xref: /openbmc/linux/drivers/iommu/intel/iommu.c (revision 93696d8f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2006-2014 Intel Corporation.
4  *
5  * Authors: David Woodhouse <dwmw2@infradead.org>,
6  *          Ashok Raj <ashok.raj@intel.com>,
7  *          Shaohua Li <shaohua.li@intel.com>,
8  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
9  *          Fenghua Yu <fenghua.yu@intel.com>
10  *          Joerg Roedel <jroedel@suse.de>
11  */
12 
13 #define pr_fmt(fmt)     "DMAR: " fmt
14 #define dev_fmt(fmt)    pr_fmt(fmt)
15 
16 #include <linux/crash_dump.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dmi.h>
19 #include <linux/memory.h>
20 #include <linux/pci.h>
21 #include <linux/pci-ats.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/tboot.h>
25 #include <uapi/linux/iommufd.h>
26 
27 #include "iommu.h"
28 #include "../dma-iommu.h"
29 #include "../irq_remapping.h"
30 #include "../iommu-sva.h"
31 #include "pasid.h"
32 #include "cap_audit.h"
33 #include "perfmon.h"
34 
35 #define ROOT_SIZE		VTD_PAGE_SIZE
36 #define CONTEXT_SIZE		VTD_PAGE_SIZE
37 
38 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
39 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
40 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
41 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
42 
43 #define IOAPIC_RANGE_START	(0xfee00000)
44 #define IOAPIC_RANGE_END	(0xfeefffff)
45 #define IOVA_START_ADDR		(0x1000)
46 
47 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
48 
49 #define MAX_AGAW_WIDTH 64
50 #define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
51 
52 #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1)
53 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1)
54 
55 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
56    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
57 #define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
58 				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
59 #define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
60 
61 /* IO virtual address start page frame number */
62 #define IOVA_START_PFN		(1)
63 
64 #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
65 
66 /* page table handling */
67 #define LEVEL_STRIDE		(9)
68 #define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)
69 
70 static inline int agaw_to_level(int agaw)
71 {
72 	return agaw + 2;
73 }
74 
75 static inline int agaw_to_width(int agaw)
76 {
77 	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
78 }
79 
80 static inline int width_to_agaw(int width)
81 {
82 	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
83 }
84 
85 static inline unsigned int level_to_offset_bits(int level)
86 {
87 	return (level - 1) * LEVEL_STRIDE;
88 }
89 
90 static inline int pfn_level_offset(u64 pfn, int level)
91 {
92 	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
93 }
94 
95 static inline u64 level_mask(int level)
96 {
97 	return -1ULL << level_to_offset_bits(level);
98 }
99 
100 static inline u64 level_size(int level)
101 {
102 	return 1ULL << level_to_offset_bits(level);
103 }
104 
105 static inline u64 align_to_level(u64 pfn, int level)
106 {
107 	return (pfn + level_size(level) - 1) & level_mask(level);
108 }
109 
110 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
111 {
112 	return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
113 }
114 
115 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
116    are never going to work. */
117 static inline unsigned long mm_to_dma_pfn_start(unsigned long mm_pfn)
118 {
119 	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
120 }
121 static inline unsigned long mm_to_dma_pfn_end(unsigned long mm_pfn)
122 {
123 	return ((mm_pfn + 1) << (PAGE_SHIFT - VTD_PAGE_SHIFT)) - 1;
124 }
125 static inline unsigned long page_to_dma_pfn(struct page *pg)
126 {
127 	return mm_to_dma_pfn_start(page_to_pfn(pg));
128 }
129 static inline unsigned long virt_to_dma_pfn(void *p)
130 {
131 	return page_to_dma_pfn(virt_to_page(p));
132 }
133 
134 static void __init check_tylersburg_isoch(void);
135 static int rwbf_quirk;
136 
137 /*
138  * set to 1 to panic kernel if can't successfully enable VT-d
139  * (used when kernel is launched w/ TXT)
140  */
141 static int force_on = 0;
142 static int intel_iommu_tboot_noforce;
143 static int no_platform_optin;
144 
145 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
146 
147 /*
148  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
149  * if marked present.
150  */
151 static phys_addr_t root_entry_lctp(struct root_entry *re)
152 {
153 	if (!(re->lo & 1))
154 		return 0;
155 
156 	return re->lo & VTD_PAGE_MASK;
157 }
158 
159 /*
160  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
161  * if marked present.
162  */
163 static phys_addr_t root_entry_uctp(struct root_entry *re)
164 {
165 	if (!(re->hi & 1))
166 		return 0;
167 
168 	return re->hi & VTD_PAGE_MASK;
169 }
170 
171 static inline void context_set_present(struct context_entry *context)
172 {
173 	context->lo |= 1;
174 }
175 
176 static inline void context_set_fault_enable(struct context_entry *context)
177 {
178 	context->lo &= (((u64)-1) << 2) | 1;
179 }
180 
181 static inline void context_set_translation_type(struct context_entry *context,
182 						unsigned long value)
183 {
184 	context->lo &= (((u64)-1) << 4) | 3;
185 	context->lo |= (value & 3) << 2;
186 }
187 
188 static inline void context_set_address_root(struct context_entry *context,
189 					    unsigned long value)
190 {
191 	context->lo &= ~VTD_PAGE_MASK;
192 	context->lo |= value & VTD_PAGE_MASK;
193 }
194 
195 static inline void context_set_address_width(struct context_entry *context,
196 					     unsigned long value)
197 {
198 	context->hi |= value & 7;
199 }
200 
201 static inline void context_set_domain_id(struct context_entry *context,
202 					 unsigned long value)
203 {
204 	context->hi |= (value & ((1 << 16) - 1)) << 8;
205 }
206 
207 static inline void context_set_pasid(struct context_entry *context)
208 {
209 	context->lo |= CONTEXT_PASIDE;
210 }
211 
212 static inline int context_domain_id(struct context_entry *c)
213 {
214 	return((c->hi >> 8) & 0xffff);
215 }
216 
217 static inline void context_clear_entry(struct context_entry *context)
218 {
219 	context->lo = 0;
220 	context->hi = 0;
221 }
222 
223 static inline bool context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
224 {
225 	if (!iommu->copied_tables)
226 		return false;
227 
228 	return test_bit(((long)bus << 8) | devfn, iommu->copied_tables);
229 }
230 
231 static inline void
232 set_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
233 {
234 	set_bit(((long)bus << 8) | devfn, iommu->copied_tables);
235 }
236 
237 static inline void
238 clear_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
239 {
240 	clear_bit(((long)bus << 8) | devfn, iommu->copied_tables);
241 }
242 
243 /*
244  * This domain is a statically identity mapping domain.
245  *	1. This domain creats a static 1:1 mapping to all usable memory.
246  * 	2. It maps to each iommu if successful.
247  *	3. Each iommu mapps to this domain if successful.
248  */
249 static struct dmar_domain *si_domain;
250 static int hw_pass_through = 1;
251 
252 struct dmar_rmrr_unit {
253 	struct list_head list;		/* list of rmrr units	*/
254 	struct acpi_dmar_header *hdr;	/* ACPI header		*/
255 	u64	base_address;		/* reserved base address*/
256 	u64	end_address;		/* reserved end address */
257 	struct dmar_dev_scope *devices;	/* target devices */
258 	int	devices_cnt;		/* target device count */
259 };
260 
261 struct dmar_atsr_unit {
262 	struct list_head list;		/* list of ATSR units */
263 	struct acpi_dmar_header *hdr;	/* ACPI header */
264 	struct dmar_dev_scope *devices;	/* target devices */
265 	int devices_cnt;		/* target device count */
266 	u8 include_all:1;		/* include all ports */
267 };
268 
269 struct dmar_satc_unit {
270 	struct list_head list;		/* list of SATC units */
271 	struct acpi_dmar_header *hdr;	/* ACPI header */
272 	struct dmar_dev_scope *devices;	/* target devices */
273 	struct intel_iommu *iommu;	/* the corresponding iommu */
274 	int devices_cnt;		/* target device count */
275 	u8 atc_required:1;		/* ATS is required */
276 };
277 
278 static LIST_HEAD(dmar_atsr_units);
279 static LIST_HEAD(dmar_rmrr_units);
280 static LIST_HEAD(dmar_satc_units);
281 
282 #define for_each_rmrr_units(rmrr) \
283 	list_for_each_entry(rmrr, &dmar_rmrr_units, list)
284 
285 static void device_block_translation(struct device *dev);
286 static void intel_iommu_domain_free(struct iommu_domain *domain);
287 
288 int dmar_disabled = !IS_ENABLED(CONFIG_INTEL_IOMMU_DEFAULT_ON);
289 int intel_iommu_sm = IS_ENABLED(CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON);
290 
291 int intel_iommu_enabled = 0;
292 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
293 
294 static int dmar_map_gfx = 1;
295 static int intel_iommu_superpage = 1;
296 static int iommu_identity_mapping;
297 static int iommu_skip_te_disable;
298 
299 #define IDENTMAP_GFX		2
300 #define IDENTMAP_AZALIA		4
301 
302 const struct iommu_ops intel_iommu_ops;
303 
304 static bool translation_pre_enabled(struct intel_iommu *iommu)
305 {
306 	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
307 }
308 
309 static void clear_translation_pre_enabled(struct intel_iommu *iommu)
310 {
311 	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
312 }
313 
314 static void init_translation_status(struct intel_iommu *iommu)
315 {
316 	u32 gsts;
317 
318 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
319 	if (gsts & DMA_GSTS_TES)
320 		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
321 }
322 
323 static int __init intel_iommu_setup(char *str)
324 {
325 	if (!str)
326 		return -EINVAL;
327 
328 	while (*str) {
329 		if (!strncmp(str, "on", 2)) {
330 			dmar_disabled = 0;
331 			pr_info("IOMMU enabled\n");
332 		} else if (!strncmp(str, "off", 3)) {
333 			dmar_disabled = 1;
334 			no_platform_optin = 1;
335 			pr_info("IOMMU disabled\n");
336 		} else if (!strncmp(str, "igfx_off", 8)) {
337 			dmar_map_gfx = 0;
338 			pr_info("Disable GFX device mapping\n");
339 		} else if (!strncmp(str, "forcedac", 8)) {
340 			pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n");
341 			iommu_dma_forcedac = true;
342 		} else if (!strncmp(str, "strict", 6)) {
343 			pr_warn("intel_iommu=strict deprecated; use iommu.strict=1 instead\n");
344 			iommu_set_dma_strict();
345 		} else if (!strncmp(str, "sp_off", 6)) {
346 			pr_info("Disable supported super page\n");
347 			intel_iommu_superpage = 0;
348 		} else if (!strncmp(str, "sm_on", 5)) {
349 			pr_info("Enable scalable mode if hardware supports\n");
350 			intel_iommu_sm = 1;
351 		} else if (!strncmp(str, "sm_off", 6)) {
352 			pr_info("Scalable mode is disallowed\n");
353 			intel_iommu_sm = 0;
354 		} else if (!strncmp(str, "tboot_noforce", 13)) {
355 			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
356 			intel_iommu_tboot_noforce = 1;
357 		} else {
358 			pr_notice("Unknown option - '%s'\n", str);
359 		}
360 
361 		str += strcspn(str, ",");
362 		while (*str == ',')
363 			str++;
364 	}
365 
366 	return 1;
367 }
368 __setup("intel_iommu=", intel_iommu_setup);
369 
370 void *alloc_pgtable_page(int node, gfp_t gfp)
371 {
372 	struct page *page;
373 	void *vaddr = NULL;
374 
375 	page = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
376 	if (page)
377 		vaddr = page_address(page);
378 	return vaddr;
379 }
380 
381 void free_pgtable_page(void *vaddr)
382 {
383 	free_page((unsigned long)vaddr);
384 }
385 
386 static inline int domain_type_is_si(struct dmar_domain *domain)
387 {
388 	return domain->domain.type == IOMMU_DOMAIN_IDENTITY;
389 }
390 
391 static inline int domain_pfn_supported(struct dmar_domain *domain,
392 				       unsigned long pfn)
393 {
394 	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
395 
396 	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
397 }
398 
399 /*
400  * Calculate the Supported Adjusted Guest Address Widths of an IOMMU.
401  * Refer to 11.4.2 of the VT-d spec for the encoding of each bit of
402  * the returned SAGAW.
403  */
404 static unsigned long __iommu_calculate_sagaw(struct intel_iommu *iommu)
405 {
406 	unsigned long fl_sagaw, sl_sagaw;
407 
408 	fl_sagaw = BIT(2) | (cap_fl5lp_support(iommu->cap) ? BIT(3) : 0);
409 	sl_sagaw = cap_sagaw(iommu->cap);
410 
411 	/* Second level only. */
412 	if (!sm_supported(iommu) || !ecap_flts(iommu->ecap))
413 		return sl_sagaw;
414 
415 	/* First level only. */
416 	if (!ecap_slts(iommu->ecap))
417 		return fl_sagaw;
418 
419 	return fl_sagaw & sl_sagaw;
420 }
421 
422 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
423 {
424 	unsigned long sagaw;
425 	int agaw;
426 
427 	sagaw = __iommu_calculate_sagaw(iommu);
428 	for (agaw = width_to_agaw(max_gaw); agaw >= 0; agaw--) {
429 		if (test_bit(agaw, &sagaw))
430 			break;
431 	}
432 
433 	return agaw;
434 }
435 
436 /*
437  * Calculate max SAGAW for each iommu.
438  */
439 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
440 {
441 	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
442 }
443 
444 /*
445  * calculate agaw for each iommu.
446  * "SAGAW" may be different across iommus, use a default agaw, and
447  * get a supported less agaw for iommus that don't support the default agaw.
448  */
449 int iommu_calculate_agaw(struct intel_iommu *iommu)
450 {
451 	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
452 }
453 
454 static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
455 {
456 	return sm_supported(iommu) ?
457 			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
458 }
459 
460 static void domain_update_iommu_coherency(struct dmar_domain *domain)
461 {
462 	struct iommu_domain_info *info;
463 	struct dmar_drhd_unit *drhd;
464 	struct intel_iommu *iommu;
465 	bool found = false;
466 	unsigned long i;
467 
468 	domain->iommu_coherency = true;
469 	xa_for_each(&domain->iommu_array, i, info) {
470 		found = true;
471 		if (!iommu_paging_structure_coherency(info->iommu)) {
472 			domain->iommu_coherency = false;
473 			break;
474 		}
475 	}
476 	if (found)
477 		return;
478 
479 	/* No hardware attached; use lowest common denominator */
480 	rcu_read_lock();
481 	for_each_active_iommu(iommu, drhd) {
482 		if (!iommu_paging_structure_coherency(iommu)) {
483 			domain->iommu_coherency = false;
484 			break;
485 		}
486 	}
487 	rcu_read_unlock();
488 }
489 
490 static int domain_update_iommu_superpage(struct dmar_domain *domain,
491 					 struct intel_iommu *skip)
492 {
493 	struct dmar_drhd_unit *drhd;
494 	struct intel_iommu *iommu;
495 	int mask = 0x3;
496 
497 	if (!intel_iommu_superpage)
498 		return 0;
499 
500 	/* set iommu_superpage to the smallest common denominator */
501 	rcu_read_lock();
502 	for_each_active_iommu(iommu, drhd) {
503 		if (iommu != skip) {
504 			if (domain && domain->use_first_level) {
505 				if (!cap_fl1gp_support(iommu->cap))
506 					mask = 0x1;
507 			} else {
508 				mask &= cap_super_page_val(iommu->cap);
509 			}
510 
511 			if (!mask)
512 				break;
513 		}
514 	}
515 	rcu_read_unlock();
516 
517 	return fls(mask);
518 }
519 
520 static int domain_update_device_node(struct dmar_domain *domain)
521 {
522 	struct device_domain_info *info;
523 	int nid = NUMA_NO_NODE;
524 	unsigned long flags;
525 
526 	spin_lock_irqsave(&domain->lock, flags);
527 	list_for_each_entry(info, &domain->devices, link) {
528 		/*
529 		 * There could possibly be multiple device numa nodes as devices
530 		 * within the same domain may sit behind different IOMMUs. There
531 		 * isn't perfect answer in such situation, so we select first
532 		 * come first served policy.
533 		 */
534 		nid = dev_to_node(info->dev);
535 		if (nid != NUMA_NO_NODE)
536 			break;
537 	}
538 	spin_unlock_irqrestore(&domain->lock, flags);
539 
540 	return nid;
541 }
542 
543 static void domain_update_iotlb(struct dmar_domain *domain);
544 
545 /* Return the super pagesize bitmap if supported. */
546 static unsigned long domain_super_pgsize_bitmap(struct dmar_domain *domain)
547 {
548 	unsigned long bitmap = 0;
549 
550 	/*
551 	 * 1-level super page supports page size of 2MiB, 2-level super page
552 	 * supports page size of both 2MiB and 1GiB.
553 	 */
554 	if (domain->iommu_superpage == 1)
555 		bitmap |= SZ_2M;
556 	else if (domain->iommu_superpage == 2)
557 		bitmap |= SZ_2M | SZ_1G;
558 
559 	return bitmap;
560 }
561 
562 /* Some capabilities may be different across iommus */
563 static void domain_update_iommu_cap(struct dmar_domain *domain)
564 {
565 	domain_update_iommu_coherency(domain);
566 	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
567 
568 	/*
569 	 * If RHSA is missing, we should default to the device numa domain
570 	 * as fall back.
571 	 */
572 	if (domain->nid == NUMA_NO_NODE)
573 		domain->nid = domain_update_device_node(domain);
574 
575 	/*
576 	 * First-level translation restricts the input-address to a
577 	 * canonical address (i.e., address bits 63:N have the same
578 	 * value as address bit [N-1], where N is 48-bits with 4-level
579 	 * paging and 57-bits with 5-level paging). Hence, skip bit
580 	 * [N-1].
581 	 */
582 	if (domain->use_first_level)
583 		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1);
584 	else
585 		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw);
586 
587 	domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain);
588 	domain_update_iotlb(domain);
589 }
590 
591 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
592 					 u8 devfn, int alloc)
593 {
594 	struct root_entry *root = &iommu->root_entry[bus];
595 	struct context_entry *context;
596 	u64 *entry;
597 
598 	/*
599 	 * Except that the caller requested to allocate a new entry,
600 	 * returning a copied context entry makes no sense.
