1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2014 Intel Corporation. 4 * 5 * Authors: David Woodhouse <dwmw2@infradead.org>, 6 * Ashok Raj <ashok.raj@intel.com>, 7 * Shaohua Li <shaohua.li@intel.com>, 8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>, 9 * Fenghua Yu <fenghua.yu@intel.com> 10 * Joerg Roedel <jroedel@suse.de> 11 */ 12 13 #define pr_fmt(fmt) "DMAR: " fmt 14 #define dev_fmt(fmt) pr_fmt(fmt) 15 16 #include <linux/init.h> 17 #include <linux/bitmap.h> 18 #include <linux/debugfs.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/irq.h> 22 #include <linux/interrupt.h> 23 #include <linux/spinlock.h> 24 #include <linux/pci.h> 25 #include <linux/dmar.h> 26 #include <linux/dma-map-ops.h> 27 #include <linux/mempool.h> 28 #include <linux/memory.h> 29 #include <linux/cpu.h> 30 #include <linux/timer.h> 31 #include <linux/io.h> 32 #include <linux/iova.h> 33 #include <linux/iommu.h> 34 #include <linux/dma-iommu.h> 35 #include <linux/intel-iommu.h> 36 #include <linux/syscore_ops.h> 37 #include <linux/tboot.h> 38 #include <linux/dmi.h> 39 #include <linux/pci-ats.h> 40 #include <linux/memblock.h> 41 #include <linux/dma-direct.h> 42 #include <linux/crash_dump.h> 43 #include <linux/numa.h> 44 #include <asm/irq_remapping.h> 45 #include <asm/cacheflush.h> 46 #include <asm/iommu.h> 47 48 #include "../irq_remapping.h" 49 #include "../iommu-sva-lib.h" 50 #include "pasid.h" 51 #include "cap_audit.h" 52 53 #define ROOT_SIZE VTD_PAGE_SIZE 54 #define CONTEXT_SIZE VTD_PAGE_SIZE 55 56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) 57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB) 58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) 59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) 60 61 #define IOAPIC_RANGE_START (0xfee00000) 62 #define IOAPIC_RANGE_END (0xfeefffff) 63 #define IOVA_START_ADDR (0x1000) 64 65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57 66 67 #define MAX_AGAW_WIDTH 64 68 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT) 69 70 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1) 71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1) 72 73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR 74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */ 75 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ 76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) 77 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) 78 79 /* IO virtual address start page frame number */ 80 #define IOVA_START_PFN (1) 81 82 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 83 84 /* page table handling */ 85 #define LEVEL_STRIDE (9) 86 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) 87 88 /* 89 * This bitmap is used to advertise the page sizes our hardware support 90 * to the IOMMU core, which will then use this information to split 91 * physically contiguous memory regions it is mapping into page sizes 92 * that we support. 93 * 94 * Traditionally the IOMMU core just handed us the mappings directly, 95 * after making sure the size is an order of a 4KiB page and that the 96 * mapping has natural alignment. 97 * 98 * To retain this behavior, we currently advertise that we support 99 * all page sizes that are an order of 4KiB. 100 * 101 * If at some point we'd like to utilize the IOMMU core's new behavior, 102 * we could change this to advertise the real page sizes we support. 103 */ 104 #define INTEL_IOMMU_PGSIZES (~0xFFFUL) 105 106 static inline int agaw_to_level(int agaw) 107 { 108 return agaw + 2; 109 } 110 111 static inline int agaw_to_width(int agaw) 112 { 113 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH); 114 } 115 116 static inline int width_to_agaw(int width) 117 { 118 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE); 119 } 120 121 static inline unsigned int level_to_offset_bits(int level) 122 { 123 return (level - 1) * LEVEL_STRIDE; 124 } 125 126 static inline int pfn_level_offset(u64 pfn, int level) 127 { 128 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; 129 } 130 131 static inline u64 level_mask(int level) 132 { 133 return -1ULL << level_to_offset_bits(level); 134 } 135 136 static inline u64 level_size(int level) 137 { 138 return 1ULL << level_to_offset_bits(level); 139 } 140 141 static inline u64 align_to_level(u64 pfn, int level) 142 { 143 return (pfn + level_size(level) - 1) & level_mask(level); 144 } 145 146 static inline unsigned long lvl_to_nr_pages(unsigned int lvl) 147 { 148 return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH); 149 } 150 151 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things 152 are never going to work. */ 153 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn) 154 { 155 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT); 156 } 157 158 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) 159 { 160 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); 161 } 162 static inline unsigned long page_to_dma_pfn(struct page *pg) 163 { 164 return mm_to_dma_pfn(page_to_pfn(pg)); 165 } 166 static inline unsigned long virt_to_dma_pfn(void *p) 167 { 168 return page_to_dma_pfn(virt_to_page(p)); 169 } 170 171 /* global iommu list, set NULL for ignored DMAR units */ 172 static struct intel_iommu **g_iommus; 173 174 static void __init check_tylersburg_isoch(void); 175 static int rwbf_quirk; 176 177 /* 178 * set to 1 to panic kernel if can't successfully enable VT-d 179 * (used when kernel is launched w/ TXT) 180 */ 181 static int force_on = 0; 182 static int intel_iommu_tboot_noforce; 183 static int no_platform_optin; 184 185 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) 186 187 /* 188 * Take a root_entry and return the Lower Context Table Pointer (LCTP) 189 * if marked present. 190 */ 191 static phys_addr_t root_entry_lctp(struct root_entry *re) 192 { 193 if (!(re->lo & 1)) 194 return 0; 195 196 return re->lo & VTD_PAGE_MASK; 197 } 198 199 /* 200 * Take a root_entry and return the Upper Context Table Pointer (UCTP) 201 * if marked present. 202 */ 203 static phys_addr_t root_entry_uctp(struct root_entry *re) 204 { 205 if (!(re->hi & 1)) 206 return 0; 207 208 return re->hi & VTD_PAGE_MASK; 209 } 210 211 static inline void context_clear_pasid_enable(struct context_entry *context) 212 { 213 context->lo &= ~(1ULL << 11); 214 } 215 216 static inline bool context_pasid_enabled(struct context_entry *context) 217 { 218 return !!(context->lo & (1ULL << 11)); 219 } 220 221 static inline void context_set_copied(struct context_entry *context) 222 { 223 context->hi |= (1ull << 3); 224 } 225 226 static inline bool context_copied(struct context_entry *context) 227 { 228 return !!(context->hi & (1ULL << 3)); 229 } 230 231 static inline bool __context_present(struct context_entry *context) 232 { 233 return (context->lo & 1); 234 } 235 236 bool context_present(struct context_entry *context) 237 { 238 return context_pasid_enabled(context) ? 239 __context_present(context) : 240 __context_present(context) && !context_copied(context); 241 } 242 243 static inline void context_set_present(struct context_entry *context) 244 { 245 context->lo |= 1; 246 } 247 248 static inline void context_set_fault_enable(struct context_entry *context) 249 { 250 context->lo &= (((u64)-1) << 2) | 1; 251 } 252 253 static inline void context_set_translation_type(struct context_entry *context, 254 unsigned long value) 255 { 256 context->lo &= (((u64)-1) << 4) | 3; 257 context->lo |= (value & 3) << 2; 258 } 259 260 static inline void context_set_address_root(struct context_entry *context, 261 unsigned long value) 262 { 263 context->lo &= ~VTD_PAGE_MASK; 264 context->lo |= value & VTD_PAGE_MASK; 265 } 266 267 static inline void context_set_address_width(struct context_entry *context, 268 unsigned long value) 269 { 270 context->hi |= value & 7; 271 } 272 273 static inline void context_set_domain_id(struct context_entry *context, 274 unsigned long value) 275 { 276 context->hi |= (value & ((1 << 16) - 1)) << 8; 277 } 278 279 static inline int context_domain_id(struct context_entry *c) 280 { 281 return((c->hi >> 8) & 0xffff); 282 } 283 284 static inline void context_clear_entry(struct context_entry *context) 285 { 286 context->lo = 0; 287 context->hi = 0; 288 } 289 290 /* 291 * This domain is a statically identity mapping domain. 292 * 1. This domain creats a static 1:1 mapping to all usable memory. 293 * 2. It maps to each iommu if successful. 294 * 3. Each iommu mapps to this domain if successful. 295 */ 296 static struct dmar_domain *si_domain; 297 static int hw_pass_through = 1; 298 299 #define for_each_domain_iommu(idx, domain) \ 300 for (idx = 0; idx < g_num_of_iommus; idx++) \ 301 if (domain->iommu_refcnt[idx]) 302 303 struct dmar_rmrr_unit { 304 struct list_head list; /* list of rmrr units */ 305 struct acpi_dmar_header *hdr; /* ACPI header */ 306 u64 base_address; /* reserved base address*/ 307 u64 end_address; /* reserved end address */ 308 struct dmar_dev_scope *devices; /* target devices */ 309 int devices_cnt; /* target device count */ 310 }; 311 312 struct dmar_atsr_unit { 313 struct list_head list; /* list of ATSR units */ 314 struct acpi_dmar_header *hdr; /* ACPI header */ 315 struct dmar_dev_scope *devices; /* target devices */ 316 int devices_cnt; /* target device count */ 317 u8 include_all:1; /* include all ports */ 318 }; 319 320 struct dmar_satc_unit { 321 struct list_head list; /* list of SATC units */ 322 struct acpi_dmar_header *hdr; /* ACPI header */ 323 struct dmar_dev_scope *devices; /* target devices */ 324 struct intel_iommu *iommu; /* the corresponding iommu */ 325 int devices_cnt; /* target device count */ 326 u8 atc_required:1; /* ATS is required */ 327 }; 328 329 static LIST_HEAD(dmar_atsr_units); 330 static LIST_HEAD(dmar_rmrr_units); 331 static LIST_HEAD(dmar_satc_units); 332 333 #define for_each_rmrr_units(rmrr) \ 334 list_for_each_entry(rmrr, &dmar_rmrr_units, list) 335 336 /* bitmap for indexing intel_iommus */ 337 static int g_num_of_iommus; 338 339 static void domain_exit(struct dmar_domain *domain); 340 static void domain_remove_dev_info(struct dmar_domain *domain); 341 static void dmar_remove_one_dev_info(struct device *dev); 342 static void __dmar_remove_one_dev_info(struct device_domain_info *info); 343 static int intel_iommu_attach_device(struct iommu_domain *domain, 344 struct device *dev); 345 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, 346 dma_addr_t iova); 347 348 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON 349 int dmar_disabled = 0; 350 #else 351 int dmar_disabled = 1; 352 #endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */ 353 354 #ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON 355 int intel_iommu_sm = 1; 356 #else 357 int intel_iommu_sm; 358 #endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */ 359 360 int intel_iommu_enabled = 0; 361 EXPORT_SYMBOL_GPL(intel_iommu_enabled); 362 363 static int dmar_map_gfx = 1; 364 static int intel_iommu_strict; 365 static int intel_iommu_superpage = 1; 366 static int iommu_identity_mapping; 367 static int iommu_skip_te_disable; 368 369 #define IDENTMAP_GFX 2 370 #define IDENTMAP_AZALIA 4 371 372 int intel_iommu_gfx_mapped; 373 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped); 374 375 #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2)) 376 struct device_domain_info *get_domain_info(struct device *dev) 377 { 378 struct device_domain_info *info; 379 380 if (!dev) 381 return NULL; 382 383 info = dev_iommu_priv_get(dev); 384 if (unlikely(info == DEFER_DEVICE_DOMAIN_INFO)) 385 return NULL; 386 387 return info; 388 } 389 390 DEFINE_SPINLOCK(device_domain_lock); 391 static LIST_HEAD(device_domain_list); 392 393 /* 394 * Iterate over elements in device_domain_list and call the specified 395 * callback @fn against each element. 396 */ 397 int for_each_device_domain(int (*fn)(struct device_domain_info *info, 398 void *data), void *data) 399 { 400 int ret = 0; 401 unsigned long flags; 402 struct device_domain_info *info; 403 404 spin_lock_irqsave(&device_domain_lock, flags); 405 list_for_each_entry(info, &device_domain_list, global) { 406 ret = fn(info, data); 407 if (ret) { 408 spin_unlock_irqrestore(&device_domain_lock, flags); 409 return ret; 410 } 411 } 412 spin_unlock_irqrestore(&device_domain_lock, flags); 413 414 return 0; 415 } 416 417 const struct iommu_ops intel_iommu_ops; 418 419 static bool translation_pre_enabled(struct intel_iommu *iommu) 420 { 421 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED); 422 } 423 424 static void clear_translation_pre_enabled(struct intel_iommu *iommu) 425 { 426 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED; 427 } 428 429 static void init_translation_status(struct intel_iommu *iommu) 430 { 431 u32 gsts; 432 433 gsts = readl(iommu->reg + DMAR_GSTS_REG); 434 if (gsts & DMA_GSTS_TES) 435 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED; 436 } 437 438 static int __init intel_iommu_setup(char *str) 439 { 440 if (!str) 441 return -EINVAL; 442 while (*str) { 443 if (!strncmp(str, "on", 2)) { 444 dmar_disabled = 0; 445 pr_info("IOMMU enabled\n"); 446 } else if (!strncmp(str, "off", 3)) { 447 dmar_disabled = 1; 448 no_platform_optin = 1; 449 pr_info("IOMMU disabled\n"); 450 } else if (!strncmp(str, "igfx_off", 8)) { 451 dmar_map_gfx = 0; 452 pr_info("Disable GFX device mapping\n"); 453 } else if (!strncmp(str, "forcedac", 8)) { 454 pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n"); 455 iommu_dma_forcedac = true; 456 } else if (!strncmp(str, "strict", 6)) { 457 pr_info("Disable batched IOTLB flush\n"); 458 intel_iommu_strict = 1; 459 } else if (!strncmp(str, "sp_off", 6)) { 460 pr_info("Disable supported super page\n"); 461 intel_iommu_superpage = 0; 462 } else if (!strncmp(str, "sm_on", 5)) { 463 pr_info("Intel-IOMMU: scalable mode supported\n"); 464 intel_iommu_sm = 1; 465 } else if (!strncmp(str, "tboot_noforce", 13)) { 466 pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n"); 467 intel_iommu_tboot_noforce = 1; 468 } 469 470 str += strcspn(str, ","); 471 while (*str == ',') 472 str++; 473 } 474 return 0; 475 } 476 __setup("intel_iommu=", intel_iommu_setup); 477 478 static struct kmem_cache *iommu_domain_cache; 479 static struct kmem_cache *iommu_devinfo_cache; 480 481 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did) 482 { 483 struct dmar_domain **domains; 484 int idx = did >> 8; 485 486 domains = iommu->domains[idx]; 487 if (!domains) 488 return NULL; 489 490 return domains[did & 0xff]; 491 } 492 493 static void set_iommu_domain(struct intel_iommu *iommu, u16 did, 494 struct dmar_domain *domain) 495 { 496 struct dmar_domain **domains; 497 int idx = did >> 8; 498 499 if (!iommu->domains[idx]) { 500 size_t size = 256 * sizeof(struct dmar_domain *); 501 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC); 502 } 503 504 domains = iommu->domains[idx]; 505 if (WARN_ON(!domains)) 506 return; 507 else 508 domains[did & 0xff] = domain; 509 } 510 511 void *alloc_pgtable_page(int node) 512 { 513 struct page *page; 514 void *vaddr = NULL; 515 516 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); 517 if (page) 518 vaddr = page_address(page); 519 return vaddr; 520 } 521 522 void free_pgtable_page(void *vaddr) 523 { 524 free_page((unsigned long)vaddr); 525 } 526 527 static inline void *alloc_domain_mem(void) 528 { 529 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC); 530 } 531 532 static void free_domain_mem(void *vaddr) 533 { 534 kmem_cache_free(iommu_domain_cache, vaddr); 535 } 536 537 static inline void * alloc_devinfo_mem(void) 538 { 539 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC); 540 } 541 542 static inline void free_devinfo_mem(void *vaddr) 543 { 544 kmem_cache_free(iommu_devinfo_cache, vaddr); 545 } 546 547 static inline int domain_type_is_si(struct dmar_domain *domain) 548 { 549 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY; 550 } 551 552 static inline bool domain_use_first_level(struct dmar_domain *domain) 553 { 554 return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL; 555 } 556 557 static inline int domain_pfn_supported(struct dmar_domain *domain, 558 unsigned long pfn) 559 { 560 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; 561 562 return !(addr_width < BITS_PER_LONG && pfn >> addr_width); 563 } 564 565 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) 566 { 567 unsigned long sagaw; 568 int agaw; 569 570 sagaw = cap_sagaw(iommu->cap); 571 for (agaw = width_to_agaw(max_gaw); 572 agaw >= 0; agaw--) { 573 if (test_bit(agaw, &sagaw)) 574 break; 575 } 576 577 return agaw; 578 } 579 580 /* 581 * Calculate max SAGAW for each iommu. 582 */ 583 int iommu_calculate_max_sagaw(struct intel_iommu *iommu) 584 { 585 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); 586 } 587 588 /* 589 * calculate agaw for each iommu. 590 * "SAGAW" may be different across iommus, use a default agaw, and 591 * get a supported less agaw for iommus that don't support the default agaw. 592 */ 593 int iommu_calculate_agaw(struct intel_iommu *iommu) 594 { 595 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); 596 } 597 598 /* This functionin only returns single iommu in a domain */ 599 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) 600 { 601 int iommu_id; 602 603 /* si_domain and vm domain should not get here. */ 604 if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA)) 605 return NULL; 606 607 for_each_domain_iommu(iommu_id, domain) 608 break; 609 610 if (iommu_id < 0 || iommu_id >= g_num_of_iommus) 611 return NULL; 612 613 return g_iommus[iommu_id]; 614 } 615 616 static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu) 617 { 618 return sm_supported(iommu) ? 619 ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap); 620 } 621 622 static void domain_update_iommu_coherency(struct dmar_domain *domain) 623 { 624 struct dmar_drhd_unit *drhd; 625 struct intel_iommu *iommu; 626 bool found = false; 627 int i; 628 629 domain->iommu_coherency = true; 630 631 for_each_domain_iommu(i, domain) { 632 found = true; 633 if (!iommu_paging_structure_coherency(g_iommus[i])) { 634 domain->iommu_coherency = false; 635 break; 636 } 637 } 638 if (found) 639 return; 640 641 /* No hardware attached; use lowest common denominator */ 642 rcu_read_lock(); 643 for_each_active_iommu(iommu, drhd) { 644 if (!iommu_paging_structure_coherency(iommu)) { 645 domain->iommu_coherency = false; 646 break; 647 } 648 } 649 rcu_read_unlock(); 650 } 651 652 static bool domain_update_iommu_snooping(struct intel_iommu *skip) 653 { 654 struct dmar_drhd_unit *drhd; 655 struct intel_iommu *iommu; 656 bool ret = true; 657 658 rcu_read_lock(); 659 for_each_active_iommu(iommu, drhd) { 660 if (iommu != skip) { 661 /* 662 * If the hardware is operating in the scalable mode, 663 * the snooping control is always supported since we 664 * always set PASID-table-entry.PGSNP bit if the domain 665 * is managed outside (UNMANAGED). 666 */ 667 if (!sm_supported(iommu) && 668 !ecap_sc_support(iommu->ecap)) { 669 ret = false; 670 break; 671 } 672 } 673 } 674 rcu_read_unlock(); 675 676 return ret; 677 } 678 679 static int domain_update_iommu_superpage(struct dmar_domain *domain, 680 struct intel_iommu *skip) 681 { 682 struct dmar_drhd_unit *drhd; 683 struct intel_iommu *iommu; 684 int mask = 0x3; 685 686 if (!intel_iommu_superpage) 687 return 0; 688 689 /* set iommu_superpage to the smallest common denominator */ 690 rcu_read_lock(); 691 for_each_active_iommu(iommu, drhd) { 692 if (iommu != skip) { 693 if (domain && domain_use_first_level(domain)) { 694 if (!cap_fl1gp_support(iommu->cap)) 695 mask = 0x1; 696 } else { 697 mask &= cap_super_page_val(iommu->cap); 698 } 699 700 if (!mask) 701 break; 702 } 703 } 704 rcu_read_unlock(); 705 706 return fls(mask); 707 } 708 709 static int domain_update_device_node(struct dmar_domain *domain) 710 { 711 struct device_domain_info *info; 712 int nid = NUMA_NO_NODE; 713 714 assert_spin_locked(&device_domain_lock); 715 716 if (list_empty(&domain->devices)) 717 return NUMA_NO_NODE; 718 719 list_for_each_entry(info, &domain->devices, link) { 720 if (!info->dev) 721 continue; 722 723 /* 724 * There could possibly be multiple device numa nodes as devices 725 * within the same domain may sit behind different IOMMUs. There 726 * isn't perfect answer in such situation, so we select first 727 * come first served policy. 