opt in, so enforce that. 3946 */ 3947 force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) || 3948 platform_optin_force_iommu(); 3949 3950 down_write(&dmar_global_lock); 3951 if (dmar_table_init()) { 3952 if (force_on) 3953 panic("tboot: Failed to initialize DMAR table\n"); 3954 goto out_free_dmar; 3955 } 3956 3957 if (dmar_dev_scope_init() < 0) { 3958 if (force_on) 3959 panic("tboot: Failed to initialize DMAR device scope\n"); 3960 goto out_free_dmar; 3961 } 3962 3963 up_write(&dmar_global_lock); 3964 3965 /* 3966 * The bus notifier takes the dmar_global_lock, so lockdep will 3967 * complain later when we register it under the lock. 3968 */ 3969 dmar_register_bus_notifier(); 3970 3971 down_write(&dmar_global_lock); 3972 3973 if (!no_iommu) 3974 intel_iommu_debugfs_init(); 3975 3976 if (no_iommu || dmar_disabled) { 3977 /* 3978 * We exit the function here to ensure IOMMU's remapping and 3979 * mempool aren't setup, which means that the IOMMU's PMRs 3980 * won't be disabled via the call to init_dmars(). So disable 3981 * it explicitly here. The PMRs were setup by tboot prior to 3982 * calling SENTER, but the kernel is expected to reset/tear 3983 * down the PMRs. 3984 */ 3985 if (intel_iommu_tboot_noforce) { 3986 for_each_iommu(iommu, drhd) 3987 iommu_disable_protect_mem_regions(iommu); 3988 } 3989 3990 /* 3991 * Make sure the IOMMUs are switched off, even when we 3992 * boot into a kexec kernel and the previous kernel left 3993 * them enabled 3994 */ 3995 intel_disable_iommus(); 3996 goto out_free_dmar; 3997 } 3998 3999 if (list_empty(&dmar_rmrr_units)) 4000 pr_info("No RMRR found\n"); 4001 4002 if (list_empty(&dmar_atsr_units)) 4003 pr_info("No ATSR found\n"); 4004 4005 if (list_empty(&dmar_satc_units)) 4006 pr_info("No SATC found\n"); 4007 4008 init_no_remapping_devices(); 4009 4010 ret = init_dmars(); 4011 if (ret) { 4012 if (force_on) 4013 panic("tboot: Failed to initialize DMARs\n"); 4014 pr_err("Initialization failed\n"); 4015 goto out_free_dmar; 4016 } 4017 up_write(&dmar_global_lock); 4018 4019 init_iommu_pm_ops(); 4020 4021 down_read(&dmar_global_lock); 4022 for_each_active_iommu(iommu, drhd) { 4023 /* 4024 * The flush queue implementation does not perform 4025 * page-selective invalidations that are required for efficient 4026 * TLB flushes in virtual environments. The benefit of batching 4027 * is likely to be much lower than the overhead of synchronizing 4028 * the virtual and physical IOMMU page-tables. 4029 */ 4030 if (cap_caching_mode(iommu->cap)) { 4031 pr_info_once("IOMMU batching disallowed due to virtualization\n"); 4032 iommu_set_dma_strict(); 4033 } 4034 iommu_device_sysfs_add(&iommu->iommu, NULL, 4035 intel_iommu_groups, 4036 "%s", iommu->name); 4037 iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL); 4038 } 4039 up_read(&dmar_global_lock); 4040 4041 if (si_domain && !hw_pass_through) 4042 register_memory_notifier(&intel_iommu_memory_nb); 4043 4044 down_read(&dmar_global_lock); 4045 if (probe_acpi_namespace_devices()) 4046 pr_warn("ACPI name space devices didn't probe correctly\n"); 4047 4048 /* Finally, we enable the DMA remapping hardware. */ 4049 for_each_iommu(iommu, drhd) { 4050 if (!drhd->ignored && !translation_pre_enabled(iommu)) 4051 iommu_enable_translation(iommu); 4052 4053 iommu_disable_protect_mem_regions(iommu); 4054 } 4055 up_read(&dmar_global_lock); 4056 4057 pr_info("Intel(R) Virtualization Technology for Directed I/O\n"); 4058 4059 intel_iommu_enabled = 1; 4060 4061 return 0; 4062 4063 out_free_dmar: 4064 intel_iommu_free_dmars(); 4065 up_write(&dmar_global_lock); 4066 return ret; 4067 } 4068 4069 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque) 4070 { 4071 struct device_domain_info *info = opaque; 4072 4073 domain_context_clear_one(info, PCI_BUS_NUM(alias), alias & 0xff); 4074 return 0; 4075 } 4076 4077 /* 4078 * NB - intel-iommu lacks any sort of reference counting for the users of 4079 * dependent devices. If multiple endpoints have intersecting dependent 4080 * devices, unbinding the driver from any one of them will possibly leave 4081 * the others unable to operate. 