601 	 */
602 	if (!alloc && context_copied(iommu, bus, devfn))
603 		return NULL;
604 
605 	entry = &root->lo;
606 	if (sm_supported(iommu)) {
607 		if (devfn >= 0x80) {
608 			devfn -= 0x80;
609 			entry = &root->hi;
610 		}
611 		devfn *= 2;
612 	}
613 	if (*entry & 1)
614 		context = phys_to_virt(*entry & VTD_PAGE_MASK);
615 	else {
616 		unsigned long phy_addr;
617 		if (!alloc)
618 			return NULL;
619 
620 		context = alloc_pgtable_page(iommu->node, GFP_ATOMIC);
621 		if (!context)
622 			return NULL;
623 
624 		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
625 		phy_addr = virt_to_phys((void *)context);
626 		*entry = phy_addr | 1;
627 		__iommu_flush_cache(iommu, entry, sizeof(*entry));
628 	}
629 	return &context[devfn];
630 }
631 
632 /**
633  * is_downstream_to_pci_bridge - test if a device belongs to the PCI
634  *				 sub-hierarchy of a candidate PCI-PCI bridge
635  * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
636  * @bridge: the candidate PCI-PCI bridge
637  *
638  * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
639  */
640 static bool
641 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
642 {
643 	struct pci_dev *pdev, *pbridge;
644 
645 	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
646 		return false;
647 
648 	pdev = to_pci_dev(dev);
649 	pbridge = to_pci_dev(bridge);
650 
651 	if (pbridge->subordinate &&
652 	    pbridge->subordinate->number <= pdev->bus->number &&
653 	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
654 		return true;
655 
656 	return false;
657 }
658 
659 static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
660 {
661 	struct dmar_drhd_unit *drhd;
662 	u32 vtbar;
663 	int rc;
664 
665 	/* We know that this device on this chipset has its own IOMMU.
666 	 * If we find it under a different IOMMU, then the BIOS is lying
667 	 * to us. Hope that the IOMMU for this device is actually
668 	 * disabled, and it needs no translation...
669 	 */
670 	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
671 	if (rc) {
672 		/* "can't" happen */
673 		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
674 		return false;
675 	}
676 	vtbar &= 0xffff0000;
677 
678 	/* we know that the this iommu should be at offset 0xa000 from vtbar */
679 	drhd = dmar_find_matched_drhd_unit(pdev);
680 	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
681 		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
682 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
683 		return true;
684 	}
685 
686 	return false;
687 }
688 
689 static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev)
690 {
691 	if (!iommu || iommu->drhd->ignored)
692 		return true;
693 
694 	if (dev_is_pci(dev)) {
695 		struct pci_dev *pdev = to_pci_dev(dev);
696 
697 		if (pdev->vendor == PCI_VENDOR_ID_INTEL &&
698 		    pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB &&
699 		    quirk_ioat_snb_local_iommu(pdev))
700 			return true;
701 	}
702 
703 	return false;
704 }
705 
706 struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
707 {
708 	struct dmar_drhd_unit *drhd = NULL;
709 	struct pci_dev *pdev = NULL;
710 	struct intel_iommu *iommu;
711 	struct device *tmp;
712 	u16 segment = 0;
713 	int i;
714 
715 	if (!dev)
716 		return NULL;
717 
718 	if (dev_is_pci(dev)) {
719 		struct pci_dev *pf_pdev;
720 
721 		pdev = pci_real_dma_dev(to_pci_dev(dev));
722 
723 		/* VFs aren't listed in scope tables; we need to look up
724 		 * the PF instead to find the IOMMU. */
725 		pf_pdev = pci_physfn(pdev);
726 		dev = &pf_pdev->dev;
727 		segment = pci_domain_nr(pdev->bus);
728 	} else if (has_acpi_companion(dev))
729 		dev = &ACPI_COMPANION(dev)->dev;
730 
731 	rcu_read_lock();
732 	for_each_iommu(iommu, drhd) {
733 		if (pdev && segment != drhd->segment)
734 			continue;
735 
736 		for_each_active_dev_scope(drhd->devices,
737 					  drhd->devices_cnt, i, tmp) {
738 			if (tmp == dev) {
739 				/* For a VF use its original BDF# not that of the PF
740 				 * which we used for the IOMMU lookup. Strictly speaking
741 				 * we could do this for all PCI devices; we only need to
742 				 * get the BDF# from the scope table for ACPI matches. */
743 				if (pdev && pdev->is_virtfn)
744 					goto got_pdev;
745 
746 				if (bus && devfn) {
747 					*bus = drhd->devices[i].bus;
748 					*devfn = drhd->devices[i].devfn;
749 				}
750 				goto out;
751 			}
752 
753 			if (is_downstream_to_pci_bridge(dev, tmp))
754 				goto got_pdev;
755 		}
756 
757 		if (pdev && drhd->include_all) {
758 got_pdev:
759 			if (bus && devfn) {
760 				*bus = pdev->bus->number;
761 				*devfn = pdev->devfn;
762 			}
763 			goto out;
764 		}
765 	}
766 	iommu = NULL;
767 out:
768 	if (iommu_is_dummy(iommu, dev))
769 		iommu = NULL;
770 
771 	rcu_read_unlock();
772 
773 	return iommu;
774 }
775 
776 static void domain_flush_cache(struct dmar_domain *domain,
777 			       void *addr, int size)
778 {
779 	if (!domain->iommu_coherency)
780 		clflush_cache_range(addr, size);
781 }
782 
783 static void free_context_table(struct intel_iommu *iommu)
784 {
785 	struct context_entry *context;
786 	int i;
787 
788 	if (!iommu->root_entry)
789 		return;
790 
791 	for (i = 0; i < ROOT_ENTRY_NR; i++) {
792 		context = iommu_context_addr(iommu, i, 0, 0);
793 		if (context)
794 			free_pgtable_page(context);
795 
796 		if (!sm_supported(iommu))
797 			continue;
798 
799 		context = iommu_context_addr(iommu, i, 0x80, 0);
800 		if (context)
801 			free_pgtable_page(context);
802 	}
803 
804 	free_pgtable_page(iommu->root_entry);
805 	iommu->root_entry = NULL;
806 }
807 
808 #ifdef CONFIG_DMAR_DEBUG
809 static void pgtable_walk(struct intel_iommu *iommu, unsigned long pfn,
810 			 u8 bus, u8 devfn, struct dma_pte *parent, int level)
811 {
812 	struct dma_pte *pte;
813 	int offset;
814 
815 	while (1) {
816 		offset = pfn_level_offset(pfn, level);
817 		pte = &parent[offset];
818 		if (!pte || (dma_pte_superpage(pte) || !dma_pte_present(pte))) {
819 			pr_info("PTE not present at level %d\n", level);
820 			break;
821 		}
822 
823 		pr_info("pte level: %d, pte value: 0x%016llx\n", level, pte->val);
824 
825 		if (level == 1)
826 			break;
827 
828 		parent = phys_to_virt(dma_pte_addr(pte));
829 		level--;
830 	}
831 }
832 
833 void dmar_fault_dump_ptes(struct intel_iommu *iommu, u16 source_id,
834 			  unsigned long long addr, u32 pasid)
835 {
836 	struct pasid_dir_entry *dir, *pde;
837 	struct pasid_entry *entries, *pte;
838 	struct context_entry *ctx_entry;
839 	struct root_entry *rt_entry;
840 	int i, dir_index, index, level;
841 	u8 devfn = source_id & 0xff;
842 	u8 bus = source_id >> 8;
843 	struct dma_pte *pgtable;
844 
845 	pr_info("Dump %s table entries for IOVA 0x%llx\n", iommu->name, addr);
846 
847 	/* root entry dump */
848 	rt_entry = &iommu->root_entry[bus];
849 	if (!rt_entry) {
850 		pr_info("root table entry is not present\n");
851 		return;
852 	}
853 
854 	if (sm_supported(iommu))
855 		pr_info("scalable mode root entry: hi 0x%016llx, low 0x%016llx\n",
856 			rt_entry->hi, rt_entry->lo);
857 	else
858 		pr_info("root entry: 0x%016llx", rt_entry->lo);
859 
860 	/* context entry dump */
861 	ctx_entry = iommu_context_addr(iommu, bus, devfn, 0);
862 	if (!ctx_entry) {
863 		pr_info("context table entry is not present\n");
864 		return;
865 	}
866 
867 	pr_info("context entry: hi 0x%016llx, low 0x%016llx\n",
868 		ctx_entry->hi, ctx_entry->lo);
869 
870 	/* legacy mode does not require PASID entries */
871 	if (!sm_supported(iommu)) {
872 		level = agaw_to_level(ctx_entry->hi & 7);
873 		pgtable = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK);
874 		goto pgtable_walk;
875 	}
876 
877 	/* get the pointer to pasid directory entry */
878 	dir = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK);
879 	if (!dir) {
880 		pr_info("pasid directory entry is not present\n");
881 		return;
882 	}
883 	/* For request-without-pasid, get the pasid from context entry */
884 	if (intel_iommu_sm && pasid == IOMMU_PASID_INVALID)
885 		pasid = IOMMU_NO_PASID;
886 
887 	dir_index = pasid >> PASID_PDE_SHIFT;
888 	pde = &dir[dir_index];
889 	pr_info("pasid dir entry: 0x%016llx\n", pde->val);
890 
891 	/* get the pointer to the pasid table entry */
892 	entries = get_pasid_table_from_pde(pde);
893 	if (!entries) {
894 		pr_info("pasid table entry is not present\n");
895 		return;
896 	}
897 	index = pasid & PASID_PTE_MASK;
898 	pte = &entries[index];
899 	for (i = 0; i < ARRAY_SIZE(pte->val); i++)
900 		pr_info("pasid table entry[%d]: 0x%016llx\n", i, pte->val[i]);
901 
902 	if (pasid_pte_get_pgtt(pte) == PASID_ENTRY_PGTT_FL_ONLY) {
903 		level = pte->val[2] & BIT_ULL(2) ? 5 : 4;
904 		pgtable = phys_to_virt(pte->val[2] & VTD_PAGE_MASK);
905 	} else {
906 		level = agaw_to_level((pte->val[0] >> 2) & 0x7);
907 		pgtable = phys_to_virt(pte->val[0] & VTD_PAGE_MASK);
908 	}
909 
910 pgtable_walk:
911 	pgtable_walk(iommu, addr >> VTD_PAGE_SHIFT, bus, devfn, pgtable, level);
912 }
913 #endif
914 
915 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
916 				      unsigned long pfn, int *target_level,
917 				      gfp_t gfp)
918 {
919 	struct dma_pte *parent, *pte;
920 	int level = agaw_to_level(domain->agaw);
921 	int offset;
922 
923 	if (!domain_pfn_supported(domain, pfn))
924 		/* Address beyond IOMMU's addressing capabilities. */
925 		return NULL;
926 
927 	parent = domain->pgd;
928 
929 	while (1) {
930 		void *tmp_page;
931 
932 		offset = pfn_level_offset(pfn, level);
933 		pte = &parent[offset];
934 		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
935 			break;
936 		if (level == *target_level)
937 			break;
938 
939 		if (!dma_pte_present(pte)) {
940 			uint64_t pteval;
941 
942 			tmp_page = alloc_pgtable_page(domain->nid, gfp);
943 
944 			if (!tmp_page)
945 				return NULL;
946 
947 			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
948 			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
949 			if (domain->use_first_level)
950 				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US | DMA_FL_PTE_ACCESS;
951 
952 			if (cmpxchg64(&pte->val, 0ULL, pteval))
953 				/* Someone else set it while we were thinking; use theirs. */
954 				free_pgtable_page(tmp_page);
955 			else
956 				domain_flush_cache(domain, pte, sizeof(*pte));
957 		}
958 		if (level == 1)
959 			break;
960 
961 		parent = phys_to_virt(dma_pte_addr(pte));
962 		level--;
963 	}
964 
965 	if (!*target_level)
966 		*target_level = level;
967 
968 	return pte;
969 }
970 
971 /* return address's pte at specific level */
972 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
973 					 unsigned long pfn,
974 					 int level, int *large_page)
975 {
976 	struct dma_pte *parent, *pte;
977 	int total = agaw_to_level(domain->agaw);
978 	int offset;
979 
980 	parent = domain->pgd;
981 	while (level <= total) {
982 		offset = pfn_level_offset(pfn, total);
983 		pte = &parent[offset];
984 		if (level == total)
985 			return pte;
986 
987 		if (!dma_pte_present(pte)) {
988 			*large_page = total;
989 			break;
990 		}
991 
992 		if (dma_pte_superpage(pte)) {
993 			*large_page = total;
994 			return pte;
995 		}
996 
997 		parent = phys_to_virt(dma_pte_addr(pte));
998 		total--;
999 	}
1000 	return NULL;
1001 }
1002 
1003 /* clear last level pte, a tlb flush should be followed */
1004 static void dma_pte_clear_range(struct dmar_domain *domain,
1005 				unsigned long start_pfn,
1006 				unsigned long last_pfn)
1007 {
1008 	unsigned int large_page;
1009 	struct dma_pte *first_pte, *pte;
1010 
1011 	if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) ||
1012 	    WARN_ON(start_pfn > last_pfn))
1013 		return;
1014 
1015 	/* we don't need lock here; nobody else touches the iova range */
1016 	do {
1017 		large_page = 1;
1018 		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
1019 		if (!pte) {
1020 			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
1021 			continue;
1022 		}
1023 		do {
1024 			dma_clear_pte(pte);
1025 			start_pfn += lvl_to_nr_pages(large_page);
1026 			pte++;
1027 		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));
1028 
1029 		domain_flush_cache(domain, first_pte,
1030 				   (void *)pte - (void *)first_pte);
1031 
1032 	} while (start_pfn && start_pfn <= last_pfn);
1033 }
1034 
1035 static void dma_pte_free_level(struct dmar_domain *domain, int level,
1036 			       int retain_level, struct dma_pte *pte,
1037 			       unsigned long pfn, unsigned long start_pfn,
1038 			       unsigned long last_pfn)
1039 {
1040 	pfn = max(start_pfn, pfn);
1041 	pte = &pte[pfn_level_offset(pfn, level)];
1042 
1043 	do {
1044 		unsigned long level_pfn;
1045 		struct dma_pte *level_pte;
1046 
1047 		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
1048 			goto next;
1049 
1050 		level_pfn = pfn & level_mask(level);
1051 		level_pte = phys_to_virt(dma_pte_addr(pte));
1052 
1053 		if (level > 2) {
1054 			dma_pte_free_level(domain, level - 1, retain_level,
1055 					   level_pte, level_pfn, start_pfn,
1056 					   last_pfn);
1057 		}
1058 
1059 		/*
1060 		 * Free the page table if we're below the level we want to
1061 		 * retain and the range covers the entire table.
1062 		 */
1063 		if (level < retain_level && !(start_pfn > level_pfn ||
1064 		      last_pfn < level_pfn + level_size(level) - 1)) {
1065 			dma_clear_pte(pte);
1066 			domain_flush_cache(domain, pte, sizeof(*pte));
1067 			free_pgtable_page(level_pte);
1068 		}
1069 next:
1070 		pfn += level_size(level);
1071 	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1072 }
1073 
1074 /*
1075  * clear last level (leaf) ptes and free page table pages below the
1076  * level we wish to keep intact.
1077  */
1078 static void dma_pte_free_pagetable(struct dmar_domain *domain,
1079 				   unsigned long start_pfn,
1080 				   unsigned long last_pfn,
1081 				   int retain_level)
1082 {
1083 	dma_pte_clear_range(domain, start_pfn, last_pfn);
1084 
1085 	/* We don't need lock here; nobody else touches the iova range */
1086 	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
1087 			   domain->pgd, 0, start_pfn, last_pfn);
1088 
1089 	/* free pgd */
1090 	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1091 		free_pgtable_page(domain->pgd);
1092 		domain->pgd = NULL;
1093 	}
1094 }
1095 
1096 /* When a page at a given level is being unlinked from its parent, we don't
1097    need to *modify* it at all. All we need to do is make a list of all the
1098    pages which can be freed just as soon as we've flushed the IOTLB and we
1099    know the hardware page-walk will no longer touch them.
1100    The 'pte' argument is the *parent* PTE, pointing to the page that is to
1101    be freed. */
1102 static void dma_pte_list_pagetables(struct dmar_domain *domain,
1103 				    int level, struct dma_pte *pte,
1104 				    struct list_head *freelist)
1105 {
1106 	struct page *pg;
1107 
1108 	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
1109 	list_add_tail(&pg->lru, freelist);
1110 
1111 	if (level == 1)
1112 		return;
1113 
1114 	pte = page_address(pg);
1115 	do {
1116 		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
1117 			dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1118 		pte++;
1119 	} while (!first_pte_in_page(pte));
1120 }
1121 
1122 static void dma_pte_clear_level(struct dmar_domain *domain, int level,
1123 				struct dma_pte *pte, unsigned long pfn,
1124 				unsigned long start_pfn, unsigned long last_pfn,
1125 				struct list_head *freelist)
1126 {
1127 	struct dma_pte *first_pte = NULL, *last_pte = NULL;
1128 
1129 	pfn = max(start_pfn, pfn);
1130 	pte = &pte[pfn_level_offset(pfn, level)];
1131 
1132 	do {
1133 		unsigned long level_pfn = pfn & level_mask(level);
1134 
1135 		if (!dma_pte_present(pte))
1136 			goto next;
1137 
1138 		/* If range covers entire pagetable, free it */
1139 		if (start_pfn <= level_pfn &&
1140 		    last_pfn >= level_pfn + level_size(level) - 1) {
1141 			/* These suborbinate page tables are going away entirely. Don't
1142 			   bother to clear them; we're just going to *free* them. */
1143 			if (level > 1 && !dma_pte_superpage(pte))
1144 				dma_pte_list_pagetables(domain, level - 1, pte, freelist);
1145 
1146 			dma_clear_pte(pte);
1147 			if (!first_pte)
1148 				first_pte = pte;
1149 			last_pte = pte;
1150 		} else if (level > 1) {
1151 			/* Recurse down into a level that isn't *entirely* obsolete */
1152 			dma_pte_clear_level(domain, level - 1,
1153 					    phys_to_virt(dma_pte_addr(pte)),
1154 					    level_pfn, start_pfn, last_pfn,
1155 					    freelist);
1156 		}
1157 next:
1158 		pfn = level_pfn + level_size(level);
1159 	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
1160 
1161 	if (first_pte)
1162 		domain_flush_cache(domain, first_pte,
1163 				   (void *)++last_pte - (void *)first_pte);
1164 }
1165 
1166 /* We can't just free the pages because the IOMMU may still be walking
1167    the page tables, and may have cached the intermediate levels. The
1168    pages can only be freed after the IOTLB flush has been done. */
1169 static void domain_unmap(struct dmar_domain *domain, unsigned long start_pfn,
1170 			 unsigned long last_pfn, struct list_head *freelist)
1171 {
1172 	if (WARN_ON(!domain_pfn_supported(domain, last_pfn)) ||
1173 	    WARN_ON(start_pfn > last_pfn))
1174 		return;
1175 
1176 	/* we don't need lock here; nobody else touches the iova range */
1177 	dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
1178 			    domain->pgd, 0, start_pfn, last_pfn, freelist);
1179 
1180 	/* free pgd */
1181 	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
1182 		struct page *pgd_page = virt_to_page(domain->pgd);
1183 		list_add_tail(&pgd_page->lru, freelist);
1184 		domain->pgd = NULL;
1185 	}
1186 }
1187 
1188 /* iommu handling */
1189 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
1190 {
1191 	struct root_entry *root;
1192 
1193 	root = alloc_pgtable_page(iommu->node, GFP_ATOMIC);
1194 	if (!root) {
1195 		pr_err("Allocating root entry for %s failed\n",
1196 			iommu->name);
1197 		return -ENOMEM;
1198 	}
1199 
1200 	__iommu_flush_cache(iommu, root, ROOT_SIZE);
1201 	iommu->root_entry = root;
1202 
1203 	return 0;
1204 }
1205 
1206 static void iommu_set_root_entry(struct intel_iommu *iommu)
1207 {
1208 	u64 addr;
1209 	u32 sts;
1210 	unsigned long flag;
1211 
1212 	addr = virt_to_phys(iommu->root_entry);
1213 	if (sm_supported(iommu))
1214 		addr |= DMA_RTADDR_SMT;
1215 
1216 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1217 	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
1218 
1219 	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
1220 
1221 	/* Make sure hardware complete it */
1222 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1223 		      readl, (sts & DMA_GSTS_RTPS), sts);
1224 
1225 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1226 
1227 	/*
1228 	 * Hardware invalidates all DMA remapping hardware translation
1229 	 * caches as part of SRTP flow.