728 */ 729 nid = dev_to_node(info->dev); 730 if (nid != NUMA_NO_NODE) 731 break; 732 } 733 734 return nid; 735 } 736 737 static void domain_update_iotlb(struct dmar_domain *domain); 738 739 /* Some capabilities may be different across iommus */ 740 static void domain_update_iommu_cap(struct dmar_domain *domain) 741 { 742 domain_update_iommu_coherency(domain); 743 domain->iommu_snooping = domain_update_iommu_snooping(NULL); 744 domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL); 745 746 /* 747 * If RHSA is missing, we should default to the device numa domain 748 * as fall back. 749 */ 750 if (domain->nid == NUMA_NO_NODE) 751 domain->nid = domain_update_device_node(domain); 752 753 /* 754 * First-level translation restricts the input-address to a 755 * canonical address (i.e., address bits 63:N have the same 756 * value as address bit [N-1], where N is 48-bits with 4-level 757 * paging and 57-bits with 5-level paging). Hence, skip bit 758 * [N-1]. 759 */ 760 if (domain_use_first_level(domain)) 761 domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1); 762 else 763 domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw); 764 765 domain_update_iotlb(domain); 766 } 767 768 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus, 769 u8 devfn, int alloc) 770 { 771 struct root_entry *root = &iommu->root_entry[bus]; 772 struct context_entry *context; 773 u64 *entry; 774 775 entry = &root->lo; 776 if (sm_supported(iommu)) { 777 if (devfn >= 0x80) { 778 devfn -= 0x80; 779 entry = &root->hi; 780 } 781 devfn *= 2; 782 } 783 if (*entry & 1) 784 context = phys_to_virt(*entry & VTD_PAGE_MASK); 785 else { 786 unsigned long phy_addr; 787 if (!alloc) 788 return NULL; 789 790 context = alloc_pgtable_page(iommu->node); 791 if (!context) 792 return NULL; 793 794 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); 795 phy_addr = virt_to_phys((void *)context); 796 *entry = phy_addr | 1; 797 __iommu_flush_cache(iommu, entry, sizeof(*entry)); 798 } 799 return &context[devfn]; 800 } 801 802 static bool attach_deferred(struct device *dev) 803 { 804 return dev_iommu_priv_get(dev) == DEFER_DEVICE_DOMAIN_INFO; 805 } 806 807 /** 808 * is_downstream_to_pci_bridge - test if a device belongs to the PCI 809 * sub-hierarchy of a candidate PCI-PCI bridge 810 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy 811 * @bridge: the candidate PCI-PCI bridge 812 * 813 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false. 814 */ 815 static bool 816 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge) 817 { 818 struct pci_dev *pdev, *pbridge; 819 820 if (!dev_is_pci(dev) || !dev_is_pci(bridge)) 821 return false; 822 823 pdev = to_pci_dev(dev); 824 pbridge = to_pci_dev(bridge); 825 826 if (pbridge->subordinate && 827 pbridge->subordinate->number <= pdev->bus->number && 828 pbridge->subordinate->busn_res.end >= pdev->bus->number) 829 return true; 830 831 return false; 832 } 833 834 static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev) 835 { 836 struct dmar_drhd_unit *drhd; 837 u32 vtbar; 838 int rc; 839 840 /* We know that this device on this chipset has its own IOMMU. 841 * If we find it under a different IOMMU, then the BIOS is lying 842 * to us. Hope that the IOMMU for this device is actually 843 * disabled, and it needs no translation... 844 */ 845 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); 846 if (rc) { 847 /* "can't" happen */ 848 dev_info(&pdev->dev, "failed to run vt-d quirk\n"); 849 return false; 850 } 851 vtbar &= 0xffff0000; 852 853 /* we know that the this iommu should be at offset 0xa000 from vtbar */ 854 drhd = dmar_find_matched_drhd_unit(pdev); 855 if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) { 856 pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"); 857 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 858 return true; 859 } 860 861 return false; 862 } 863 864 static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev) 865 { 866 if (!iommu || iommu->drhd->ignored) 867 return true; 868 869 if (dev_is_pci(dev)) { 870 struct pci_dev *pdev = to_pci_dev(dev); 871 872 if (pdev->vendor == PCI_VENDOR_ID_INTEL && 873 pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB && 874 quirk_ioat_snb_local_iommu(pdev)) 875 return true; 876 } 877 878 return false; 879 } 880 881 struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn) 882 { 883 struct dmar_drhd_unit *drhd = NULL; 884 struct pci_dev *pdev = NULL; 885 struct intel_iommu *iommu; 886 struct device *tmp; 887 u16 segment = 0; 888 int i; 889 890 if (!dev) 891 return NULL; 892 893 if (dev_is_pci(dev)) { 894 struct pci_dev *pf_pdev; 895 896 pdev = pci_real_dma_dev(to_pci_dev(dev)); 897 898 /* VFs aren't listed in scope tables; we need to look up 899 * the PF instead to find the IOMMU. */ 900 pf_pdev = pci_physfn(pdev); 901 dev = &pf_pdev->dev; 902 segment = pci_domain_nr(pdev->bus); 903 } else if (has_acpi_companion(dev)) 904 dev = &ACPI_COMPANION(dev)->dev; 905 906 rcu_read_lock(); 907 for_each_iommu(iommu, drhd) { 908 if (pdev && segment != drhd->segment) 909 continue; 910 911 for_each_active_dev_scope(drhd->devices, 912 drhd->devices_cnt, i, tmp) { 913 if (tmp == dev) { 914 /* For a VF use its original BDF# not that of the PF 915 * which we used for the IOMMU lookup. Strictly speaking 916 * we could do this for all PCI devices; we only need to 917 * get the BDF# from the scope table for ACPI matches. */ 918 if (pdev && pdev->is_virtfn) 919 goto got_pdev; 920 921 if (bus && devfn) { 922 *bus = drhd->devices[i].bus; 923 *devfn = drhd->devices[i].devfn; 924 } 925 goto out; 926 } 927 928 if (is_downstream_to_pci_bridge(dev, tmp)) 929 goto got_pdev; 930 } 931 932 if (pdev && drhd->include_all) { 933 got_pdev: 934 if (bus && devfn) { 935 *bus = pdev->bus->number; 936 *devfn = pdev->devfn; 937 } 938 goto out; 939 } 940 } 941 iommu = NULL; 942 out: 943 if (iommu_is_dummy(iommu, dev)) 944 iommu = NULL; 945 946 rcu_read_unlock(); 947 948 return iommu; 949 } 950 951 static void domain_flush_cache(struct dmar_domain *domain, 952 void *addr, int size) 953 { 954 if (!domain->iommu_coherency) 955 clflush_cache_range(addr, size); 956 } 957 958 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) 959 { 960 struct context_entry *context; 961 int ret = 0; 962 unsigned long flags; 963 964 spin_lock_irqsave(&iommu->lock, flags); 965 context = iommu_context_addr(iommu, bus, devfn, 0); 966 if (context) 967 ret = context_present(context); 968 spin_unlock_irqrestore(&iommu->lock, flags); 969 return ret; 970 } 971 972 static void free_context_table(struct intel_iommu *iommu) 973 { 974 int i; 975 unsigned long flags; 976 struct context_entry *context; 977 978 spin_lock_irqsave(&iommu->lock, flags); 979 if (!iommu->root_entry) { 980 goto out; 981 } 982 for (i = 0; i < ROOT_ENTRY_NR; i++) { 983 context = iommu_context_addr(iommu, i, 0, 0); 984 if (context) 985 free_pgtable_page(context); 986 987 if (!sm_supported(iommu)) 988 continue; 989 990 context = iommu_context_addr(iommu, i, 0x80, 0); 991 if (context) 992 free_pgtable_page(context); 993 994 } 995 free_pgtable_page(iommu->root_entry); 996 iommu->root_entry = NULL; 997 out: 998 spin_unlock_irqrestore(&iommu->lock, flags); 999 } 1000 1001 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, 1002 unsigned long pfn, int *target_level) 1003 { 1004 struct dma_pte *parent, *pte; 1005 int level = agaw_to_level(domain->agaw); 1006 int offset; 1007 1008 BUG_ON(!domain->pgd); 1009 1010 if (!domain_pfn_supported(domain, pfn)) 1011 /* Address beyond IOMMU's addressing capabilities. */ 1012 return NULL; 1013 1014 parent = domain->pgd; 1015 1016 while (1) { 1017 void *tmp_page; 1018 1019 offset = pfn_level_offset(pfn, level); 1020 pte = &parent[offset]; 1021 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) 1022 break; 1023 if (level == *target_level) 1024 break; 1025 1026 if (!dma_pte_present(pte)) { 1027 uint64_t pteval; 1028 1029 tmp_page = alloc_pgtable_page(domain->nid); 1030 1031 if (!tmp_page) 1032 return NULL; 1033 1034 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); 1035 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; 1036 if (domain_use_first_level(domain)) { 1037 pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US; 1038 if (domain->domain.type == IOMMU_DOMAIN_DMA) 1039 pteval |= DMA_FL_PTE_ACCESS; 1040 } 1041 if (cmpxchg64(&pte->val, 0ULL, pteval)) 1042 /* Someone else set it while we were thinking; use theirs. */ 1043 free_pgtable_page(tmp_page); 1044 else 1045 domain_flush_cache(domain, pte, sizeof(*pte)); 1046 } 1047 if (level == 1) 1048 break; 1049 1050 parent = phys_to_virt(dma_pte_addr(pte)); 1051 level--; 1052 } 1053 1054 if (!*target_level) 1055 *target_level = level; 1056 1057 return pte; 1058 } 1059 1060 /* return address's pte at specific level */ 1061 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, 1062 unsigned long pfn, 1063 int level, int *large_page) 1064 { 1065 struct dma_pte *parent, *pte; 1066 int total = agaw_to_level(domain->agaw); 1067 int offset; 1068 1069 parent = domain->pgd; 1070 while (level <= total) { 1071 offset = pfn_level_offset(pfn, total); 1072 pte = &parent[offset]; 1073 if (level == total) 1074 return pte; 1075 1076 if (!dma_pte_present(pte)) { 1077 *large_page = total; 1078 break; 1079 } 1080 1081 if (dma_pte_superpage(pte)) { 1082 *large_page = total; 1083 return pte; 1084 } 1085 1086 parent = phys_to_virt(dma_pte_addr(pte)); 1087 total--; 1088 } 1089 return NULL; 1090 } 1091 1092 /* clear last level pte, a tlb flush should be followed */ 1093 static void dma_pte_clear_range(struct dmar_domain *domain, 1094 unsigned long start_pfn, 1095 unsigned long last_pfn) 1096 { 1097 unsigned int large_page; 1098 struct dma_pte *first_pte, *pte; 1099 1100 BUG_ON(!domain_pfn_supported(domain, start_pfn)); 1101 BUG_ON(!domain_pfn_supported(domain, last_pfn)); 1102 BUG_ON(start_pfn > last_pfn); 1103 1104 /* we don't need lock here; nobody else touches the iova range */ 1105 do { 1106 large_page = 1; 1107 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); 1108 if (!pte) { 1109 start_pfn = align_to_level(start_pfn + 1, large_page + 1); 1110 continue; 1111 } 1112 do { 1113 dma_clear_pte(pte); 1114 start_pfn += lvl_to_nr_pages(large_page); 1115 pte++; 1116 } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); 1117 1118 domain_flush_cache(domain, first_pte, 1119 (void *)pte - (void *)first_pte); 1120 1121 } while (start_pfn && start_pfn <= last_pfn); 1122 } 1123 1124 static void dma_pte_free_level(struct dmar_domain *domain, int level, 1125 int retain_level, struct dma_pte *pte, 1126 unsigned long pfn, unsigned long start_pfn, 1127 unsigned long last_pfn) 1128 { 1129 pfn = max(start_pfn, pfn); 1130 pte = &pte[pfn_level_offset(pfn, level)]; 1131 1132 do { 1133 unsigned long level_pfn; 1134 struct dma_pte *level_pte; 1135 1136 if (!dma_pte_present(pte) || dma_pte_superpage(pte)) 1137 goto next; 1138 1139 level_pfn = pfn & level_mask(level); 1140 level_pte = phys_to_virt(dma_pte_addr(pte)); 1141 1142 if (level > 2) { 1143 dma_pte_free_level(domain, level - 1, retain_level, 1144 level_pte, level_pfn, start_pfn, 1145 last_pfn); 1146 } 1147 1148 /* 1149 * Free the page table if we're below the level we want to 1150 * retain and the range covers the entire table. 1151 */ 1152 if (level < retain_level && !(start_pfn > level_pfn || 1153 last_pfn < level_pfn + level_size(level) - 1)) { 1154 dma_clear_pte(pte); 1155 domain_flush_cache(domain, pte, sizeof(*pte)); 1156 free_pgtable_page(level_pte); 1157 } 1158 next: 1159 pfn += level_size(level); 1160 } while (!first_pte_in_page(++pte) && pfn <= last_pfn); 1161 } 1162 1163 /* 1164 * clear last level (leaf) ptes and free page table pages below the 1165 * level we wish to keep intact. 1166 */ 1167 static void dma_pte_free_pagetable(struct dmar_domain *domain, 1168 unsigned long start_pfn, 1169 unsigned long last_pfn, 1170 int retain_level) 1171 { 1172 BUG_ON(!domain_pfn_supported(domain, start_pfn)); 1173 BUG_ON(!domain_pfn_supported(domain, last_pfn)); 1174 BUG_ON(start_pfn > last_pfn); 1175 1176 dma_pte_clear_range(domain, start_pfn, last_pfn); 1177 1178 /* We don't need lock here; nobody else touches the iova range */ 1179 dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level, 1180 domain->pgd, 0, start_pfn, last_pfn); 1181 1182 /* free pgd */ 1183 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { 1184 free_pgtable_page(domain->pgd); 1185 domain->pgd = NULL; 1186 } 1187 } 1188 1189 /* When a page at a given level is being unlinked from its parent, we don't 1190 need to *modify* it at all. All we need to do is make a list of all the 1191 pages which can be freed just as soon as we've flushed the IOTLB and we 1192 know the hardware page-walk will no longer touch them. 1193 The 'pte' argument is the *parent* PTE, pointing to the page that is to 1194 be freed. */ 1195 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain, 1196 int level, struct dma_pte *pte, 1197 struct page *freelist) 1198 { 1199 struct page *pg; 1200 1201 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT); 1202 pg->freelist = freelist; 1203 freelist = pg; 1204 1205 if (level == 1) 1206 return freelist; 1207 1208 pte = page_address(pg); 1209 do { 1210 if (dma_pte_present(pte) && !dma_pte_superpage(pte)) 1211 freelist = dma_pte_list_pagetables(domain, level - 1, 1212 pte, freelist); 1213 pte++; 1214 } while (!first_pte_in_page(pte)); 1215 1216 return freelist; 1217 } 1218 1219 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level, 1220 struct dma_pte *pte, unsigned long pfn, 1221 unsigned long start_pfn, 1222 unsigned long last_pfn, 1223 struct page *freelist) 1224 { 1225 struct dma_pte *first_pte = NULL, *last_pte = NULL; 1226 1227 pfn = max(start_pfn, pfn); 1228 pte = &pte[pfn_level_offset(pfn, level)]; 1229 1230 do { 1231 unsigned long level_pfn; 1232 1233 if (!dma_pte_present(pte)) 1234 goto next; 1235 1236 level_pfn = pfn & level_mask(level); 1237 1238 /* If range covers entire pagetable, free it */ 1239 if (start_pfn <= level_pfn && 1240 last_pfn >= level_pfn + level_size(level) - 1) { 1241 /* These suborbinate page tables are going away entirely. Don't 1242 bother to clear them; we're just going to *free* them. */ 1243 if (level > 1 && !dma_pte_superpage(pte)) 1244 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist); 1245 1246 dma_clear_pte(pte); 1247 if (!first_pte) 1248 first_pte = pte; 1249 last_pte = pte; 1250 } else if (level > 1) { 1251 /* Recurse down into a level that isn't *entirely* obsolete */ 1252 freelist = dma_pte_clear_level(domain, level - 1, 1253 phys_to_virt(dma_pte_addr(pte)), 1254 level_pfn, start_pfn, last_pfn, 1255 freelist); 1256 } 1257 next: 1258 pfn += level_size(level); 1259 } while (!first_pte_in_page(++pte) && pfn <= last_pfn); 1260 1261 if (first_pte) 1262 domain_flush_cache(domain, first_pte, 1263 (void *)++last_pte - (void *)first_pte); 1264 1265 return freelist; 1266 } 1267 1268 /* We can't just free the pages because the IOMMU may still be walking 1269 the page tables, and may have cached the intermediate levels. The 1270 pages can only be freed after the IOTLB flush has been done. */ 1271 static struct page *domain_unmap(struct dmar_domain *domain, 1272 unsigned long start_pfn, 1273 unsigned long last_pfn, 1274 struct page *freelist) 1275 { 1276 BUG_ON(!domain_pfn_supported(domain, start_pfn)); 1277 BUG_ON(!domain_pfn_supported(domain, last_pfn)); 1278 BUG_ON(start_pfn > last_pfn); 1279 1280 /* we don't need lock here; nobody else touches the iova range */ 1281 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw), 1282 domain->pgd, 0, start_pfn, last_pfn, 1283 freelist); 1284 1285 /* free pgd */ 1286 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { 1287 struct page *pgd_page = virt_to_page(domain->pgd); 1288 pgd_page->freelist = freelist; 1289 freelist = pgd_page; 1290 1291 domain->pgd = NULL; 1292 } 1293 1294 return freelist; 1295 } 1296 1297 static void dma_free_pagelist(struct page *freelist) 1298 { 1299 struct page *pg; 1300 1301 while ((pg = freelist)) { 1302 freelist = pg->freelist; 1303 free_pgtable_page(page_address(pg)); 1304 } 1305 } 1306 1307 /* iommu handling */ 1308 static int iommu_alloc_root_entry(struct intel_iommu *iommu) 1309 { 1310 struct root_entry *root; 1311 unsigned long flags; 1312 1313 root = (struct root_entry *)alloc_pgtable_page(iommu->node); 1314 if (!root) { 1315 pr_err("Allocating root entry for %s failed\n", 1316 iommu->name); 1317 return -ENOMEM; 1318 } 1319 1320 __iommu_flush_cache(iommu, root, ROOT_SIZE); 1321 1322 spin_lock_irqsave(&iommu->lock, flags); 1323 iommu->root_entry = root; 1324 spin_unlock_irqrestore(&iommu->lock, flags); 1325 1326 return 0; 1327 } 1328 1329 static void iommu_set_root_entry(struct intel_iommu *iommu) 1330 { 1331 u64 addr; 1332 u32 sts; 1333 unsigned long flag; 1334 1335 addr = virt_to_phys(iommu->root_entry); 1336 if (sm_supported(iommu)) 1337 addr |= DMA_RTADDR_SMT; 1338 1339 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1340 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr); 1341 1342 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); 1343 1344 /* Make sure hardware complete it */ 1345 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1346 readl, (sts & DMA_GSTS_RTPS), sts); 1347 1348 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1349 1350 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); 1351 if (sm_supported(iommu)) 1352 qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0); 1353 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); 1354 } 1355 1356 void iommu_flush_write_buffer(struct intel_iommu *iommu) 1357 { 1358 u32 val; 1359 unsigned long flag; 1360 1361 if (!rwbf_quirk && !cap_rwbf(iommu->cap)) 1362 return; 1363 1364 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1365 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); 1366 1367 /* Make sure hardware complete it */ 1368 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1369 readl, (!(val & DMA_GSTS_WBFS)), val); 1370 1371 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1372 } 1373 1374 /* return value determine if we need a write buffer flush */ 1375 static void __iommu_flush_context(struct intel_iommu *iommu, 1376 u16 did, u16 source_id, u8 function_mask, 1377 u64 type) 1378 { 1379 u64 val = 0; 1380 unsigned long flag; 1381 1382 switch (type) { 1383 case DMA_CCMD_GLOBAL_INVL: 1384 val = DMA_CCMD_GLOBAL_INVL; 1385 break; 1386 case DMA_CCMD_DOMAIN_INVL: 1387 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); 1388 break; 1389 case DMA_CCMD_DEVICE_INVL: 1390 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) 1391 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); 1392 break; 1393 default: 1394 BUG(); 1395 } 1396 val |= DMA_CCMD_ICC; 1397 1398 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1399 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); 1400 1401 /* Make sure hardware complete it */ 1402 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, 1403 dmar_readq, (!(val & DMA_CCMD_ICC)), val); 1404 1405 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1406 } 1407 1408 /* return value determine if we need a write buffer flush */ 1409 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, 1410 u64 addr, unsigned int size_order, u64 type) 1411 { 1412 int tlb_offset = ecap_iotlb_offset(iommu->ecap); 1413 u64 val = 0, val_iva = 0; 1414 unsigned long flag; 1415 1416 switch (type) { 1417 case DMA_TLB_GLOBAL_FLUSH: 1418 /* global flush doesn't need set IVA_REG */ 1419 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; 1420 break; 1421 case DMA_TLB_DSI_FLUSH: 1422 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); 1423 break; 1424 case DMA_TLB_PSI_FLUSH: 1425 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); 1426 /* IH bit is passed in as part of address */ 1427 val_iva = size_order | addr; 1428 break; 1429 default: 1430 BUG(); 1431 } 1432 /* Note: set drain read/write */ 1433 #if 0 1434 /* 1435 * This is probably to be super secure.. Looks like we can 1436 * ignore it without any impact. 1437 */ 1438 if (cap_read_drain(iommu->cap)) 1439 val |= DMA_TLB_READ_DRAIN; 1440 #endif 1441 if (cap_write_drain(iommu->cap)) 1442 val |= DMA_TLB_WRITE_DRAIN; 1443 1444 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1445 /* Note: Only uses first TLB reg currently */ 1446 if (val_iva) 1447 dmar_writeq(iommu->reg + tlb_offset, val_iva); 1448 dmar_writeq(iommu->reg + tlb_offset + 8, val); 1449 1450 /* Make sure hardware complete it */ 1451 IOMMU_WAIT_OP(iommu, tlb_offset + 8, 1452 dmar_readq, (!