4082 */ 4083 static void domain_context_clear(struct device_domain_info *info) 4084 { 4085 if (!info->iommu || !info->dev || !dev_is_pci(info->dev)) 4086 return; 4087 4088 pci_for_each_dma_alias(to_pci_dev(info->dev), 4089 &domain_context_clear_one_cb, info); 4090 } 4091 4092 static void dmar_remove_one_dev_info(struct device *dev) 4093 { 4094 struct device_domain_info *info = dev_iommu_priv_get(dev); 4095 struct dmar_domain *domain = info->domain; 4096 struct intel_iommu *iommu = info->iommu; 4097 unsigned long flags; 4098 4099 if (!dev_is_real_dma_subdevice(info->dev)) { 4100 if (dev_is_pci(info->dev) && sm_supported(iommu)) 4101 intel_pasid_tear_down_entry(iommu, info->dev, 4102 PASID_RID2PASID, false); 4103 4104 iommu_disable_dev_iotlb(info); 4105 domain_context_clear(info); 4106 intel_pasid_free_table(info->dev); 4107 } 4108 4109 spin_lock_irqsave(&domain->lock, flags); 4110 list_del(&info->link); 4111 spin_unlock_irqrestore(&domain->lock, flags); 4112 4113 domain_detach_iommu(domain, iommu); 4114 info->domain = NULL; 4115 } 4116 4117 static int md_domain_init(struct dmar_domain *domain, int guest_width) 4118 { 4119 int adjust_width; 4120 4121 /* calculate AGAW */ 4122 domain->gaw = guest_width; 4123 adjust_width = guestwidth_to_adjustwidth(guest_width); 4124 domain->agaw = width_to_agaw(adjust_width); 4125 4126 domain->iommu_coherency = false; 4127 domain->iommu_superpage = 0; 4128 domain->max_addr = 0; 4129 4130 /* always allocate the top pgd */ 4131 domain->pgd = alloc_pgtable_page(domain->nid); 4132 if (!domain->pgd) 4133 return -ENOMEM; 4134 domain_flush_cache(domain, domain->pgd, PAGE_SIZE); 4135 return 0; 4136 } 4137 4138 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type) 4139 { 4140 struct dmar_domain *dmar_domain; 4141 struct iommu_domain *domain; 4142 4143 switch (type) { 4144 case IOMMU_DOMAIN_DMA: 4145 case IOMMU_DOMAIN_DMA_FQ: 4146 case IOMMU_DOMAIN_UNMANAGED: 4147 dmar_domain = alloc_domain(type); 4148 if (!dmar_domain) { 4149 pr_err("Can't allocate dmar_domain\n"); 4150 return NULL; 4151 } 4152 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { 4153 pr_err("Domain initialization failed\n"); 4154 domain_exit(dmar_domain); 4155 return NULL; 4156 } 4157 4158 domain = &dmar_domain->domain; 4159 domain->geometry.aperture_start = 0; 4160 domain->geometry.aperture_end = 4161 __DOMAIN_MAX_ADDR(dmar_domain->gaw); 4162 domain->geometry.force_aperture = true; 4163 4164 return domain; 4165 case IOMMU_DOMAIN_IDENTITY: 4166 return &si_domain->domain; 4167 default: 4168 return NULL; 4169 } 4170 4171 return NULL; 4172 } 4173 4174 static void intel_iommu_domain_free(struct iommu_domain *domain) 4175 { 4176 if (domain != &si_domain->domain) 4177 domain_exit(to_dmar_domain(domain)); 4178 } 4179 4180 static int prepare_domain_attach_device(struct iommu_domain *domain, 4181 struct device *dev) 4182 { 4183 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4184 struct intel_iommu *iommu; 4185 int addr_width; 4186 4187 iommu = device_to_iommu(dev, NULL, NULL); 4188 if (!iommu) 4189 return -ENODEV; 4190 4191 if (dmar_domain->force_snooping && !ecap_sc_support(iommu->ecap)) 4192 return -EOPNOTSUPP; 4193 4194 /* check if this iommu agaw is sufficient for max mapped address */ 4195 addr_width = agaw_to_width(iommu->agaw); 4196 if (addr_width > cap_mgaw(iommu->cap)) 4197 addr_width = cap_mgaw(iommu->cap); 4198 4199 if (dmar_domain->max_addr > (1LL << addr_width)) { 4200 dev_err(dev, "%s: iommu