1230 	 */
1231 	if (cap_esrtps(iommu->cap))
1232 		return;
1233 
1234 	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
1235 	if (sm_supported(iommu))
1236 		qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0);
1237 	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1238 }
1239 
1240 void iommu_flush_write_buffer(struct intel_iommu *iommu)
1241 {
1242 	u32 val;
1243 	unsigned long flag;
1244 
1245 	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
1246 		return;
1247 
1248 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1249 	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1250 
1251 	/* Make sure hardware complete it */
1252 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1253 		      readl, (!(val & DMA_GSTS_WBFS)), val);
1254 
1255 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1256 }
1257 
1258 /* return value determine if we need a write buffer flush */
1259 static void __iommu_flush_context(struct intel_iommu *iommu,
1260 				  u16 did, u16 source_id, u8 function_mask,
1261 				  u64 type)
1262 {
1263 	u64 val = 0;
1264 	unsigned long flag;
1265 
1266 	switch (type) {
1267 	case DMA_CCMD_GLOBAL_INVL:
1268 		val = DMA_CCMD_GLOBAL_INVL;
1269 		break;
1270 	case DMA_CCMD_DOMAIN_INVL:
1271 		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1272 		break;
1273 	case DMA_CCMD_DEVICE_INVL:
1274 		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1275 			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1276 		break;
1277 	default:
1278 		pr_warn("%s: Unexpected context-cache invalidation type 0x%llx\n",
1279 			iommu->name, type);
1280 		return;
1281 	}
1282 	val |= DMA_CCMD_ICC;
1283 
1284 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1285 	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1286 
1287 	/* Make sure hardware complete it */
1288 	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1289 		dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1290 
1291 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1292 }
1293 
1294 /* return value determine if we need a write buffer flush */
1295 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1296 				u64 addr, unsigned int size_order, u64 type)
1297 {
1298 	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1299 	u64 val = 0, val_iva = 0;
1300 	unsigned long flag;
1301 
1302 	switch (type) {
1303 	case DMA_TLB_GLOBAL_FLUSH:
1304 		/* global flush doesn't need set IVA_REG */
1305 		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1306 		break;
1307 	case DMA_TLB_DSI_FLUSH:
1308 		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1309 		break;
1310 	case DMA_TLB_PSI_FLUSH:
1311 		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1312 		/* IH bit is passed in as part of address */
1313 		val_iva = size_order | addr;
1314 		break;
1315 	default:
1316 		pr_warn("%s: Unexpected iotlb invalidation type 0x%llx\n",
1317 			iommu->name, type);
1318 		return;
1319 	}
1320 
1321 	if (cap_write_drain(iommu->cap))
1322 		val |= DMA_TLB_WRITE_DRAIN;
1323 
1324 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1325 	/* Note: Only uses first TLB reg currently */
1326 	if (val_iva)
1327 		dmar_writeq(iommu->reg + tlb_offset, val_iva);
1328 	dmar_writeq(iommu->reg + tlb_offset + 8, val);
1329 
1330 	/* Make sure hardware complete it */
1331 	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1332 		dmar_readq, (!(val & DMA_TLB_IVT)), val);
1333 
1334 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1335 
1336 	/* check IOTLB invalidation granularity */
1337 	if (DMA_TLB_IAIG(val) == 0)
1338 		pr_err("Flush IOTLB failed\n");
1339 	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1340 		pr_debug("TLB flush request %Lx, actual %Lx\n",
1341 			(unsigned long long)DMA_TLB_IIRG(type),
1342 			(unsigned long long)DMA_TLB_IAIG(val));
1343 }
1344 
1345 static struct device_domain_info *
1346 domain_lookup_dev_info(struct dmar_domain *domain,
1347 		       struct intel_iommu *iommu, u8 bus, u8 devfn)
1348 {
1349 	struct device_domain_info *info;
1350 	unsigned long flags;
1351 
1352 	spin_lock_irqsave(&domain->lock, flags);
1353 	list_for_each_entry(info, &domain->devices, link) {
1354 		if (info->iommu == iommu && info->bus == bus &&
1355 		    info->devfn == devfn) {
1356 			spin_unlock_irqrestore(&domain->lock, flags);
1357 			return info;
1358 		}
1359 	}
1360 	spin_unlock_irqrestore(&domain->lock, flags);
1361 
1362 	return NULL;
1363 }
1364 
1365 static void domain_update_iotlb(struct dmar_domain *domain)
1366 {
1367 	struct dev_pasid_info *dev_pasid;
1368 	struct device_domain_info *info;
1369 	bool has_iotlb_device = false;
1370 	unsigned long flags;
1371 
1372 	spin_lock_irqsave(&domain->lock, flags);
1373 	list_for_each_entry(info, &domain->devices, link) {
1374 		if (info->ats_enabled) {
1375 			has_iotlb_device = true;
1376 			break;
1377 		}
1378 	}
1379 
1380 	list_for_each_entry(dev_pasid, &domain->dev_pasids, link_domain) {
1381 		info = dev_iommu_priv_get(dev_pasid->dev);
1382 		if (info->ats_enabled) {
1383 			has_iotlb_device = true;
1384 			break;
1385 		}
1386 	}
1387 	domain->has_iotlb_device = has_iotlb_device;
1388 	spin_unlock_irqrestore(&domain->lock, flags);
1389 }
1390 
1391 /*
1392  * The extra devTLB flush quirk impacts those QAT devices with PCI device
1393  * IDs ranging from 0x4940 to 0x4943. It is exempted from risky_device()
1394  * check because it applies only to the built-in QAT devices and it doesn't
1395  * grant additional privileges.
1396  */
1397 #define BUGGY_QAT_DEVID_MASK 0x4940
1398 static bool dev_needs_extra_dtlb_flush(struct pci_dev *pdev)
1399 {
1400 	if (pdev->vendor != PCI_VENDOR_ID_INTEL)
1401 		return false;
1402 
1403 	if ((pdev->device & 0xfffc) != BUGGY_QAT_DEVID_MASK)
1404 		return false;
1405 
1406 	return true;
1407 }
1408 
1409 static void iommu_enable_pci_caps(struct device_domain_info *info)
1410 {
1411 	struct pci_dev *pdev;
1412 
1413 	if (!dev_is_pci(info->dev))
1414 		return;
1415 
1416 	pdev = to_pci_dev(info->dev);
1417 
1418 	/* The PCIe spec, in its wisdom, declares that the behaviour of
1419 	   the device if you enable PASID support after ATS support is
1420 	   undefined. So always enable PASID support on devices which
1421 	   have it, even if we can't yet know if we're ever going to
1422 	   use it. */
1423 	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
1424 		info->pasid_enabled = 1;
1425 
1426 	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
1427 	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
1428 		info->ats_enabled = 1;
1429 		domain_update_iotlb(info->domain);
1430 	}
1431 }
1432 
1433 static void iommu_disable_pci_caps(struct device_domain_info *info)
1434 {
1435 	struct pci_dev *pdev;
1436 
1437 	if (!dev_is_pci(info->dev))
1438 		return;
1439 
1440 	pdev = to_pci_dev(info->dev);
1441 
1442 	if (info->ats_enabled) {
1443 		pci_disable_ats(pdev);
1444 		info->ats_enabled = 0;
1445 		domain_update_iotlb(info->domain);
1446 	}
1447 
1448 	if (info->pasid_enabled) {
1449 		pci_disable_pasid(pdev);
1450 		info->pasid_enabled = 0;
1451 	}
1452 }
1453 
1454 static void __iommu_flush_dev_iotlb(struct device_domain_info *info,
1455 				    u64 addr, unsigned int mask)
1456 {
1457 	u16 sid, qdep;
1458 
1459 	if (!info || !info->ats_enabled)
1460 		return;
1461 
1462 	sid = info->bus << 8 | info->devfn;
1463 	qdep = info->ats_qdep;
1464 	qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
1465 			   qdep, addr, mask);
1466 	quirk_extra_dev_tlb_flush(info, addr, mask, IOMMU_NO_PASID, qdep);
1467 }
1468 
1469 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1470 				  u64 addr, unsigned mask)
1471 {
1472 	struct dev_pasid_info *dev_pasid;
1473 	struct device_domain_info *info;
1474 	unsigned long flags;
1475 
1476 	if (!domain->has_iotlb_device)
1477 		return;
1478 
1479 	spin_lock_irqsave(&domain->lock, flags);
1480 	list_for_each_entry(info, &domain->devices, link)
1481 		__iommu_flush_dev_iotlb(info, addr, mask);
1482 
1483 	list_for_each_entry(dev_pasid, &domain->dev_pasids, link_domain) {
1484 		info = dev_iommu_priv_get(dev_pasid->dev);
1485 
1486 		if (!info->ats_enabled)
1487 			continue;
1488 
1489 		qi_flush_dev_iotlb_pasid(info->iommu,
1490 					 PCI_DEVID(info->bus, info->devfn),
1491 					 info->pfsid, dev_pasid->pasid,
1492 					 info->ats_qdep, addr,
1493 					 mask);
1494 	}
1495 	spin_unlock_irqrestore(&domain->lock, flags);
1496 }
1497 
1498 static void domain_flush_pasid_iotlb(struct intel_iommu *iommu,
1499 				     struct dmar_domain *domain, u64 addr,
1500 				     unsigned long npages, bool ih)
1501 {
1502 	u16 did = domain_id_iommu(domain, iommu);
1503 	struct dev_pasid_info *dev_pasid;
1504 	unsigned long flags;
1505 
1506 	spin_lock_irqsave(&domain->lock, flags);
1507 	list_for_each_entry(dev_pasid, &domain->dev_pasids, link_domain)
1508 		qi_flush_piotlb(iommu, did, dev_pasid->pasid, addr, npages, ih);
1509 
1510 	if (!list_empty(&domain->devices))
1511 		qi_flush_piotlb(iommu, did, IOMMU_NO_PASID, addr, npages, ih);
1512 	spin_unlock_irqrestore(&domain->lock, flags);
1513 }
1514 
1515 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
1516 				  struct dmar_domain *domain,
1517 				  unsigned long pfn, unsigned int pages,
1518 				  int ih, int map)
1519 {
1520 	unsigned int aligned_pages = __roundup_pow_of_two(pages);
1521 	unsigned int mask = ilog2(aligned_pages);
1522 	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1523 	u16 did = domain_id_iommu(domain, iommu);
1524 
1525 	if (WARN_ON(!pages))
1526 		return;
1527 
1528 	if (ih)
1529 		ih = 1 << 6;
1530 
1531 	if (domain->use_first_level) {
1532 		domain_flush_pasid_iotlb(iommu, domain, addr, pages, ih);
1533 	} else {
1534 		unsigned long bitmask = aligned_pages - 1;
1535 
1536 		/*
1537 		 * PSI masks the low order bits of the base address. If the
1538 		 * address isn't aligned to the mask, then compute a mask value
1539 		 * needed to ensure the target range is flushed.
1540 		 */
1541 		if (unlikely(bitmask & pfn)) {
1542 			unsigned long end_pfn = pfn + pages - 1, shared_bits;
1543 
1544 			/*
1545 			 * Since end_pfn <= pfn + bitmask, the only way bits
1546 			 * higher than bitmask can differ in pfn and end_pfn is
1547 			 * by carrying. This means after masking out bitmask,
1548 			 * high bits starting with the first set bit in
1549 			 * shared_bits are all equal in both pfn and end_pfn.
1550 			 */
1551 			shared_bits = ~(pfn ^ end_pfn) & ~bitmask;
1552 			mask = shared_bits ? __ffs(shared_bits) : BITS_PER_LONG;
1553 		}
1554 
1555 		/*
1556 		 * Fallback to domain selective flush if no PSI support or
1557 		 * the size is too big.
1558 		 */
1559 		if (!cap_pgsel_inv(iommu->cap) ||
1560 		    mask > cap_max_amask_val(iommu->cap))
1561 			iommu->flush.flush_iotlb(iommu, did, 0, 0,
1562 							DMA_TLB_DSI_FLUSH);
1563 		else
1564 			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
1565 							DMA_TLB_PSI_FLUSH);
1566 	}
1567 
1568 	/*
1569 	 * In caching mode, changes of pages from non-present to present require
1570 	 * flush. However, device IOTLB doesn't need to be flushed in this case.
1571 	 */
1572 	if (!cap_caching_mode(iommu->cap) || !map)
1573 		iommu_flush_dev_iotlb(domain, addr, mask);
1574 }
1575 
1576 /* Notification for newly created mappings */
1577 static inline void __mapping_notify_one(struct intel_iommu *iommu,
1578 					struct dmar_domain *domain,
1579 					unsigned long pfn, unsigned int pages)
1580 {
1581 	/*
1582 	 * It's a non-present to present mapping. Only flush if caching mode
1583 	 * and second level.
1584 	 */
1585 	if (cap_caching_mode(iommu->cap) && !domain->use_first_level)
1586 		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
1587 	else
1588 		iommu_flush_write_buffer(iommu);
1589 }
1590 
1591 static void intel_flush_iotlb_all(struct iommu_domain *domain)
1592 {
1593 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
1594 	struct iommu_domain_info *info;
1595 	unsigned long idx;
1596 
1597 	xa_for_each(&dmar_domain->iommu_array, idx, info) {
1598 		struct intel_iommu *iommu = info->iommu;
1599 		u16 did = domain_id_iommu(dmar_domain, iommu);
1600 
1601 		if (dmar_domain->use_first_level)
1602 			domain_flush_pasid_iotlb(iommu, dmar_domain, 0, -1, 0);
1603 		else
1604 			iommu->flush.flush_iotlb(iommu, did, 0, 0,
1605 						 DMA_TLB_DSI_FLUSH);
1606 
1607 		if (!cap_caching_mode(iommu->cap))
1608 			iommu_flush_dev_iotlb(dmar_domain, 0, MAX_AGAW_PFN_WIDTH);
1609 	}
1610 }
1611 
1612 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1613 {
1614 	u32 pmen;
1615 	unsigned long flags;
1616 
1617 	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
1618 		return;
1619 
1620 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1621 	pmen = readl(iommu->reg + DMAR_PMEN_REG);
1622 	pmen &= ~DMA_PMEN_EPM;
1623 	writel(pmen, iommu->reg + DMAR_PMEN_REG);
1624 
1625 	/* wait for the protected region status bit to clear */
1626 	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1627 		readl, !(pmen & DMA_PMEN_PRS), pmen);
1628 
1629 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1630 }
1631 
1632 static void iommu_enable_translation(struct intel_iommu *iommu)
1633 {
1634 	u32 sts;
1635 	unsigned long flags;
1636 
1637 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1638 	iommu->gcmd |= DMA_GCMD_TE;
1639 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1640 
1641 	/* Make sure hardware complete it */
1642 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1643 		      readl, (sts & DMA_GSTS_TES), sts);
1644 
1645 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1646 }
1647 
1648 static void iommu_disable_translation(struct intel_iommu *iommu)
1649 {
1650 	u32 sts;
1651 	unsigned long flag;
1652 
1653 	if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
1654 	    (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
1655 		return;
1656 
1657 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1658 	iommu->gcmd &= ~DMA_GCMD_TE;
1659 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1660 
1661 	/* Make sure hardware complete it */
1662 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1663 		      readl, (!(sts & DMA_GSTS_TES)), sts);
1664 
1665 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1666 }
1667 
1668 static int iommu_init_domains(struct intel_iommu *iommu)
1669 {
1670 	u32 ndomains;
1671 
1672 	ndomains = cap_ndoms(iommu->cap);
1673 	pr_debug("%s: Number of Domains supported <%d>\n",
1674 		 iommu->name, ndomains);
1675 
1676 	spin_lock_init(&iommu->lock);
1677 
1678 	iommu->domain_ids = bitmap_zalloc(ndomains, GFP_KERNEL);
1679 	if (!iommu->domain_ids)
1680 		return -ENOMEM;
1681 
1682 	/*
1683 	 * If Caching mode is set, then invalid translations are tagged
1684 	 * with domain-id 0, hence we need to pre-allocate it. We also
1685 	 * use domain-id 0 as a marker for non-allocated domain-id, so
1686 	 * make sure it is not used for a real domain.
1687 	 */
1688 	set_bit(0, iommu->domain_ids);
1689 
1690 	/*
1691 	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1692 	 * entry for first-level or pass-through translation modes should
1693 	 * be programmed with a domain id different from those used for
1694 	 * second-level or nested translation. We reserve a domain id for
1695 	 * this purpose.
1696 	 */
1697 	if (sm_supported(iommu))
1698 		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
1699 
1700 	return 0;
1701 }
1702 
1703 static void disable_dmar_iommu(struct intel_iommu *iommu)
1704 {
1705 	if (!iommu->domain_ids)
1706 		return;
1707 
1708 	/*
1709 	 * All iommu domains must have been detached from the devices,
1710 	 * hence there should be no domain IDs in use.
1711 	 */
1712 	if (WARN_ON(bitmap_weight(iommu->domain_ids, cap_ndoms(iommu->cap))
1713 		    > NUM_RESERVED_DID))
1714 		return;
1715 
1716 	if (iommu->gcmd & DMA_GCMD_TE)
1717 		iommu_disable_translation(iommu);
1718 }
1719 
1720 static void free_dmar_iommu(struct intel_iommu *iommu)
1721 {
1722 	if (iommu->domain_ids) {
1723 		bitmap_free(iommu->domain_ids);
1724 		iommu->domain_ids = NULL;
1725 	}
1726 
1727 	if (iommu->copied_tables) {
1728 		bitmap_free(iommu->copied_tables);
1729 		iommu->copied_tables = NULL;
1730 	}
1731 
1732 	/* free context mapping */
1733 	free_context_table(iommu);
1734 
1735 #ifdef CONFIG_INTEL_IOMMU_SVM
1736 	if (pasid_supported(iommu)) {
1737 		if (ecap_prs(iommu->ecap))
1738 			intel_svm_finish_prq(iommu);
1739 	}
1740 #endif
1741 }
1742 
1743 /*
1744  * Check and return whether first level is used by default for
1745  * DMA translation.