(val & DMA_TLB_IVT)), val); 1453 1454 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1455 1456 /* check IOTLB invalidation granularity */ 1457 if (DMA_TLB_IAIG(val) == 0) 1458 pr_err("Flush IOTLB failed\n"); 1459 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) 1460 pr_debug("TLB flush request %Lx, actual %Lx\n", 1461 (unsigned long long)DMA_TLB_IIRG(type), 1462 (unsigned long long)DMA_TLB_IAIG(val)); 1463 } 1464 1465 static struct device_domain_info * 1466 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu, 1467 u8 bus, u8 devfn) 1468 { 1469 struct device_domain_info *info; 1470 1471 assert_spin_locked(&device_domain_lock); 1472 1473 if (!iommu->qi) 1474 return NULL; 1475 1476 list_for_each_entry(info, &domain->devices, link) 1477 if (info->iommu == iommu && info->bus == bus && 1478 info->devfn == devfn) { 1479 if (info->ats_supported && info->dev) 1480 return info; 1481 break; 1482 } 1483 1484 return NULL; 1485 } 1486 1487 static void domain_update_iotlb(struct dmar_domain *domain) 1488 { 1489 struct device_domain_info *info; 1490 bool has_iotlb_device = false; 1491 1492 assert_spin_locked(&device_domain_lock); 1493 1494 list_for_each_entry(info, &domain->devices, link) 1495 if (info->ats_enabled) { 1496 has_iotlb_device = true; 1497 break; 1498 } 1499 1500 if (!has_iotlb_device) { 1501 struct subdev_domain_info *sinfo; 1502 1503 list_for_each_entry(sinfo, &domain->subdevices, link_domain) { 1504 info = get_domain_info(sinfo->pdev); 1505 if (info && info->ats_enabled) { 1506 has_iotlb_device = true; 1507 break; 1508 } 1509 } 1510 } 1511 1512 domain->has_iotlb_device = has_iotlb_device; 1513 } 1514 1515 static void iommu_enable_dev_iotlb(struct device_domain_info *info) 1516 { 1517 struct pci_dev *pdev; 1518 1519 assert_spin_locked(&device_domain_lock); 1520 1521 if (!info || !dev_is_pci(info->dev)) 1522 return; 1523 1524 pdev = to_pci_dev(info->dev); 1525 /* For IOMMU that supports device IOTLB throttling (DIT), we assign 1526 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge 1527 * queue depth at PF level. If DIT is not set, PFSID will be treated as 1528 * reserved, which should be set to 0. 1529 */ 1530 if (!ecap_dit(info->iommu->ecap)) 1531 info->pfsid = 0; 1532 else { 1533 struct pci_dev *pf_pdev; 1534 1535 /* pdev will be returned if device is not a vf */ 1536 pf_pdev = pci_physfn(pdev); 1537 info->pfsid = pci_dev_id(pf_pdev); 1538 } 1539 1540 #ifdef CONFIG_INTEL_IOMMU_SVM 1541 /* The PCIe spec, in its wisdom, declares that the behaviour of 1542 the device if you enable PASID support after ATS support is 1543 undefined. So always enable PASID support on devices which 1544 have it, even if we can't yet know if we're ever going to 1545 use it. */ 1546 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1)) 1547 info->pasid_enabled = 1; 1548 1549 if (info->pri_supported && 1550 (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) && 1551 !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) 1552 info->pri_enabled = 1; 1553 #endif 1554 if (info->ats_supported && pci_ats_page_aligned(pdev) && 1555 !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) { 1556 info->ats_enabled = 1; 1557 domain_update_iotlb(info->domain); 1558 info->ats_qdep = pci_ats_queue_depth(pdev); 1559 } 1560 } 1561 1562 static void iommu_disable_dev_iotlb(struct device_domain_info *info) 1563 { 1564 struct pci_dev *pdev; 1565 1566 assert_spin_locked(&device_domain_lock); 1567 1568 if (!dev_is_pci(info->dev)) 1569 return; 1570 1571 pdev = to_pci_dev(info->dev); 1572 1573 if (info->ats_enabled) { 1574 pci_disable_ats(pdev); 1575 info->ats_enabled = 0; 1576 domain_update_iotlb(info->domain); 1577 } 1578 #ifdef CONFIG_INTEL_IOMMU_SVM 1579 if (info->pri_enabled) { 1580 pci_disable_pri(pdev); 1581 info->pri_enabled = 0; 1582 } 1583 if (info->pasid_enabled) { 1584 pci_disable_pasid(pdev); 1585 info->pasid_enabled = 0; 1586 } 1587 #endif 1588 } 1589 1590 static void __iommu_flush_dev_iotlb(struct device_domain_info *info, 1591 u64 addr, unsigned int mask) 1592 { 1593 u16 sid, qdep; 1594 1595 if (!info || !info->ats_enabled) 1596 return; 1597 1598 sid = info->bus << 8 | info->devfn; 1599 qdep = info->ats_qdep; 1600 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid, 1601 qdep, addr, mask); 1602 } 1603 1604 static void iommu_flush_dev_iotlb(struct dmar_domain *domain, 1605 u64 addr, unsigned mask) 1606 { 1607 unsigned long flags; 1608 struct device_domain_info *info; 1609 struct subdev_domain_info *sinfo; 1610 1611 if (!domain->has_iotlb_device) 1612 return; 1613 1614 spin_lock_irqsave(&device_domain_lock, flags); 1615 list_for_each_entry(info, &domain->devices, link) 1616 __iommu_flush_dev_iotlb(info, addr, mask); 1617 1618 list_for_each_entry(sinfo, &domain->subdevices, link_domain) { 1619 info = get_domain_info(sinfo->pdev); 1620 __iommu_flush_dev_iotlb(info, addr, mask); 1621 } 1622 spin_unlock_irqrestore(&device_domain_lock, flags); 1623 } 1624 1625 static void domain_flush_piotlb(struct intel_iommu *iommu, 1626 struct dmar_domain *domain, 1627 u64 addr, unsigned long npages, bool ih) 1628 { 1629 u16 did = domain->iommu_did[iommu->seq_id]; 1630 1631 if (domain->default_pasid) 1632 qi_flush_piotlb(iommu, did, domain->default_pasid, 1633 addr, npages, ih); 1634 1635 if (!list_empty(&domain->devices)) 1636 qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih); 1637 } 1638 1639 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, 1640 struct dmar_domain *domain, 1641 unsigned long pfn, unsigned int pages, 1642 int ih, int map) 1643 { 1644 unsigned int mask = ilog2(__roundup_pow_of_two(pages)); 1645 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; 1646 u16 did = domain->iommu_did[iommu->seq_id]; 1647 1648 BUG_ON(pages == 0); 1649 1650 if (ih) 1651 ih = 1 << 6; 1652 1653 if (domain_use_first_level(domain)) { 1654 domain_flush_piotlb(iommu, domain, addr, pages, ih); 1655 } else { 1656 /* 1657 * Fallback to domain selective flush if no PSI support or 1658 * the size is too big. PSI requires page size to be 2 ^ x, 1659 * and the base address is naturally aligned to the size. 1660 */ 1661 if (!cap_pgsel_inv(iommu->cap) || 1662 mask > cap_max_amask_val(iommu->cap)) 1663 iommu->flush.flush_iotlb(iommu, did, 0, 0, 1664 DMA_TLB_DSI_FLUSH); 1665 else 1666 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask, 1667 DMA_TLB_PSI_FLUSH); 1668 } 1669 1670 /* 1671 * In caching mode, changes of pages from non-present to present require 1672 * flush. However, device IOTLB doesn't need to be flushed in this case. 1673 */ 1674 if (!cap_caching_mode(iommu->cap) || !map) 1675 iommu_flush_dev_iotlb(domain, addr, mask); 1676 } 1677 1678 /* Notification for newly created mappings */ 1679 static inline void __mapping_notify_one(struct intel_iommu *iommu, 1680 struct dmar_domain *domain, 1681 unsigned long pfn, unsigned int pages) 1682 { 1683 /* 1684 * It's a non-present to present mapping. Only flush if caching mode 1685 * and second level. 1686 */ 1687 if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain)) 1688 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1); 1689 else 1690 iommu_flush_write_buffer(iommu); 1691 } 1692 1693 static void intel_flush_iotlb_all(struct iommu_domain *domain) 1694 { 1695 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 1696 int idx; 1697 1698 for_each_domain_iommu(idx, dmar_domain) { 1699 struct intel_iommu *iommu = g_iommus[idx]; 1700 u16 did = dmar_domain->iommu_did[iommu->seq_id]; 1701 1702 if (domain_use_first_level(dmar_domain)) 1703 domain_flush_piotlb(iommu, dmar_domain, 0, -1, 0); 1704 else 1705 iommu->flush.flush_iotlb(iommu, did, 0, 0, 1706 DMA_TLB_DSI_FLUSH); 1707 1708 if (!cap_caching_mode(iommu->cap)) 1709 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did), 1710 0, MAX_AGAW_PFN_WIDTH); 1711 } 1712 } 1713 1714 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) 1715 { 1716 u32 pmen; 1717 unsigned long flags; 1718 1719 if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap)) 1720 return; 1721 1722 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1723 pmen = readl(iommu->reg + DMAR_PMEN_REG); 1724 pmen &= ~DMA_PMEN_EPM; 1725 writel(pmen, iommu->reg + DMAR_PMEN_REG); 1726 1727 /* wait for the protected region status bit to clear */ 1728 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, 1729 readl, !(pmen & DMA_PMEN_PRS), pmen); 1730 1731 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1732 } 1733 1734 static void iommu_enable_translation(struct intel_iommu *iommu) 1735 { 1736 u32 sts; 1737 unsigned long flags; 1738 1739 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1740 iommu->gcmd |= DMA_GCMD_TE; 1741 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1742 1743 /* Make sure hardware complete it */ 1744 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1745 readl, (sts & DMA_GSTS_TES), sts); 1746 1747 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1748 } 1749 1750 static void iommu_disable_translation(struct intel_iommu *iommu) 1751 { 1752 u32 sts; 1753 unsigned long flag; 1754 1755 if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated && 1756 (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap))) 1757 return; 1758 1759 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1760 iommu->gcmd &= ~DMA_GCMD_TE; 1761 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1762 1763 /* Make sure hardware complete it */ 1764 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1765 readl, (!(sts & DMA_GSTS_TES)), sts); 1766 1767 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1768 } 1769 1770 static int iommu_init_domains(struct intel_iommu *iommu) 1771 { 1772 u32 ndomains, nlongs; 1773 size_t size; 1774 1775 ndomains = cap_ndoms(iommu->cap); 1776 pr_debug("%s: Number of Domains supported <%d>\n", 1777 iommu->name, ndomains); 1778 nlongs = BITS_TO_LONGS(ndomains); 1779 1780 spin_lock_init(&iommu->lock); 1781 1782 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); 1783 if (!iommu->domain_ids) { 1784 pr_err("%s: Allocating domain id array failed\n", 1785 iommu->name); 1786 return -ENOMEM; 1787 } 1788 1789 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **); 1790 iommu->domains = kzalloc(size, GFP_KERNEL); 1791 1792 if (iommu->domains) { 1793 size = 256 * sizeof(struct dmar_domain *); 1794 iommu->domains[0] = kzalloc(size, GFP_KERNEL); 1795 } 1796 1797 if (!iommu->domains || !iommu->domains[0]) { 1798 pr_err("%s: Allocating domain array failed\n", 1799 iommu->name); 1800 kfree(iommu->domain_ids); 1801 kfree(iommu->domains); 1802 iommu->domain_ids = NULL; 1803 iommu->domains = NULL; 1804 return -ENOMEM; 1805 } 1806 1807 /* 1808 * If Caching mode is set, then invalid translations are tagged 1809 * with domain-id 0, hence we need to pre-allocate it. We also 1810 * use domain-id 0 as a marker for non-allocated domain-id, so 1811 * make sure it is not used for a real domain. 1812 */ 1813 set_bit(0, iommu->domain_ids); 1814 1815 /* 1816 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid 1817 * entry for first-level or pass-through translation modes should 1818 * be programmed with a domain id different from those used for 1819 * second-level or nested translation. We reserve a domain id for 1820 * this purpose. 1821 */ 1822 if (sm_supported(iommu)) 1823 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids); 1824 1825 return 0; 1826 } 1827 1828 static void disable_dmar_iommu(struct intel_iommu *iommu) 1829 { 1830 struct device_domain_info *info, *tmp; 1831 unsigned long flags; 1832 1833 if (!iommu->domains || !iommu->domain_ids) 1834 return; 1835 1836 spin_lock_irqsave(&device_domain_lock, flags); 1837 list_for_each_entry_safe(info, tmp, &device_domain_list, global) { 1838 if (info->iommu != iommu) 1839 continue; 1840 1841 if (!info->dev || !info->domain) 1842 continue; 1843 1844 __dmar_remove_one_dev_info(info); 1845 } 1846 spin_unlock_irqrestore(&device_domain_lock, flags); 1847 1848 if (iommu->gcmd & DMA_GCMD_TE) 1849 iommu_disable_translation(iommu); 1850 } 1851 1852 static void free_dmar_iommu(struct intel_iommu *iommu) 1853 { 1854 if ((iommu->domains) && (iommu->domain_ids)) { 1855 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8; 1856 int i; 1857 1858 for (i = 0; i < elems; i++) 1859 kfree(iommu->domains[i]); 1860 kfree(iommu->domains); 1861 kfree(iommu->domain_ids); 1862 iommu->domains = NULL; 1863 iommu->domain_ids = NULL; 1864 } 1865 1866 g_iommus[iommu->seq_id] = NULL; 1867 1868 /* free context mapping */ 1869 free_context_table(iommu); 1870 1871 #ifdef CONFIG_INTEL_IOMMU_SVM 1872 if (pasid_supported(iommu)) { 1873 if (ecap_prs(iommu->ecap)) 1874 intel_svm_finish_prq(iommu); 1875 } 1876 if (vccap_pasid(iommu->vccap)) 1877 ioasid_unregister_allocator(&iommu->pasid_allocator); 1878 1879 #endif 1880 } 1881 1882 /* 1883 * Check and return whether first level is used by default for 1884 * DMA translation. 1885 */ 1886 static bool first_level_by_default(void) 1887 { 1888 return scalable_mode_support() && intel_cap_flts_sanity(); 1889 } 1890 1891 static struct dmar_domain *alloc_domain(int flags) 1892 { 1893 struct dmar_domain *domain; 1894 1895 domain = alloc_domain_mem(); 1896 if (!domain) 1897 return NULL; 1898 1899 memset(domain, 0, sizeof(*domain)); 1900 domain->nid = NUMA_NO_NODE; 1901 domain->flags = flags; 1902 if (first_level_by_default()) 1903 domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL; 1904 domain->has_iotlb_device = false; 1905 INIT_LIST_HEAD(&domain->devices); 1906 INIT_LIST_HEAD(&domain->subdevices); 1907 1908 return domain; 1909 } 1910 1911 /* Must be called with iommu->lock */ 1912 static int domain_attach_iommu(struct dmar_domain *domain, 1913 struct intel_iommu *iommu) 1914 { 1915 unsigned long ndomains; 1916 int num; 1917 1918 assert_spin_locked(&device_domain_lock); 1919 assert_spin_locked(&iommu->lock); 1920 1921 domain->iommu_refcnt[iommu->seq_id] += 1; 1922 if (domain->iommu_refcnt[iommu->seq_id] == 1) { 1923 ndomains = cap_ndoms(iommu->cap); 1924 num = find_first_zero_bit(iommu->domain_ids, ndomains); 1925 1926 if (num >= ndomains) { 1927 pr_err("%s: No free domain ids\n", iommu->name); 1928 domain->iommu_refcnt[iommu->seq_id] -= 1; 1929 return -ENOSPC; 1930 } 1931 1932 set_bit(num, iommu->domain_ids); 1933 set_iommu_domain(iommu, num, domain); 1934 1935 domain->iommu_did[iommu->seq_id] = num; 1936 domain->nid = iommu->node; 1937 1938 domain_update_iommu_cap(domain); 1939 } 1940 1941 return 0; 1942 } 1943 1944 static void domain_detach_iommu(struct dmar_domain *domain, 1945 struct intel_iommu *iommu) 1946 { 1947 int num; 1948 1949 assert_spin_locked(&device_domain_lock); 1950 assert_spin_locked(&iommu->lock); 1951 1952 domain->iommu_refcnt[iommu->seq_id] -= 1; 1953 if (domain->iommu_refcnt[iommu->seq_id] == 0) { 1954 num = domain->iommu_did[iommu->seq_id]; 1955 clear_bit(num, iommu->domain_ids); 1956 set_iommu_domain(iommu, num, NULL); 1957 1958 domain_update_iommu_cap(domain); 1959 domain->iommu_did[iommu->seq_id] = 0; 1960 } 1961 } 1962 1963 static inline int guestwidth_to_adjustwidth(int gaw) 1964 { 1965 int agaw; 1966 int r = (gaw - 12) % 9; 1967 1968 if (r == 0) 1969 agaw = gaw; 1970 else 1971 agaw = gaw + 9 - r; 1972 if (agaw > 64) 1973 agaw = 64; 1974 return agaw; 1975 } 1976 1977 static void domain_exit(struct dmar_domain *domain) 1978 { 1979 1980 /* Remove associated devices and clear attached or cached domains */ 1981 domain_remove_dev_info(domain); 1982 1983 /* destroy iovas */ 1984 if (domain->domain.type == IOMMU_DOMAIN_DMA) 1985 iommu_put_dma_cookie(&domain->domain); 1986 1987 if (domain->pgd) { 1988 struct page *freelist; 1989 1990 freelist = domain_unmap(domain, 0, 1991 DOMAIN_MAX_PFN(domain->gaw), NULL); 1992 dma_free_pagelist(freelist); 1993 } 1994 1995 free_domain_mem(domain); 1996 } 1997 1998 /* 1999 * Get the PASID directory size for scalable mode context entry. 2000 * Value of X in the PDTS field of a scalable mode context entry 2001 * indicates PASID directory with 2^(X + 7) entries. 2002 */ 2003 static inline unsigned long context_get_sm_pds(struct pasid_table *table) 2004 { 2005 int pds, max_pde; 2006 2007 max_pde = table->max_pasid >> PASID_PDE_SHIFT; 2008 pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS); 2009 if (pds < 7) 2010 return 0; 2011 2012 return pds - 7; 2013 } 2014 2015 /* 2016 * Set the RID_PASID field of a scalable mode context entry. The 2017 * IOMMU hardware will use the PASID value set in this field for 2018 * DMA translations of DMA requests without PASID. 2019 */ 2020 static inline void 2021 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid) 2022 { 2023 context->hi |= pasid & ((1 << 20) - 1); 2024 } 2025 2026 /* 2027 * Set the DTE(Device-TLB Enable) field of a scalable mode context 2028 * entry. 2029 */ 2030 static inline void context_set_sm_dte(struct context_entry *context) 2031 { 2032 context->lo |= (1 << 2); 2033 } 2034 2035 /* 2036 * Set the PRE(Page Request Enable) field of a scalable mode context 2037 * entry. 2038 */ 2039 static inline void context_set_sm_pre(struct context_entry *context) 2040 { 2041 context->lo |= (1 << 4); 2042 } 2043 2044 /* Convert value to context PASID directory size field coding. */ 2045 #define context_pdts(pds) (((pds) & 0x7) << 9) 2046 2047 static int domain_context_mapping_one(struct dmar_domain *domain, 2048 struct intel_iommu *iommu, 2049 struct pasid_table *table, 2050 u8 bus, u8 devfn) 2051 { 2052 u16 did = domain->iommu_did[iommu->seq_id]; 2053 int translation = CONTEXT_TT_MULTI_LEVEL; 2054 struct device_domain_info *info = NULL; 2055 struct context_entry *context; 2056 unsigned long flags; 2057 int ret; 2058 2059 WARN_ON(did == 0); 2060 2061 if (hw_pass_through && domain_type_is_si(domain)) 2062 translation = CONTEXT_TT_PASS_THROUGH; 2063 2064 pr_debug("Set context mapping for %02x:%02x.%d\n", 2065 bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); 2066 2067 BUG_ON(!domain->pgd); 2068 2069 spin_lock_irqsave(&device_domain_lock, flags); 2070 spin_lock(&iommu->lock); 2071 2072 ret = -ENOMEM; 2073 context = iommu_context_addr(iommu, bus, devfn, 1); 2074 if (!context) 2075 goto out_unlock; 2076 2077 ret = 0; 2078 if (context_present(context)) 2079 goto out_unlock; 2080 2081 /* 2082 * For kdump cases, old valid entries may be cached due to the 2083 * in-flight DMA and copied pgtable, but there is no unmapping 2084 * behaviour for them, thus we need an explicit cache flush for 2085 * the newly-mapped device. For kdump, at this point, the device 2086 * is supposed to finish reset at its driver probe stage, so no 2087 * in-flight DMA will exist, and we don't need to worry anymore 2088 * hereafter. 2089 */ 2090 if (context_copied(context)) { 2091 u16 did_old = context_domain_id(context); 2092 2093 if (did_old < cap_ndoms(iommu->cap)) { 2094 iommu->flush.flush_context(iommu, did_old, 2095 (((u16)bus) << 8) | devfn, 2096 DMA_CCMD_MASK_NOBIT, 2097 DMA_CCMD_DEVICE_INVL); 2098 iommu->flush.flush_iotlb(iommu, did_old, 0, 0, 2099 DMA_TLB_DSI_FLUSH); 2100 } 2101 } 2102 2103 context_clear_entry(context); 2104 2105 if (sm_supported(iommu)) { 2106 unsigned long pds; 2107 2108 WARN_ON(!table); 2109 2110 /* Setup the PASID DIR pointer: */ 2111 pds = context_get_sm_pds(table); 2112 context->lo = (u64)virt_to_phys(table->table) | 2113 context_pdts(pds); 2114 2115 /* Setup the RID_PASID field: */ 2116 context_set_sm_rid2pasid(context, PASID_RID2PASID); 2117 2118 /* 2119 * Setup the Device-TLB enable bit and Page request 2120 * Enable bit: 2121 */ 2122 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); 2123 if (info && info->ats_supported) 2124 context_set_sm_dte(context); 2125 if (info && info->pri_supported) 2126 context_set_sm_pre(context); 2127 } else { 2128 struct dma_pte *pgd = domain->pgd; 2129 int agaw; 2130 2131 context_set_domain_id(context, did); 2132 2133 if (translation != CONTEXT_TT_PASS_THROUGH) { 2134 /* 2135 * Skip top levels of page tables for iommu which has 2136 * less agaw than default. Unnecessary for PT mode. 2137 */ 2138 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { 2139 ret = -ENOMEM; 2140 pgd = phys_to_virt(dma_pte_addr(pgd)); 2141 if (!dma_pte_present(pgd)) 2142 goto out_unlock; 2143 } 2144 2145 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); 2146 if (info && info->ats_supported) 2147 translation = CONTEXT_TT_DEV_IOTLB; 2148 else 2149 translation = CONTEXT_TT_MULTI_LEVEL; 2150 2151 context_set_address_root(context, virt_to_phys(pgd)); 2152 context_set_address_width(context, agaw); 2153 } else { 2154 /* 2155 * In pass through mode, AW must be programmed to 2156 * indicate the largest AGAW value supported by 2157 * hardware. And ASR is ignored by hardware. 