width (%d) is not " 4201 "sufficient for the mapped address (%llx)\n", 4202 __func__, addr_width, dmar_domain->max_addr); 4203 return -EFAULT; 4204 } 4205 dmar_domain->gaw = addr_width; 4206 4207 /* 4208 * Knock out extra levels of page tables if necessary 4209 */ 4210 while (iommu->agaw < dmar_domain->agaw) { 4211 struct dma_pte *pte; 4212 4213 pte = dmar_domain->pgd; 4214 if (dma_pte_present(pte)) { 4215 dmar_domain->pgd = phys_to_virt(dma_pte_addr(pte)); 4216 free_pgtable_page(pte); 4217 } 4218 dmar_domain->agaw--; 4219 } 4220 4221 return 0; 4222 } 4223 4224 static int intel_iommu_attach_device(struct iommu_domain *domain, 4225 struct device *dev) 4226 { 4227 int ret; 4228 4229 if (domain->type == IOMMU_DOMAIN_UNMANAGED && 4230 device_is_rmrr_locked(dev)) { 4231 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n"); 4232 return -EPERM; 4233 } 4234 4235 /* normally dev is not mapped */ 4236 if (unlikely(domain_context_mapped(dev))) { 4237 struct device_domain_info *info = dev_iommu_priv_get(dev); 4238 4239 if (info->domain) 4240 dmar_remove_one_dev_info(dev); 4241 } 4242 4243 ret = prepare_domain_attach_device(domain, dev); 4244 if (ret) 4245 return ret; 4246 4247 return domain_add_dev_info(to_dmar_domain(domain), dev); 4248 } 4249 4250 static void intel_iommu_detach_device(struct iommu_domain *domain, 4251 struct device *dev) 4252 { 4253 dmar_remove_one_dev_info(dev); 4254 } 4255 4256 static int intel_iommu_map(struct iommu_domain *domain, 4257 unsigned long iova, phys_addr_t hpa, 4258 size_t size, int iommu_prot, gfp_t gfp) 4259 { 4260 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4261 u64 max_addr; 4262 int prot = 0; 4263 4264 if (iommu_prot & IOMMU_READ) 4265 prot |= DMA_PTE_READ; 4266 if (iommu_prot & IOMMU_WRITE) 4267 prot |= DMA_PTE_WRITE; 4268 if (dmar_domain->set_pte_snp) 4269 prot |= DMA_PTE_SNP; 4270 4271 max_addr = iova + size; 4272 if (dmar_domain->max_addr < max_addr) { 4273 u64 end; 4274 4275 /* check if minimum agaw is sufficient for mapped address */ 4276 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; 4277 if (end < max_addr) { 4278 pr_err("%s: iommu width (%d) is not " 4279 "sufficient for the mapped address (%llx)\n", 4280 __func__, dmar_domain->gaw, max_addr); 4281 return -EFAULT; 4282 } 4283 dmar_domain->max_addr = max_addr; 4284 } 4285 /* Round up size to next multiple of PAGE_SIZE, if it and 4286 the low bits of hpa would take us onto the next page */ 4287 size = aligned_nrpages(hpa, size); 4288 return __domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, 4289 hpa >> VTD_PAGE_SHIFT, size, prot); 4290 } 4291 4292 static int intel_iommu_map_pages(struct iommu_domain *domain, 4293 unsigned long iova, phys_addr_t paddr, 4294 size_t pgsize, size_t pgcount, 4295 int prot, gfp_t gfp, size_t *mapped) 4296 { 4297 unsigned long pgshift = __ffs(pgsize); 4298 size_t size = pgcount << pgshift; 4299 int ret; 4300 4301 if (pgsize != SZ_4K && pgsize != SZ_2M && pgsize != SZ_1G) 4302 return -EINVAL; 4303 4304 if (!IS_ALIGNED(iova | paddr, pgsize)) 4305 return -EINVAL; 4306 4307 ret = intel_iommu_map(domain, iova, paddr, size, prot, gfp); 4308 if (!ret && mapped) 4309 *mapped = size; 4310 4311 return ret; 4312 } 4313 4314 static size_t intel_iommu_unmap(struct iommu_domain *domain, 4315 unsigned long iova, size_t size, 4316 struct iommu_iotlb_gather *gather) 4317 { 4318 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4319 unsigned long start_pfn, last_pfn; 4320 int level = 0; 4321 4322 /* Cope with horrid API which requires us to unmap more than the 4323 size argument if it happens to be a large-page mapping. */ 4324 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level)); 4325 4326 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level)) 4327 size = VTD_PAGE_SIZE << level_to_offset_bits(level); 4328 4329 start_pfn = iova >> VTD_PAGE_SHIFT; 4330 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT; 4331 4332 domain_unmap(dmar_domain, start_pfn, last_pfn, &gather->freelist); 4333 4334 if (dmar_domain->max_addr == iova + size) 4335 dmar_domain->max_addr = iova; 4336 4337 iommu_iotlb_gather_add_page(domain, gather, iova, size); 4338 4339 return size; 4340 } 4341 4342 static size_t intel_iommu_unmap_pages(struct iommu_domain *domain, 4343 unsigned long iova, 4344 size_t pgsize, size_t pgcount, 4345 struct iommu_iotlb_gather *gather) 4346 { 4347 unsigned long pgshift = __ffs(pgsize); 4348 size_t size = pgcount << pgshift; 4349 4350 return intel_iommu_unmap(domain, iova, size, gather); 4351 } 4352 4353 static void intel_iommu_tlb_sync(struct iommu_domain *domain, 4354 struct iommu_iotlb_gather *gather) 4355 { 4356 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4357 unsigned long iova_pfn = IOVA_PFN(gather->start); 4358 size_t size = gather->end - gather->start; 4359 struct iommu_domain_info *info; 4360 unsigned long start_pfn; 4361 unsigned long nrpages; 4362 unsigned long i; 4363 4364 nrpages = aligned_nrpages(gather->start, size); 4365 start_pfn = mm_to_dma_pfn(iova_pfn); 4366 4367 xa_for_each(&dmar_domain->iommu_array, i, info) 4368 iommu_flush_iotlb_psi(info->iommu, dmar_domain, 4369 start_pfn, nrpages, 4370 list_empty(&gather->freelist), 0); 4371 4372 put_pages_list(&gather->freelist); 4373 } 4374 4375 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, 4376 dma_addr_t iova) 4377 { 4378 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4379 struct dma_pte *pte; 4380 int level = 0; 4381 u64 phys = 0; 4382 4383 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level); 4384 if (pte && dma_pte_present(pte)) 4385 phys = dma_pte_addr(pte) + 4386 (iova & (BIT_MASK(level_to_offset_bits(level) + 4387 VTD_PAGE_SHIFT) - 1)); 4388 4389 return phys; 4390 } 4391 4392 static bool domain_support_force_snooping(struct dmar_domain *domain) 4393 { 4394 struct device_domain_info *info; 4395 bool support = true; 4396 4397 assert_spin_locked(&domain->lock); 4398 list_for_each_entry(info, &domain->devices, link) { 4399 if (!ecap_sc_support(info->iommu->ecap)) { 4400 support = false; 4401 break; 4402 } 4403 } 4404 4405 return support; 4406 } 4407 4408 static void domain_set_force_snooping(struct dmar_domain *domain) 4409 { 4410 struct device_domain_info *info; 4411 4412 assert_spin_locked(&domain->lock); 4413 /* 4414 * Second level page table supports per-PTE snoop control. The 4415 * iommu_map() interface will handle this by setting SNP bit. 4416 */ 4417 if (!domain_use_first_level(domain)) { 4418 domain->set_pte_snp = true; 4419 return; 4420 } 4421 4422 list_for_each_entry(info, &domain->devices, link) 4423 intel_pasid_setup_page_snoop_control(info->iommu, info->dev, 4424 PASID_RID2PASID); 4425 } 4426 4427 static bool intel_iommu_enforce_cache_coherency(struct iommu_domain *domain) 4428 { 4429 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4430 unsigned long flags; 4431 4432 if (dmar_domain->force_snooping) 4433 return true; 4434 4435 spin_lock_irqsave(&dmar_domain->lock, flags); 4436 if (!domain_support_force_snooping(dmar_domain)) { 4437 spin_unlock_irqrestore(&dmar_domain->lock, flags); 4438 return false; 4439 } 4440 4441 domain_set_force_snooping(dmar_domain); 4442 dmar_domain->force_snooping = true; 4443 spin_unlock_irqrestore(&dmar_domain->lock, flags); 4444 4445 return true; 4446 } 4447 4448 static bool intel_iommu_capable(struct device *dev, enum iommu_cap cap) 4449 { 4450 if (cap == IOMMU_CAP_CACHE_COHERENCY) 4451 return true; 4452 if (cap == IOMMU_CAP_INTR_REMAP) 4453 return irq_remapping_enabled == 1; 4454 if (cap == IOMMU_CAP_PRE_BOOT_PROTECTION) 4455 return dmar_platform_optin(); 