1746  */
1747 static bool first_level_by_default(unsigned int type)
1748 {
1749 	/* Only SL is available in legacy mode */
1750 	if (!scalable_mode_support())
1751 		return false;
1752 
1753 	/* Only level (either FL or SL) is available, just use it */
1754 	if (intel_cap_flts_sanity() ^ intel_cap_slts_sanity())
1755 		return intel_cap_flts_sanity();
1756 
1757 	/* Both levels are available, decide it based on domain type */
1758 	return type != IOMMU_DOMAIN_UNMANAGED;
1759 }
1760 
1761 static struct dmar_domain *alloc_domain(unsigned int type)
1762 {
1763 	struct dmar_domain *domain;
1764 
1765 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
1766 	if (!domain)
1767 		return NULL;
1768 
1769 	domain->nid = NUMA_NO_NODE;
1770 	if (first_level_by_default(type))
1771 		domain->use_first_level = true;
1772 	domain->has_iotlb_device = false;
1773 	INIT_LIST_HEAD(&domain->devices);
1774 	INIT_LIST_HEAD(&domain->dev_pasids);
1775 	spin_lock_init(&domain->lock);
1776 	xa_init(&domain->iommu_array);
1777 
1778 	return domain;
1779 }
1780 
1781 static int domain_attach_iommu(struct dmar_domain *domain,
1782 			       struct intel_iommu *iommu)
1783 {
1784 	struct iommu_domain_info *info, *curr;
1785 	unsigned long ndomains;
1786 	int num, ret = -ENOSPC;
1787 
1788 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1789 	if (!info)
1790 		return -ENOMEM;
1791 
1792 	spin_lock(&iommu->lock);
1793 	curr = xa_load(&domain->iommu_array, iommu->seq_id);
1794 	if (curr) {
1795 		curr->refcnt++;
1796 		spin_unlock(&iommu->lock);
1797 		kfree(info);
1798 		return 0;
1799 	}
1800 
1801 	ndomains = cap_ndoms(iommu->cap);
1802 	num = find_first_zero_bit(iommu->domain_ids, ndomains);
1803 	if (num >= ndomains) {
1804 		pr_err("%s: No free domain ids\n", iommu->name);
1805 		goto err_unlock;
1806 	}
1807 
1808 	set_bit(num, iommu->domain_ids);
1809 	info->refcnt	= 1;
1810 	info->did	= num;
1811 	info->iommu	= iommu;
1812 	curr = xa_cmpxchg(&domain->iommu_array, iommu->seq_id,
1813 			  NULL, info, GFP_ATOMIC);
1814 	if (curr) {
1815 		ret = xa_err(curr) ? : -EBUSY;
1816 		goto err_clear;
1817 	}
1818 	domain_update_iommu_cap(domain);
1819 
1820 	spin_unlock(&iommu->lock);
1821 	return 0;
1822 
1823 err_clear:
1824 	clear_bit(info->did, iommu->domain_ids);
1825 err_unlock:
1826 	spin_unlock(&iommu->lock);
1827 	kfree(info);
1828 	return ret;
1829 }
1830 
1831 static void domain_detach_iommu(struct dmar_domain *domain,
1832 				struct intel_iommu *iommu)
1833 {
1834 	struct iommu_domain_info *info;
1835 
1836 	spin_lock(&iommu->lock);
1837 	info = xa_load(&domain->iommu_array, iommu->seq_id);
1838 	if (--info->refcnt == 0) {
1839 		clear_bit(info->did, iommu->domain_ids);
1840 		xa_erase(&domain->iommu_array, iommu->seq_id);
1841 		domain->nid = NUMA_NO_NODE;
1842 		domain_update_iommu_cap(domain);
1843 		kfree(info);
1844 	}
1845 	spin_unlock(&iommu->lock);
1846 }
1847 
1848 static inline int guestwidth_to_adjustwidth(int gaw)
1849 {
1850 	int agaw;
1851 	int r = (gaw - 12) % 9;
1852 
1853 	if (r == 0)
1854 		agaw = gaw;
1855 	else
1856 		agaw = gaw + 9 - r;
1857 	if (agaw > 64)
1858 		agaw = 64;
1859 	return agaw;
1860 }
1861 
1862 static void domain_exit(struct dmar_domain *domain)
1863 {
1864 	if (domain->pgd) {
1865 		LIST_HEAD(freelist);
1866 
1867 		domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw), &freelist);
1868 		put_pages_list(&freelist);
1869 	}
1870 
1871 	if (WARN_ON(!list_empty(&domain->devices)))
1872 		return;
1873 
1874 	kfree(domain);
1875 }
1876 
1877 /*
1878  * Get the PASID directory size for scalable mode context entry.
1879  * Value of X in the PDTS field of a scalable mode context entry
1880  * indicates PASID directory with 2^(X + 7) entries.
1881  */
1882 static inline unsigned long context_get_sm_pds(struct pasid_table *table)
1883 {
1884 	unsigned long pds, max_pde;
1885 
1886 	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
1887 	pds = find_first_bit(&max_pde, MAX_NR_PASID_BITS);
1888 	if (pds < 7)
1889 		return 0;
1890 
1891 	return pds - 7;
1892 }
1893 
1894 /*
1895  * Set the RID_PASID field of a scalable mode context entry. The
1896  * IOMMU hardware will use the PASID value set in this field for
1897  * DMA translations of DMA requests without PASID.
1898  */
1899 static inline void
1900 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1901 {
1902 	context->hi |= pasid & ((1 << 20) - 1);
1903 }
1904 
1905 /*
1906  * Set the DTE(Device-TLB Enable) field of a scalable mode context
1907  * entry.
1908  */
1909 static inline void context_set_sm_dte(struct context_entry *context)
1910 {
1911 	context->lo |= BIT_ULL(2);
1912 }
1913 
1914 /*
1915  * Set the PRE(Page Request Enable) field of a scalable mode context
1916  * entry.
1917  */
1918 static inline void context_set_sm_pre(struct context_entry *context)
1919 {
1920 	context->lo |= BIT_ULL(4);
1921 }
1922 
1923 /* Convert value to context PASID directory size field coding. */
1924 #define context_pdts(pds)	(((pds) & 0x7) << 9)
1925 
1926 static int domain_context_mapping_one(struct dmar_domain *domain,
1927 				      struct intel_iommu *iommu,
1928 				      struct pasid_table *table,
1929 				      u8 bus, u8 devfn)
1930 {
1931 	struct device_domain_info *info =
1932 			domain_lookup_dev_info(domain, iommu, bus, devfn);
1933 	u16 did = domain_id_iommu(domain, iommu);
1934 	int translation = CONTEXT_TT_MULTI_LEVEL;
1935 	struct context_entry *context;
1936 	int ret;
1937 
1938 	if (hw_pass_through && domain_type_is_si(domain))
1939 		translation = CONTEXT_TT_PASS_THROUGH;
1940 
1941 	pr_debug("Set context mapping for %02x:%02x.%d\n",
1942 		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1943 
1944 	spin_lock(&iommu->lock);
1945 	ret = -ENOMEM;
1946 	context = iommu_context_addr(iommu, bus, devfn, 1);
1947 	if (!context)
1948 		goto out_unlock;
1949 
1950 	ret = 0;
1951 	if (context_present(context) && !context_copied(iommu, bus, devfn))
1952 		goto out_unlock;
1953 
1954 	/*
1955 	 * For kdump cases, old valid entries may be cached due to the
1956 	 * in-flight DMA and copied pgtable, but there is no unmapping
1957 	 * behaviour for them, thus we need an explicit cache flush for
1958 	 * the newly-mapped device. For kdump, at this point, the device
1959 	 * is supposed to finish reset at its driver probe stage, so no
1960 	 * in-flight DMA will exist, and we don't need to worry anymore
1961 	 * hereafter.
1962 	 */
1963 	if (context_copied(iommu, bus, devfn)) {
1964 		u16 did_old = context_domain_id(context);
1965 
1966 		if (did_old < cap_ndoms(iommu->cap)) {
1967 			iommu->flush.flush_context(iommu, did_old,
1968 						   (((u16)bus) << 8) | devfn,
1969 						   DMA_CCMD_MASK_NOBIT,
1970 						   DMA_CCMD_DEVICE_INVL);
1971 			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
1972 						 DMA_TLB_DSI_FLUSH);
1973 		}
1974 
1975 		clear_context_copied(iommu, bus, devfn);
1976 	}
1977 
1978 	context_clear_entry(context);
1979 
1980 	if (sm_supported(iommu)) {
1981 		unsigned long pds;
1982 
1983 		/* Setup the PASID DIR pointer: */
1984 		pds = context_get_sm_pds(table);
1985 		context->lo = (u64)virt_to_phys(table->table) |
1986 				context_pdts(pds);
1987 
1988 		/* Setup the RID_PASID field: */
1989 		context_set_sm_rid2pasid(context, IOMMU_NO_PASID);
1990 
1991 		/*
1992 		 * Setup the Device-TLB enable bit and Page request
1993 		 * Enable bit:
1994 		 */
1995 		if (info && info->ats_supported)
1996 			context_set_sm_dte(context);
1997 		if (info && info->pri_supported)
1998 			context_set_sm_pre(context);
1999 		if (info && info->pasid_supported)
2000 			context_set_pasid(context);
2001 	} else {
2002 		struct dma_pte *pgd = domain->pgd;
2003 		int agaw;
2004 
2005 		context_set_domain_id(context, did);
2006 
2007 		if (translation != CONTEXT_TT_PASS_THROUGH) {
2008 			/*
2009 			 * Skip top levels of page tables for iommu which has
2010 			 * less agaw than default. Unnecessary for PT mode.
2011 			 */
2012 			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2013 				ret = -ENOMEM;
2014 				pgd = phys_to_virt(dma_pte_addr(pgd));
2015 				if (!dma_pte_present(pgd))
2016 					goto out_unlock;
2017 			}
2018 
2019 			if (info && info->ats_supported)
2020 				translation = CONTEXT_TT_DEV_IOTLB;
2021 			else
2022 				translation = CONTEXT_TT_MULTI_LEVEL;
2023 
2024 			context_set_address_root(context, virt_to_phys(pgd));
2025 			context_set_address_width(context, agaw);
2026 		} else {
2027 			/*
2028 			 * In pass through mode, AW must be programmed to
2029 			 * indicate the largest AGAW value supported by
2030 			 * hardware. And ASR is ignored by hardware.
2031 			 */
2032 			context_set_address_width(context, iommu->msagaw);
2033 		}
2034 
2035 		context_set_translation_type(context, translation);
2036 	}
2037 
2038 	context_set_fault_enable(context);
2039 	context_set_present(context);
2040 	if (!ecap_coherent(iommu->ecap))
2041 		clflush_cache_range(context, sizeof(*context));
2042 
2043 	/*
2044 	 * It's a non-present to present mapping. If hardware doesn't cache
2045 	 * non-present entry we only need to flush the write-buffer. If the
2046 	 * _does_ cache non-present entries, then it does so in the special
2047 	 * domain #0, which we have to flush:
2048 	 */
2049 	if (cap_caching_mode(iommu->cap)) {
2050 		iommu->flush.flush_context(iommu, 0,
2051 					   (((u16)bus) << 8) | devfn,
2052 					   DMA_CCMD_MASK_NOBIT,
2053 					   DMA_CCMD_DEVICE_INVL);
2054 		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
2055 	} else {
2056 		iommu_flush_write_buffer(iommu);
2057 	}
2058 
2059 	ret = 0;
2060 
2061 out_unlock:
2062 	spin_unlock(&iommu->lock);
2063 
2064 	return ret;
2065 }
2066 
2067 struct domain_context_mapping_data {
2068 	struct dmar_domain *domain;
2069 	struct intel_iommu *iommu;
2070 	struct pasid_table *table;
2071 };
2072 
2073 static int domain_context_mapping_cb(struct pci_dev *pdev,
2074 				     u16 alias, void *opaque)
2075 {
2076 	struct domain_context_mapping_data *data = opaque;
2077 
2078 	return domain_context_mapping_one(data->domain, data->iommu,
2079 					  data->table, PCI_BUS_NUM(alias),
2080 					  alias & 0xff);
2081 }
2082 
2083 static int
2084 domain_context_mapping(struct dmar_domain *domain, struct device *dev)
2085 {
2086 	struct domain_context_mapping_data data;
2087 	struct pasid_table *table;
2088 	struct intel_iommu *iommu;
2089 	u8 bus, devfn;
2090 
2091 	iommu = device_to_iommu(dev, &bus, &devfn);
2092 	if (!iommu)
2093 		return -ENODEV;
2094 
2095 	table = intel_pasid_get_table(dev);
2096 
2097 	if (!dev_is_pci(dev))
2098 		return domain_context_mapping_one(domain, iommu, table,
2099 						  bus, devfn);
2100 
2101 	data.domain = domain;
2102 	data.iommu = iommu;
2103 	data.table = table;
2104 
2105 	return pci_for_each_dma_alias(to_pci_dev(dev),
2106 				      &domain_context_mapping_cb, &data);
2107 }
2108 
2109 /* Returns a number of VTD pages, but aligned to MM page size */
2110 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2111 					    size_t size)
2112 {
2113 	host_addr &= ~PAGE_MASK;
2114 	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2115 }
2116 
2117 /* Return largest possible superpage level for a given mapping */
2118 static inline int hardware_largepage_caps(struct dmar_domain *domain,
2119 					  unsigned long iov_pfn,
2120 					  unsigned long phy_pfn,
2121 					  unsigned long pages)
2122 {
2123 	int support, level = 1;
2124 	unsigned long pfnmerge;
2125 
2126 	support = domain->iommu_superpage;
2127 
2128 	/* To use a large page, the virtual *and* physical addresses
2129 	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2130 	   of them will mean we have to use smaller pages. So just
2131 	   merge them and check both at once. */
2132 	pfnmerge = iov_pfn | phy_pfn;
2133 
2134 	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
2135 		pages >>= VTD_STRIDE_SHIFT;
2136 		if (!pages)
2137 			break;
2138 		pfnmerge >>= VTD_STRIDE_SHIFT;
2139 		level++;
2140 		support--;
2141 	}
2142 	return level;
2143 }
2144 
2145 /*
2146  * Ensure that old small page tables are removed to make room for superpage(s).
2147  * We're going to add new large pages, so make sure we don't remove their parent
2148  * tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared.
2149  */
2150 static void switch_to_super_page(struct dmar_domain *domain,
2151 				 unsigned long start_pfn,
2152 				 unsigned long end_pfn, int level)
2153 {
2154 	unsigned long lvl_pages = lvl_to_nr_pages(level);
2155 	struct iommu_domain_info *info;
2156 	struct dma_pte *pte = NULL;
2157 	unsigned long i;
2158 
2159 	while (start_pfn <= end_pfn) {
2160 		if (!pte)
2161 			pte = pfn_to_dma_pte(domain, start_pfn, &level,
2162 					     GFP_ATOMIC);
2163 
2164 		if (dma_pte_present(pte)) {
2165 			dma_pte_free_pagetable(domain, start_pfn,
2166 					       start_pfn + lvl_pages - 1,
2167 					       level + 1);
2168 
2169 			xa_for_each(&domain->iommu_array, i, info)
2170 				iommu_flush_iotlb_psi(info->iommu, domain,
2171 						      start_pfn, lvl_pages,
2172 						      0, 0);
2173 		}
2174 
2175 		pte++;
2176 		start_pfn += lvl_pages;
2177 		if (first_pte_in_page(pte))
2178 			pte = NULL;
2179 	}
2180 }
2181 
2182 static int
2183 __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
2184 		 unsigned long phys_pfn, unsigned long nr_pages, int prot,
2185 		 gfp_t gfp)
2186 {
2187 	struct dma_pte *first_pte = NULL, *pte = NULL;
2188 	unsigned int largepage_lvl = 0;
2189 	unsigned long lvl_pages = 0;
2190 	phys_addr_t pteval;
2191 	u64 attr;
2192 
2193 	if (unlikely(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)))
2194 		return -EINVAL;
2195 
2196 	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
2197 		return -EINVAL;
2198 
2199 	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
2200 	attr |= DMA_FL_PTE_PRESENT;
2201 	if (domain->use_first_level) {
2202 		attr |= DMA_FL_PTE_XD | DMA_FL_PTE_US | DMA_FL_PTE_ACCESS;
2203 		if (prot & DMA_PTE_WRITE)
2204 			attr |= DMA_FL_PTE_DIRTY;
2205 	}
2206 
2207 	domain->has_mappings = true;
2208 
2209 	pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
2210 
2211 	while (nr_pages > 0) {
2212 		uint64_t tmp;
2213 
2214 		if (!pte) {
2215 			largepage_lvl = hardware_largepage_caps(domain, iov_pfn,
2216 					phys_pfn, nr_pages);
2217 
2218 			pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl,
2219 					     gfp);
2220 			if (!pte)
2221 				return -ENOMEM;
2222 			first_pte = pte;
2223 
2224 			lvl_pages = lvl_to_nr_pages(largepage_lvl);
2225 
2226 			/* It is large page*/
2227 			if (largepage_lvl > 1) {
2228 				unsigned long end_pfn;
2229 				unsigned long pages_to_remove;
2230 
2231 				pteval |= DMA_PTE_LARGE_PAGE;
2232 				pages_to_remove = min_t(unsigned long, nr_pages,
2233 							nr_pte_to_next_page(pte) * lvl_pages);
2234 				end_pfn = iov_pfn + pages_to_remove - 1;
2235 				switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl);
2236 			} else {
2237 				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
2238 			}
2239 
2240 		}
2241 		/* We don't need lock here, nobody else
2242 		 * touches the iova range
2243 		 */
2244 		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
2245 		if (tmp) {
2246 			static int dumps = 5;
2247 			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2248 				iov_pfn, tmp, (unsigned long long)pteval);
2249 			if (dumps) {
2250 				dumps--;
2251 				debug_dma_dump_mappings(NULL);
2252 			}
2253 			WARN_ON(1);
2254 		}
2255 
2256 		nr_pages -= lvl_pages;
2257 		iov_pfn += lvl_pages;
2258 		phys_pfn += lvl_pages;
2259 		pteval += lvl_pages * VTD_PAGE_SIZE;
2260 
2261 		/* If the next PTE would be the first in a new page, then we
2262 		 * need to flush the cache on the entries we've just written.
2263 		 * And then we'll need to recalculate 'pte', so clear it and
2264 		 * let it get set again in the if (!pte) block above.
2265 		 *
2266 		 * If we're done (!nr_pages) we need to flush the cache too.
2267 		 *
2268 		 * Also if we've been setting superpages, we may need to
2269 		 * recalculate 'pte' and switch back to smaller pages for the
2270 		 * end of the mapping, if the trailing size is not enough to
2271 		 * use another superpage (i.e. nr_pages < lvl_pages).