2158 */ 2159 context_set_address_width(context, iommu->msagaw); 2160 } 2161 2162 context_set_translation_type(context, translation); 2163 } 2164 2165 context_set_fault_enable(context); 2166 context_set_present(context); 2167 if (!ecap_coherent(iommu->ecap)) 2168 clflush_cache_range(context, sizeof(*context)); 2169 2170 /* 2171 * It's a non-present to present mapping. If hardware doesn't cache 2172 * non-present entry we only need to flush the write-buffer. If the 2173 * _does_ cache non-present entries, then it does so in the special 2174 * domain #0, which we have to flush: 2175 */ 2176 if (cap_caching_mode(iommu->cap)) { 2177 iommu->flush.flush_context(iommu, 0, 2178 (((u16)bus) << 8) | devfn, 2179 DMA_CCMD_MASK_NOBIT, 2180 DMA_CCMD_DEVICE_INVL); 2181 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH); 2182 } else { 2183 iommu_flush_write_buffer(iommu); 2184 } 2185 iommu_enable_dev_iotlb(info); 2186 2187 ret = 0; 2188 2189 out_unlock: 2190 spin_unlock(&iommu->lock); 2191 spin_unlock_irqrestore(&device_domain_lock, flags); 2192 2193 return ret; 2194 } 2195 2196 struct domain_context_mapping_data { 2197 struct dmar_domain *domain; 2198 struct intel_iommu *iommu; 2199 struct pasid_table *table; 2200 }; 2201 2202 static int domain_context_mapping_cb(struct pci_dev *pdev, 2203 u16 alias, void *opaque) 2204 { 2205 struct domain_context_mapping_data *data = opaque; 2206 2207 return domain_context_mapping_one(data->domain, data->iommu, 2208 data->table, PCI_BUS_NUM(alias), 2209 alias & 0xff); 2210 } 2211 2212 static int 2213 domain_context_mapping(struct dmar_domain *domain, struct device *dev) 2214 { 2215 struct domain_context_mapping_data data; 2216 struct pasid_table *table; 2217 struct intel_iommu *iommu; 2218 u8 bus, devfn; 2219 2220 iommu = device_to_iommu(dev, &bus, &devfn); 2221 if (!iommu) 2222 return -ENODEV; 2223 2224 table = intel_pasid_get_table(dev); 2225 2226 if (!dev_is_pci(dev)) 2227 return domain_context_mapping_one(domain, iommu, table, 2228 bus, devfn); 2229 2230 data.domain = domain; 2231 data.iommu = iommu; 2232 data.table = table; 2233 2234 return pci_for_each_dma_alias(to_pci_dev(dev), 2235 &domain_context_mapping_cb, &data); 2236 } 2237 2238 static int domain_context_mapped_cb(struct pci_dev *pdev, 2239 u16 alias, void *opaque) 2240 { 2241 struct intel_iommu *iommu = opaque; 2242 2243 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff); 2244 } 2245 2246 static int domain_context_mapped(struct device *dev) 2247 { 2248 struct intel_iommu *iommu; 2249 u8 bus, devfn; 2250 2251 iommu = device_to_iommu(dev, &bus, &devfn); 2252 if (!iommu) 2253 return -ENODEV; 2254 2255 if (!dev_is_pci(dev)) 2256 return device_context_mapped(iommu, bus, devfn); 2257 2258 return !pci_for_each_dma_alias(to_pci_dev(dev), 2259 domain_context_mapped_cb, iommu); 2260 } 2261 2262 /* Returns a number of VTD pages, but aligned to MM page size */ 2263 static inline unsigned long aligned_nrpages(unsigned long host_addr, 2264 size_t size) 2265 { 2266 host_addr &= ~PAGE_MASK; 2267 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; 2268 } 2269 2270 /* Return largest possible superpage level for a given mapping */ 2271 static inline int hardware_largepage_caps(struct dmar_domain *domain, 2272 unsigned long iov_pfn, 2273 unsigned long phy_pfn, 2274 unsigned long pages) 2275 { 2276 int support, level = 1; 2277 unsigned long pfnmerge; 2278 2279 support = domain->iommu_superpage; 2280 2281 /* To use a large page, the virtual *and* physical addresses 2282 must be aligned to 2MiB/1GiB/etc. Lower bits set in either 2283 of them will mean we have to use smaller pages. So just 2284 merge them and check both at once. */ 2285 pfnmerge = iov_pfn | phy_pfn; 2286 2287 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { 2288 pages >>= VTD_STRIDE_SHIFT; 2289 if (!pages) 2290 break; 2291 pfnmerge >>= VTD_STRIDE_SHIFT; 2292 level++; 2293 support--; 2294 } 2295 return level; 2296 } 2297 2298 /* 2299 * Ensure that old small page tables are removed to make room for superpage(s). 2300 * We're going to add new large pages, so make sure we don't remove their parent 2301 * tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared. 2302 */ 2303 static void switch_to_super_page(struct dmar_domain *domain, 2304 unsigned long start_pfn, 2305 unsigned long end_pfn, int level) 2306 { 2307 unsigned long lvl_pages = lvl_to_nr_pages(level); 2308 struct dma_pte *pte = NULL; 2309 int i; 2310 2311 while (start_pfn <= end_pfn) { 2312 if (!pte) 2313 pte = pfn_to_dma_pte(domain, start_pfn, &level); 2314 2315 if (dma_pte_present(pte)) { 2316 dma_pte_free_pagetable(domain, start_pfn, 2317 start_pfn + lvl_pages - 1, 2318 level + 1); 2319 2320 for_each_domain_iommu(i, domain) 2321 iommu_flush_iotlb_psi(g_iommus[i], domain, 2322 start_pfn, lvl_pages, 2323 0, 0); 2324 } 2325 2326 pte++; 2327 start_pfn += lvl_pages; 2328 if (first_pte_in_page(pte)) 2329 pte = NULL; 2330 } 2331 } 2332 2333 static int 2334 __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, 2335 unsigned long phys_pfn, unsigned long nr_pages, int prot) 2336 { 2337 unsigned int largepage_lvl = 0; 2338 unsigned long lvl_pages = 0; 2339 struct dma_pte *pte = NULL; 2340 phys_addr_t pteval; 2341 u64 attr; 2342 2343 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)); 2344 2345 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) 2346 return -EINVAL; 2347 2348 attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP); 2349 attr |= DMA_FL_PTE_PRESENT; 2350 if (domain_use_first_level(domain)) { 2351 attr |= DMA_FL_PTE_XD | DMA_FL_PTE_US; 2352 2353 if (domain->domain.type == IOMMU_DOMAIN_DMA) { 2354 attr |= DMA_FL_PTE_ACCESS; 2355 if (prot & DMA_PTE_WRITE) 2356 attr |= DMA_FL_PTE_DIRTY; 2357 } 2358 } 2359 2360 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr; 2361 2362 while (nr_pages > 0) { 2363 uint64_t tmp; 2364 2365 if (!pte) { 2366 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, 2367 phys_pfn, nr_pages); 2368 2369 pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl); 2370 if (!pte) 2371 return -ENOMEM; 2372 /* It is large page*/ 2373 if (largepage_lvl > 1) { 2374 unsigned long end_pfn; 2375 2376 pteval |= DMA_PTE_LARGE_PAGE; 2377 end_pfn = ((iov_pfn + nr_pages) & level_mask(largepage_lvl)) - 1; 2378 switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl); 2379 } else { 2380 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; 2381 } 2382 2383 } 2384 /* We don't need lock here, nobody else 2385 * touches the iova range 2386 */ 2387 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); 2388 if (tmp) { 2389 static int dumps = 5; 2390 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", 2391 iov_pfn, tmp, (unsigned long long)pteval); 2392 if (dumps) { 2393 dumps--; 2394 debug_dma_dump_mappings(NULL); 2395 } 2396 WARN_ON(1); 2397 } 2398 2399 lvl_pages = lvl_to_nr_pages(largepage_lvl); 2400 2401 BUG_ON(nr_pages < lvl_pages); 2402 2403 nr_pages -= lvl_pages; 2404 iov_pfn += lvl_pages; 2405 phys_pfn += lvl_pages; 2406 pteval += lvl_pages * VTD_PAGE_SIZE; 2407 2408 /* If the next PTE would be the first in a new page, then we 2409 * need to flush the cache on the entries we've just written. 2410 * And then we'll need to recalculate 'pte', so clear it and 2411 * let it get set again in the if (!pte) block above. 2412 * 2413 * If we're done (!nr_pages) we need to flush the cache too. 2414 * 2415 * Also if we've been setting superpages, we may need to 2416 * recalculate 'pte' and switch back to smaller pages for the 2417 * end of the mapping, if the trailing size is not enough to 2418 * use another superpage (i.e. nr_pages < lvl_pages). 2419 * 2420 * We leave clflush for the leaf pte changes to iotlb_sync_map() 2421 * callback. 2422 */ 2423 pte++; 2424 if (!nr_pages || first_pte_in_page(pte) || 2425 (largepage_lvl > 1 && nr_pages < lvl_pages)) 2426 pte = NULL; 2427 } 2428 2429 return 0; 2430 } 2431 2432 static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn) 2433 { 2434 unsigned long flags; 2435 struct context_entry *context; 2436 u16 did_old; 2437 2438 if (!iommu) 2439 return; 2440 2441 spin_lock_irqsave(&iommu->lock, flags); 2442 context = iommu_context_addr(iommu, bus, devfn, 0); 2443 if (!context) { 2444 spin_unlock_irqrestore(&iommu->lock, flags); 2445 return; 2446 } 2447 did_old = context_domain_id(context); 2448 context_clear_entry(context); 2449 __iommu_flush_cache(iommu, context, sizeof(*context)); 2450 spin_unlock_irqrestore(&iommu->lock, flags); 2451 iommu->flush.flush_context(iommu, 2452 did_old, 2453 (((u16)bus) << 8) | devfn, 2454 DMA_CCMD_MASK_NOBIT, 2455 DMA_CCMD_DEVICE_INVL); 2456 2457 if (sm_supported(iommu)) 2458 qi_flush_pasid_cache(iommu, did_old, QI_PC_ALL_PASIDS, 0); 2459 2460 iommu->flush.flush_iotlb(iommu, 2461 did_old, 2462 0, 2463 0, 2464 DMA_TLB_DSI_FLUSH); 2465 } 2466 2467 static inline void unlink_domain_info(struct device_domain_info *info) 2468 { 2469 assert_spin_locked(&device_domain_lock); 2470 list_del(&info->link); 2471 list_del(&info->global); 2472 if (info->dev) 2473 dev_iommu_priv_set(info->dev, NULL); 2474 } 2475 2476 static void domain_remove_dev_info(struct dmar_domain *domain) 2477 { 2478 struct device_domain_info *info, *tmp; 2479 unsigned long flags; 2480 2481 spin_lock_irqsave(&device_domain_lock, flags); 2482 list_for_each_entry_safe(info, tmp, &domain->devices, link) 2483 __dmar_remove_one_dev_info(info); 2484 spin_unlock_irqrestore(&device_domain_lock, flags); 2485 } 2486 2487 struct dmar_domain *find_domain(struct device *dev) 2488 { 2489 struct device_domain_info *info; 2490 2491 if (unlikely(!dev || !dev->iommu)) 2492 return NULL; 2493 2494 if (unlikely(attach_deferred(dev))) 2495 return NULL; 2496 2497 /* No lock here, assumes no domain exit in normal case */ 2498 info = get_domain_info(dev); 2499 if (likely(info)) 2500 return info->domain; 2501 2502 return NULL; 2503 } 2504 2505 static inline struct device_domain_info * 2506 dmar_search_domain_by_dev_info(int segment, int bus, int devfn) 2507 { 2508 struct device_domain_info *info; 2509 2510 list_for_each_entry(info, &device_domain_list, global) 2511 if (info->segment == segment && info->bus == bus && 2512 info->devfn == devfn) 2513 return info; 2514 2515 return NULL; 2516 } 2517 2518 static int domain_setup_first_level(struct intel_iommu *iommu, 2519 struct dmar_domain *domain, 2520 struct device *dev, 2521 u32 pasid) 2522 { 2523 struct dma_pte *pgd = domain->pgd; 2524 int agaw, level; 2525 int flags = 0; 2526 2527 /* 2528 * Skip top levels of page tables for iommu which has 2529 * less agaw than default. Unnecessary for PT mode. 2530 */ 2531 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { 2532 pgd = phys_to_virt(dma_pte_addr(pgd)); 2533 if (!dma_pte_present(pgd)) 2534 return -ENOMEM; 2535 } 2536 2537 level = agaw_to_level(agaw); 2538 if (level != 4 && level != 5) 2539 return -EINVAL; 2540 2541 if (pasid != PASID_RID2PASID) 2542 flags |= PASID_FLAG_SUPERVISOR_MODE; 2543 if (level == 5) 2544 flags |= PASID_FLAG_FL5LP; 2545 2546 if (domain->domain.type == IOMMU_DOMAIN_UNMANAGED) 2547 flags |= PASID_FLAG_PAGE_SNOOP; 2548 2549 return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid, 2550 domain->iommu_did[iommu->seq_id], 2551 flags); 2552 } 2553 2554 static bool dev_is_real_dma_subdevice(struct device *dev) 2555 { 2556 return dev && dev_is_pci(dev) && 2557 pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev); 2558 } 2559 2560 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu, 2561 int bus, int devfn, 2562 struct device *dev, 2563 struct dmar_domain *domain) 2564 { 2565 struct dmar_domain *found = NULL; 2566 struct device_domain_info *info; 2567 unsigned long flags; 2568 int ret; 2569 2570 info = alloc_devinfo_mem(); 2571 if (!info) 2572 return NULL; 2573 2574 if (!dev_is_real_dma_subdevice(dev)) { 2575 info->bus = bus; 2576 info->devfn = devfn; 2577 info->segment = iommu->segment; 2578 } else { 2579 struct pci_dev *pdev = to_pci_dev(dev); 2580 2581 info->bus = pdev->bus->number; 2582 info->devfn = pdev->devfn; 2583 info->segment = pci_domain_nr(pdev->bus); 2584 } 2585 2586 info->ats_supported = info->pasid_supported = info->pri_supported = 0; 2587 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0; 2588 info->ats_qdep = 0; 2589 info->dev = dev; 2590 info->domain = domain; 2591 info->iommu = iommu; 2592 info->pasid_table = NULL; 2593 info->auxd_enabled = 0; 2594 INIT_LIST_HEAD(&info->subdevices); 2595 2596 if (dev && dev_is_pci(dev)) { 2597 struct pci_dev *pdev = to_pci_dev(info->dev); 2598 2599 if (ecap_dev_iotlb_support(iommu->ecap) && 2600 pci_ats_supported(pdev) && 2601 dmar_find_matched_atsr_unit(pdev)) 2602 info->ats_supported = 1; 2603 2604 if (sm_supported(iommu)) { 2605 if (pasid_supported(iommu)) { 2606 int features = pci_pasid_features(pdev); 2607 if (features >= 0) 2608 info->pasid_supported = features | 1; 2609 } 2610 2611 if (info->ats_supported && ecap_prs(iommu->ecap) && 2612 pci_pri_supported(pdev)) 2613 info->pri_supported = 1; 2614 } 2615 } 2616 2617 spin_lock_irqsave(&device_domain_lock, flags); 2618 if (dev) 2619 found = find_domain(dev); 2620 2621 if (!found) { 2622 struct device_domain_info *info2; 2623 info2 = dmar_search_domain_by_dev_info(info->segment, info->bus, 2624 info->devfn); 2625 if (info2) { 2626 found = info2->domain; 2627 info2->dev = dev; 2628 } 2629 } 2630 2631 if (found) { 2632 spin_unlock_irqrestore(&device_domain_lock, flags); 2633 free_devinfo_mem(info); 2634 /* Caller must free the original domain */ 2635 return found; 2636 } 2637 2638 spin_lock(&iommu->lock); 2639 ret = domain_attach_iommu(domain, iommu); 2640 spin_unlock(&iommu->lock); 2641 2642 if (ret) { 2643 spin_unlock_irqrestore(&device_domain_lock, flags); 2644 free_devinfo_mem(info); 2645 return NULL; 2646 } 2647 2648 list_add(&info->link, &domain->devices); 2649 list_add(&info->global, &device_domain_list); 2650 if (dev) 2651 dev_iommu_priv_set(dev, info); 2652 spin_unlock_irqrestore(&device_domain_lock, flags); 2653 2654 /* PASID table is mandatory for a PCI device in scalable mode. */ 2655 if (dev && dev_is_pci(dev) && sm_supported(iommu)) { 2656 ret = intel_pasid_alloc_table(dev); 2657 if (ret) { 2658 dev_err(dev, "PASID table allocation failed\n"); 2659 dmar_remove_one_dev_info(dev); 2660 return NULL; 2661 } 2662 2663 /* Setup the PASID entry for requests without PASID: */ 2664 spin_lock_irqsave(&iommu->lock, flags); 2665 if (hw_pass_through && domain_type_is_si(domain)) 2666 ret = intel_pasid_setup_pass_through(iommu, domain, 2667 dev, PASID_RID2PASID); 2668 else if (domain_use_first_level(domain)) 2669 ret = domain_setup_first_level(iommu, domain, dev, 2670 PASID_RID2PASID); 2671 else 2672 ret = intel_pasid_setup_second_level(iommu, domain, 2673 dev, PASID_RID2PASID); 2674 spin_unlock_irqrestore(&iommu->lock, flags); 2675 if (ret) { 2676 dev_err(dev, "Setup RID2PASID failed\n"); 2677 dmar_remove_one_dev_info(dev); 2678 return NULL; 2679 } 2680 } 2681 2682 if (dev && domain_context_mapping(domain, dev)) { 2683 dev_err(dev, "Domain context map failed\n"); 2684 dmar_remove_one_dev_info(dev); 2685 return NULL; 2686 } 2687 2688 return domain; 2689 } 2690 2691 static int iommu_domain_identity_map(struct dmar_domain *domain, 2692 unsigned long first_vpfn, 2693 unsigned long last_vpfn) 2694 { 2695 /* 2696 * RMRR range might have overlap with physical memory range, 2697 * clear it first 2698 */ 2699 dma_pte_clear_range(domain, first_vpfn, last_vpfn); 2700 2701 return __domain_mapping(domain, first_vpfn, 2702 first_vpfn, last_vpfn - first_vpfn + 1, 2703 DMA_PTE_READ|DMA_PTE_WRITE); 2704 } 2705 2706 static int md_domain_init(struct dmar_domain *domain, int guest_width); 2707 2708 static int __init si_domain_init(int hw) 2709 { 2710 struct dmar_rmrr_unit *rmrr; 2711 struct device *dev; 2712 int i, nid, ret; 2713 2714 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY); 2715 if (!si_domain) 2716 return -EFAULT; 2717 2718 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { 2719 domain_exit(si_domain); 2720 return -EFAULT; 2721 } 2722 2723 if (hw) 2724 return 0; 2725 2726 for_each_online_node(nid) { 2727 unsigned long start_pfn, end_pfn; 2728 int i; 2729 2730 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 2731 ret = iommu_domain_identity_map(si_domain, 2732 mm_to_dma_pfn(start_pfn), 2733 mm_to_dma_pfn(end_pfn)); 2734 if (ret) 2735 return ret; 2736 } 2737 } 2738 2739 /* 2740 * Identity map the RMRRs so that devices with RMRRs could also use 2741 * the si_domain. 2742 */ 2743 for_each_rmrr_units(rmrr) { 2744 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, 2745 i, dev) { 2746 unsigned long long start = rmrr->base_address; 2747 unsigned long long end = rmrr->end_address; 2748 2749 if (WARN_ON(end < start || 2750 end >> agaw_to_width(si_domain->agaw))) 2751 continue; 2752 2753 ret = iommu_domain_identity_map(si_domain, 2754 mm_to_dma_pfn(start >> PAGE_SHIFT), 2755 mm_to_dma_pfn(end >> PAGE_SHIFT)); 2756 if (ret) 2757 return ret; 2758 } 2759 } 2760 2761 return 0; 2762 } 2763 2764 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev) 2765 { 2766 struct dmar_domain *ndomain; 2767 struct intel_iommu *iommu; 2768 u8 bus, devfn; 2769 2770 iommu = device_to_iommu(dev, &bus, &devfn); 2771 if (!iommu) 2772 return -ENODEV; 2773 2774 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain); 2775 if (ndomain != domain) 2776 return -EBUSY; 2777 2778 return 0; 2779 } 2780 2781 static bool device_has_rmrr(struct device *dev) 2782 { 2783 struct dmar_rmrr_unit *rmrr; 2784 struct device *tmp; 2785 int i; 2786 2787 rcu_read_lock(); 2788 for_each_rmrr_units(rmrr) { 2789 /* 2790 * Return TRUE if this RMRR contains the device that 2791 * is passed in. 2792 */ 2793 for_each_active_dev_scope(rmrr->devices, 2794 rmrr->devices_cnt, i, tmp) 2795 if (tmp == dev || 2796 is_downstream_to_pci_bridge(dev, tmp)) { 2797 rcu_read_unlock(); 2798 return true; 2799 } 2800 } 2801 rcu_read_unlock(); 2802 return false; 2803 } 2804 2805 /** 2806 * device_rmrr_is_relaxable - Test whether the RMRR of this device 2807 * is relaxable (ie. is allowed to be not enforced under some conditions) 2808 * @dev: device handle 2809 * 2810 * We assume that PCI USB devices with RMRRs have them largely 2811 * for historical reasons and that the RMRR space is not actively used post 2812 * boot. This exclusion may change if vendors begin to abuse it. 2813 * 2814 * The same exception is made for graphics devices, with the requirement that 2815 * any use of the RMRR regions will be torn down before assigning the device 2816 * to a guest. 2817 * 2818 * Return: true if the RMRR is relaxable, false otherwise 2819 */ 2820 static bool device_rmrr_is_relaxable(struct device *dev) 2821 { 2822 struct pci_dev *pdev; 2823 2824 if (!dev_is_pci(dev)) 2825 return false; 2826 2827 pdev = to_pci_dev(dev); 2828 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev)) 2829 return true; 2830 else 2831 return false; 2832 } 2833 2834 /* 2835 * There are a couple cases where we need to restrict the functionality of 2836 * devices associated with RMRRs. The first is when evaluating a device for 2837 * identity mapping because problems exist when devices are moved in and out 2838 * of domains and their respective RMRR information is lost. This means that 2839 * a device with associated RMRRs will never be in a "passthrough" domain. 2840 * The second is use of the device through the IOMMU API. This interface 2841 * expects to have full control of the IOVA space for the device. We cannot 2842 * satisfy both the requirement that RMRR access is maintained and have an 2843 * unencumbered IOVA space. We also have no ability to quiesce the device's 2844 * use of the RMRR space or even inform the IOMMU API user of the restriction. 2845 * We therefore prevent devices associated with an RMRR from participating in 2846 * the IOMMU API, which eliminates them from device assignment. 2847 * 2848 * In both cases, devices which have relaxable RMRRs are not concerned by this 2849 * restriction. See device_rmrr_is_relaxable comment. 2850 */ 2851 static bool device_is_rmrr_locked(struct device *dev) 2852 { 2853 if (!device_has_rmrr(dev)) 2854 return false; 2855 2856 if (device_rmrr_is_relaxable(dev)) 2857 return false; 2858 2859 return true; 2860 } 2861 2862 /* 2863 * Return the required default domain type for a specific device. 2864 * 2865 * @dev: the device in query 2866 * @startup: true if this is during early boot 2867 * 2868 * Returns: 2869 * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain 2870 * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain 2871 * - 0: both identity and dynamic domains work for this device 2872 */ 2873 static int device_def_domain_type(struct device *dev) 2874 { 2875 if (dev_is_pci(dev)) { 2876 struct pci_dev *pdev = to_pci_dev(dev); 2877 2878 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) 2879 return IOMMU_DOMAIN_IDENTITY; 2880 2881 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) 2882 return IOMMU_DOMAIN_IDENTITY; 2883 } 2884 2885 return 0; 2886 } 2887 2888 static void intel_iommu_init_qi(struct intel_iommu *iommu) 2889 { 2890 /* 2891 * Start from the sane iommu hardware state. 2892 * If the queued invalidation is already initialized by us 2893 * (for example, while enabling interrupt-remapping) then 2894 * we got the things already rolling from a sane state. 2895 */ 2896 if (!iommu->qi) { 2897 /* 2898 * Clear any previous faults. 2899 */ 2900 dmar_fault(-1, iommu); 2901 /* 2902 * Disable queued invalidation if supported and already enabled 2903 * before OS handover. 