4456 4457 return false; 4458 } 4459 4460 static struct iommu_device *intel_iommu_probe_device(struct device *dev) 4461 { 4462 struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL; 4463 struct device_domain_info *info; 4464 struct intel_iommu *iommu; 4465 u8 bus, devfn; 4466 4467 iommu = device_to_iommu(dev, &bus, &devfn); 4468 if (!iommu || !iommu->iommu.ops) 4469 return ERR_PTR(-ENODEV); 4470 4471 info = kzalloc(sizeof(*info), GFP_KERNEL); 4472 if (!info) 4473 return ERR_PTR(-ENOMEM); 4474 4475 if (dev_is_real_dma_subdevice(dev)) { 4476 info->bus = pdev->bus->number; 4477 info->devfn = pdev->devfn; 4478 info->segment = pci_domain_nr(pdev->bus); 4479 } else { 4480 info->bus = bus; 4481 info->devfn = devfn; 4482 info->segment = iommu->segment; 4483 } 4484 4485 info->dev = dev; 4486 info->iommu = iommu; 4487 if (dev_is_pci(dev)) { 4488 if (ecap_dev_iotlb_support(iommu->ecap) && 4489 pci_ats_supported(pdev) && 4490 dmar_ats_supported(pdev, iommu)) 4491 info->ats_supported = 1; 4492 4493 if (sm_supported(iommu)) { 4494 if (pasid_supported(iommu)) { 4495 int features = pci_pasid_features(pdev); 4496 4497 if (features >= 0) 4498 info->pasid_supported = features | 1; 4499 } 4500 4501 if (info->ats_supported && ecap_prs(iommu->ecap) && 4502 pci_pri_supported(pdev)) 4503 info->pri_supported = 1; 4504 } 4505 } 4506 4507 dev_iommu_priv_set(dev, info); 4508 4509 return &iommu->iommu; 4510 } 4511 4512 static void intel_iommu_release_device(struct device *dev) 4513 { 4514 struct device_domain_info *info = dev_iommu_priv_get(dev); 4515 4516 dmar_remove_one_dev_info(dev); 4517 dev_iommu_priv_set(dev, NULL); 4518 kfree(info); 4519 set_dma_ops(dev, NULL); 4520 } 4521 4522 static void intel_iommu_probe_finalize(struct device *dev) 4523 { 4524 set_dma_ops(dev, NULL); 4525 iommu_setup_dma_ops(dev, 0, U64_MAX); 4526 } 4527 4528 static void intel_iommu_get_resv_regions(struct device *device, 4529 struct list_head *head) 4530 { 4531 int prot = DMA_PTE_READ | DMA_PTE_WRITE; 4532 struct iommu_resv_region *reg; 4533 struct dmar_rmrr_unit *rmrr; 4534 struct device *i_dev; 4535 int i; 4536 4537 down_read(&dmar_global_lock); 4538 for_each_rmrr_units(rmrr) { 4539 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, 4540 i, i_dev) { 4541 struct iommu_resv_region *resv; 4542 enum iommu_resv_type type; 4543 size_t length; 4544 4545 if (i_dev != device && 4546 !is_downstream_to_pci_bridge(device, i_dev)) 4547 continue; 4548 4549 length = rmrr->end_address - rmrr->base_address + 1; 4550 4551 type = device_rmrr_is_relaxable(device) ? 4552 IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT; 4553 4554 resv = iommu_alloc_resv_region(rmrr->base_address, 4555 length, prot, type); 4556 if (!resv) 4557 break; 4558 4559 list_add_tail(&resv->list, head); 4560 } 4561 } 4562 up_read(&dmar_global_lock); 4563 4564 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA 4565 if (dev_is_pci(device)) { 4566 struct pci_dev *pdev = to_pci_dev(device); 4567 4568 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) { 4569 reg = iommu_alloc_resv_region(0, 1UL << 24, prot, 4570 IOMMU_RESV_DIRECT_RELAXABLE); 4571 if (reg) 4572 list_add_tail(®->list, head); 4573 } 4574 } 4575 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */ 4576 4577 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START, 4578 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1, 4579 0, IOMMU_RESV_MSI); 4580 if (!reg) 4581 return; 4582 list_add_tail(®->list, head); 4583 } 4584 4585 static struct iommu_group *intel_iommu_device_group(struct device *dev) 4586 { 4587 if (dev_is_pci(dev)) 4588 return pci_device_group(dev); 4589 return generic_device_group(dev); 4590 } 4591 4592 static int intel_iommu_enable_sva(struct device *dev) 4593 { 4594 struct device_domain_info *info = dev_iommu_priv_get(dev); 4595 struct intel_iommu *iommu; 4596 int ret; 4597 4598 if (!info || dmar_disabled) 4599 return -EINVAL; 4600 4601 iommu = info->iommu; 4602 if (!iommu) 4603 return -EINVAL; 4604 4605 if (!