2272 		 */
2273 		pte++;
2274 		if (!nr_pages || first_pte_in_page(pte) ||
2275 		    (largepage_lvl > 1 && nr_pages < lvl_pages)) {
2276 			domain_flush_cache(domain, first_pte,
2277 					   (void *)pte - (void *)first_pte);
2278 			pte = NULL;
2279 		}
2280 	}
2281 
2282 	return 0;
2283 }
2284 
2285 static void domain_context_clear_one(struct device_domain_info *info, u8 bus, u8 devfn)
2286 {
2287 	struct intel_iommu *iommu = info->iommu;
2288 	struct context_entry *context;
2289 	u16 did_old;
2290 
2291 	if (!iommu)
2292 		return;
2293 
2294 	spin_lock(&iommu->lock);
2295 	context = iommu_context_addr(iommu, bus, devfn, 0);
2296 	if (!context) {
2297 		spin_unlock(&iommu->lock);
2298 		return;
2299 	}
2300 
2301 	if (sm_supported(iommu)) {
2302 		if (hw_pass_through && domain_type_is_si(info->domain))
2303 			did_old = FLPT_DEFAULT_DID;
2304 		else
2305 			did_old = domain_id_iommu(info->domain, iommu);
2306 	} else {
2307 		did_old = context_domain_id(context);
2308 	}
2309 
2310 	context_clear_entry(context);
2311 	__iommu_flush_cache(iommu, context, sizeof(*context));
2312 	spin_unlock(&iommu->lock);
2313 	iommu->flush.flush_context(iommu,
2314 				   did_old,
2315 				   (((u16)bus) << 8) | devfn,
2316 				   DMA_CCMD_MASK_NOBIT,
2317 				   DMA_CCMD_DEVICE_INVL);
2318 
2319 	if (sm_supported(iommu))
2320 		qi_flush_pasid_cache(iommu, did_old, QI_PC_ALL_PASIDS, 0);
2321 
2322 	iommu->flush.flush_iotlb(iommu,
2323 				 did_old,
2324 				 0,
2325 				 0,
2326 				 DMA_TLB_DSI_FLUSH);
2327 
2328 	__iommu_flush_dev_iotlb(info, 0, MAX_AGAW_PFN_WIDTH);
2329 }
2330 
2331 static int domain_setup_first_level(struct intel_iommu *iommu,
2332 				    struct dmar_domain *domain,
2333 				    struct device *dev,
2334 				    u32 pasid)
2335 {
2336 	struct dma_pte *pgd = domain->pgd;
2337 	int agaw, level;
2338 	int flags = 0;
2339 
2340 	/*
2341 	 * Skip top levels of page tables for iommu which has
2342 	 * less agaw than default. Unnecessary for PT mode.
2343 	 */
2344 	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
2345 		pgd = phys_to_virt(dma_pte_addr(pgd));
2346 		if (!dma_pte_present(pgd))
2347 			return -ENOMEM;
2348 	}
2349 
2350 	level = agaw_to_level(agaw);
2351 	if (level != 4 && level != 5)
2352 		return -EINVAL;
2353 
2354 	if (level == 5)
2355 		flags |= PASID_FLAG_FL5LP;
2356 
2357 	if (domain->force_snooping)
2358 		flags |= PASID_FLAG_PAGE_SNOOP;
2359 
2360 	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
2361 					     domain_id_iommu(domain, iommu),
2362 					     flags);
2363 }
2364 
2365 static bool dev_is_real_dma_subdevice(struct device *dev)
2366 {
2367 	return dev && dev_is_pci(dev) &&
2368 	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
2369 }
2370 
2371 static int iommu_domain_identity_map(struct dmar_domain *domain,
2372 				     unsigned long first_vpfn,
2373 				     unsigned long last_vpfn)
2374 {
2375 	/*
2376 	 * RMRR range might have overlap with physical memory range,
2377 	 * clear it first
2378 	 */
2379 	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2380 
2381 	return __domain_mapping(domain, first_vpfn,
2382 				first_vpfn, last_vpfn - first_vpfn + 1,
2383 				DMA_PTE_READ|DMA_PTE_WRITE, GFP_KERNEL);
2384 }
2385 
2386 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2387 
2388 static int __init si_domain_init(int hw)
2389 {
2390 	struct dmar_rmrr_unit *rmrr;
2391 	struct device *dev;
2392 	int i, nid, ret;
2393 
2394 	si_domain = alloc_domain(IOMMU_DOMAIN_IDENTITY);
2395 	if (!si_domain)
2396 		return -EFAULT;
2397 
2398 	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2399 		domain_exit(si_domain);
2400 		si_domain = NULL;
2401 		return -EFAULT;
2402 	}
2403 
2404 	if (hw)
2405 		return 0;
2406 
2407 	for_each_online_node(nid) {
2408 		unsigned long start_pfn, end_pfn;
2409 		int i;
2410 
2411 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2412 			ret = iommu_domain_identity_map(si_domain,
2413 					mm_to_dma_pfn_start(start_pfn),
2414 					mm_to_dma_pfn_end(end_pfn-1));
2415 			if (ret)
2416 				return ret;
2417 		}
2418 	}
2419 
2420 	/*
2421 	 * Identity map the RMRRs so that devices with RMRRs could also use
2422 	 * the si_domain.
2423 	 */
2424 	for_each_rmrr_units(rmrr) {
2425 		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
2426 					  i, dev) {
2427 			unsigned long long start = rmrr->base_address;
2428 			unsigned long long end = rmrr->end_address;
2429 
2430 			if (WARN_ON(end < start ||
2431 				    end >> agaw_to_width(si_domain->agaw)))
2432 				continue;
2433 
2434 			ret = iommu_domain_identity_map(si_domain,
2435 					mm_to_dma_pfn_start(start >> PAGE_SHIFT),
2436 					mm_to_dma_pfn_end(end >> PAGE_SHIFT));
2437 			if (ret)
2438 				return ret;
2439 		}
2440 	}
2441 
2442 	return 0;
2443 }
2444 
2445 static int dmar_domain_attach_device(struct dmar_domain *domain,
2446 				     struct device *dev)
2447 {
2448 	struct device_domain_info *info = dev_iommu_priv_get(dev);
2449 	struct intel_iommu *iommu;
2450 	unsigned long flags;
2451 	u8 bus, devfn;
2452 	int ret;
2453 
2454 	iommu = device_to_iommu(dev, &bus, &devfn);
2455 	if (!iommu)
2456 		return -ENODEV;
2457 
2458 	ret = domain_attach_iommu(domain, iommu);
2459 	if (ret)
2460 		return ret;
2461 	info->domain = domain;
2462 	spin_lock_irqsave(&domain->lock, flags);
2463 	list_add(&info->link, &domain->devices);
2464 	spin_unlock_irqrestore(&domain->lock, flags);
2465 
2466 	/* PASID table is mandatory for a PCI device in scalable mode. */
2467 	if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) {
2468 		/* Setup the PASID entry for requests without PASID: */
2469 		if (hw_pass_through && domain_type_is_si(domain))
2470 			ret = intel_pasid_setup_pass_through(iommu, domain,
2471 					dev, IOMMU_NO_PASID);
2472 		else if (domain->use_first_level)
2473 			ret = domain_setup_first_level(iommu, domain, dev,
2474 					IOMMU_NO_PASID);
2475 		else
2476 			ret = intel_pasid_setup_second_level(iommu, domain,
2477 					dev, IOMMU_NO_PASID);
2478 		if (ret) {
2479 			dev_err(dev, "Setup RID2PASID failed\n");
2480 			device_block_translation(dev);
2481 			return ret;
2482 		}
2483 	}
2484 
2485 	ret = domain_context_mapping(domain, dev);
2486 	if (ret) {
2487 		dev_err(dev, "Domain context map failed\n");
2488 		device_block_translation(dev);
2489 		return ret;
2490 	}
2491 
2492 	if (sm_supported(info->iommu) || !domain_type_is_si(info->domain))
2493 		iommu_enable_pci_caps(info);
2494 
2495 	return 0;
2496 }
2497 
2498 /**
2499  * device_rmrr_is_relaxable - Test whether the RMRR of this device
2500  * is relaxable (ie. is allowed to be not enforced under some conditions)
2501  * @dev: device handle
2502  *
2503  * We assume that PCI USB devices with RMRRs have them largely
2504  * for historical reasons and that the RMRR space is not actively used post
2505  * boot.  This exclusion may change if vendors begin to abuse it.
2506  *
2507  * The same exception is made for graphics devices, with the requirement that
2508  * any use of the RMRR regions will be torn down before assigning the device
2509  * to a guest.
2510  *
2511  * Return: true if the RMRR is relaxable, false otherwise
2512  */
2513 static bool device_rmrr_is_relaxable(struct device *dev)
2514 {
2515 	struct pci_dev *pdev;
2516 
2517 	if (!dev_is_pci(dev))
2518 		return false;
2519 
2520 	pdev = to_pci_dev(dev);
2521 	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
2522 		return true;
2523 	else
2524 		return false;
2525 }
2526 
2527 /*
2528  * Return the required default domain type for a specific device.
2529  *
2530  * @dev: the device in query
2531  * @startup: true if this is during early boot
2532  *
2533  * Returns:
2534  *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
2535  *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
2536  *  - 0: both identity and dynamic domains work for this device
2537  */
2538 static int device_def_domain_type(struct device *dev)
2539 {
2540 	if (dev_is_pci(dev)) {
2541 		struct pci_dev *pdev = to_pci_dev(dev);
2542 
2543 		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2544 			return IOMMU_DOMAIN_IDENTITY;
2545 
2546 		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2547 			return IOMMU_DOMAIN_IDENTITY;
2548 	}
2549 
2550 	return 0;
2551 }
2552 
2553 static void intel_iommu_init_qi(struct intel_iommu *iommu)
2554 {
2555 	/*
2556 	 * Start from the sane iommu hardware state.
2557 	 * If the queued invalidation is already initialized by us
2558 	 * (for example, while enabling interrupt-remapping) then
2559 	 * we got the things already rolling from a sane state.
2560 	 */
2561 	if (!iommu->qi) {
2562 		/*
2563 		 * Clear any previous faults.
2564 		 */
2565 		dmar_fault(-1, iommu);
2566 		/*
2567 		 * Disable queued invalidation if supported and already enabled
2568 		 * before OS handover.
2569 		 */
2570 		dmar_disable_qi(iommu);
2571 	}
2572 
2573 	if (dmar_enable_qi(iommu)) {
2574 		/*
2575 		 * Queued Invalidate not enabled, use Register Based Invalidate
2576 		 */
2577 		iommu->flush.flush_context = __iommu_flush_context;
2578 		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2579 		pr_info("%s: Using Register based invalidation\n",
2580 			iommu->name);
2581 	} else {
2582 		iommu->flush.flush_context = qi_flush_context;
2583 		iommu->flush.flush_iotlb = qi_flush_iotlb;
2584 		pr_info("%s: Using Queued invalidation\n", iommu->name);
2585 	}
2586 }
2587 
2588 static int copy_context_table(struct intel_iommu *iommu,
2589 			      struct root_entry *old_re,
2590 			      struct context_entry **tbl,
2591 			      int bus, bool ext)
2592 {
2593 	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
2594 	struct context_entry *new_ce = NULL, ce;
2595 	struct context_entry *old_ce = NULL;
2596 	struct root_entry re;
2597 	phys_addr_t old_ce_phys;
2598 
2599 	tbl_idx = ext ? bus * 2 : bus;
2600 	memcpy(&re, old_re, sizeof(re));
2601 
2602 	for (devfn = 0; devfn < 256; devfn++) {
2603 		/* First calculate the correct index */
2604 		idx = (ext ? devfn * 2 : devfn) % 256;
2605 
2606 		if (idx == 0) {
2607 			/* First save what we may have and clean up */
2608 			if (new_ce) {
2609 				tbl[tbl_idx] = new_ce;
2610 				__iommu_flush_cache(iommu, new_ce,
2611 						    VTD_PAGE_SIZE);
2612 				pos = 1;
2613 			}
2614 
2615 			if (old_ce)
2616 				memunmap(old_ce);
2617 
2618 			ret = 0;
2619 			if (devfn < 0x80)
2620 				old_ce_phys = root_entry_lctp(&re);
2621 			else
2622 				old_ce_phys = root_entry_uctp(&re);
2623 
2624 			if (!old_ce_phys) {
2625 				if (ext && devfn == 0) {
2626 					/* No LCTP, try UCTP */
2627 					devfn = 0x7f;
2628 					continue;
2629 				} else {
2630 					goto out;
2631 				}
2632 			}
2633 
2634 			ret = -ENOMEM;
2635 			old_ce = memremap(old_ce_phys, PAGE_SIZE,
2636 					MEMREMAP_WB);
2637 			if (!old_ce)
2638 				goto out;
2639 
2640 			new_ce = alloc_pgtable_page(iommu->node, GFP_KERNEL);
2641 			if (!new_ce)
2642 				goto out_unmap;
2643 
2644 			ret = 0;
2645 		}
2646 
2647 		/* Now copy the context entry */
2648 		memcpy(&ce, old_ce + idx, sizeof(ce));
2649 
2650 		if (!context_present(&ce))
2651 			continue;
2652 
2653 		did = context_domain_id(&ce);
2654 		if (did >= 0 && did < cap_ndoms(iommu->cap))
2655 			set_bit(did, iommu->domain_ids);
2656 
2657 		set_context_copied(iommu, bus, devfn);
2658 		new_ce[idx] = ce;
2659 	}
2660 
2661 	tbl[tbl_idx + pos] = new_ce;
2662 
2663 	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
2664 
2665 out_unmap:
2666 	memunmap(old_ce);
2667 
2668 out:
2669 	return ret;
2670 }
2671 
2672 static int copy_translation_tables(struct intel_iommu *iommu)
2673 {
2674 	struct context_entry **ctxt_tbls;
2675 	struct root_entry *old_rt;
2676 	phys_addr_t old_rt_phys;
2677 	int ctxt_table_entries;
2678 	u64 rtaddr_reg;
2679 	int bus, ret;
2680 	bool new_ext, ext;
2681 
2682 	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
2683 	ext        = !!(rtaddr_reg & DMA_RTADDR_SMT);
2684 	new_ext    = !!sm_supported(iommu);
2685 
2686 	/*
2687 	 * The RTT bit can only be changed when translation is disabled,
2688 	 * but disabling translation means to open a window for data
2689 	 * corruption. So bail out and don't copy anything if we would
2690 	 * have to change the bit.
2691 	 */
2692 	if (new_ext != ext)
2693 		return -EINVAL;
2694 
2695 	iommu->copied_tables = bitmap_zalloc(BIT_ULL(16), GFP_KERNEL);
2696 	if (!iommu->copied_tables)
2697 		return -ENOMEM;
2698 
2699 	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
2700 	if (!old_rt_phys)
2701 		return -EINVAL;
2702 
2703 	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
2704 	if (!old_rt)
2705 		return -ENOMEM;
2706 
2707 	/* This is too big for the stack - allocate it from slab */
2708 	ctxt_table_entries = ext ? 512 : 256;
2709 	ret = -ENOMEM;
2710 	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
2711 	if (!ctxt_tbls)
2712 		goto out_unmap;
2713 
2714 	for (bus = 0; bus < 256; bus++) {
2715 		ret = copy_context_table(iommu, &old_rt[bus],
2716 					 ctxt_tbls, bus, ext);
2717 		if (ret) {
2718 			pr_err("%s: Failed to copy context table for bus %d\n",
2719 				iommu->name, bus);
2720 			continue;
2721 		}
2722 	}
2723 
2724 	spin_lock(&iommu->lock);
2725 
2726 	/* Context tables are copied, now write them to the root_entry table */
2727 	for (bus = 0; bus < 256; bus++) {
2728 		int idx = ext ? bus * 2 : bus;
2729 		u64 val;
2730 
2731 		if (ctxt_tbls[idx]) {
2732 			val = virt_to_phys(ctxt_tbls[idx]) | 1;
2733 			iommu->root_entry[bus].lo = val;
2734 		}
2735 
2736 		if (!ext || !ctxt_tbls[idx + 1])
2737 			continue;
2738 
2739 		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
2740 		iommu->root_entry[bus].hi = val;
2741 	}
2742 
2743 	spin_unlock(&iommu->lock);
2744 
2745 	kfree(ctxt_tbls);
2746 
2747 	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
2748 
2749 	ret = 0;
2750 
2751 out_unmap:
2752 	memunmap(old_rt);
2753 
2754 	return ret;
2755 }
2756 
2757 static int __init init_dmars(void)
2758 {
2759 	struct dmar_drhd_unit *drhd;
2760 	struct intel_iommu *iommu;
2761 	int ret;
2762 
2763 	ret = intel_cap_audit(CAP_AUDIT_STATIC_DMAR, NULL);
2764 	if (ret)
2765 		goto free_iommu;
2766 
2767 	for_each_iommu(iommu, drhd) {
2768 		if (drhd->ignored) {
2769 			iommu_disable_translation(iommu);
2770 			continue;
2771 		}
2772 
2773 		/*
2774 		 * Find the max pasid size of all IOMMU's in the system.
2775 		 * We need to ensure the system pasid table is no bigger
2776 		 * than the smallest supported.
2777 		 */
2778 		if (pasid_supported(iommu)) {
2779 			u32 temp = 2 << ecap_pss(iommu->ecap);
2780 
2781 			intel_pasid_max_id = min_t(u32, temp,
2782 						   intel_pasid_max_id);
2783 		}
2784 
2785 		intel_iommu_init_qi(iommu);
2786 
2787 		ret = iommu_init_domains(iommu);
2788 		if (ret)
2789 			goto free_iommu;
2790 
2791 		init_translation_status(iommu);
2792 
2793 		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
2794 			iommu_disable_translation(iommu);
2795 			clear_translation_pre_enabled(iommu);
2796 			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
2797 				iommu->name);
2798 		}
2799 
2800 		/*
2801 		 * TBD:
2802 		 * we could share the same root & context tables
2803 		 * among all IOMMU's. Need to Split it later.
2804 		 */
2805 		ret = iommu_alloc_root_entry(iommu);
2806 		if (ret)
2807 			goto free_iommu;
2808 
2809 		if (translation_pre_enabled(iommu)) {
2810 			pr_info("Translation already enabled - trying to copy translation structures\n");
2811 
2812 			ret = copy_translation_tables(iommu);
2813 			if (ret) {
2814 				/*
2815 				 * We found the IOMMU with translation
2816 				 * enabled - but failed to copy over the
2817 				 * old root-entry table. Try to proceed
2818 				 * by disabling translation now and
2819 				 * allocating a clean root-entry table.
2820 				 * This might cause DMAR faults, but
2821 				 * probably the dump will still succeed.
2822 				 */
2823 				pr_err("Failed to copy translation tables from previous kernel for %s\n",
2824 				       iommu->name);
2825 				iommu_disable_translation(iommu);
2826 				clear_translation_pre_enabled(iommu);
2827 			} else {
2828 				pr_info("Copied translation tables from previous kernel for %s\n",
2829 					iommu->name);
2830 			}
2831 		}
2832 
2833 		if (!ecap_pass_through(iommu->ecap))
2834 			hw_pass_through = 0;
2835 		intel_svm_check(iommu);
2836 	}
2837 
2838 	/*
2839 	 * Now that qi is enabled on all iommus, set the root entry and flush
2840 	 * caches. This is required on some Intel X58 chipsets, otherwise the
2841 	 * flush_context function will loop forever and the boot hangs.