2904 */ 2905 dmar_disable_qi(iommu); 2906 } 2907 2908 if (dmar_enable_qi(iommu)) { 2909 /* 2910 * Queued Invalidate not enabled, use Register Based Invalidate 2911 */ 2912 iommu->flush.flush_context = __iommu_flush_context; 2913 iommu->flush.flush_iotlb = __iommu_flush_iotlb; 2914 pr_info("%s: Using Register based invalidation\n", 2915 iommu->name); 2916 } else { 2917 iommu->flush.flush_context = qi_flush_context; 2918 iommu->flush.flush_iotlb = qi_flush_iotlb; 2919 pr_info("%s: Using Queued invalidation\n", iommu->name); 2920 } 2921 } 2922 2923 static int copy_context_table(struct intel_iommu *iommu, 2924 struct root_entry *old_re, 2925 struct context_entry **tbl, 2926 int bus, bool ext) 2927 { 2928 int tbl_idx, pos = 0, idx, devfn, ret = 0, did; 2929 struct context_entry *new_ce = NULL, ce; 2930 struct context_entry *old_ce = NULL; 2931 struct root_entry re; 2932 phys_addr_t old_ce_phys; 2933 2934 tbl_idx = ext ? bus * 2 : bus; 2935 memcpy(&re, old_re, sizeof(re)); 2936 2937 for (devfn = 0; devfn < 256; devfn++) { 2938 /* First calculate the correct index */ 2939 idx = (ext ? devfn * 2 : devfn) % 256; 2940 2941 if (idx == 0) { 2942 /* First save what we may have and clean up */ 2943 if (new_ce) { 2944 tbl[tbl_idx] = new_ce; 2945 __iommu_flush_cache(iommu, new_ce, 2946 VTD_PAGE_SIZE); 2947 pos = 1; 2948 } 2949 2950 if (old_ce) 2951 memunmap(old_ce); 2952 2953 ret = 0; 2954 if (devfn < 0x80) 2955 old_ce_phys = root_entry_lctp(&re); 2956 else 2957 old_ce_phys = root_entry_uctp(&re); 2958 2959 if (!old_ce_phys) { 2960 if (ext && devfn == 0) { 2961 /* No LCTP, try UCTP */ 2962 devfn = 0x7f; 2963 continue; 2964 } else { 2965 goto out; 2966 } 2967 } 2968 2969 ret = -ENOMEM; 2970 old_ce = memremap(old_ce_phys, PAGE_SIZE, 2971 MEMREMAP_WB); 2972 if (!old_ce) 2973 goto out; 2974 2975 new_ce = alloc_pgtable_page(iommu->node); 2976 if (!new_ce) 2977 goto out_unmap; 2978 2979 ret = 0; 2980 } 2981 2982 /* Now copy the context entry */ 2983 memcpy(&ce, old_ce + idx, sizeof(ce)); 2984 2985 if (!__context_present(&ce)) 2986 continue; 2987 2988 did = context_domain_id(&ce); 2989 if (did >= 0 && did < cap_ndoms(iommu->cap)) 2990 set_bit(did, iommu->domain_ids); 2991 2992 /* 2993 * We need a marker for copied context entries. This 2994 * marker needs to work for the old format as well as 2995 * for extended context entries. 2996 * 2997 * Bit 67 of the context entry is used. In the old 2998 * format this bit is available to software, in the 2999 * extended format it is the PGE bit, but PGE is ignored 3000 * by HW if PASIDs are disabled (and thus still 3001 * available). 3002 * 3003 * So disable PASIDs first and then mark the entry 3004 * copied. This means that we don't copy PASID 3005 * translations from the old kernel, but this is fine as 3006 * faults there are not fatal. 3007 */ 3008 context_clear_pasid_enable(&ce); 3009 context_set_copied(&ce); 3010 3011 new_ce[idx] = ce; 3012 } 3013 3014 tbl[tbl_idx + pos] = new_ce; 3015 3016 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE); 3017 3018 out_unmap: 3019 memunmap(old_ce); 3020 3021 out: 3022 return ret; 3023 } 3024 3025 static int copy_translation_tables(struct intel_iommu *iommu) 3026 { 3027 struct context_entry **ctxt_tbls; 3028 struct root_entry *old_rt; 3029 phys_addr_t old_rt_phys; 3030 int ctxt_table_entries; 3031 unsigned long flags; 3032 u64 rtaddr_reg; 3033 int bus, ret; 3034 bool new_ext, ext; 3035 3036 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG); 3037 ext = !!(rtaddr_reg & DMA_RTADDR_RTT); 3038 new_ext = !!ecap_ecs(iommu->ecap); 3039 3040 /* 3041 * The RTT bit can only be changed when translation is disabled, 3042 * but disabling translation means to open a window for data 3043 * corruption. So bail out and don't copy anything if we would 3044 * have to change the bit. 3045 */ 3046 if (new_ext != ext) 3047 return -EINVAL; 3048 3049 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK; 3050 if (!old_rt_phys) 3051 return -EINVAL; 3052 3053 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB); 3054 if (!old_rt) 3055 return -ENOMEM; 3056 3057 /* This is too big for the stack - allocate it from slab */ 3058 ctxt_table_entries = ext ? 512 : 256; 3059 ret = -ENOMEM; 3060 ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL); 3061 if (!ctxt_tbls) 3062 goto out_unmap; 3063 3064 for (bus = 0; bus < 256; bus++) { 3065 ret = copy_context_table(iommu, &old_rt[bus], 3066 ctxt_tbls, bus, ext); 3067 if (ret) { 3068 pr_err("%s: Failed to copy context table for bus %d\n", 3069 iommu->name, bus); 3070 continue; 3071 } 3072 } 3073 3074 spin_lock_irqsave(&iommu->lock, flags); 3075 3076 /* Context tables are copied, now write them to the root_entry table */ 3077 for (bus = 0; bus < 256; bus++) { 3078 int idx = ext ? bus * 2 : bus; 3079 u64 val; 3080 3081 if (ctxt_tbls[idx]) { 3082 val = virt_to_phys(ctxt_tbls[idx]) | 1; 3083 iommu->root_entry[bus].lo = val; 3084 } 3085 3086 if (!ext || !ctxt_tbls[idx + 1]) 3087 continue; 3088 3089 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1; 3090 iommu->root_entry[bus].hi = val; 3091 } 3092 3093 spin_unlock_irqrestore(&iommu->lock, flags); 3094 3095 kfree(ctxt_tbls); 3096 3097 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE); 3098 3099 ret = 0; 3100 3101 out_unmap: 3102 memunmap(old_rt); 3103 3104 return ret; 3105 } 3106 3107 #ifdef CONFIG_INTEL_IOMMU_SVM 3108 static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data) 3109 { 3110 struct intel_iommu *iommu = data; 3111 ioasid_t ioasid; 3112 3113 if (!iommu) 3114 return INVALID_IOASID; 3115 /* 3116 * VT-d virtual command interface always uses the full 20 bit 3117 * PASID range. Host can partition guest PASID range based on 3118 * policies but it is out of guest's control. 3119 */ 3120 if (min < PASID_MIN || max > intel_pasid_max_id) 3121 return INVALID_IOASID; 3122 3123 if (vcmd_alloc_pasid(iommu, &ioasid)) 3124 return INVALID_IOASID; 3125 3126 return ioasid; 3127 } 3128 3129 static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data) 3130 { 3131 struct intel_iommu *iommu = data; 3132 3133 if (!iommu) 3134 return; 3135 /* 3136 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO 3137 * We can only free the PASID when all the devices are unbound. 3138 */ 3139 if (ioasid_find(NULL, ioasid, NULL)) { 3140 pr_alert("Cannot free active IOASID %d\n", ioasid); 3141 return; 3142 } 3143 vcmd_free_pasid(iommu, ioasid); 3144 } 3145 3146 static void register_pasid_allocator(struct intel_iommu *iommu) 3147 { 3148 /* 3149 * If we are running in the host, no need for custom allocator 3150 * in that PASIDs are allocated from the host system-wide. 3151 */ 3152 if (!cap_caching_mode(iommu->cap)) 3153 return; 3154 3155 if (!sm_supported(iommu)) { 3156 pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n"); 3157 return; 3158 } 3159 3160 /* 3161 * Register a custom PASID allocator if we are running in a guest, 3162 * guest PASID must be obtained via virtual command interface. 3163 * There can be multiple vIOMMUs in each guest but only one allocator 3164 * is active. All vIOMMU allocators will eventually be calling the same 3165 * host allocator. 3166 */ 3167 if (!vccap_pasid(iommu->vccap)) 3168 return; 3169 3170 pr_info("Register custom PASID allocator\n"); 3171 iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc; 3172 iommu->pasid_allocator.free = intel_vcmd_ioasid_free; 3173 iommu->pasid_allocator.pdata = (void *)iommu; 3174 if (ioasid_register_allocator(&iommu->pasid_allocator)) { 3175 pr_warn("Custom PASID allocator failed, scalable mode disabled\n"); 3176 /* 3177 * Disable scalable mode on this IOMMU if there 3178 * is no custom allocator. Mixing SM capable vIOMMU 3179 * and non-SM vIOMMU are not supported. 3180 */ 3181 intel_iommu_sm = 0; 3182 } 3183 } 3184 #endif 3185 3186 static int __init init_dmars(void) 3187 { 3188 struct dmar_drhd_unit *drhd; 3189 struct intel_iommu *iommu; 3190 int ret; 3191 3192 /* 3193 * for each drhd 3194 * allocate root 3195 * initialize and program root entry to not present 3196 * endfor 3197 */ 3198 for_each_drhd_unit(drhd) { 3199 /* 3200 * lock not needed as this is only incremented in the single 3201 * threaded kernel __init code path all other access are read 3202 * only 3203 */ 3204 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) { 3205 g_num_of_iommus++; 3206 continue; 3207 } 3208 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED); 3209 } 3210 3211 /* Preallocate enough resources for IOMMU hot-addition */ 3212 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) 3213 g_num_of_iommus = DMAR_UNITS_SUPPORTED; 3214 3215 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), 3216 GFP_KERNEL); 3217 if (!g_iommus) { 3218 pr_err("Allocating global iommu array failed\n"); 3219 ret = -ENOMEM; 3220 goto error; 3221 } 3222 3223 ret = intel_cap_audit(CAP_AUDIT_STATIC_DMAR, NULL); 3224 if (ret) 3225 goto free_iommu; 3226 3227 for_each_iommu(iommu, drhd) { 3228 if (drhd->ignored) { 3229 iommu_disable_translation(iommu); 3230 continue; 3231 } 3232 3233 /* 3234 * Find the max pasid size of all IOMMU's in the system. 3235 * We need to ensure the system pasid table is no bigger 3236 * than the smallest supported. 3237 */ 3238 if (pasid_supported(iommu)) { 3239 u32 temp = 2 << ecap_pss(iommu->ecap); 3240 3241 intel_pasid_max_id = min_t(u32, temp, 3242 intel_pasid_max_id); 3243 } 3244 3245 g_iommus[iommu->seq_id] = iommu; 3246 3247 intel_iommu_init_qi(iommu); 3248 3249 ret = iommu_init_domains(iommu); 3250 if (ret) 3251 goto free_iommu; 3252 3253 init_translation_status(iommu); 3254 3255 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) { 3256 iommu_disable_translation(iommu); 3257 clear_translation_pre_enabled(iommu); 3258 pr_warn("Translation was enabled for %s but we are not in kdump mode\n", 3259 iommu->name); 3260 } 3261 3262 /* 3263 * TBD: 3264 * we could share the same root & context tables 3265 * among all IOMMU's. Need to Split it later. 3266 */ 3267 ret = iommu_alloc_root_entry(iommu); 3268 if (ret) 3269 goto free_iommu; 3270 3271 if (translation_pre_enabled(iommu)) { 3272 pr_info("Translation already enabled - trying to copy translation structures\n"); 3273 3274 ret = copy_translation_tables(iommu); 3275 if (ret) { 3276 /* 3277 * We found the IOMMU with translation 3278 * enabled - but failed to copy over the 3279 * old root-entry table. Try to proceed 3280 * by disabling translation now and 3281 * allocating a clean root-entry table. 3282 * This might cause DMAR faults, but 3283 * probably the dump will still succeed. 3284 */ 3285 pr_err("Failed to copy translation tables from previous kernel for %s\n", 3286 iommu->name); 3287 iommu_disable_translation(iommu); 3288 clear_translation_pre_enabled(iommu); 3289 } else { 3290 pr_info("Copied translation tables from previous kernel for %s\n", 3291 iommu->name); 3292 } 3293 } 3294 3295 if (!ecap_pass_through(iommu->ecap)) 3296 hw_pass_through = 0; 3297 intel_svm_check(iommu); 3298 } 3299 3300 /* 3301 * Now that qi is enabled on all iommus, set the root entry and flush 3302 * caches. This is required on some Intel X58 chipsets, otherwise the 3303 * flush_context function will loop forever and the boot hangs. 3304 */ 3305 for_each_active_iommu(iommu, drhd) { 3306 iommu_flush_write_buffer(iommu); 3307 #ifdef CONFIG_INTEL_IOMMU_SVM 3308 register_pasid_allocator(iommu); 3309 #endif 3310 iommu_set_root_entry(iommu); 3311 } 3312 3313 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA 3314 dmar_map_gfx = 0; 3315 #endif 3316 3317 if (!dmar_map_gfx) 3318 iommu_identity_mapping |= IDENTMAP_GFX; 3319 3320 check_tylersburg_isoch(); 3321 3322 ret = si_domain_init(hw_pass_through); 3323 if (ret) 3324 goto free_iommu; 3325 3326 /* 3327 * for each drhd 3328 * enable fault log 3329 * global invalidate context cache 3330 * global invalidate iotlb 3331 * enable translation 3332 */ 3333 for_each_iommu(iommu, drhd) { 3334 if (drhd->ignored) { 3335 /* 3336 * we always have to disable PMRs or DMA may fail on 3337 * this device 3338 */ 3339 if (force_on) 3340 iommu_disable_protect_mem_regions(iommu); 3341 continue; 3342 } 3343 3344 iommu_flush_write_buffer(iommu); 3345 3346 #ifdef CONFIG_INTEL_IOMMU_SVM 3347 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { 3348 /* 3349 * Call dmar_alloc_hwirq() with dmar_global_lock held, 3350 * could cause possible lock race condition. 3351 */ 3352 up_write(&dmar_global_lock); 3353 ret = intel_svm_enable_prq(iommu); 3354 down_write(&dmar_global_lock); 3355 if (ret) 3356 goto free_iommu; 3357 } 3358 #endif 3359 ret = dmar_set_interrupt(iommu); 3360 if (ret) 3361 goto free_iommu; 3362 } 3363 3364 return 0; 3365 3366 free_iommu: 3367 for_each_active_iommu(iommu, drhd) { 3368 disable_dmar_iommu(iommu); 3369 free_dmar_iommu(iommu); 3370 } 3371 3372 kfree(g_iommus); 3373 3374 error: 3375 return ret; 3376 } 3377 3378 static inline int iommu_domain_cache_init(void) 3379 { 3380 int ret = 0; 3381 3382 iommu_domain_cache = kmem_cache_create("iommu_domain", 3383 sizeof(struct dmar_domain), 3384 0, 3385 SLAB_HWCACHE_ALIGN, 3386 3387 NULL); 3388 if (!iommu_domain_cache) { 3389 pr_err("Couldn't create iommu_domain cache\n"); 3390 ret = -ENOMEM; 3391 } 3392 3393 return ret; 3394 } 3395 3396 static inline int iommu_devinfo_cache_init(void) 3397 { 3398 int ret = 0; 3399 3400 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", 3401 sizeof(struct device_domain_info), 3402 0, 3403 SLAB_HWCACHE_ALIGN, 3404 NULL); 3405 if (!iommu_devinfo_cache) { 3406 pr_err("Couldn't create devinfo cache\n"); 3407 ret = -ENOMEM; 3408 } 3409 3410 return ret; 3411 } 3412 3413 static int __init iommu_init_mempool(void) 3414 { 3415 int ret; 3416 ret = iova_cache_get(); 3417 if (ret) 3418 return ret; 3419 3420 ret = iommu_domain_cache_init(); 3421 if (ret) 3422 goto domain_error; 3423 3424 ret = iommu_devinfo_cache_init(); 3425 if (!ret) 3426 return ret; 3427 3428 kmem_cache_destroy(iommu_domain_cache); 3429 domain_error: 3430 iova_cache_put(); 3431 3432 return -ENOMEM; 3433 } 3434 3435 static void __init iommu_exit_mempool(void) 3436 { 3437 kmem_cache_destroy(iommu_devinfo_cache); 3438 kmem_cache_destroy(iommu_domain_cache); 3439 iova_cache_put(); 3440 } 3441 3442 static void __init init_no_remapping_devices(void) 3443 { 3444 struct dmar_drhd_unit *drhd; 3445 struct device *dev; 3446 int i; 3447 3448 for_each_drhd_unit(drhd) { 3449 if (!drhd->include_all) { 3450 for_each_active_dev_scope(drhd->devices, 3451 drhd->devices_cnt, i, dev) 3452 break; 3453 /* ignore DMAR unit if no devices exist */ 3454 if (i == drhd->devices_cnt) 3455 drhd->ignored = 1; 3456 } 3457 } 3458 3459 for_each_active_drhd_unit(drhd) { 3460 if (drhd->include_all) 3461 continue; 3462 3463 for_each_active_dev_scope(drhd->devices, 3464 drhd->devices_cnt, i, dev) 3465 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev))) 3466 break; 3467 if (i < drhd->devices_cnt) 3468 continue; 3469 3470 /* This IOMMU has *only* gfx devices. Either bypass it or 3471 set the gfx_mapped flag, as appropriate */ 3472 drhd->gfx_dedicated = 1; 3473 if (!dmar_map_gfx) 3474 drhd->ignored = 1; 3475 } 3476 } 3477 3478 #ifdef CONFIG_SUSPEND 3479 static int init_iommu_hw(void) 3480 { 3481 struct dmar_drhd_unit *drhd; 3482 struct intel_iommu *iommu = NULL; 3483 3484 for_each_active_iommu(iommu, drhd) 3485 if (iommu->qi) 3486 dmar_reenable_qi(iommu); 3487 3488 for_each_iommu(iommu, drhd) { 3489 if (drhd->ignored) { 3490 /* 3491 * we always have to disable PMRs or DMA may fail on 3492 * this device 3493 */ 3494 if (force_on) 3495 iommu_disable_protect_mem_regions(iommu); 3496 continue; 3497 } 3498 3499 iommu_flush_write_buffer(iommu); 3500 iommu_set_root_entry(iommu); 3501 iommu_enable_translation(iommu); 3502 iommu_disable_protect_mem_regions(iommu); 3503 } 3504 3505 return 0; 3506 } 3507 3508 static void iommu_flush_all(void) 3509 { 3510 struct dmar_drhd_unit *drhd; 3511 struct intel_iommu *iommu; 3512 3513 for_each_active_iommu(iommu, drhd) { 3514 iommu->flush.flush_context(iommu, 0, 0, 0, 3515 DMA_CCMD_GLOBAL_INVL); 3516 iommu->flush.flush_iotlb(iommu, 0, 0, 0, 3517 DMA_TLB_GLOBAL_FLUSH); 3518 } 3519 } 3520 3521 static int iommu_suspend(void) 3522 { 3523 struct dmar_drhd_unit *drhd; 3524 struct intel_iommu *iommu = NULL; 3525 unsigned long flag; 3526 3527 for_each_active_iommu(iommu, drhd) { 3528 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32), 3529 GFP_KERNEL); 3530 if (!iommu->iommu_state) 3531 goto nomem; 3532 } 3533 3534 iommu_flush_all(); 3535 3536 for_each_active_iommu(iommu, drhd) { 3537 iommu_disable_translation(iommu); 3538 3539 raw_spin_lock_irqsave(&iommu->register_lock, flag); 3540 3541 iommu->iommu_state[SR_DMAR_FECTL_REG] = 3542 readl(iommu->reg + DMAR_FECTL_REG); 3543 iommu->iommu_state[SR_DMAR_FEDATA_REG] = 3544 readl(iommu->reg + DMAR_FEDATA_REG); 3545 iommu->iommu_state[SR_DMAR_FEADDR_REG] = 3546 readl(iommu->reg + DMAR_FEADDR_REG); 3547 iommu->iommu_state[SR_DMAR_FEUADDR_REG] = 3548 readl(iommu->reg + DMAR_FEUADDR_REG); 3549 3550 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 3551 } 3552 return 0; 3553 3554 nomem: 3555 for_each_active_iommu(iommu, drhd) 3556 kfree(iommu->iommu_state); 3557 3558 return -ENOMEM; 3559 } 3560 3561 static void iommu_resume(void) 3562 { 3563 struct dmar_drhd_unit *drhd; 3564 struct intel_iommu *iommu = NULL; 3565 unsigned long flag; 3566 3567 if (init_iommu_hw()) { 3568 if (force_on) 3569 panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); 3570 else 3571 WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); 3572 return; 3573 } 3574 3575 for_each_active_iommu(iommu, drhd) { 3576 3577 raw_spin_lock_irqsave(&iommu->register_lock, flag); 3578 3579 writel(iommu->iommu_state[SR_DMAR_FECTL_REG], 3580 iommu->reg + DMAR_FECTL_REG); 3581 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], 3582 iommu->reg + DMAR_FEDATA_REG); 3583 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], 3584 iommu->reg + DMAR_FEADDR_REG); 3585 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], 3586 iommu->reg + DMAR_FEUADDR_REG); 3587 3588 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 3589 } 3590 3591 for_each_active_iommu(iommu, drhd) 3592 kfree(iommu->iommu_state); 3593 } 3594 3595 static struct syscore_ops iommu_syscore_ops = { 3596 .resume = iommu_resume, 3597 .suspend = iommu_suspend, 3598 }; 3599 3600 static void __init init_iommu_pm_ops(void) 3601 { 3602 register_syscore_ops(&iommu_syscore_ops); 3603 } 3604 3605 #else 3606 static inline void init_iommu_pm_ops(void) {} 3607 #endif /* CONFIG_PM */ 3608 3609 static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr) 3610 { 3611 if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) || 3612 !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) || 3613 rmrr->end_address <= rmrr->base_address || 3614 arch_rmrr_sanity_check(rmrr)) 3615 return -EINVAL; 3616 3617 return 0; 3618 } 3619 3620 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg) 3621 { 3622 struct acpi_dmar_reserved_memory *rmrr; 3623 struct dmar_rmrr_unit *rmrru; 3624 3625 rmrr = (struct acpi_dmar_reserved_memory *)header; 3626 if (rmrr_sanity_check(rmrr)) { 3627 pr_warn(FW_BUG 3628 "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n" 3629 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 3630 rmrr->base_address, rmrr->end_address, 3631 dmi_get_system_info(DMI_BIOS_VENDOR), 3632 dmi_get_system_info(DMI_BIOS_VERSION), 3633 dmi_get_system_info(DMI_PRODUCT_VERSION)); 3634 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 3635 } 3636 3637 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); 3638 if (!rmrru) 3639 goto out; 3640 3641 rmrru->hdr = header; 3642 3643 rmrru->base_address = rmrr->base_address; 3644 rmrru->end_address = rmrr->end_address; 3645 3646 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1), 3647 ((void *)rmrr) + rmrr->header.length, 3648 &rmrru->devices_cnt); 3649 if (rmrru->devices_cnt && rmrru->devices == NULL) 3650 goto free_rmrru; 3651 3652 list_add(&rmrru->list, &dmar_rmrr_units); 3653 3654 return 0; 3655 free_rmrru: 3656 kfree(rmrru); 3657 out: 3658 return -ENOMEM; 3659 } 3660 3661 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr) 3662 { 3663 struct dmar_atsr_unit *atsru; 3664 struct acpi_dmar_atsr *tmp; 3665 3666 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list, 3667 dmar_rcu_check()) { 3668 tmp = (struct acpi_dmar_atsr *)atsru->hdr; 3669 if (atsr->segment != tmp->segment) 3670 continue; 3671 if (atsr->header.length != tmp->header.length) 3672 continue; 3673 if (memcmp(atsr, tmp, atsr->header.length) == 0) 3674 return atsru; 3675 } 3676 3677 return NULL; 3678 } 3679 3680 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3681 { 3682 struct acpi_dmar_atsr *atsr; 3683 struct dmar_atsr_unit *atsru; 3684 3685 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) 3686 return 0; 3687 3688 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3689 atsru = dmar_find_atsr(atsr); 3690 if (atsru) 3691 return 0; 3692 3693 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL); 3694 if (!atsru) 3695 return -ENOMEM; 3696 3697 /* 3698 * If memory is allocated from slab by ACPI _DSM method, we need to 3699 * copy the memory content because the memory buffer will be freed 3700 * on return. 