(iommu->flags & VTD_FLAG_SVM_CAPABLE)) 4606 return -ENODEV; 4607 4608 if (!info->pasid_enabled || !info->pri_enabled || !info->ats_enabled) 4609 return -EINVAL; 4610 4611 ret = iopf_queue_add_device(iommu->iopf_queue, dev); 4612 if (!ret) 4613 ret = iommu_register_device_fault_handler(dev, iommu_queue_iopf, dev); 4614 4615 return ret; 4616 } 4617 4618 static int intel_iommu_disable_sva(struct device *dev) 4619 { 4620 struct device_domain_info *info = dev_iommu_priv_get(dev); 4621 struct intel_iommu *iommu = info->iommu; 4622 int ret; 4623 4624 ret = iommu_unregister_device_fault_handler(dev); 4625 if (!ret) 4626 ret = iopf_queue_remove_device(iommu->iopf_queue, dev); 4627 4628 return ret; 4629 } 4630 4631 static int intel_iommu_enable_iopf(struct device *dev) 4632 { 4633 struct device_domain_info *info = dev_iommu_priv_get(dev); 4634 4635 if (info && info->pri_supported) 4636 return 0; 4637 4638 return -ENODEV; 4639 } 4640 4641 static int 4642 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat) 4643 { 4644 switch (feat) { 4645 case IOMMU_DEV_FEAT_IOPF: 4646 return intel_iommu_enable_iopf(dev); 4647 4648 case IOMMU_DEV_FEAT_SVA: 4649 return intel_iommu_enable_sva(dev); 4650 4651 default: 4652 return -ENODEV; 4653 } 4654 } 4655 4656 static int 4657 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat) 4658 { 4659 switch (feat) { 4660 case IOMMU_DEV_FEAT_IOPF: 4661 return 0; 4662 4663 case IOMMU_DEV_FEAT_SVA: 4664 return intel_iommu_disable_sva(dev); 4665 4666 default: 4667 return -ENODEV; 4668 } 4669 } 4670 4671 static bool intel_iommu_is_attach_deferred(struct device *dev) 4672 { 4673 struct device_domain_info *info = dev_iommu_priv_get(dev); 4674 4675 return translation_pre_enabled(info->iommu) && !info->domain; 4676 } 4677 4678 /* 4679 * Check that the device does not live on an external facing PCI port that is 4680 * marked as untrusted. Such devices should not be able to apply quirks and 4681 * thus not be able to bypass the IOMMU restrictions. 4682 */ 4683 static bool risky_device(struct pci_dev *pdev) 4684 { 4685 if (pdev->untrusted) { 4686 pci_info(pdev, 4687 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n", 4688 pdev->vendor, pdev->device); 4689 pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n"); 4690 return true; 4691 } 4692 return false; 4693 } 4694 4695 static void intel_iommu_iotlb_sync_map(struct iommu_domain *domain, 4696 unsigned long iova, size_t size) 4697 { 4698 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4699 unsigned long pages = aligned_nrpages(iova, size); 4700 unsigned long pfn = iova >> VTD_PAGE_SHIFT; 4701 struct iommu_domain_info *info; 4702 unsigned long i; 4703 4704 xa_for_each(&dmar_domain->iommu_array, i, info) 4705 __mapping_notify_one(info->iommu, dmar_domain, pfn, pages); 4706 } 4707 4708 const struct iommu_ops intel_iommu_ops = { 4709 .capable = intel_iommu_capable, 4710 .domain_alloc = intel_iommu_domain_alloc, 4711 .probe_device = intel_iommu_probe_device, 4712 .probe_finalize = intel_iommu_probe_finalize, 4713 .release_device = intel_iommu_release_device, 4714 .get_resv_regions = intel_iommu_get_resv_regions, 4715 .device_group = intel_iommu_device_group, 4716 .dev_enable_feat = intel_iommu_dev_enable_feat, 4717 .dev_disable_feat = intel_iommu_dev_disable_feat, 4718 .is_attach_deferred = intel_iommu_is_attach_deferred, 4719 .def_domain_type = device_def_domain_type, 4720 .pgsize_bitmap = SZ_4K, 4721 #ifdef CONFIG_INTEL_IOMMU_SVM 4722 .sva_bind = intel_svm_bind, 4723 .sva_unbind = intel_svm_unbind, 4724 .sva_get_pasid = intel_svm_get_pasid, 