2842 	 */
2843 	for_each_active_iommu(iommu, drhd) {
2844 		iommu_flush_write_buffer(iommu);
2845 		iommu_set_root_entry(iommu);
2846 	}
2847 
2848 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2849 	dmar_map_gfx = 0;
2850 #endif
2851 
2852 	if (!dmar_map_gfx)
2853 		iommu_identity_mapping |= IDENTMAP_GFX;
2854 
2855 	check_tylersburg_isoch();
2856 
2857 	ret = si_domain_init(hw_pass_through);
2858 	if (ret)
2859 		goto free_iommu;
2860 
2861 	/*
2862 	 * for each drhd
2863 	 *   enable fault log
2864 	 *   global invalidate context cache
2865 	 *   global invalidate iotlb
2866 	 *   enable translation
2867 	 */
2868 	for_each_iommu(iommu, drhd) {
2869 		if (drhd->ignored) {
2870 			/*
2871 			 * we always have to disable PMRs or DMA may fail on
2872 			 * this device
2873 			 */
2874 			if (force_on)
2875 				iommu_disable_protect_mem_regions(iommu);
2876 			continue;
2877 		}
2878 
2879 		iommu_flush_write_buffer(iommu);
2880 
2881 #ifdef CONFIG_INTEL_IOMMU_SVM
2882 		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
2883 			/*
2884 			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
2885 			 * could cause possible lock race condition.
2886 			 */
2887 			up_write(&dmar_global_lock);
2888 			ret = intel_svm_enable_prq(iommu);
2889 			down_write(&dmar_global_lock);
2890 			if (ret)
2891 				goto free_iommu;
2892 		}
2893 #endif
2894 		ret = dmar_set_interrupt(iommu);
2895 		if (ret)
2896 			goto free_iommu;
2897 	}
2898 
2899 	return 0;
2900 
2901 free_iommu:
2902 	for_each_active_iommu(iommu, drhd) {
2903 		disable_dmar_iommu(iommu);
2904 		free_dmar_iommu(iommu);
2905 	}
2906 	if (si_domain) {
2907 		domain_exit(si_domain);
2908 		si_domain = NULL;
2909 	}
2910 
2911 	return ret;
2912 }
2913 
2914 static void __init init_no_remapping_devices(void)
2915 {
2916 	struct dmar_drhd_unit *drhd;
2917 	struct device *dev;
2918 	int i;
2919 
2920 	for_each_drhd_unit(drhd) {
2921 		if (!drhd->include_all) {
2922 			for_each_active_dev_scope(drhd->devices,
2923 						  drhd->devices_cnt, i, dev)
2924 				break;
2925 			/* ignore DMAR unit if no devices exist */
2926 			if (i == drhd->devices_cnt)
2927 				drhd->ignored = 1;
2928 		}
2929 	}
2930 
2931 	for_each_active_drhd_unit(drhd) {
2932 		if (drhd->include_all)
2933 			continue;
2934 
2935 		for_each_active_dev_scope(drhd->devices,
2936 					  drhd->devices_cnt, i, dev)
2937 			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
2938 				break;
2939 		if (i < drhd->devices_cnt)
2940 			continue;
2941 
2942 		/* This IOMMU has *only* gfx devices. Either bypass it or
2943 		   set the gfx_mapped flag, as appropriate */
2944 		drhd->gfx_dedicated = 1;
2945 		if (!dmar_map_gfx)
2946 			drhd->ignored = 1;
2947 	}
2948 }
2949 
2950 #ifdef CONFIG_SUSPEND
2951 static int init_iommu_hw(void)
2952 {
2953 	struct dmar_drhd_unit *drhd;
2954 	struct intel_iommu *iommu = NULL;
2955 	int ret;
2956 
2957 	for_each_active_iommu(iommu, drhd) {
2958 		if (iommu->qi) {
2959 			ret = dmar_reenable_qi(iommu);
2960 			if (ret)
2961 				return ret;
2962 		}
2963 	}
2964 
2965 	for_each_iommu(iommu, drhd) {
2966 		if (drhd->ignored) {
2967 			/*
2968 			 * we always have to disable PMRs or DMA may fail on
2969 			 * this device
2970 			 */
2971 			if (force_on)
2972 				iommu_disable_protect_mem_regions(iommu);
2973 			continue;
2974 		}
2975 
2976 		iommu_flush_write_buffer(iommu);
2977 		iommu_set_root_entry(iommu);
2978 		iommu_enable_translation(iommu);
2979 		iommu_disable_protect_mem_regions(iommu);
2980 	}
2981 
2982 	return 0;
2983 }
2984 
2985 static void iommu_flush_all(void)
2986 {
2987 	struct dmar_drhd_unit *drhd;
2988 	struct intel_iommu *iommu;
2989 
2990 	for_each_active_iommu(iommu, drhd) {
2991 		iommu->flush.flush_context(iommu, 0, 0, 0,
2992 					   DMA_CCMD_GLOBAL_INVL);
2993 		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2994 					 DMA_TLB_GLOBAL_FLUSH);
2995 	}
2996 }
2997 
2998 static int iommu_suspend(void)
2999 {
3000 	struct dmar_drhd_unit *drhd;
3001 	struct intel_iommu *iommu = NULL;
3002 	unsigned long flag;
3003 
3004 	iommu_flush_all();
3005 
3006 	for_each_active_iommu(iommu, drhd) {
3007 		iommu_disable_translation(iommu);
3008 
3009 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3010 
3011 		iommu->iommu_state[SR_DMAR_FECTL_REG] =
3012 			readl(iommu->reg + DMAR_FECTL_REG);
3013 		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3014 			readl(iommu->reg + DMAR_FEDATA_REG);
3015 		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3016 			readl(iommu->reg + DMAR_FEADDR_REG);
3017 		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3018 			readl(iommu->reg + DMAR_FEUADDR_REG);
3019 
3020 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3021 	}
3022 	return 0;
3023 }
3024 
3025 static void iommu_resume(void)
3026 {
3027 	struct dmar_drhd_unit *drhd;
3028 	struct intel_iommu *iommu = NULL;
3029 	unsigned long flag;
3030 
3031 	if (init_iommu_hw()) {
3032 		if (force_on)
3033 			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3034 		else
3035 			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3036 		return;
3037 	}
3038 
3039 	for_each_active_iommu(iommu, drhd) {
3040 
3041 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
3042 
3043 		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3044 			iommu->reg + DMAR_FECTL_REG);
3045 		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3046 			iommu->reg + DMAR_FEDATA_REG);
3047 		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3048 			iommu->reg + DMAR_FEADDR_REG);
3049 		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3050 			iommu->reg + DMAR_FEUADDR_REG);
3051 
3052 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3053 	}
3054 }
3055 
3056 static struct syscore_ops iommu_syscore_ops = {
3057 	.resume		= iommu_resume,
3058 	.suspend	= iommu_suspend,
3059 };
3060 
3061 static void __init init_iommu_pm_ops(void)
3062 {
3063 	register_syscore_ops(&iommu_syscore_ops);
3064 }
3065 
3066 #else
3067 static inline void init_iommu_pm_ops(void) {}
3068 #endif	/* CONFIG_PM */
3069 
3070 static int __init rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
3071 {
3072 	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
3073 	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
3074 	    rmrr->end_address <= rmrr->base_address ||
3075 	    arch_rmrr_sanity_check(rmrr))
3076 		return -EINVAL;
3077 
3078 	return 0;
3079 }
3080 
3081 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
3082 {
3083 	struct acpi_dmar_reserved_memory *rmrr;
3084 	struct dmar_rmrr_unit *rmrru;
3085 
3086 	rmrr = (struct acpi_dmar_reserved_memory *)header;
3087 	if (rmrr_sanity_check(rmrr)) {
3088 		pr_warn(FW_BUG
3089 			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
3090 			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
3091 			   rmrr->base_address, rmrr->end_address,
3092 			   dmi_get_system_info(DMI_BIOS_VENDOR),
3093 			   dmi_get_system_info(DMI_BIOS_VERSION),
3094 			   dmi_get_system_info(DMI_PRODUCT_VERSION));
3095 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
3096 	}
3097 
3098 	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3099 	if (!rmrru)
3100 		goto out;
3101 
3102 	rmrru->hdr = header;
3103 
3104 	rmrru->base_address = rmrr->base_address;
3105 	rmrru->end_address = rmrr->end_address;
3106 
3107 	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
3108 				((void *)rmrr) + rmrr->header.length,
3109 				&rmrru->devices_cnt);
3110 	if (rmrru->devices_cnt && rmrru->devices == NULL)
3111 		goto free_rmrru;
3112 
3113 	list_add(&rmrru->list, &dmar_rmrr_units);
3114 
3115 	return 0;
3116 free_rmrru:
3117 	kfree(rmrru);
3118 out:
3119 	return -ENOMEM;
3120 }
3121 
3122 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
3123 {
3124 	struct dmar_atsr_unit *atsru;
3125 	struct acpi_dmar_atsr *tmp;
3126 
3127 	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
3128 				dmar_rcu_check()) {
3129 		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
3130 		if (atsr->segment != tmp->segment)
3131 			continue;
3132 		if (atsr->header.length != tmp->header.length)
3133 			continue;
3134 		if (memcmp(atsr, tmp, atsr->header.length) == 0)
3135 			return atsru;
3136 	}
3137 
3138 	return NULL;
3139 }
3140 
3141 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3142 {
3143 	struct acpi_dmar_atsr *atsr;
3144 	struct dmar_atsr_unit *atsru;
3145 
3146 	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
3147 		return 0;
3148 
3149 	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3150 	atsru = dmar_find_atsr(atsr);
3151 	if (atsru)
3152 		return 0;
3153 
3154 	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
3155 	if (!atsru)
3156 		return -ENOMEM;
3157 
3158 	/*
3159 	 * If memory is allocated from slab by ACPI _DSM method, we need to
3160 	 * copy the memory content because the memory buffer will be freed
3161 	 * on return.
3162 	 */
3163 	atsru->hdr = (void *)(atsru + 1);
3164 	memcpy(atsru->hdr, hdr, hdr->length);
3165 	atsru->include_all = atsr->flags & 0x1;
3166 	if (!atsru->include_all) {
3167 		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
3168 				(void *)atsr + atsr->header.length,
3169 				&atsru->devices_cnt);
3170 		if (atsru->devices_cnt && atsru->devices == NULL) {
3171 			kfree(atsru);
3172 			return -ENOMEM;
3173 		}
3174 	}
3175 
3176 	list_add_rcu(&atsru->list, &dmar_atsr_units);
3177 
3178 	return 0;
3179 }
3180 
3181 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
3182 {
3183 	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
3184 	kfree(atsru);
3185 }
3186 
3187 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3188 {
3189 	struct acpi_dmar_atsr *atsr;
3190 	struct dmar_atsr_unit *atsru;
3191 
3192 	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3193 	atsru = dmar_find_atsr(atsr);
3194 	if (atsru) {
3195 		list_del_rcu(&atsru->list);
3196 		synchronize_rcu();
3197 		intel_iommu_free_atsr(atsru);
3198 	}
3199 
3200 	return 0;
3201 }
3202 
3203 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
3204 {
3205 	int i;
3206 	struct device *dev;
3207 	struct acpi_dmar_atsr *atsr;
3208 	struct dmar_atsr_unit *atsru;
3209 
3210 	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3211 	atsru = dmar_find_atsr(atsr);
3212 	if (!atsru)
3213 		return 0;
3214 
3215 	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
3216 		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
3217 					  i, dev)
3218 			return -EBUSY;
3219 	}
3220 
3221 	return 0;
3222 }
3223 
3224 static struct dmar_satc_unit *dmar_find_satc(struct acpi_dmar_satc *satc)
3225 {
3226 	struct dmar_satc_unit *satcu;
3227 	struct acpi_dmar_satc *tmp;
3228 
3229 	list_for_each_entry_rcu(satcu, &dmar_satc_units, list,
3230 				dmar_rcu_check()) {
3231 		tmp = (struct acpi_dmar_satc *)satcu->hdr;
3232 		if (satc->segment != tmp->segment)
3233 			continue;
3234 		if (satc->header.length != tmp->header.length)
3235 			continue;
3236 		if (memcmp(satc, tmp, satc->header.length) == 0)
3237 			return satcu;
3238 	}
3239 
3240 	return NULL;
3241 }
3242 
3243 int dmar_parse_one_satc(struct acpi_dmar_header *hdr, void *arg)
3244 {
3245 	struct acpi_dmar_satc *satc;
3246 	struct dmar_satc_unit *satcu;
3247 
3248 	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
3249 		return 0;
3250 
3251 	satc = container_of(hdr, struct acpi_dmar_satc, header);
3252 	satcu = dmar_find_satc(satc);
3253 	if (satcu)
3254 		return 0;
3255 
3256 	satcu = kzalloc(sizeof(*satcu) + hdr->length, GFP_KERNEL);
3257 	if (!satcu)
3258 		return -ENOMEM;
3259 
3260 	satcu->hdr = (void *)(satcu + 1);
3261 	memcpy(satcu->hdr, hdr, hdr->length);
3262 	satcu->atc_required = satc->flags & 0x1;
3263 	satcu->devices = dmar_alloc_dev_scope((void *)(satc + 1),
3264 					      (void *)satc + satc->header.length,
3265 					      &satcu->devices_cnt);
3266 	if (satcu->devices_cnt && !satcu->devices) {
3267 		kfree(satcu);
3268 		return -ENOMEM;
3269 	}
3270 	list_add_rcu(&satcu->list, &dmar_satc_units);
3271 
3272 	return 0;
3273 }
3274 
3275 static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
3276 {
3277 	int sp, ret;
3278 	struct intel_iommu *iommu = dmaru->iommu;
3279 
3280 	ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_DMAR, iommu);
3281 	if (ret)
3282 		goto out;
3283 
3284 	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
3285 		pr_warn("%s: Doesn't support hardware pass through.\n",
3286 			iommu->name);
3287 		return -ENXIO;
3288 	}
3289 
3290 	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
3291 	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
3292 		pr_warn("%s: Doesn't support large page.\n",
3293 			iommu->name);
3294 		return -ENXIO;
3295 	}
3296 
3297 	/*
3298 	 * Disable translation if already enabled prior to OS handover.
3299 	 */
3300 	if (iommu->gcmd & DMA_GCMD_TE)
3301 		iommu_disable_translation(iommu);
3302 
3303 	ret = iommu_init_domains(iommu);
3304 	if (ret == 0)
3305 		ret = iommu_alloc_root_entry(iommu);
3306 	if (ret)
3307 		goto out;
3308 
3309 	intel_svm_check(iommu);
3310 
3311 	if (dmaru->ignored) {
3312 		/*
3313 		 * we always have to disable PMRs or DMA may fail on this device
3314 		 */
3315 		if (force_on)
3316 			iommu_disable_protect_mem_regions(iommu);
3317 		return 0;
3318 	}
3319 
3320 	intel_iommu_init_qi(iommu);
3321 	iommu_flush_write_buffer(iommu);
3322 
3323 #ifdef CONFIG_INTEL_IOMMU_SVM
3324 	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
3325 		ret = intel_svm_enable_prq(iommu);
3326 		if (ret)
3327 			goto disable_iommu;
3328 	}
3329 #endif
3330 	ret = dmar_set_interrupt(iommu);
3331 	if (ret)
3332 		goto disable_iommu;
3333 
3334 	iommu_set_root_entry(iommu);
3335 	iommu_enable_translation(iommu);
3336 
3337 	iommu_disable_protect_mem_regions(iommu);
3338 	return 0;
3339 
3340 disable_iommu:
3341 	disable_dmar_iommu(iommu);
3342 out:
3343 	free_dmar_iommu(iommu);
3344 	return ret;
3345 }
3346 
3347 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
3348 {
3349 	int ret = 0;
3350 	struct intel_iommu *iommu = dmaru->iommu;
3351 
3352 	if (!intel_iommu_enabled)
3353 		return 0;
3354 	if (iommu == NULL)
3355 		return -EINVAL;
3356 
3357 	if (insert) {
3358 		ret = intel_iommu_add(dmaru);
3359 	} else {
3360 		disable_dmar_iommu(iommu);
3361 		free_dmar_iommu(iommu);
3362 	}
3363 
3364 	return ret;
3365 }
3366 
3367 static void intel_iommu_free_dmars(void)
3368 {
3369 	struct dmar_rmrr_unit *rmrru, *rmrr_n;
3370 	struct dmar_atsr_unit *atsru, *atsr_n;
3371 	struct dmar_satc_unit *satcu, *satc_n;
3372 
3373 	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
3374 		list_del(&rmrru->list);
3375 		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
3376 		kfree(rmrru);
3377 	}
3378 
3379 	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
3380 		list_del(&atsru->list);
3381 		intel_iommu_free_atsr(atsru);
3382 	}
3383 	list_for_each_entry_safe(satcu, satc_n, &dmar_satc_units, list) {
3384 		list_del(&satcu->list);
3385 		dmar_free_dev_scope(&satcu->devices, &satcu->devices_cnt);
3386 		kfree(satcu);
3387 	}
3388 }
3389 
3390 static struct dmar_satc_unit *dmar_find_matched_satc_unit(struct pci_dev *dev)
3391 {
3392 	struct dmar_satc_unit *satcu;
3393 	struct acpi_dmar_satc *satc;
3394 	struct device *tmp;
3395 	int i;
3396 
3397 	dev = pci_physfn(dev);
3398 	rcu_read_lock();
3399 
3400 	list_for_each_entry_rcu(satcu, &dmar_satc_units, list) {
3401 		satc = container_of(satcu->hdr, struct acpi_dmar_satc, header);
3402 		if (satc->segment != pci_domain_nr(dev->bus))
3403 			continue;
3404 		for_each_dev_scope(satcu->devices, satcu->devices_cnt, i, tmp)
3405 			if (to_pci_dev(tmp) == dev)
3406 				goto out;
3407 	}
3408 	satcu = NULL;
3409 out:
3410 	rcu_read_unlock();
3411 	return satcu;
3412 }
3413 
3414 static int dmar_ats_supported(struct pci_dev *dev, struct intel_iommu *iommu)
3415 {
3416 	int i, ret = 1;
3417 	struct pci_bus *bus;
3418 	struct pci_dev *bridge = NULL;
3419 	struct device *tmp;
3420 	struct acpi_dmar_atsr *atsr;
3421 	struct dmar_atsr_unit *atsru;
3422 	struct dmar_satc_unit *satcu;
3423 
3424 	dev = pci_physfn(dev);
3425 	satcu = dmar_find_matched_satc_unit(dev);
3426 	if (satcu)
3427 		/*
3428 		 * This device supports ATS as it is in SATC table.
3429 		 * When IOMMU is in legacy mode, enabling ATS is done
3430 		 * automatically by HW for the device that requires
3431 		 * ATS, hence OS should not enable this device ATS
3432 		 * to avoid duplicated TLB invalidation.