3701 */ 3702 atsru->hdr = (void *)(atsru + 1); 3703 memcpy(atsru->hdr, hdr, hdr->length); 3704 atsru->include_all = atsr->flags & 0x1; 3705 if (!atsru->include_all) { 3706 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1), 3707 (void *)atsr + atsr->header.length, 3708 &atsru->devices_cnt); 3709 if (atsru->devices_cnt && atsru->devices == NULL) { 3710 kfree(atsru); 3711 return -ENOMEM; 3712 } 3713 } 3714 3715 list_add_rcu(&atsru->list, &dmar_atsr_units); 3716 3717 return 0; 3718 } 3719 3720 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru) 3721 { 3722 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt); 3723 kfree(atsru); 3724 } 3725 3726 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3727 { 3728 struct acpi_dmar_atsr *atsr; 3729 struct dmar_atsr_unit *atsru; 3730 3731 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3732 atsru = dmar_find_atsr(atsr); 3733 if (atsru) { 3734 list_del_rcu(&atsru->list); 3735 synchronize_rcu(); 3736 intel_iommu_free_atsr(atsru); 3737 } 3738 3739 return 0; 3740 } 3741 3742 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3743 { 3744 int i; 3745 struct device *dev; 3746 struct acpi_dmar_atsr *atsr; 3747 struct dmar_atsr_unit *atsru; 3748 3749 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3750 atsru = dmar_find_atsr(atsr); 3751 if (!atsru) 3752 return 0; 3753 3754 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) { 3755 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt, 3756 i, dev) 3757 return -EBUSY; 3758 } 3759 3760 return 0; 3761 } 3762 3763 static struct dmar_satc_unit *dmar_find_satc(struct acpi_dmar_satc *satc) 3764 { 3765 struct dmar_satc_unit *satcu; 3766 struct acpi_dmar_satc *tmp; 3767 3768 list_for_each_entry_rcu(satcu, &dmar_satc_units, list, 3769 dmar_rcu_check()) { 3770 tmp = (struct acpi_dmar_satc *)satcu->hdr; 3771 if (satc->segment != tmp->segment) 3772 continue; 3773 if (satc->header.length != tmp->header.length) 3774 continue; 3775 if (memcmp(satc, tmp, satc->header.length) == 0) 3776 return satcu; 3777 } 3778 3779 return NULL; 3780 } 3781 3782 int dmar_parse_one_satc(struct acpi_dmar_header *hdr, void *arg) 3783 { 3784 struct acpi_dmar_satc *satc; 3785 struct dmar_satc_unit *satcu; 3786 3787 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) 3788 return 0; 3789 3790 satc = container_of(hdr, struct acpi_dmar_satc, header); 3791 satcu = dmar_find_satc(satc); 3792 if (satcu) 3793 return 0; 3794 3795 satcu = kzalloc(sizeof(*satcu) + hdr->length, GFP_KERNEL); 3796 if (!satcu) 3797 return -ENOMEM; 3798 3799 satcu->hdr = (void *)(satcu + 1); 3800 memcpy(satcu->hdr, hdr, hdr->length); 3801 satcu->atc_required = satc->flags & 0x1; 3802 satcu->devices = dmar_alloc_dev_scope((void *)(satc + 1), 3803 (void *)satc + satc->header.length, 3804 &satcu->devices_cnt); 3805 if (satcu->devices_cnt && !satcu->devices) { 3806 kfree(satcu); 3807 return -ENOMEM; 3808 } 3809 list_add_rcu(&satcu->list, &dmar_satc_units); 3810 3811 return 0; 3812 } 3813 3814 static int intel_iommu_add(struct dmar_drhd_unit *dmaru) 3815 { 3816 int sp, ret; 3817 struct intel_iommu *iommu = dmaru->iommu; 3818 3819 if (g_iommus[iommu->seq_id]) 3820 return 0; 3821 3822 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_DMAR, iommu); 3823 if (ret) 3824 goto out; 3825 3826 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) { 3827 pr_warn("%s: Doesn't support hardware pass through.\n", 3828 iommu->name); 3829 return -ENXIO; 3830 } 3831 if (!ecap_sc_support(iommu->ecap) && 3832 domain_update_iommu_snooping(iommu)) { 3833 pr_warn("%s: Doesn't support snooping.\n", 3834 iommu->name); 3835 return -ENXIO; 3836 } 3837 sp = domain_update_iommu_superpage(NULL, iommu) - 1; 3838 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) { 3839 pr_warn("%s: Doesn't support large page.\n", 3840 iommu->name); 3841 return -ENXIO; 3842 } 3843 3844 /* 3845 * Disable translation if already enabled prior to OS handover. 3846 */ 3847 if (iommu->gcmd & DMA_GCMD_TE) 3848 iommu_disable_translation(iommu); 3849 3850 g_iommus[iommu->seq_id] = iommu; 3851 ret = iommu_init_domains(iommu); 3852 if (ret == 0) 3853 ret = iommu_alloc_root_entry(iommu); 3854 if (ret) 3855 goto out; 3856 3857 intel_svm_check(iommu); 3858 3859 if (dmaru->ignored) { 3860 /* 3861 * we always have to disable PMRs or DMA may fail on this device 3862 */ 3863 if (force_on) 3864 iommu_disable_protect_mem_regions(iommu); 3865 return 0; 3866 } 3867 3868 intel_iommu_init_qi(iommu); 3869 iommu_flush_write_buffer(iommu); 3870 3871 #ifdef CONFIG_INTEL_IOMMU_SVM 3872 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { 3873 ret = intel_svm_enable_prq(iommu); 3874 if (ret) 3875 goto disable_iommu; 3876 } 3877 #endif 3878 ret = dmar_set_interrupt(iommu); 3879 if (ret) 3880 goto disable_iommu; 3881 3882 iommu_set_root_entry(iommu); 3883 iommu_enable_translation(iommu); 3884 3885 iommu_disable_protect_mem_regions(iommu); 3886 return 0; 3887 3888 disable_iommu: 3889 disable_dmar_iommu(iommu); 3890 out: 3891 free_dmar_iommu(iommu); 3892 return ret; 3893 } 3894 3895 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 3896 { 3897 int ret = 0; 3898 struct intel_iommu *iommu = dmaru->iommu; 3899 3900 if (!intel_iommu_enabled) 3901 return 0; 3902 if (iommu == NULL) 3903 return -EINVAL; 3904 3905 if (insert) { 3906 ret = intel_iommu_add(dmaru); 3907 } else { 3908 disable_dmar_iommu(iommu); 3909 free_dmar_iommu(iommu); 3910 } 3911 3912 return ret; 3913 } 3914 3915 static void intel_iommu_free_dmars(void) 3916 { 3917 struct dmar_rmrr_unit *rmrru, *rmrr_n; 3918 struct dmar_atsr_unit *atsru, *atsr_n; 3919 struct dmar_satc_unit *satcu, *satc_n; 3920 3921 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) { 3922 list_del(&rmrru->list); 3923 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt); 3924 kfree(rmrru); 3925 } 3926 3927 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) { 3928 list_del(&atsru->list); 3929 intel_iommu_free_atsr(atsru); 3930 } 3931 list_for_each_entry_safe(satcu, satc_n, &dmar_satc_units, list) { 3932 list_del(&satcu->list); 3933 dmar_free_dev_scope(&satcu->devices, &satcu->devices_cnt); 3934 kfree(satcu); 3935 } 3936 } 3937 3938 int dmar_find_matched_atsr_unit(struct pci_dev *dev) 3939 { 3940 int i, ret = 1; 3941 struct pci_bus *bus; 3942 struct pci_dev *bridge = NULL; 3943 struct device *tmp; 3944 struct acpi_dmar_atsr *atsr; 3945 struct dmar_atsr_unit *atsru; 3946 3947 dev = pci_physfn(dev); 3948 for (bus = dev->bus; bus; bus = bus->parent) { 3949 bridge = bus->self; 3950 /* If it's an integrated device, allow ATS */ 3951 if (!bridge) 3952 return 1; 3953 /* Connected via non-PCIe: no ATS */ 3954 if (!pci_is_pcie(bridge) || 3955 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) 3956 return 0; 3957 /* If we found the root port, look it up in the ATSR */ 3958 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) 3959 break; 3960 } 3961 3962 rcu_read_lock(); 3963 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) { 3964 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); 3965 if (atsr->segment != pci_domain_nr(dev->bus)) 3966 continue; 3967 3968 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp) 3969 if (tmp == &bridge->dev) 3970 goto out; 3971 3972 if (atsru->include_all) 3973 goto out; 3974 } 3975 ret = 0; 3976 out: 3977 rcu_read_unlock(); 3978 3979 return ret; 3980 } 3981 3982 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info) 3983 { 3984 int ret; 3985 struct dmar_rmrr_unit *rmrru; 3986 struct dmar_atsr_unit *atsru; 3987 struct dmar_satc_unit *satcu; 3988 struct acpi_dmar_atsr *atsr; 3989 struct acpi_dmar_reserved_memory *rmrr; 3990 struct acpi_dmar_satc *satc; 3991 3992 if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING) 3993 return 0; 3994 3995 list_for_each_entry(rmrru, &dmar_rmrr_units, list) { 3996 rmrr = container_of(rmrru->hdr, 3997 struct acpi_dmar_reserved_memory, header); 3998 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 3999 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1), 4000 ((void *)rmrr) + rmrr->header.length, 4001 rmrr->segment, rmrru->devices, 4002 rmrru->devices_cnt); 4003 if (ret < 0) 4004 return ret; 4005 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 4006 dmar_remove_dev_scope(info, rmrr->segment, 4007 rmrru->devices, rmrru->devices_cnt); 4008 } 4009 } 4010 4011 list_for_each_entry(atsru, &dmar_atsr_units, list) { 4012 if (atsru->include_all) 4013 continue; 4014 4015 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); 4016 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 4017 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1), 4018 (void *)atsr + atsr->header.length, 4019 atsr->segment, atsru->devices, 4020 atsru->devices_cnt); 4021 if (ret > 0) 4022 break; 4023 else if (ret < 0) 4024 return ret; 4025 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 4026 if (dmar_remove_dev_scope(info, atsr->segment, 4027 atsru->devices, atsru->devices_cnt)) 4028 break; 4029 } 4030 } 4031 list_for_each_entry(satcu, &dmar_satc_units, list) { 4032 satc = container_of(satcu->hdr, struct acpi_dmar_satc, header); 4033 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 4034 ret = dmar_insert_dev_scope(info, (void *)(satc + 1), 4035 (void *)satc + satc->header.length, 4036 satc->segment, satcu->devices, 4037 satcu->devices_cnt); 4038 if (ret > 0) 4039 break; 4040 else if (ret < 0) 4041 return ret; 4042 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 4043 if (dmar_remove_dev_scope(info, satc->segment, 4044 satcu->devices, satcu->devices_cnt)) 4045 break; 4046 } 4047 } 4048 4049 return 0; 4050 } 4051 4052 static int intel_iommu_memory_notifier(struct notifier_block *nb, 4053 unsigned long val, void *v) 4054 { 4055 struct memory_notify *mhp = v; 4056 unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn); 4057 unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn + 4058 mhp->nr_pages - 1); 4059 4060 switch (val) { 4061 case MEM_GOING_ONLINE: 4062 if (iommu_domain_identity_map(si_domain, 4063 start_vpfn, last_vpfn)) { 4064 pr_warn("Failed to build identity map for [%lx-%lx]\n", 4065 start_vpfn, last_vpfn); 4066 return NOTIFY_BAD; 4067 } 4068 break; 4069 4070 case MEM_OFFLINE: 4071 case MEM_CANCEL_ONLINE: 4072 { 4073 struct dmar_drhd_unit *drhd; 4074 struct intel_iommu *iommu; 4075 struct page *freelist; 4076 4077 freelist = domain_unmap(si_domain, 4078 start_vpfn, last_vpfn, 4079 NULL); 4080 4081 rcu_read_lock(); 4082 for_each_active_iommu(iommu, drhd) 4083 iommu_flush_iotlb_psi(iommu, si_domain, 4084 start_vpfn, mhp->nr_pages, 4085 !freelist, 0); 4086 rcu_read_unlock(); 4087 dma_free_pagelist(freelist); 4088 } 4089 break; 4090 } 4091 4092 return NOTIFY_OK; 4093 } 4094 4095 static struct notifier_block intel_iommu_memory_nb = { 4096 .notifier_call = intel_iommu_memory_notifier, 4097 .priority = 0 4098 }; 4099 4100 static void intel_disable_iommus(void) 4101 { 4102 struct intel_iommu *iommu = NULL; 4103 struct dmar_drhd_unit *drhd; 4104 4105 for_each_iommu(iommu, drhd) 4106 iommu_disable_translation(iommu); 4107 } 4108 4109 void intel_iommu_shutdown(void) 4110 { 4111 struct dmar_drhd_unit *drhd; 4112 struct intel_iommu *iommu = NULL; 4113 4114 if (no_iommu || dmar_disabled) 4115 return; 4116 4117 down_write(&dmar_global_lock); 4118 4119 /* Disable PMRs explicitly here. */ 4120 for_each_iommu(iommu, drhd) 4121 iommu_disable_protect_mem_regions(iommu); 4122 4123 /* Make sure the IOMMUs are switched off */ 4124 intel_disable_iommus(); 4125 4126 up_write(&dmar_global_lock); 4127 } 4128 4129 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev) 4130 { 4131 struct iommu_device *iommu_dev = dev_to_iommu_device(dev); 4132 4133 return container_of(iommu_dev, struct intel_iommu, iommu); 4134 } 4135 4136 static ssize_t version_show(struct device *dev, 4137 struct device_attribute *attr, char *buf) 4138 { 4139 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 4140 u32 ver = readl(iommu->reg + DMAR_VER_REG); 4141 return sprintf(buf, "%d:%d\n", 4142 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver)); 4143 } 4144 static DEVICE_ATTR_RO(version); 4145 4146 static ssize_t address_show(struct device *dev, 4147 struct device_attribute *attr, char *buf) 4148 { 4149 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 4150 return sprintf(buf, "%llx\n", iommu->reg_phys); 4151 } 4152 static DEVICE_ATTR_RO(address); 4153 4154 static ssize_t cap_show(struct device *dev, 4155 struct device_attribute *attr, char *buf) 4156 { 4157 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 4158 return sprintf(buf, "%llx\n", iommu->cap); 4159 } 4160 static DEVICE_ATTR_RO(cap); 4161 4162 static ssize_t ecap_show(struct device *dev, 4163 struct device_attribute *attr, char *buf) 4164 { 4165 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 4166 return sprintf(buf, "%llx\n", iommu->ecap); 4167 } 4168 static DEVICE_ATTR_RO(ecap); 4169 4170 static ssize_t domains_supported_show(struct device *dev, 4171 struct device_attribute *attr, char *buf) 4172 { 4173 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 4174 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap)); 4175 } 4176 static DEVICE_ATTR_RO(domains_supported); 4177 4178 static ssize_t domains_used_show(struct device *dev, 4179 struct device_attribute *attr, char *buf) 4180 { 4181 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 4182 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids, 4183 cap_ndoms(iommu->cap))); 4184 } 4185 static DEVICE_ATTR_RO(domains_used); 4186 4187 static struct attribute *intel_iommu_attrs[] = { 4188 &dev_attr_version.attr, 4189 &dev_attr_address.attr, 4190 &dev_attr_cap.attr, 4191 &dev_attr_ecap.attr, 4192 &dev_attr_domains_supported.attr, 4193 &dev_attr_domains_used.attr, 4194 NULL, 4195 }; 4196 4197 static struct attribute_group intel_iommu_group = { 4198 .name = "intel-iommu", 4199 .attrs = intel_iommu_attrs, 4200 }; 4201 4202 const struct attribute_group *intel_iommu_groups[] = { 4203 &intel_iommu_group, 4204 NULL, 4205 }; 4206 4207 static inline bool has_external_pci(void) 4208 { 4209 struct pci_dev *pdev = NULL; 4210 4211 for_each_pci_dev(pdev) 4212 if (pdev->external_facing) 4213 return true; 4214 4215 return false; 4216 } 4217 4218 static int __init platform_optin_force_iommu(void) 4219 { 4220 if (!dmar_platform_optin() || no_platform_optin || !has_external_pci()) 4221 return 0; 4222 4223 if (no_iommu || dmar_disabled) 4224 pr_info("Intel-IOMMU force enabled due to platform opt in\n"); 4225 4226 /* 4227 * If Intel-IOMMU is disabled by default, we will apply identity 4228 * map for all devices except those marked as being untrusted. 4229 */ 4230 if (dmar_disabled) 4231 iommu_set_default_passthrough(false); 4232 4233 dmar_disabled = 0; 4234 no_iommu = 0; 4235 4236 return 1; 4237 } 4238 4239 static int __init probe_acpi_namespace_devices(void) 4240 { 4241 struct dmar_drhd_unit *drhd; 4242 /* To avoid a -Wunused-but-set-variable warning. */ 4243 struct intel_iommu *iommu __maybe_unused; 4244 struct device *dev; 4245 int i, ret = 0; 4246 4247 for_each_active_iommu(iommu, drhd) { 4248 for_each_active_dev_scope(drhd->devices, 4249 drhd->devices_cnt, i, dev) { 4250 struct acpi_device_physical_node *pn; 4251 struct iommu_group *group; 4252 struct acpi_device *adev; 4253 4254 if (dev->bus != &acpi_bus_type) 4255 continue; 4256 4257 adev = to_acpi_device(dev); 4258 mutex_lock(&adev->physical_node_lock); 4259 list_for_each_entry(pn, 4260 &adev->physical_node_list, node) { 4261 group = iommu_group_get(pn->dev); 4262 if (group) { 4263 iommu_group_put(group); 4264 continue; 4265 } 4266 4267 pn->dev->bus->iommu_ops = &intel_iommu_ops; 4268 ret = iommu_probe_device(pn->dev); 4269 if (ret) 4270 break; 4271 } 4272 mutex_unlock(&adev->physical_node_lock); 4273 4274 if (ret) 4275 return ret; 4276 } 4277 } 4278 4279 return 0; 4280 } 4281 4282 int __init intel_iommu_init(void) 4283 { 4284 int ret = -ENODEV; 4285 struct dmar_drhd_unit *drhd; 4286 struct intel_iommu *iommu; 4287 4288 /* 4289 * Intel IOMMU is required for a TXT/tboot launch or platform 4290 * opt in, so enforce that. 4291 */ 4292 force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) || 4293 platform_optin_force_iommu(); 4294 4295 if (iommu_init_mempool()) { 4296 if (force_on) 4297 panic("tboot: Failed to initialize iommu memory\n"); 4298 return -ENOMEM; 4299 } 4300 4301 down_write(&dmar_global_lock); 4302 if (dmar_table_init()) { 4303 if (force_on) 4304 panic("tboot: Failed to initialize DMAR table\n"); 4305 goto out_free_dmar; 4306 } 4307 4308 if (dmar_dev_scope_init() < 0) { 4309 if (force_on) 4310 panic("tboot: Failed to initialize DMAR device scope\n"); 4311 goto out_free_dmar; 4312 } 4313 4314 up_write(&dmar_global_lock); 4315 4316 /* 4317 * The bus notifier takes the dmar_global_lock, so lockdep will 4318 * complain later when we register it under the lock. 4319 */ 4320 dmar_register_bus_notifier(); 4321 4322 down_write(&dmar_global_lock); 4323 4324 if (!no_iommu) 4325 intel_iommu_debugfs_init(); 4326 4327 if (no_iommu || dmar_disabled) { 4328 /* 4329 * We exit the function here to ensure IOMMU's remapping and 4330 * mempool aren't setup, which means that the IOMMU's PMRs 4331 * won't be disabled via the call to init_dmars(). So disable 4332 * it explicitly here. The PMRs were setup by tboot prior to 4333 * calling SENTER, but the kernel is expected to reset/tear 4334 * down the PMRs. 4335 */ 4336 if (intel_iommu_tboot_noforce) { 4337 for_each_iommu(iommu, drhd) 4338 iommu_disable_protect_mem_regions(iommu); 4339 } 4340 4341 /* 4342 * Make sure the IOMMUs are switched off, even when we 4343 * boot into a kexec kernel and the previous kernel left 4344 * them enabled 4345 */ 4346 intel_disable_iommus(); 4347 goto out_free_dmar; 4348 } 4349 4350 if (list_empty(&dmar_rmrr_units)) 4351 pr_info("No RMRR found\n"); 4352 4353 if (list_empty(&dmar_atsr_units)) 4354 pr_info("No ATSR found\n"); 4355 4356 if (list_empty(&dmar_satc_units)) 4357 pr_info("No SATC found\n"); 4358 4359 if (dmar_map_gfx) 4360 intel_iommu_gfx_mapped = 1; 4361 4362 init_no_remapping_devices(); 4363 4364 ret = init_dmars(); 4365 if (ret) { 4366 if (force_on) 4367 panic("tboot: Failed to initialize DMARs\n"); 4368 pr_err("Initialization failed\n"); 4369 goto out_free_dmar; 4370 } 4371 up_write(&dmar_global_lock); 4372 4373 init_iommu_pm_ops(); 4374 4375 down_read(&dmar_global_lock); 4376 for_each_active_iommu(iommu, drhd) { 4377 /* 4378 * The flush queue implementation does not perform 4379 * page-selective invalidations that are required for efficient 4380 * TLB flushes in virtual environments. The benefit of batching 4381 * is likely to be much lower than the overhead of synchronizing 4382 * the virtual and physical IOMMU page-tables. 4383 */ 4384 if (!intel_iommu_strict && cap_caching_mode(iommu->cap)) { 4385 pr_warn("IOMMU batching is disabled due to virtualization"); 4386 intel_iommu_strict = 1; 4387 } 4388 iommu_device_sysfs_add(&iommu->iommu, NULL, 4389 intel_iommu_groups, 4390 "%s", iommu->name); 4391 iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL); 4392 } 4393 up_read(&dmar_global_lock); 4394 4395 iommu_set_dma_strict(intel_iommu_strict); 4396 bus_set_iommu(&pci_bus_type, &intel_iommu_ops); 4397 if (si_domain && !hw_pass_through) 4398 register_memory_notifier(&intel_iommu_memory_nb); 4399 4400 down_read(&dmar_global_lock); 4401 if (probe_acpi_namespace_devices()) 4402 pr_warn("ACPI name space devices didn't probe correctly\n"); 4403 4404 /* Finally, we enable the DMA remapping hardware. */ 4405 for_each_iommu(iommu, drhd) { 4406 if (!drhd->ignored && !translation_pre_enabled(iommu)) 4407 iommu_enable_translation(iommu); 4408 4409 iommu_disable_protect_mem_regions(iommu); 4410 } 4411 up_read(&dmar_global_lock); 4412 4413 pr_info("Intel(R) Virtualization Technology for Directed I/O\n"); 4414 4415 intel_iommu_enabled = 1; 4416 4417 return 0; 4418 4419 out_free_dmar: 4420 intel_iommu_free_dmars(); 4421 up_write(&dmar_global_lock); 4422 iommu_exit_mempool(); 4423 return ret; 4424 } 4425 4426 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque) 4427 { 4428 struct intel_iommu *iommu = opaque; 4429 4430 domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff); 4431 return 0; 4432 } 4433 4434 /* 4435 * NB - intel-iommu lacks any sort of reference counting for the users of 4436 * dependent devices. If multiple endpoints have intersecting dependent 4437 * devices, unbinding the driver from any one of them will possibly leave 4438 * the others unable to operate. 