4725 .page_response = intel_svm_page_response, 4726 #endif 4727 .default_domain_ops = &(const struct iommu_domain_ops) { 4728 .attach_dev = intel_iommu_attach_device, 4729 .detach_dev = intel_iommu_detach_device, 4730 .map_pages = intel_iommu_map_pages, 4731 .unmap_pages = intel_iommu_unmap_pages, 4732 .iotlb_sync_map = intel_iommu_iotlb_sync_map, 4733 .flush_iotlb_all = intel_flush_iotlb_all, 4734 .iotlb_sync = intel_iommu_tlb_sync, 4735 .iova_to_phys = intel_iommu_iova_to_phys, 4736 .free = intel_iommu_domain_free, 4737 .enforce_cache_coherency = intel_iommu_enforce_cache_coherency, 4738 } 4739 }; 4740 4741 static void quirk_iommu_igfx(struct pci_dev *dev) 4742 { 4743 if (risky_device(dev)) 4744 return; 4745 4746 pci_info(dev, "Disabling IOMMU for graphics on this chipset\n"); 4747 dmar_map_gfx = 0; 4748 } 4749 4750 /* G4x/GM45 integrated gfx dmar support is totally busted. */ 4751 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx); 4752 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx); 4753 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx); 4754 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx); 4755 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx); 4756 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx); 4757 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx); 4758 4759 /* Broadwell igfx malfunctions with dmar */ 4760 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx); 4761 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx); 4762 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx); 4763 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx); 4764 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx); 4765 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx); 4766 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx); 4767 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx); 4768 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx); 4769 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx); 4770 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx); 4771 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx); 4772 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx); 4773 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx); 4774 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx); 4775 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx); 4776 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx); 4777 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx); 4778 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx); 4779 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx); 4780 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx); 4781 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx); 4782 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx); 4783 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx); 4784 4785 static void quirk_iommu_rwbf(struct pci_dev *dev) 4786 { 4787 if (risky_device(dev)) 4788 return; 4789 4790 /* 4791 * Mobile 4 Series Chipset neglects to set RWBF capability, 4792 * but needs it. Same seems to hold for the desktop versions. 4793 */ 4794 pci_info(dev, "Forcing write-buffer flush capability\n"); 4795 rwbf_quirk = 1; 4796 } 4797 4798 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); 4799 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf); 4800 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf); 4801 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf); 4802 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf); 4803 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf); 4804 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf); 4805 4806 #define GGC 0x52 4807 #define GGC_MEMORY_SIZE_MASK (0xf << 8) 4808 #define GGC_MEMORY_SIZE_NONE (0x0 << 8) 4809 #define GGC_MEMORY_SIZE_1M (0x1 << 8) 4810 #define GGC_MEMORY_SIZE_2M (0x3 << 8) 4811 #define GGC_MEMORY_VT_ENABLED (0x8 << 8) 4812 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8) 4813 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8) 4814 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8) 4815 4816 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev) 4817 { 4818 unsigned short ggc; 4819 4820 if (risky_device(dev)) 4821 return; 4822 4823 if (pci_read_config_word(dev, GGC, &ggc)) 4824 return; 4825 4826 if (!