3433 		 */
3434 		return !(satcu->atc_required && !sm_supported(iommu));
3435 
3436 	for (bus = dev->bus; bus; bus = bus->parent) {
3437 		bridge = bus->self;
3438 		/* If it's an integrated device, allow ATS */
3439 		if (!bridge)
3440 			return 1;
3441 		/* Connected via non-PCIe: no ATS */
3442 		if (!pci_is_pcie(bridge) ||
3443 		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3444 			return 0;
3445 		/* If we found the root port, look it up in the ATSR */
3446 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
3447 			break;
3448 	}
3449 
3450 	rcu_read_lock();
3451 	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
3452 		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3453 		if (atsr->segment != pci_domain_nr(dev->bus))
3454 			continue;
3455 
3456 		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
3457 			if (tmp == &bridge->dev)
3458 				goto out;
3459 
3460 		if (atsru->include_all)
3461 			goto out;
3462 	}
3463 	ret = 0;
3464 out:
3465 	rcu_read_unlock();
3466 
3467 	return ret;
3468 }
3469 
3470 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
3471 {
3472 	int ret;
3473 	struct dmar_rmrr_unit *rmrru;
3474 	struct dmar_atsr_unit *atsru;
3475 	struct dmar_satc_unit *satcu;
3476 	struct acpi_dmar_atsr *atsr;
3477 	struct acpi_dmar_reserved_memory *rmrr;
3478 	struct acpi_dmar_satc *satc;
3479 
3480 	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
3481 		return 0;
3482 
3483 	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
3484 		rmrr = container_of(rmrru->hdr,
3485 				    struct acpi_dmar_reserved_memory, header);
3486 		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3487 			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
3488 				((void *)rmrr) + rmrr->header.length,
3489 				rmrr->segment, rmrru->devices,
3490 				rmrru->devices_cnt);
3491 			if (ret < 0)
3492 				return ret;
3493 		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3494 			dmar_remove_dev_scope(info, rmrr->segment,
3495 				rmrru->devices, rmrru->devices_cnt);
3496 		}
3497 	}
3498 
3499 	list_for_each_entry(atsru, &dmar_atsr_units, list) {
3500 		if (atsru->include_all)
3501 			continue;
3502 
3503 		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3504 		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3505 			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
3506 					(void *)atsr + atsr->header.length,
3507 					atsr->segment, atsru->devices,
3508 					atsru->devices_cnt);
3509 			if (ret > 0)
3510 				break;
3511 			else if (ret < 0)
3512 				return ret;
3513 		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3514 			if (dmar_remove_dev_scope(info, atsr->segment,
3515 					atsru->devices, atsru->devices_cnt))
3516 				break;
3517 		}
3518 	}
3519 	list_for_each_entry(satcu, &dmar_satc_units, list) {
3520 		satc = container_of(satcu->hdr, struct acpi_dmar_satc, header);
3521 		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
3522 			ret = dmar_insert_dev_scope(info, (void *)(satc + 1),
3523 					(void *)satc + satc->header.length,
3524 					satc->segment, satcu->devices,
3525 					satcu->devices_cnt);
3526 			if (ret > 0)
3527 				break;
3528 			else if (ret < 0)
3529 				return ret;
3530 		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
3531 			if (dmar_remove_dev_scope(info, satc->segment,
3532 					satcu->devices, satcu->devices_cnt))
3533 				break;
3534 		}
3535 	}
3536 
3537 	return 0;
3538 }
3539 
3540 static int intel_iommu_memory_notifier(struct notifier_block *nb,
3541 				       unsigned long val, void *v)
3542 {
3543 	struct memory_notify *mhp = v;
3544 	unsigned long start_vpfn = mm_to_dma_pfn_start(mhp->start_pfn);
3545 	unsigned long last_vpfn = mm_to_dma_pfn_end(mhp->start_pfn +
3546 			mhp->nr_pages - 1);
3547 
3548 	switch (val) {
3549 	case MEM_GOING_ONLINE:
3550 		if (iommu_domain_identity_map(si_domain,
3551 					      start_vpfn, last_vpfn)) {
3552 			pr_warn("Failed to build identity map for [%lx-%lx]\n",
3553 				start_vpfn, last_vpfn);
3554 			return NOTIFY_BAD;
3555 		}
3556 		break;
3557 
3558 	case MEM_OFFLINE:
3559 	case MEM_CANCEL_ONLINE:
3560 		{
3561 			struct dmar_drhd_unit *drhd;
3562 			struct intel_iommu *iommu;
3563 			LIST_HEAD(freelist);
3564 
3565 			domain_unmap(si_domain, start_vpfn, last_vpfn, &freelist);
3566 
3567 			rcu_read_lock();
3568 			for_each_active_iommu(iommu, drhd)
3569 				iommu_flush_iotlb_psi(iommu, si_domain,
3570 					start_vpfn, mhp->nr_pages,
3571 					list_empty(&freelist), 0);
3572 			rcu_read_unlock();
3573 			put_pages_list(&freelist);
3574 		}
3575 		break;
3576 	}
3577 
3578 	return NOTIFY_OK;
3579 }
3580 
3581 static struct notifier_block intel_iommu_memory_nb = {
3582 	.notifier_call = intel_iommu_memory_notifier,
3583 	.priority = 0
3584 };
3585 
3586 static void intel_disable_iommus(void)
3587 {
3588 	struct intel_iommu *iommu = NULL;
3589 	struct dmar_drhd_unit *drhd;
3590 
3591 	for_each_iommu(iommu, drhd)
3592 		iommu_disable_translation(iommu);
3593 }
3594 
3595 void intel_iommu_shutdown(void)
3596 {
3597 	struct dmar_drhd_unit *drhd;
3598 	struct intel_iommu *iommu = NULL;
3599 
3600 	if (no_iommu || dmar_disabled)
3601 		return;
3602 
3603 	down_write(&dmar_global_lock);
3604 
3605 	/* Disable PMRs explicitly here. */
3606 	for_each_iommu(iommu, drhd)
3607 		iommu_disable_protect_mem_regions(iommu);
3608 
3609 	/* Make sure the IOMMUs are switched off */
3610 	intel_disable_iommus();
3611 
3612 	up_write(&dmar_global_lock);
3613 }
3614 
3615 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
3616 {
3617 	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
3618 
3619 	return container_of(iommu_dev, struct intel_iommu, iommu);
3620 }
3621 
3622 static ssize_t version_show(struct device *dev,
3623 			    struct device_attribute *attr, char *buf)
3624 {
3625 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3626 	u32 ver = readl(iommu->reg + DMAR_VER_REG);
3627 	return sysfs_emit(buf, "%d:%d\n",
3628 			  DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
3629 }
3630 static DEVICE_ATTR_RO(version);
3631 
3632 static ssize_t address_show(struct device *dev,
3633 			    struct device_attribute *attr, char *buf)
3634 {
3635 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3636 	return sysfs_emit(buf, "%llx\n", iommu->reg_phys);
3637 }
3638 static DEVICE_ATTR_RO(address);
3639 
3640 static ssize_t cap_show(struct device *dev,
3641 			struct device_attribute *attr, char *buf)
3642 {
3643 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3644 	return sysfs_emit(buf, "%llx\n", iommu->cap);
3645 }
3646 static DEVICE_ATTR_RO(cap);
3647 
3648 static ssize_t ecap_show(struct device *dev,
3649 			 struct device_attribute *attr, char *buf)
3650 {
3651 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3652 	return sysfs_emit(buf, "%llx\n", iommu->ecap);
3653 }
3654 static DEVICE_ATTR_RO(ecap);
3655 
3656 static ssize_t domains_supported_show(struct device *dev,
3657 				      struct device_attribute *attr, char *buf)
3658 {
3659 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3660 	return sysfs_emit(buf, "%ld\n", cap_ndoms(iommu->cap));
3661 }
3662 static DEVICE_ATTR_RO(domains_supported);
3663 
3664 static ssize_t domains_used_show(struct device *dev,
3665 				 struct device_attribute *attr, char *buf)
3666 {
3667 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
3668 	return sysfs_emit(buf, "%d\n",
3669 			  bitmap_weight(iommu->domain_ids,
3670 					cap_ndoms(iommu->cap)));
3671 }
3672 static DEVICE_ATTR_RO(domains_used);
3673 
3674 static struct attribute *intel_iommu_attrs[] = {
3675 	&dev_attr_version.attr,
3676 	&dev_attr_address.attr,
3677 	&dev_attr_cap.attr,
3678 	&dev_attr_ecap.attr,
3679 	&dev_attr_domains_supported.attr,
3680 	&dev_attr_domains_used.attr,
3681 	NULL,
3682 };
3683 
3684 static struct attribute_group intel_iommu_group = {
3685 	.name = "intel-iommu",
3686 	.attrs = intel_iommu_attrs,
3687 };
3688 
3689 const struct attribute_group *intel_iommu_groups[] = {
3690 	&intel_iommu_group,
3691 	NULL,
3692 };
3693 
3694 static inline bool has_external_pci(void)
3695 {
3696 	struct pci_dev *pdev = NULL;
3697 
3698 	for_each_pci_dev(pdev)
3699 		if (pdev->external_facing) {
3700 			pci_dev_put(pdev);
3701 			return true;
3702 		}
3703 
3704 	return false;
3705 }
3706 
3707 static int __init platform_optin_force_iommu(void)
3708 {
3709 	if (!dmar_platform_optin() || no_platform_optin || !has_external_pci())
3710 		return 0;
3711 
3712 	if (no_iommu || dmar_disabled)
3713 		pr_info("Intel-IOMMU force enabled due to platform opt in\n");
3714 
3715 	/*
3716 	 * If Intel-IOMMU is disabled by default, we will apply identity
3717 	 * map for all devices except those marked as being untrusted.
3718 	 */
3719 	if (dmar_disabled)
3720 		iommu_set_default_passthrough(false);
3721 
3722 	dmar_disabled = 0;
3723 	no_iommu = 0;
3724 
3725 	return 1;
3726 }
3727 
3728 static int __init probe_acpi_namespace_devices(void)
3729 {
3730 	struct dmar_drhd_unit *drhd;
3731 	/* To avoid a -Wunused-but-set-variable warning. */
3732 	struct intel_iommu *iommu __maybe_unused;
3733 	struct device *dev;
3734 	int i, ret = 0;
3735 
3736 	for_each_active_iommu(iommu, drhd) {
3737 		for_each_active_dev_scope(drhd->devices,
3738 					  drhd->devices_cnt, i, dev) {
3739 			struct acpi_device_physical_node *pn;
3740 			struct acpi_device *adev;
3741 
3742 			if (dev->bus != &acpi_bus_type)
3743 				continue;
3744 
3745 			adev = to_acpi_device(dev);
3746 			mutex_lock(&adev->physical_node_lock);
3747 			list_for_each_entry(pn,
3748 					    &adev->physical_node_list, node) {
3749 				ret = iommu_probe_device(pn->dev);
3750 				if (ret)
3751 					break;
3752 			}
3753 			mutex_unlock(&adev->physical_node_lock);
3754 
3755 			if (ret)
3756 				return ret;
3757 		}
3758 	}
3759 
3760 	return 0;
3761 }
3762 
3763 static __init int tboot_force_iommu(void)
3764 {
3765 	if (!tboot_enabled())
3766 		return 0;
3767 
3768 	if (no_iommu || dmar_disabled)
3769 		pr_warn("Forcing Intel-IOMMU to enabled\n");
3770 
3771 	dmar_disabled = 0;
3772 	no_iommu = 0;
3773 
3774 	return 1;
3775 }
3776 
3777 int __init intel_iommu_init(void)
3778 {
3779 	int ret = -ENODEV;
3780 	struct dmar_drhd_unit *drhd;
3781 	struct intel_iommu *iommu;
3782 
3783 	/*
3784 	 * Intel IOMMU is required for a TXT/tboot launch or platform
3785 	 * opt in, so enforce that.
3786 	 */
3787 	force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) ||
3788 		    platform_optin_force_iommu();
3789 
3790 	down_write(&dmar_global_lock);
3791 	if (dmar_table_init()) {
3792 		if (force_on)
3793 			panic("tboot: Failed to initialize DMAR table\n");
3794 		goto out_free_dmar;
3795 	}
3796 
3797 	if (dmar_dev_scope_init() < 0) {
3798 		if (force_on)
3799 			panic("tboot: Failed to initialize DMAR device scope\n");
3800 		goto out_free_dmar;
3801 	}
3802 
3803 	up_write(&dmar_global_lock);
3804 
3805 	/*
3806 	 * The bus notifier takes the dmar_global_lock, so lockdep will
3807 	 * complain later when we register it under the lock.
3808 	 */
3809 	dmar_register_bus_notifier();
3810 
3811 	down_write(&dmar_global_lock);
3812 
3813 	if (!no_iommu)
3814 		intel_iommu_debugfs_init();
3815 
3816 	if (no_iommu || dmar_disabled) {
3817 		/*
3818 		 * We exit the function here to ensure IOMMU's remapping and
3819 		 * mempool aren't setup, which means that the IOMMU's PMRs
3820 		 * won't be disabled via the call to init_dmars(). So disable
3821 		 * it explicitly here. The PMRs were setup by tboot prior to
3822 		 * calling SENTER, but the kernel is expected to reset/tear
3823 		 * down the PMRs.
3824 		 */
3825 		if (intel_iommu_tboot_noforce) {
3826 			for_each_iommu(iommu, drhd)
3827 				iommu_disable_protect_mem_regions(iommu);
3828 		}
3829 
3830 		/*
3831 		 * Make sure the IOMMUs are switched off, even when we
3832 		 * boot into a kexec kernel and the previous kernel left
3833 		 * them enabled
3834 		 */
3835 		intel_disable_iommus();
3836 		goto out_free_dmar;
3837 	}
3838 
3839 	if (list_empty(&dmar_rmrr_units))
3840 		pr_info("No RMRR found\n");
3841 
3842 	if (list_empty(&dmar_atsr_units))
3843 		pr_info("No ATSR found\n");
3844 
3845 	if (list_empty(&dmar_satc_units))
3846 		pr_info("No SATC found\n");
3847 
3848 	init_no_remapping_devices();
3849 
3850 	ret = init_dmars();
3851 	if (ret) {
3852 		if (force_on)
3853 			panic("tboot: Failed to initialize DMARs\n");
3854 		pr_err("Initialization failed\n");
3855 		goto out_free_dmar;
3856 	}
3857 	up_write(&dmar_global_lock);
3858 
3859 	init_iommu_pm_ops();
3860 
3861 	down_read(&dmar_global_lock);
3862 	for_each_active_iommu(iommu, drhd) {
3863 		/*
3864 		 * The flush queue implementation does not perform
3865 		 * page-selective invalidations that are required for efficient
3866 		 * TLB flushes in virtual environments.  The benefit of batching
3867 		 * is likely to be much lower than the overhead of synchronizing
3868 		 * the virtual and physical IOMMU page-tables.
3869 		 */
3870 		if (cap_caching_mode(iommu->cap) &&
3871 		    !first_level_by_default(IOMMU_DOMAIN_DMA)) {
3872 			pr_info_once("IOMMU batching disallowed due to virtualization\n");
3873 			iommu_set_dma_strict();
3874 		}
3875 		iommu_device_sysfs_add(&iommu->iommu, NULL,
3876 				       intel_iommu_groups,
3877 				       "%s", iommu->name);
3878 		iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
3879 
3880 		iommu_pmu_register(iommu);
3881 	}
3882 	up_read(&dmar_global_lock);
3883 
3884 	if (si_domain && !hw_pass_through)
3885 		register_memory_notifier(&intel_iommu_memory_nb);
3886 
3887 	down_read(&dmar_global_lock);
3888 	if (probe_acpi_namespace_devices())
3889 		pr_warn("ACPI name space devices didn't probe correctly\n");
3890 
3891 	/* Finally, we enable the DMA remapping hardware. */
3892 	for_each_iommu(iommu, drhd) {
3893 		if (!drhd->ignored && !translation_pre_enabled(iommu))
3894 			iommu_enable_translation(iommu);
3895 
3896 		iommu_disable_protect_mem_regions(iommu);
3897 	}
3898 	up_read(&dmar_global_lock);
3899 
3900 	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
3901 
3902 	intel_iommu_enabled = 1;
3903 
3904 	return 0;
3905 
3906 out_free_dmar:
3907 	intel_iommu_free_dmars();
3908 	up_write(&dmar_global_lock);
3909 	return ret;
3910 }
3911 
3912 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
3913 {
3914 	struct device_domain_info *info = opaque;
3915 
3916 	domain_context_clear_one(info, PCI_BUS_NUM(alias), alias & 0xff);
3917 	return 0;
3918 }
3919 
3920 /*
3921  * NB - intel-iommu lacks any sort of reference counting for the users of
3922  * dependent devices.  If multiple endpoints have intersecting dependent
3923  * devices, unbinding the driver from any one of them will possibly leave
3924  * the others unable to operate.
3925  */
3926 static void domain_context_clear(struct device_domain_info *info)
3927 {
3928 	if (!dev_is_pci(info->dev))
3929 		domain_context_clear_one(info, info->bus, info->devfn);
3930 
3931 	pci_for_each_dma_alias(to_pci_dev(info->dev),
3932 			       &domain_context_clear_one_cb, info);
3933 }
3934 
3935 static void dmar_remove_one_dev_info(struct device *dev)
3936 {
3937 	struct device_domain_info *info = dev_iommu_priv_get(dev);
3938 	struct dmar_domain *domain = info->domain;
3939 	struct intel_iommu *iommu = info->iommu;
3940 	unsigned long flags;
3941 
3942 	if (!dev_is_real_dma_subdevice(info->dev)) {
3943 		if (dev_is_pci(info->dev) && sm_supported(iommu))
3944 			intel_pasid_tear_down_entry(iommu, info->dev,
3945 					IOMMU_NO_PASID, false);
3946 
3947 		iommu_disable_pci_caps(info);
3948 		domain_context_clear(info);
3949 	}
3950 
3951 	spin_lock_irqsave(&domain->lock, flags);
3952 	list_del(&info->link);
3953 	spin_unlock_irqrestore(&domain->lock, flags);
3954 
3955 	domain_detach_iommu(domain, iommu);
3956 	info->domain = NULL;
3957 }
3958 
3959 /*
3960  * Clear the page table pointer in context or pasid table entries so that
3961  * all DMA requests without PASID from the device are blocked. If the page
3962  * table has been set, clean up the data structures.