4439 */ 4440 static void domain_context_clear(struct intel_iommu *iommu, struct device *dev) 4441 { 4442 if (!iommu || !dev || !dev_is_pci(dev)) 4443 return; 4444 4445 pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu); 4446 } 4447 4448 static void __dmar_remove_one_dev_info(struct device_domain_info *info) 4449 { 4450 struct dmar_domain *domain; 4451 struct intel_iommu *iommu; 4452 unsigned long flags; 4453 4454 assert_spin_locked(&device_domain_lock); 4455 4456 if (WARN_ON(!info)) 4457 return; 4458 4459 iommu = info->iommu; 4460 domain = info->domain; 4461 4462 if (info->dev) { 4463 if (dev_is_pci(info->dev) && sm_supported(iommu)) 4464 intel_pasid_tear_down_entry(iommu, info->dev, 4465 PASID_RID2PASID, false); 4466 4467 iommu_disable_dev_iotlb(info); 4468 if (!dev_is_real_dma_subdevice(info->dev)) 4469 domain_context_clear(iommu, info->dev); 4470 intel_pasid_free_table(info->dev); 4471 } 4472 4473 unlink_domain_info(info); 4474 4475 spin_lock_irqsave(&iommu->lock, flags); 4476 domain_detach_iommu(domain, iommu); 4477 spin_unlock_irqrestore(&iommu->lock, flags); 4478 4479 free_devinfo_mem(info); 4480 } 4481 4482 static void dmar_remove_one_dev_info(struct device *dev) 4483 { 4484 struct device_domain_info *info; 4485 unsigned long flags; 4486 4487 spin_lock_irqsave(&device_domain_lock, flags); 4488 info = get_domain_info(dev); 4489 if (info) 4490 __dmar_remove_one_dev_info(info); 4491 spin_unlock_irqrestore(&device_domain_lock, flags); 4492 } 4493 4494 static int md_domain_init(struct dmar_domain *domain, int guest_width) 4495 { 4496 int adjust_width; 4497 4498 /* calculate AGAW */ 4499 domain->gaw = guest_width; 4500 adjust_width = guestwidth_to_adjustwidth(guest_width); 4501 domain->agaw = width_to_agaw(adjust_width); 4502 4503 domain->iommu_coherency = false; 4504 domain->iommu_snooping = false; 4505 domain->iommu_superpage = 0; 4506 domain->max_addr = 0; 4507 4508 /* always allocate the top pgd */ 4509 domain->pgd = alloc_pgtable_page(domain->nid); 4510 if (!domain->pgd) 4511 return -ENOMEM; 4512 domain_flush_cache(domain, domain->pgd, PAGE_SIZE); 4513 return 0; 4514 } 4515 4516 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type) 4517 { 4518 struct dmar_domain *dmar_domain; 4519 struct iommu_domain *domain; 4520 4521 switch (type) { 4522 case IOMMU_DOMAIN_DMA: 4523 case IOMMU_DOMAIN_UNMANAGED: 4524 dmar_domain = alloc_domain(0); 4525 if (!dmar_domain) { 4526 pr_err("Can't allocate dmar_domain\n"); 4527 return NULL; 4528 } 4529 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { 4530 pr_err("Domain initialization failed\n"); 4531 domain_exit(dmar_domain); 4532 return NULL; 4533 } 4534 4535 if (type == IOMMU_DOMAIN_DMA && 4536 iommu_get_dma_cookie(&dmar_domain->domain)) 4537 return NULL; 4538 4539 domain = &dmar_domain->domain; 4540 domain->geometry.aperture_start = 0; 4541 domain->geometry.aperture_end = 4542 __DOMAIN_MAX_ADDR(dmar_domain->gaw); 4543 domain->geometry.force_aperture = true; 4544 4545 return domain; 4546 case IOMMU_DOMAIN_IDENTITY: 4547 return &si_domain->domain; 4548 default: 4549 return NULL; 4550 } 4551 4552 return NULL; 4553 } 4554 4555 static void intel_iommu_domain_free(struct iommu_domain *domain) 4556 { 4557 if (domain != &si_domain->domain) 4558 domain_exit(to_dmar_domain(domain)); 4559 } 4560 4561 /* 4562 * Check whether a @domain could be attached to the @dev through the 4563 * aux-domain attach/detach APIs. 4564 */ 4565 static inline bool 4566 is_aux_domain(struct device *dev, struct iommu_domain *domain) 4567 { 4568 struct device_domain_info *info = get_domain_info(dev); 4569 4570 return info && info->auxd_enabled && 4571 domain->type == IOMMU_DOMAIN_UNMANAGED; 4572 } 4573 4574 static inline struct subdev_domain_info * 4575 lookup_subdev_info(struct dmar_domain *domain, struct device *dev) 4576 { 4577 struct subdev_domain_info *sinfo; 4578 4579 if (!list_empty(&domain->subdevices)) { 4580 list_for_each_entry(sinfo, &domain->subdevices, link_domain) { 4581 if (sinfo->pdev == dev) 4582 return sinfo; 4583 } 4584 } 4585 4586 return NULL; 4587 } 4588 4589 static int auxiliary_link_device(struct dmar_domain *domain, 4590 struct device *dev) 4591 { 4592 struct device_domain_info *info = get_domain_info(dev); 4593 struct subdev_domain_info *sinfo = lookup_subdev_info(domain, dev); 4594 4595 assert_spin_locked(&device_domain_lock); 4596 if (WARN_ON(!info)) 4597 return -EINVAL; 4598 4599 if (!sinfo) { 4600 sinfo = kzalloc(sizeof(*sinfo), GFP_ATOMIC); 4601 if (!sinfo) 4602 return -ENOMEM; 4603 sinfo->domain = domain; 4604 sinfo->pdev = dev; 4605 list_add(&sinfo->link_phys, &info->subdevices); 4606 list_add(&sinfo->link_domain, &domain->subdevices); 4607 } 4608 4609 return ++sinfo->users; 4610 } 4611 4612 static int auxiliary_unlink_device(struct dmar_domain *domain, 4613 struct device *dev) 4614 { 4615 struct device_domain_info *info = get_domain_info(dev); 4616 struct subdev_domain_info *sinfo = lookup_subdev_info(domain, dev); 4617 int ret; 4618 4619 assert_spin_locked(&device_domain_lock); 4620 if (WARN_ON(!info || !sinfo || sinfo->users <= 0)) 4621 return -EINVAL; 4622 4623 ret = --sinfo->users; 4624 if (!ret) { 4625 list_del(&sinfo->link_phys); 4626 list_del(&sinfo->link_domain); 4627 kfree(sinfo); 4628 } 4629 4630 return ret; 4631 } 4632 4633 static int aux_domain_add_dev(struct dmar_domain *domain, 4634 struct device *dev) 4635 { 4636 int ret; 4637 unsigned long flags; 4638 struct intel_iommu *iommu; 4639 4640 iommu = device_to_iommu(dev, NULL, NULL); 4641 if (!iommu) 4642 return -ENODEV; 4643 4644 if (domain->default_pasid <= 0) { 4645 u32 pasid; 4646 4647 /* No private data needed for the default pasid */ 4648 pasid = ioasid_alloc(NULL, PASID_MIN, 4649 pci_max_pasids(to_pci_dev(dev)) - 1, 4650 NULL); 4651 if (pasid == INVALID_IOASID) { 4652 pr_err("Can't allocate default pasid\n"); 4653 return -ENODEV; 4654 } 4655 domain->default_pasid = pasid; 4656 } 4657 4658 spin_lock_irqsave(&device_domain_lock, flags); 4659 ret = auxiliary_link_device(domain, dev); 4660 if (ret <= 0) 4661 goto link_failed; 4662 4663 /* 4664 * Subdevices from the same physical device can be attached to the 4665 * same domain. For such cases, only the first subdevice attachment 4666 * needs to go through the full steps in this function. So if ret > 4667 * 1, just goto out. 4668 */ 4669 if (ret > 1) 4670 goto out; 4671 4672 /* 4673 * iommu->lock must be held to attach domain to iommu and setup the 4674 * pasid entry for second level translation. 4675 */ 4676 spin_lock(&iommu->lock); 4677 ret = domain_attach_iommu(domain, iommu); 4678 if (ret) 4679 goto attach_failed; 4680 4681 /* Setup the PASID entry for mediated devices: */ 4682 if (domain_use_first_level(domain)) 4683 ret = domain_setup_first_level(iommu, domain, dev, 4684 domain->default_pasid); 4685 else 4686 ret = intel_pasid_setup_second_level(iommu, domain, dev, 4687 domain->default_pasid); 4688 if (ret) 4689 goto table_failed; 4690 4691 spin_unlock(&iommu->lock); 4692 out: 4693 spin_unlock_irqrestore(&device_domain_lock, flags); 4694 4695 return 0; 4696 4697 table_failed: 4698 domain_detach_iommu(domain, iommu); 4699 attach_failed: 4700 spin_unlock(&iommu->lock); 4701 auxiliary_unlink_device(domain, dev); 4702 link_failed: 4703 spin_unlock_irqrestore(&device_domain_lock, flags); 4704 if (list_empty(&domain->subdevices) && domain->default_pasid > 0) 4705 ioasid_put(domain->default_pasid); 4706 4707 return ret; 4708 } 4709 4710 static void aux_domain_remove_dev(struct dmar_domain *domain, 4711 struct device *dev) 4712 { 4713 struct device_domain_info *info; 4714 struct intel_iommu *iommu; 4715 unsigned long flags; 4716 4717 if (!is_aux_domain(dev, &domain->domain)) 4718 return; 4719 4720 spin_lock_irqsave(&device_domain_lock, flags); 4721 info = get_domain_info(dev); 4722 iommu = info->iommu; 4723 4724 if (!auxiliary_unlink_device(domain, dev)) { 4725 spin_lock(&iommu->lock); 4726 intel_pasid_tear_down_entry(iommu, dev, 4727 domain->default_pasid, false); 4728 domain_detach_iommu(domain, iommu); 4729 spin_unlock(&iommu->lock); 4730 } 4731 4732 spin_unlock_irqrestore(&device_domain_lock, flags); 4733 4734 if (list_empty(&domain->subdevices) && domain->default_pasid > 0) 4735 ioasid_put(domain->default_pasid); 4736 } 4737 4738 static int prepare_domain_attach_device(struct iommu_domain *domain, 4739 struct device *dev) 4740 { 4741 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4742 struct intel_iommu *iommu; 4743 int addr_width; 4744 4745 iommu = device_to_iommu(dev, NULL, NULL); 4746 if (!iommu) 4747 return -ENODEV; 4748 4749 if ((dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE) && 4750 !ecap_nest(iommu->ecap)) { 4751 dev_err(dev, "%s: iommu not support nested translation\n", 4752 iommu->name); 4753 return -EINVAL; 4754 } 4755 4756 /* check if this iommu agaw is sufficient for max mapped address */ 4757 addr_width = agaw_to_width(iommu->agaw); 4758 if (addr_width > cap_mgaw(iommu->cap)) 4759 addr_width = cap_mgaw(iommu->cap); 4760 4761 if (dmar_domain->max_addr > (1LL << addr_width)) { 4762 dev_err(dev, "%s: iommu width (%d) is not " 4763 "sufficient for the mapped address (%llx)\n", 4764 __func__, addr_width, dmar_domain->max_addr); 4765 return -EFAULT; 4766 } 4767 dmar_domain->gaw = addr_width; 4768 4769 /* 4770 * Knock out extra levels of page tables if necessary 4771 */ 4772 while (iommu->agaw < dmar_domain->agaw) { 4773 struct dma_pte *pte; 4774 4775 pte = dmar_domain->pgd; 4776 if (dma_pte_present(pte)) { 4777 dmar_domain->pgd = phys_to_virt(dma_pte_addr(pte)); 4778 free_pgtable_page(pte); 4779 } 4780 dmar_domain->agaw--; 4781 } 4782 4783 return 0; 4784 } 4785 4786 static int intel_iommu_attach_device(struct iommu_domain *domain, 4787 struct device *dev) 4788 { 4789 int ret; 4790 4791 if (domain->type == IOMMU_DOMAIN_UNMANAGED && 4792 device_is_rmrr_locked(dev)) { 4793 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n"); 4794 return -EPERM; 4795 } 4796 4797 if (is_aux_domain(dev, domain)) 4798 return -EPERM; 4799 4800 /* normally dev is not mapped */ 4801 if (unlikely(domain_context_mapped(dev))) { 4802 struct dmar_domain *old_domain; 4803 4804 old_domain = find_domain(dev); 4805 if (old_domain) 4806 dmar_remove_one_dev_info(dev); 4807 } 4808 4809 ret = prepare_domain_attach_device(domain, dev); 4810 if (ret) 4811 return ret; 4812 4813 return domain_add_dev_info(to_dmar_domain(domain), dev); 4814 } 4815 4816 static int intel_iommu_aux_attach_device(struct iommu_domain *domain, 4817 struct device *dev) 4818 { 4819 int ret; 4820 4821 if (!is_aux_domain(dev, domain)) 4822 return -EPERM; 4823 4824 ret = prepare_domain_attach_device(domain, dev); 4825 if (ret) 4826 return ret; 4827 4828 return aux_domain_add_dev(to_dmar_domain(domain), dev); 4829 } 4830 4831 static void intel_iommu_detach_device(struct iommu_domain *domain, 4832 struct device *dev) 4833 { 4834 dmar_remove_one_dev_info(dev); 4835 } 4836 4837 static void intel_iommu_aux_detach_device(struct iommu_domain *domain, 4838 struct device *dev) 4839 { 4840 aux_domain_remove_dev(to_dmar_domain(domain), dev); 4841 } 4842 4843 #ifdef CONFIG_INTEL_IOMMU_SVM 4844 /* 4845 * 2D array for converting and sanitizing IOMMU generic TLB granularity to 4846 * VT-d granularity. Invalidation is typically included in the unmap operation 4847 * as a result of DMA or VFIO unmap. However, for assigned devices guest 4848 * owns the first level page tables. Invalidations of translation caches in the 4849 * guest are trapped and passed down to the host. 4850 * 4851 * vIOMMU in the guest will only expose first level page tables, therefore 4852 * we do not support IOTLB granularity for request without PASID (second level). 4853 * 4854 * For example, to find the VT-d granularity encoding for IOTLB 4855 * type and page selective granularity within PASID: 4856 * X: indexed by iommu cache type 4857 * Y: indexed by enum iommu_inv_granularity 4858 * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR] 4859 */ 4860 4861 static const int 4862 inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = { 4863 /* 4864 * PASID based IOTLB invalidation: PASID selective (per PASID), 4865 * page selective (address granularity) 4866 */ 4867 {-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID}, 4868 /* PASID based dev TLBs */ 4869 {-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL}, 4870 /* PASID cache */ 4871 {-EINVAL, -EINVAL, -EINVAL} 4872 }; 4873 4874 static inline int to_vtd_granularity(int type, int granu) 4875 { 4876 return inv_type_granu_table[type][granu]; 4877 } 4878 4879 static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules) 4880 { 4881 u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT; 4882 4883 /* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc. 4884 * IOMMU cache invalidate API passes granu_size in bytes, and number of 4885 * granu size in contiguous memory. 4886 */ 4887 return order_base_2(nr_pages); 4888 } 4889 4890 static int 4891 intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev, 4892 struct iommu_cache_invalidate_info *inv_info) 4893 { 4894 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4895 struct device_domain_info *info; 4896 struct intel_iommu *iommu; 4897 unsigned long flags; 4898 int cache_type; 4899 u8 bus, devfn; 4900 u16 did, sid; 4901 int ret = 0; 4902 u64 size = 0; 4903 4904 if (!inv_info || !dmar_domain) 4905 return -EINVAL; 4906 4907 if (!dev || !dev_is_pci(dev)) 4908 return -ENODEV; 4909 4910 iommu = device_to_iommu(dev, &bus, &devfn); 4911 if (!iommu) 4912 return -ENODEV; 4913 4914 if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE)) 4915 return -EINVAL; 4916 4917 spin_lock_irqsave(&device_domain_lock, flags); 4918 spin_lock(&iommu->lock); 4919 info = get_domain_info(dev); 4920 if (!info) { 4921 ret = -EINVAL; 4922 goto out_unlock; 4923 } 4924 did = dmar_domain->iommu_did[iommu->seq_id]; 4925 sid = PCI_DEVID(bus, devfn); 4926 4927 /* Size is only valid in address selective invalidation */ 4928 if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) 4929 size = to_vtd_size(inv_info->granu.addr_info.granule_size, 4930 inv_info->granu.addr_info.nb_granules); 4931 4932 for_each_set_bit(cache_type, 4933 (unsigned long *)&inv_info->cache, 4934 IOMMU_CACHE_INV_TYPE_NR) { 4935 int granu = 0; 4936 u64 pasid = 0; 4937 u64 addr = 0; 4938 4939 granu = to_vtd_granularity(cache_type, inv_info->granularity); 4940 if (granu == -EINVAL) { 4941 pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n", 4942 cache_type, inv_info->granularity); 4943 break; 4944 } 4945 4946 /* 4947 * PASID is stored in different locations based on the 4948 * granularity. 4949 */ 4950 if (inv_info->granularity == IOMMU_INV_GRANU_PASID && 4951 (inv_info->granu.pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID)) 4952 pasid = inv_info->granu.pasid_info.pasid; 4953 else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR && 4954 (inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID)) 4955 pasid = inv_info->granu.addr_info.pasid; 4956 4957 switch (BIT(cache_type)) { 4958 case IOMMU_CACHE_INV_TYPE_IOTLB: 4959 /* HW will ignore LSB bits based on address mask */ 4960 if (inv_info->granularity == IOMMU_INV_GRANU_ADDR && 4961 size && 4962 (inv_info->granu.addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) { 4963 pr_err_ratelimited("User address not aligned, 0x%llx, size order %llu\n", 4964 inv_info->granu.addr_info.addr, size); 4965 } 4966 4967 /* 4968 * If granu is PASID-selective, address is ignored. 4969 * We use npages = -1 to indicate that. 4970 */ 4971 qi_flush_piotlb(iommu, did, pasid, 4972 mm_to_dma_pfn(inv_info->granu.addr_info.addr), 4973 (granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size, 4974 inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF); 4975 4976 if (!info->ats_enabled) 4977 break; 4978 /* 4979 * Always flush device IOTLB if ATS is enabled. vIOMMU 4980 * in the guest may assume IOTLB flush is inclusive, 4981 * which is more efficient. 4982 */ 4983 fallthrough; 4984 case IOMMU_CACHE_INV_TYPE_DEV_IOTLB: 4985 /* 4986 * PASID based device TLB invalidation does not support 4987 * IOMMU_INV_GRANU_PASID granularity but only supports 4988 * IOMMU_INV_GRANU_ADDR. 4989 * The equivalent of that is we set the size to be the 4990 * entire range of 64 bit. User only provides PASID info 4991 * without address info. So we set addr to 0. 4992 */ 4993 if (inv_info->granularity == IOMMU_INV_GRANU_PASID) { 4994 size = 64 - VTD_PAGE_SHIFT; 4995 addr = 0; 4996 } else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) { 4997 addr = inv_info->granu.addr_info.addr; 4998 } 4999 5000 if (info->ats_enabled) 5001 qi_flush_dev_iotlb_pasid(iommu, sid, 5002 info->pfsid, pasid, 5003 info->ats_qdep, addr, 5004 size); 5005 else 5006 pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n"); 5007 break; 5008 default: 5009 dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n", 5010 cache_type); 5011 ret = -EINVAL; 5012 } 5013 } 5014 out_unlock: 5015 spin_unlock(&iommu->lock); 5016 spin_unlock_irqrestore(&device_domain_lock, flags); 5017 5018 return ret; 5019 } 5020 #endif 5021 5022 static int intel_iommu_map(struct iommu_domain *domain, 5023 unsigned long iova, phys_addr_t hpa, 5024 size_t size, int iommu_prot, gfp_t gfp) 5025 { 5026 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5027 u64 max_addr; 5028 int prot = 0; 5029 5030 if (iommu_prot & IOMMU_READ) 5031 prot |= DMA_PTE_READ; 5032 if (iommu_prot & IOMMU_WRITE) 5033 prot |= DMA_PTE_WRITE; 5034 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping) 5035 prot |= DMA_PTE_SNP; 5036 5037 max_addr = iova + size; 5038 if (dmar_domain->max_addr < max_addr) { 5039 u64 end; 5040 5041 /* check if minimum agaw is sufficient for mapped address */ 5042 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; 5043 if (end < max_addr) { 5044 pr_err("%s: iommu width (%d) is not " 5045 "sufficient for the mapped address (%llx)\n", 5046 __func__, dmar_domain->gaw, max_addr); 5047 return -EFAULT; 5048 } 5049 dmar_domain->max_addr = max_addr; 5050 } 5051 /* Round up size to next multiple of PAGE_SIZE, if it and 5052 the low bits of hpa would take us onto the next page */ 5053 size = aligned_nrpages(hpa, size); 5054 return __domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, 5055 hpa >> VTD_PAGE_SHIFT, size, prot); 5056 } 5057 5058 static size_t intel_iommu_unmap(struct iommu_domain *domain, 5059 unsigned long iova, size_t size, 5060 struct iommu_iotlb_gather *gather) 5061 { 5062 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5063 unsigned long start_pfn, last_pfn; 5064 int level = 0; 5065 5066 /* Cope with horrid API which requires us to unmap more than the 5067 size argument if it happens to be a large-page mapping. */ 5068 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level)); 5069 5070 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level)) 5071 size = VTD_PAGE_SIZE << level_to_offset_bits(level); 5072 5073 start_pfn = iova >> VTD_PAGE_SHIFT; 5074 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT; 5075 5076 gather->freelist = domain_unmap(dmar_domain, start_pfn, 5077 last_pfn, gather->freelist); 5078 5079 if (dmar_domain->max_addr == iova + size) 5080 dmar_domain->max_addr = iova; 5081 5082 iommu_iotlb_gather_add_page(domain, gather, iova, size); 5083 5084 return size; 5085 } 5086 5087 static void intel_iommu_tlb_sync(struct iommu_domain *domain, 5088 struct iommu_iotlb_gather *gather) 5089 { 5090 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5091 unsigned long iova_pfn = IOVA_PFN(gather->start); 5092 size_t size = gather->end - gather->start; 5093 unsigned long start_pfn; 5094 unsigned long nrpages; 5095 int iommu_id; 5096 5097 nrpages = aligned_nrpages(gather->start, size); 5098 start_pfn = mm_to_dma_pfn(iova_pfn); 5099 5100 for_each_domain_iommu(iommu_id, dmar_domain) 5101 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain, 5102 start_pfn, nrpages, !gather->freelist, 0); 5103 5104 dma_free_pagelist(gather->freelist); 5105 } 5106 5107 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, 5108 dma_addr_t iova) 5109 { 5110 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5111 struct dma_pte *pte; 5112 int level = 0; 5113 u64 phys = 0; 5114 5115 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level); 5116 if (pte && dma_pte_present(pte)) 5117 phys = dma_pte_addr(pte) + 5118 (iova & (BIT_MASK(level_to_offset_bits(level) + 5119 VTD_PAGE_SHIFT) - 1)); 5120 5121 return phys; 5122 } 5123 5124 static bool intel_iommu_capable(enum iommu_cap cap) 5125 { 5126 if (cap == IOMMU_CAP_CACHE_COHERENCY) 5127 return domain_update_iommu_snooping(NULL); 5128 if (cap == IOMMU_CAP_INTR_REMAP) 5129 return irq_remapping_enabled == 1; 5130 5131 return false; 5132 } 5133 5134 static struct iommu_device *intel_iommu_probe_device(struct device *dev) 5135 { 5136 struct intel_iommu *iommu; 5137 5138 iommu = device_to_iommu(dev, NULL, NULL); 5139 if (!iommu) 5140 return ERR_PTR(-ENODEV); 5141 5142 if (translation_pre_enabled(iommu)) 5143 dev_iommu_priv_set(dev, DEFER_DEVICE_DOMAIN_INFO); 5144 5145 return &iommu->iommu; 5146 } 5147 5148 static void intel_iommu_release_device(struct device *dev) 5149 { 5150 struct intel_iommu *iommu; 5151 5152 iommu = device_to_iommu(dev, NULL, NULL); 5153 if (!iommu) 5154 return; 5155 5156 dmar_remove_one_dev_info(dev); 5157 5158 set_dma_ops(dev, NULL); 5159 } 5160 5161 static void intel_iommu_probe_finalize(struct device *dev) 5162 { 5163 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 5164 5165 if (domain && domain->type == IOMMU_DOMAIN_DMA) 5166 iommu_setup_dma_ops(dev, 0, U64_MAX); 5167 else 5168 set_dma_ops(dev, NULL); 5169 } 5170 5171 static void intel_iommu_get_resv_regions(struct device *device, 5172 struct list_head *head) 5173 { 5174 int prot = DMA_PTE_READ | DMA_PTE_WRITE; 5175 struct iommu_resv_region *reg; 5176 struct dmar_rmrr_unit *rmrr; 5177 struct device *i_dev; 5178 int i; 5179 5180 down_read(&dmar_global_lock); 5181 for_each_rmrr_units(rmrr) { 5182 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, 5183 i, i_dev) { 5184 struct iommu_resv_region *resv; 5185 enum iommu_resv_type type; 5186 size_t length; 5187 5188 if (i_dev != device && 5189 !is_downstream_to_pci_bridge(device, i_dev)) 5190 continue; 5191 5192 length = rmrr->end_address - rmrr->base_address + 1; 5193 5194 type = device_rmrr_is_relaxable(device) ? 