(ggc & GGC_MEMORY_VT_ENABLED)) { 4827 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); 4828 dmar_map_gfx = 0; 4829 } else if (dmar_map_gfx) { 4830 /* we have to ensure the gfx device is idle before we flush */ 4831 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n"); 4832 iommu_set_dma_strict(); 4833 } 4834 } 4835 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); 4836 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); 4837 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); 4838 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); 4839 4840 static void quirk_igfx_skip_te_disable(struct pci_dev *dev) 4841 { 4842 unsigned short ver; 4843 4844 if (!IS_GFX_DEVICE(dev)) 4845 return; 4846 4847 ver = (dev->device >> 8) & 0xff; 4848 if (ver != 0x45 && ver != 0x46 && ver != 0x4c && 4849 ver != 0x4e && ver != 0x8a && ver != 0x98 && 4850 ver != 0x9a && ver != 0xa7) 4851 return; 4852 4853 if (risky_device(dev)) 4854 return; 4855 4856 pci_info(dev, "Skip IOMMU disabling for graphics\n"); 4857 iommu_skip_te_disable = 1; 4858 } 4859 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable); 4860 4861 /* On Tylersburg chipsets, some BIOSes have been known to enable the 4862 ISOCH DMAR unit for the Azalia sound device, but not give it any 4863 TLB entries, which causes it to deadlock. Check for that. We do 4864 this in a function called from init_dmars(), instead of in a PCI 4865 quirk, because we don't want to print the obnoxious "BIOS broken" 4866 message if VT-d is actually disabled. 4867 */ 4868 static void __init check_tylersburg_isoch(void) 4869 { 4870 struct pci_dev *pdev; 4871 uint32_t vtisochctrl; 4872 4873 /* If there's no Azalia in the system anyway, forget it. */ 4874 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); 4875 if (!pdev) 4876 return; 4877 4878 if (risky_device(pdev)) { 4879 pci_dev_put(pdev); 4880 return; 4881 } 4882 4883 pci_dev_put(pdev); 4884 4885 /* System Management Registers. Might be hidden, in which case 4886 we can't do the sanity check. But that's OK, because the 4887 known-broken BIOSes _don't_ actually hide it, so far. */ 4888 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); 4889 if (!pdev) 4890 return; 4891 4892 if (risky_device(pdev)) { 4893 pci_dev_put(pdev); 4894 return; 4895 } 4896 4897 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { 4898 pci_dev_put(pdev); 4899 return; 4900 } 4901 4902 pci_dev_put(pdev); 4903 4904 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ 4905 if (vtisochctrl & 1) 4906 return; 4907 4908 /* Drop all bits other than the number of TLB entries */ 4909 vtisochctrl &= 0x1c; 4910 4911 /* If we have the recommended number of TLB entries (16), fine. */ 4912 if (vtisochctrl == 0x10) 4913 return; 4914 4915 /* Zero TLB entries? You get to ride the short bus to school. */ 4916 if (!vtisochctrl) { 4917 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" 4918 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 4919 dmi_get_system_info(DMI_BIOS_VENDOR), 4920 dmi_get_system_info(DMI_BIOS_VERSION), 4921 dmi_get_system_info(DMI_PRODUCT_VERSION)); 4922 iommu_identity_mapping |= IDENTMAP_AZALIA; 4923 return; 4924 } 4925 4926 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", 4927 vtisochctrl); 4928 } 4929