5195 IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT; 5196 5197 resv = iommu_alloc_resv_region(rmrr->base_address, 5198 length, prot, type); 5199 if (!resv) 5200 break; 5201 5202 list_add_tail(&resv->list, head); 5203 } 5204 } 5205 up_read(&dmar_global_lock); 5206 5207 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA 5208 if (dev_is_pci(device)) { 5209 struct pci_dev *pdev = to_pci_dev(device); 5210 5211 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) { 5212 reg = iommu_alloc_resv_region(0, 1UL << 24, prot, 5213 IOMMU_RESV_DIRECT_RELAXABLE); 5214 if (reg) 5215 list_add_tail(®->list, head); 5216 } 5217 } 5218 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */ 5219 5220 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START, 5221 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1, 5222 0, IOMMU_RESV_MSI); 5223 if (!reg) 5224 return; 5225 list_add_tail(®->list, head); 5226 } 5227 5228 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev) 5229 { 5230 struct device_domain_info *info; 5231 struct context_entry *context; 5232 struct dmar_domain *domain; 5233 unsigned long flags; 5234 u64 ctx_lo; 5235 int ret; 5236 5237 domain = find_domain(dev); 5238 if (!domain) 5239 return -EINVAL; 5240 5241 spin_lock_irqsave(&device_domain_lock, flags); 5242 spin_lock(&iommu->lock); 5243 5244 ret = -EINVAL; 5245 info = get_domain_info(dev); 5246 if (!info || !info->pasid_supported) 5247 goto out; 5248 5249 context = iommu_context_addr(iommu, info->bus, info->devfn, 0); 5250 if (WARN_ON(!context)) 5251 goto out; 5252 5253 ctx_lo = context[0].lo; 5254 5255 if (!(ctx_lo & CONTEXT_PASIDE)) { 5256 ctx_lo |= CONTEXT_PASIDE; 5257 context[0].lo = ctx_lo; 5258 wmb(); 5259 iommu->flush.flush_context(iommu, 5260 domain->iommu_did[iommu->seq_id], 5261 PCI_DEVID(info->bus, info->devfn), 5262 DMA_CCMD_MASK_NOBIT, 5263 DMA_CCMD_DEVICE_INVL); 5264 } 5265 5266 /* Enable PASID support in the device, if it wasn't already */ 5267 if (!info->pasid_enabled) 5268 iommu_enable_dev_iotlb(info); 5269 5270 ret = 0; 5271 5272 out: 5273 spin_unlock(&iommu->lock); 5274 spin_unlock_irqrestore(&device_domain_lock, flags); 5275 5276 return ret; 5277 } 5278 5279 static struct iommu_group *intel_iommu_device_group(struct device *dev) 5280 { 5281 if (dev_is_pci(dev)) 5282 return pci_device_group(dev); 5283 return generic_device_group(dev); 5284 } 5285 5286 static int intel_iommu_enable_auxd(struct device *dev) 5287 { 5288 struct device_domain_info *info; 5289 struct intel_iommu *iommu; 5290 unsigned long flags; 5291 int ret; 5292 5293 iommu = device_to_iommu(dev, NULL, NULL); 5294 if (!iommu || dmar_disabled) 5295 return -EINVAL; 5296 5297 if (!sm_supported(iommu) || !pasid_supported(iommu)) 5298 return -EINVAL; 5299 5300 ret = intel_iommu_enable_pasid(iommu, dev); 5301 if (ret) 5302 return -ENODEV; 5303 5304 spin_lock_irqsave(&device_domain_lock, flags); 5305 info = get_domain_info(dev); 5306 info->auxd_enabled = 1; 5307 spin_unlock_irqrestore(&device_domain_lock, flags); 5308 5309 return 0; 5310 } 5311 5312 static int intel_iommu_disable_auxd(struct device *dev) 5313 { 5314 struct device_domain_info *info; 5315 unsigned long flags; 5316 5317 spin_lock_irqsave(&device_domain_lock, flags); 5318 info = get_domain_info(dev); 5319 if (!WARN_ON(!info)) 5320 info->auxd_enabled = 0; 5321 spin_unlock_irqrestore(&device_domain_lock, flags); 5322 5323 return 0; 5324 } 5325 5326 static int intel_iommu_enable_sva(struct device *dev) 5327 { 5328 struct device_domain_info *info = get_domain_info(dev); 5329 struct intel_iommu *iommu; 5330 int ret; 5331 5332 if (!info || dmar_disabled) 5333 return -EINVAL; 5334 5335 iommu = info->iommu; 5336 if (!iommu) 5337 return -EINVAL; 5338 5339 if (!(iommu->flags & VTD_FLAG_SVM_CAPABLE)) 5340 return -ENODEV; 5341 5342 if (intel_iommu_enable_pasid(iommu, dev)) 5343 return -ENODEV; 5344 5345 if (!info->pasid_enabled || !info->pri_enabled || !info->ats_enabled) 5346 return -EINVAL; 5347 5348 ret = iopf_queue_add_device(iommu->iopf_queue, dev); 5349 if (!ret) 5350 ret = iommu_register_device_fault_handler(dev, iommu_queue_iopf, dev); 5351 5352 return ret; 5353 } 5354 5355 static int intel_iommu_disable_sva(struct device *dev) 5356 { 5357 struct device_domain_info *info = get_domain_info(dev); 5358 struct intel_iommu *iommu = info->iommu; 5359 int ret; 5360 5361 ret = iommu_unregister_device_fault_handler(dev); 5362 if (!ret) 5363 ret = iopf_queue_remove_device(iommu->iopf_queue, dev); 5364 5365 return ret; 5366 } 5367 5368 /* 5369 * A PCI express designated vendor specific extended capability is defined 5370 * in the section 3.7 of Intel scalable I/O virtualization technical spec 5371 * for system software and tools to detect endpoint devices supporting the 5372 * Intel scalable IO virtualization without host driver dependency. 5373 * 5374 * Returns the address of the matching extended capability structure within 5375 * the device's PCI configuration space or 0 if the device does not support 5376 * it. 5377 */ 5378 static int siov_find_pci_dvsec(struct pci_dev *pdev) 5379 { 5380 int pos; 5381 u16 vendor, id; 5382 5383 pos = pci_find_next_ext_capability(pdev, 0, 0x23); 5384 while (pos) { 5385 pci_read_config_word(pdev, pos + 4, &vendor); 5386 pci_read_config_word(pdev, pos + 8, &id); 5387 if (vendor == PCI_VENDOR_ID_INTEL && id == 5) 5388 return pos; 5389 5390 pos = pci_find_next_ext_capability(pdev, pos, 0x23); 5391 } 5392 5393 return 0; 5394 } 5395 5396 static bool 5397 intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat) 5398 { 5399 struct device_domain_info *info = get_domain_info(dev); 5400 5401 if (feat == IOMMU_DEV_FEAT_AUX) { 5402 int ret; 5403 5404 if (!dev_is_pci(dev) || dmar_disabled || 5405 !scalable_mode_support() || !pasid_mode_support()) 5406 return false; 5407 5408 ret = pci_pasid_features(to_pci_dev(dev)); 5409 if (ret < 0) 5410 return false; 5411 5412 return !!siov_find_pci_dvsec(to_pci_dev(dev)); 5413 } 5414 5415 if (feat == IOMMU_DEV_FEAT_IOPF) 5416 return info && info->pri_supported; 5417 5418 if (feat == IOMMU_DEV_FEAT_SVA) 5419 return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) && 5420 info->pasid_supported && info->pri_supported && 5421 info->ats_supported; 5422 5423 return false; 5424 } 5425 5426 static int 5427 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat) 5428 { 5429 switch (feat) { 5430 case IOMMU_DEV_FEAT_AUX: 5431 return intel_iommu_enable_auxd(dev); 5432 5433 case IOMMU_DEV_FEAT_IOPF: 5434 return intel_iommu_dev_has_feat(dev, feat) ? 0 : -ENODEV; 5435 5436 case IOMMU_DEV_FEAT_SVA: 5437 return intel_iommu_enable_sva(dev); 5438 5439 default: 5440 return -ENODEV; 5441 } 5442 } 5443 5444 static int 5445 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat) 5446 { 5447 switch (feat) { 5448 case IOMMU_DEV_FEAT_AUX: 5449 return intel_iommu_disable_auxd(dev); 5450 5451 case IOMMU_DEV_FEAT_IOPF: 5452 return 0; 5453 5454 case IOMMU_DEV_FEAT_SVA: 5455 return intel_iommu_disable_sva(dev); 5456 5457 default: 5458 return -ENODEV; 5459 } 5460 } 5461 5462 static bool 5463 intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat) 5464 { 5465 struct device_domain_info *info = get_domain_info(dev); 5466 5467 if (feat == IOMMU_DEV_FEAT_AUX) 5468 return scalable_mode_support() && info && info->auxd_enabled; 5469 5470 return false; 5471 } 5472 5473 static int 5474 intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) 5475 { 5476 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5477 5478 return dmar_domain->default_pasid > 0 ? 5479 dmar_domain->default_pasid : -EINVAL; 5480 } 5481 5482 static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain, 5483 struct device *dev) 5484 { 5485 return attach_deferred(dev); 5486 } 5487 5488 static int 5489 intel_iommu_enable_nesting(struct iommu_domain *domain) 5490 { 5491 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5492 unsigned long flags; 5493 int ret = -ENODEV; 5494 5495 spin_lock_irqsave(&device_domain_lock, flags); 5496 if (list_empty(&dmar_domain->devices)) { 5497 dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE; 5498 dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL; 5499 ret = 0; 5500 } 5501 spin_unlock_irqrestore(&device_domain_lock, flags); 5502 5503 return ret; 5504 } 5505 5506 /* 5507 * Check that the device does not live on an external facing PCI port that is 5508 * marked as untrusted. Such devices should not be able to apply quirks and 5509 * thus not be able to bypass the IOMMU restrictions. 5510 */ 5511 static bool risky_device(struct pci_dev *pdev) 5512 { 5513 if (pdev->untrusted) { 5514 pci_info(pdev, 5515 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n", 5516 pdev->vendor, pdev->device); 5517 pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n"); 5518 return true; 5519 } 5520 return false; 5521 } 5522 5523 static void clflush_sync_map(struct dmar_domain *domain, unsigned long clf_pfn, 5524 unsigned long clf_pages) 5525 { 5526 struct dma_pte *first_pte = NULL, *pte = NULL; 5527 unsigned long lvl_pages = 0; 5528 int level = 0; 5529 5530 while (clf_pages > 0) { 5531 if (!pte) { 5532 level = 0; 5533 pte = pfn_to_dma_pte(domain, clf_pfn, &level); 5534 if (WARN_ON(!pte)) 5535 return; 5536 first_pte = pte; 5537 lvl_pages = lvl_to_nr_pages(level); 5538 } 5539 5540 if (WARN_ON(!lvl_pages || clf_pages < lvl_pages)) 5541 return; 5542 5543 clf_pages -= lvl_pages; 5544 clf_pfn += lvl_pages; 5545 pte++; 5546 5547 if (!clf_pages || first_pte_in_page(pte) || 5548 (level > 1 && clf_pages < lvl_pages)) { 5549 domain_flush_cache(domain, first_pte, 5550 (void *)pte - (void *)first_pte); 5551 pte = NULL; 5552 } 5553 } 5554 } 5555 5556 static void intel_iommu_iotlb_sync_map(struct iommu_domain *domain, 5557 unsigned long iova, size_t size) 5558 { 5559 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5560 unsigned long pages = aligned_nrpages(iova, size); 5561 unsigned long pfn = iova >> VTD_PAGE_SHIFT; 5562 struct intel_iommu *iommu; 5563 int iommu_id; 5564 5565 if (!dmar_domain->iommu_coherency) 5566 clflush_sync_map(dmar_domain, pfn, pages); 5567 5568 for_each_domain_iommu(iommu_id, dmar_domain) { 5569 iommu = g_iommus[iommu_id]; 5570 __mapping_notify_one(iommu, dmar_domain, pfn, pages); 5571 } 5572 } 5573 5574 const struct iommu_ops intel_iommu_ops = { 5575 .capable = intel_iommu_capable, 5576 .domain_alloc = intel_iommu_domain_alloc, 5577 .domain_free = intel_iommu_domain_free, 5578 .enable_nesting = intel_iommu_enable_nesting, 5579 .attach_dev = intel_iommu_attach_device, 5580 .detach_dev = intel_iommu_detach_device, 5581 .aux_attach_dev = intel_iommu_aux_attach_device, 5582 .aux_detach_dev = intel_iommu_aux_detach_device, 5583 .aux_get_pasid = intel_iommu_aux_get_pasid, 5584 .map = intel_iommu_map, 5585 .iotlb_sync_map = intel_iommu_iotlb_sync_map, 5586 .unmap = intel_iommu_unmap, 5587 .flush_iotlb_all = intel_flush_iotlb_all, 5588 .iotlb_sync = intel_iommu_tlb_sync, 5589 .iova_to_phys = intel_iommu_iova_to_phys, 5590 .probe_device = intel_iommu_probe_device, 5591 .probe_finalize = intel_iommu_probe_finalize, 5592 .release_device = intel_iommu_release_device, 5593 .get_resv_regions = intel_iommu_get_resv_regions, 5594 .put_resv_regions = generic_iommu_put_resv_regions, 5595 .device_group = intel_iommu_device_group, 5596 .dev_has_feat = intel_iommu_dev_has_feat, 5597 .dev_feat_enabled = intel_iommu_dev_feat_enabled, 5598 .dev_enable_feat = intel_iommu_dev_enable_feat, 5599 .dev_disable_feat = intel_iommu_dev_disable_feat, 5600 .is_attach_deferred = intel_iommu_is_attach_deferred, 5601 .def_domain_type = device_def_domain_type, 5602 .pgsize_bitmap = INTEL_IOMMU_PGSIZES, 5603 #ifdef CONFIG_INTEL_IOMMU_SVM 5604 .cache_invalidate = intel_iommu_sva_invalidate, 5605 .sva_bind_gpasid = intel_svm_bind_gpasid, 5606 .sva_unbind_gpasid = intel_svm_unbind_gpasid, 5607 .sva_bind = intel_svm_bind, 5608 .sva_unbind = intel_svm_unbind, 5609 .sva_get_pasid = intel_svm_get_pasid, 5610 .page_response = intel_svm_page_response, 5611 #endif 5612 }; 5613 5614 static void quirk_iommu_igfx(struct pci_dev *dev) 5615 { 5616 if (risky_device(dev)) 5617 return; 5618 5619 pci_info(dev, "Disabling IOMMU for graphics on this chipset\n"); 5620 dmar_map_gfx = 0; 5621 } 5622 5623 /* G4x/GM45 integrated gfx dmar support is totally busted. */ 5624 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx); 5625 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx); 5626 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx); 5627 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx); 5628 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx); 5629 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx); 5630 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx); 5631 5632 /* Broadwell igfx malfunctions with dmar */ 5633 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx); 5634 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx); 5635 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx); 5636 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx); 5637 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx); 5638 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx); 5639 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx); 5640 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx); 5641 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx); 5642 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx); 5643 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx); 5644 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx); 5645 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx); 5646 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx); 5647 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx); 5648 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx); 5649 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx); 5650 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx); 5651 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx); 5652 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx); 5653 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx); 5654 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx); 5655 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx); 5656 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx); 5657 5658 static void quirk_iommu_rwbf(struct pci_dev *dev) 5659 { 5660 if (risky_device(dev)) 5661 return; 5662 5663 /* 5664 * Mobile 4 Series Chipset neglects to set RWBF capability, 5665 * but needs it. Same seems to hold for the desktop versions. 5666 */ 5667 pci_info(dev, "Forcing write-buffer flush capability\n"); 5668 rwbf_quirk = 1; 5669 } 5670 5671 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); 5672 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf); 5673 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf); 5674 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf); 5675 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf); 5676 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf); 5677 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf); 5678 5679 #define GGC 0x52 5680 #define GGC_MEMORY_SIZE_MASK (0xf << 8) 5681 #define GGC_MEMORY_SIZE_NONE (0x0 << 8) 5682 #define GGC_MEMORY_SIZE_1M (0x1 << 8) 5683 #define GGC_MEMORY_SIZE_2M (0x3 << 8) 5684 #define GGC_MEMORY_VT_ENABLED (0x8 << 8) 5685 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8) 5686 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8) 5687 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8) 5688 5689 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev) 5690 { 5691 unsigned short ggc; 5692 5693 if (risky_device(dev)) 5694 return; 5695 5696 if (pci_read_config_word(dev, GGC, &ggc)) 5697 return; 5698 5699 if (!(ggc & GGC_MEMORY_VT_ENABLED)) { 5700 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); 5701 dmar_map_gfx = 0; 5702 } else if (dmar_map_gfx) { 5703 /* we have to ensure the gfx device is idle before we flush */ 5704 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n"); 5705 intel_iommu_strict = 1; 5706 } 5707 } 5708 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); 5709 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); 5710 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); 5711 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); 5712 5713 static void quirk_igfx_skip_te_disable(struct pci_dev *dev) 5714 { 5715 unsigned short ver; 5716 5717 if (!IS_GFX_DEVICE(dev)) 5718 return; 5719 5720 ver = (dev->device >> 8) & 0xff; 5721 if (ver != 0x45 && ver != 0x46 && ver != 0x4c && 5722 ver != 0x4e && ver != 0x8a && ver != 0x98 && 5723 ver != 0x9a) 5724 return; 5725 5726 if (risky_device(dev)) 5727 return; 5728 5729 pci_info(dev, "Skip IOMMU disabling for graphics\n"); 5730 iommu_skip_te_disable = 1; 5731 } 5732 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable); 5733 5734 /* On Tylersburg chipsets, some BIOSes have been known to enable the 5735 ISOCH DMAR unit for the Azalia sound device, but not give it any 5736 TLB entries, which causes it to deadlock. Check for that. We do 5737 this in a function called from init_dmars(), instead of in a PCI 5738 quirk, because we don't want to print the obnoxious "BIOS broken" 5739 message if VT-d is actually disabled. 5740 */ 5741 static void __init check_tylersburg_isoch(void) 5742 { 5743 struct pci_dev *pdev; 5744 uint32_t vtisochctrl; 5745 5746 /* If there's no Azalia in the system anyway, forget it. */ 5747 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); 5748 if (!pdev) 5749 return; 5750 5751 if (risky_device(pdev)) { 5752 pci_dev_put(pdev); 5753 return; 5754 } 5755 5756 pci_dev_put(pdev); 5757 5758 /* System Management Registers. Might be hidden, in which case 5759 we can't do the sanity check. But that's OK, because the 5760 known-broken BIOSes _don't_ actually hide it, so far. */ 5761 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); 5762 if (!pdev) 5763 return; 5764 5765 if (risky_device(pdev)) { 5766 pci_dev_put(pdev); 5767 return; 5768 } 5769 5770 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { 5771 pci_dev_put(pdev); 5772 return; 5773 } 5774 5775 pci_dev_put(pdev); 5776 5777 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ 5778 if (vtisochctrl & 1) 5779 return; 5780 5781 /* Drop all bits other than the number of TLB entries */ 5782 vtisochctrl &= 0x1c; 5783 5784 /* If we have the recommended number of TLB entries (16), fine. */ 5785 if (vtisochctrl == 0x10) 5786 return; 5787 5788 /* Zero TLB entries? You get to ride the short bus to school. */ 5789 if (!vtisochctrl) { 5790 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" 5791 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 5792 dmi_get_system_info(DMI_BIOS_VENDOR), 5793 dmi_get_system_info(DMI_BIOS_VERSION), 5794 dmi_get_system_info(DMI_PRODUCT_VERSION)); 5795 iommu_identity_mapping |= IDENTMAP_AZALIA; 5796 return; 5797 } 5798 5799 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", 5800 vtisochctrl); 5801 } 5802