3963  */
3964 static void device_block_translation(struct device *dev)
3965 {
3966 	struct device_domain_info *info = dev_iommu_priv_get(dev);
3967 	struct intel_iommu *iommu = info->iommu;
3968 	unsigned long flags;
3969 
3970 	iommu_disable_pci_caps(info);
3971 	if (!dev_is_real_dma_subdevice(dev)) {
3972 		if (sm_supported(iommu))
3973 			intel_pasid_tear_down_entry(iommu, dev,
3974 						    IOMMU_NO_PASID, false);
3975 		else
3976 			domain_context_clear(info);
3977 	}
3978 
3979 	if (!info->domain)
3980 		return;
3981 
3982 	spin_lock_irqsave(&info->domain->lock, flags);
3983 	list_del(&info->link);
3984 	spin_unlock_irqrestore(&info->domain->lock, flags);
3985 
3986 	domain_detach_iommu(info->domain, iommu);
3987 	info->domain = NULL;
3988 }
3989 
3990 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3991 {
3992 	int adjust_width;
3993 
3994 	/* calculate AGAW */
3995 	domain->gaw = guest_width;
3996 	adjust_width = guestwidth_to_adjustwidth(guest_width);
3997 	domain->agaw = width_to_agaw(adjust_width);
3998 
3999 	domain->iommu_coherency = false;
4000 	domain->iommu_superpage = 0;
4001 	domain->max_addr = 0;
4002 
4003 	/* always allocate the top pgd */
4004 	domain->pgd = alloc_pgtable_page(domain->nid, GFP_ATOMIC);
4005 	if (!domain->pgd)
4006 		return -ENOMEM;
4007 	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
4008 	return 0;
4009 }
4010 
4011 static int blocking_domain_attach_dev(struct iommu_domain *domain,
4012 				      struct device *dev)
4013 {
4014 	device_block_translation(dev);
4015 	return 0;
4016 }
4017 
4018 static struct iommu_domain blocking_domain = {
4019 	.ops = &(const struct iommu_domain_ops) {
4020 		.attach_dev	= blocking_domain_attach_dev,
4021 		.free		= intel_iommu_domain_free
4022 	}
4023 };
4024 
4025 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
4026 {
4027 	struct dmar_domain *dmar_domain;
4028 	struct iommu_domain *domain;
4029 
4030 	switch (type) {
4031 	case IOMMU_DOMAIN_BLOCKED:
4032 		return &blocking_domain;
4033 	case IOMMU_DOMAIN_DMA:
4034 	case IOMMU_DOMAIN_UNMANAGED:
4035 		dmar_domain = alloc_domain(type);
4036 		if (!dmar_domain) {
4037 			pr_err("Can't allocate dmar_domain\n");
4038 			return NULL;
4039 		}
4040 		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
4041 			pr_err("Domain initialization failed\n");
4042 			domain_exit(dmar_domain);
4043 			return NULL;
4044 		}
4045 
4046 		domain = &dmar_domain->domain;
4047 		domain->geometry.aperture_start = 0;
4048 		domain->geometry.aperture_end   =
4049 				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
4050 		domain->geometry.force_aperture = true;
4051 
4052 		return domain;
4053 	case IOMMU_DOMAIN_IDENTITY:
4054 		return &si_domain->domain;
4055 	case IOMMU_DOMAIN_SVA:
4056 		return intel_svm_domain_alloc();
4057 	default:
4058 		return NULL;
4059 	}
4060 
4061 	return NULL;
4062 }
4063 
4064 static void intel_iommu_domain_free(struct iommu_domain *domain)
4065 {
4066 	if (domain != &si_domain->domain && domain != &blocking_domain)
4067 		domain_exit(to_dmar_domain(domain));
4068 }
4069 
4070 static int prepare_domain_attach_device(struct iommu_domain *domain,
4071 					struct device *dev)
4072 {
4073 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4074 	struct intel_iommu *iommu;
4075 	int addr_width;
4076 
4077 	iommu = device_to_iommu(dev, NULL, NULL);
4078 	if (!iommu)
4079 		return -ENODEV;
4080 
4081 	if (dmar_domain->force_snooping && !ecap_sc_support(iommu->ecap))
4082 		return -EINVAL;
4083 
4084 	/* check if this iommu agaw is sufficient for max mapped address */
4085 	addr_width = agaw_to_width(iommu->agaw);
4086 	if (addr_width > cap_mgaw(iommu->cap))
4087 		addr_width = cap_mgaw(iommu->cap);
4088 
4089 	if (dmar_domain->max_addr > (1LL << addr_width))
4090 		return -EINVAL;
4091 	dmar_domain->gaw = addr_width;
4092 
4093 	/*
4094 	 * Knock out extra levels of page tables if necessary
4095 	 */
4096 	while (iommu->agaw < dmar_domain->agaw) {
4097 		struct dma_pte *pte;
4098 
4099 		pte = dmar_domain->pgd;
4100 		if (dma_pte_present(pte)) {
4101 			dmar_domain->pgd = phys_to_virt(dma_pte_addr(pte));
4102 			free_pgtable_page(pte);
4103 		}
4104 		dmar_domain->agaw--;
4105 	}
4106 
4107 	return 0;
4108 }
4109 
4110 static int intel_iommu_attach_device(struct iommu_domain *domain,
4111 				     struct device *dev)
4112 {
4113 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4114 	int ret;
4115 
4116 	if (info->domain)
4117 		device_block_translation(dev);
4118 
4119 	ret = prepare_domain_attach_device(domain, dev);
4120 	if (ret)
4121 		return ret;
4122 
4123 	return dmar_domain_attach_device(to_dmar_domain(domain), dev);
4124 }
4125 
4126 static int intel_iommu_map(struct iommu_domain *domain,
4127 			   unsigned long iova, phys_addr_t hpa,
4128 			   size_t size, int iommu_prot, gfp_t gfp)
4129 {
4130 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4131 	u64 max_addr;
4132 	int prot = 0;
4133 
4134 	if (iommu_prot & IOMMU_READ)
4135 		prot |= DMA_PTE_READ;
4136 	if (iommu_prot & IOMMU_WRITE)
4137 		prot |= DMA_PTE_WRITE;
4138 	if (dmar_domain->set_pte_snp)
4139 		prot |= DMA_PTE_SNP;
4140 
4141 	max_addr = iova + size;
4142 	if (dmar_domain->max_addr < max_addr) {
4143 		u64 end;
4144 
4145 		/* check if minimum agaw is sufficient for mapped address */
4146 		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4147 		if (end < max_addr) {
4148 			pr_err("%s: iommu width (%d) is not "
4149 			       "sufficient for the mapped address (%llx)\n",
4150 			       __func__, dmar_domain->gaw, max_addr);
4151 			return -EFAULT;
4152 		}
4153 		dmar_domain->max_addr = max_addr;
4154 	}
4155 	/* Round up size to next multiple of PAGE_SIZE, if it and
4156 	   the low bits of hpa would take us onto the next page */
4157 	size = aligned_nrpages(hpa, size);
4158 	return __domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4159 				hpa >> VTD_PAGE_SHIFT, size, prot, gfp);
4160 }
4161 
4162 static int intel_iommu_map_pages(struct iommu_domain *domain,
4163 				 unsigned long iova, phys_addr_t paddr,
4164 				 size_t pgsize, size_t pgcount,
4165 				 int prot, gfp_t gfp, size_t *mapped)
4166 {
4167 	unsigned long pgshift = __ffs(pgsize);
4168 	size_t size = pgcount << pgshift;
4169 	int ret;
4170 
4171 	if (pgsize != SZ_4K && pgsize != SZ_2M && pgsize != SZ_1G)
4172 		return -EINVAL;
4173 
4174 	if (!IS_ALIGNED(iova | paddr, pgsize))
4175 		return -EINVAL;
4176 
4177 	ret = intel_iommu_map(domain, iova, paddr, size, prot, gfp);
4178 	if (!ret && mapped)
4179 		*mapped = size;
4180 
4181 	return ret;
4182 }
4183 
4184 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4185 				unsigned long iova, size_t size,
4186 				struct iommu_iotlb_gather *gather)
4187 {
4188 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4189 	unsigned long start_pfn, last_pfn;
4190 	int level = 0;
4191 
4192 	/* Cope with horrid API which requires us to unmap more than the
4193 	   size argument if it happens to be a large-page mapping. */
4194 	if (unlikely(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT,
4195 				     &level, GFP_ATOMIC)))
4196 		return 0;
4197 
4198 	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
4199 		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
4200 
4201 	start_pfn = iova >> VTD_PAGE_SHIFT;
4202 	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
4203 
4204 	domain_unmap(dmar_domain, start_pfn, last_pfn, &gather->freelist);
4205 
4206 	if (dmar_domain->max_addr == iova + size)
4207 		dmar_domain->max_addr = iova;
4208 
4209 	/*
4210 	 * We do not use page-selective IOTLB invalidation in flush queue,
4211 	 * so there is no need to track page and sync iotlb.
4212 	 */
4213 	if (!iommu_iotlb_gather_queued(gather))
4214 		iommu_iotlb_gather_add_page(domain, gather, iova, size);
4215 
4216 	return size;
4217 }
4218 
4219 static size_t intel_iommu_unmap_pages(struct iommu_domain *domain,
4220 				      unsigned long iova,
4221 				      size_t pgsize, size_t pgcount,
4222 				      struct iommu_iotlb_gather *gather)
4223 {
4224 	unsigned long pgshift = __ffs(pgsize);
4225 	size_t size = pgcount << pgshift;
4226 
4227 	return intel_iommu_unmap(domain, iova, size, gather);
4228 }
4229 
4230 static void intel_iommu_tlb_sync(struct iommu_domain *domain,
4231 				 struct iommu_iotlb_gather *gather)
4232 {
4233 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4234 	unsigned long iova_pfn = IOVA_PFN(gather->start);
4235 	size_t size = gather->end - gather->start;
4236 	struct iommu_domain_info *info;
4237 	unsigned long start_pfn;
4238 	unsigned long nrpages;
4239 	unsigned long i;
4240 
4241 	nrpages = aligned_nrpages(gather->start, size);
4242 	start_pfn = mm_to_dma_pfn_start(iova_pfn);
4243 
4244 	xa_for_each(&dmar_domain->iommu_array, i, info)
4245 		iommu_flush_iotlb_psi(info->iommu, dmar_domain,
4246 				      start_pfn, nrpages,
4247 				      list_empty(&gather->freelist), 0);
4248 
4249 	put_pages_list(&gather->freelist);
4250 }
4251 
4252 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4253 					    dma_addr_t iova)
4254 {
4255 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4256 	struct dma_pte *pte;
4257 	int level = 0;
4258 	u64 phys = 0;
4259 
4260 	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level,
4261 			     GFP_ATOMIC);
4262 	if (pte && dma_pte_present(pte))
4263 		phys = dma_pte_addr(pte) +
4264 			(iova & (BIT_MASK(level_to_offset_bits(level) +
4265 						VTD_PAGE_SHIFT) - 1));
4266 
4267 	return phys;
4268 }
4269 
4270 static bool domain_support_force_snooping(struct dmar_domain *domain)
4271 {
4272 	struct device_domain_info *info;
4273 	bool support = true;
4274 
4275 	assert_spin_locked(&domain->lock);
4276 	list_for_each_entry(info, &domain->devices, link) {
4277 		if (!ecap_sc_support(info->iommu->ecap)) {
4278 			support = false;
4279 			break;
4280 		}
4281 	}
4282 
4283 	return support;
4284 }
4285 
4286 static void domain_set_force_snooping(struct dmar_domain *domain)
4287 {
4288 	struct device_domain_info *info;
4289 
4290 	assert_spin_locked(&domain->lock);
4291 	/*
4292 	 * Second level page table supports per-PTE snoop control. The
4293 	 * iommu_map() interface will handle this by setting SNP bit.
4294 	 */
4295 	if (!domain->use_first_level) {
4296 		domain->set_pte_snp = true;
4297 		return;
4298 	}
4299 
4300 	list_for_each_entry(info, &domain->devices, link)
4301 		intel_pasid_setup_page_snoop_control(info->iommu, info->dev,
4302 						     IOMMU_NO_PASID);
4303 }
4304 
4305 static bool intel_iommu_enforce_cache_coherency(struct iommu_domain *domain)
4306 {
4307 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4308 	unsigned long flags;
4309 
4310 	if (dmar_domain->force_snooping)
4311 		return true;
4312 
4313 	spin_lock_irqsave(&dmar_domain->lock, flags);
4314 	if (!domain_support_force_snooping(dmar_domain) ||
4315 	    (!dmar_domain->use_first_level && dmar_domain->has_mappings)) {
4316 		spin_unlock_irqrestore(&dmar_domain->lock, flags);
4317 		return false;
4318 	}
4319 
4320 	domain_set_force_snooping(dmar_domain);
4321 	dmar_domain->force_snooping = true;
4322 	spin_unlock_irqrestore(&dmar_domain->lock, flags);
4323 
4324 	return true;
4325 }
4326 
4327 static bool intel_iommu_capable(struct device *dev, enum iommu_cap cap)
4328 {
4329 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4330 
4331 	switch (cap) {
4332 	case IOMMU_CAP_CACHE_COHERENCY:
4333 	case IOMMU_CAP_DEFERRED_FLUSH:
4334 		return true;
4335 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
4336 		return dmar_platform_optin();
4337 	case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
4338 		return ecap_sc_support(info->iommu->ecap);
4339 	default:
4340 		return false;
4341 	}
4342 }
4343 
4344 static struct iommu_device *intel_iommu_probe_device(struct device *dev)
4345 {
4346 	struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL;
4347 	struct device_domain_info *info;
4348 	struct intel_iommu *iommu;
4349 	u8 bus, devfn;
4350 	int ret;
4351 
4352 	iommu = device_to_iommu(dev, &bus, &devfn);
4353 	if (!iommu || !iommu->iommu.ops)
4354 		return ERR_PTR(-ENODEV);
4355 
4356 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4357 	if (!info)
4358 		return ERR_PTR(-ENOMEM);
4359 
4360 	if (dev_is_real_dma_subdevice(dev)) {
4361 		info->bus = pdev->bus->number;
4362 		info->devfn = pdev->devfn;
4363 		info->segment = pci_domain_nr(pdev->bus);
4364 	} else {
4365 		info->bus = bus;
4366 		info->devfn = devfn;
4367 		info->segment = iommu->segment;
4368 	}
4369 
4370 	info->dev = dev;
4371 	info->iommu = iommu;
4372 	if (dev_is_pci(dev)) {
4373 		if (ecap_dev_iotlb_support(iommu->ecap) &&
4374 		    pci_ats_supported(pdev) &&
4375 		    dmar_ats_supported(pdev, iommu)) {
4376 			info->ats_supported = 1;
4377 			info->dtlb_extra_inval = dev_needs_extra_dtlb_flush(pdev);
4378 
4379 			/*
4380 			 * For IOMMU that supports device IOTLB throttling
4381 			 * (DIT), we assign PFSID to the invalidation desc
4382 			 * of a VF such that IOMMU HW can gauge queue depth
4383 			 * at PF level. If DIT is not set, PFSID will be
4384 			 * treated as reserved, which should be set to 0.
4385 			 */
4386 			if (ecap_dit(iommu->ecap))
4387 				info->pfsid = pci_dev_id(pci_physfn(pdev));
4388 			info->ats_qdep = pci_ats_queue_depth(pdev);
4389 		}
4390 		if (sm_supported(iommu)) {
4391 			if (pasid_supported(iommu)) {
4392 				int features = pci_pasid_features(pdev);
4393 
4394 				if (features >= 0)
4395 					info->pasid_supported = features | 1;
4396 			}
4397 
4398 			if (info->ats_supported && ecap_prs(iommu->ecap) &&
4399 			    pci_pri_supported(pdev))
4400 				info->pri_supported = 1;
4401 		}
4402 	}
4403 
4404 	dev_iommu_priv_set(dev, info);
4405 
4406 	if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) {
4407 		ret = intel_pasid_alloc_table(dev);
4408 		if (ret) {
4409 			dev_err(dev, "PASID table allocation failed\n");
4410 			dev_iommu_priv_set(dev, NULL);
4411 			kfree(info);
4412 			return ERR_PTR(ret);
4413 		}
4414 	}
4415 
4416 	return &iommu->iommu;
4417 }
4418 
4419 static void intel_iommu_release_device(struct device *dev)
4420 {
4421 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4422 
4423 	dmar_remove_one_dev_info(dev);
4424 	intel_pasid_free_table(dev);
4425 	dev_iommu_priv_set(dev, NULL);
4426 	kfree(info);
4427 	set_dma_ops(dev, NULL);
4428 }
4429 
4430 static void intel_iommu_probe_finalize(struct device *dev)
4431 {
4432 	set_dma_ops(dev, NULL);
4433 	iommu_setup_dma_ops(dev, 0, U64_MAX);
4434 }
4435 
4436 static void intel_iommu_get_resv_regions(struct device *device,
4437 					 struct list_head *head)
4438 {
4439 	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
4440 	struct iommu_resv_region *reg;
4441 	struct dmar_rmrr_unit *rmrr;
4442 	struct device *i_dev;
4443 	int i;
4444 
4445 	rcu_read_lock();
4446 	for_each_rmrr_units(rmrr) {
4447 		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
4448 					  i, i_dev) {
4449 			struct iommu_resv_region *resv;
4450 			enum iommu_resv_type type;
4451 			size_t length;
4452 
4453 			if (i_dev != device &&
4454 			    !is_downstream_to_pci_bridge(device, i_dev))
4455 				continue;
4456 
4457 			length = rmrr->end_address - rmrr->base_address + 1;
4458 
4459 			type = device_rmrr_is_relaxable(device) ?
4460 				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
4461 
4462 			resv = iommu_alloc_resv_region(rmrr->base_address,
4463 						       length, prot, type,
4464 						       GFP_ATOMIC);
4465 			if (!resv)
4466 				break;
4467 
4468 			list_add_tail(&resv->list, head);
4469 		}
4470 	}
4471 	rcu_read_unlock();
4472 
4473 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
4474 	if (dev_is_pci(device)) {
4475 		struct pci_dev *pdev = to_pci_dev(device);
4476 
4477 		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
4478 			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
4479 					IOMMU_RESV_DIRECT_RELAXABLE,
4480 					GFP_KERNEL);
4481 			if (reg)
4482 				list_add_tail(&reg->list, head);
4483 		}
4484 	}
4485 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
4486 
4487 	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
4488 				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
4489 				      0, IOMMU_RESV_MSI, GFP_KERNEL);
4490 	if (!reg)
4491 		return;
4492 	list_add_tail(&reg->list, head);
4493 }
4494 
4495 static struct iommu_group *intel_iommu_device_group(struct device *dev)
4496 {
4497 	if (dev_is_pci(dev))
4498 		return pci_device_group(dev);
4499 	return generic_device_group(dev);
4500 }
4501 
4502 static int intel_iommu_enable_sva(struct device *dev)
4503 {
4504 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4505 	struct intel_iommu *iommu;
4506 
4507 	if (!info || dmar_disabled)
4508 		return -EINVAL;
4509 
4510 	iommu = info->iommu;
4511 	if (!iommu)
4512 		return -EINVAL;
4513 
4514 	if (!(iommu->flags & VTD_FLAG_SVM_CAPABLE))
4515 		return -ENODEV;
4516 
4517 	if (!info->pasid_enabled || !info->ats_enabled)
4518 		return -EINVAL;
4519 
4520 	/*
4521 	 * Devices having device-specific I/O fault handling should not
4522 	 * support PCI/PRI. The IOMMU side has no means to check the
4523 	 * capability of device-specific IOPF.  Therefore, IOMMU can only
4524 	 * default that if the device driver enables SVA on a non-PRI
4525 	 * device, it will handle IOPF in its own way.
4526 	 */
4527 	if (!info->pri_supported)
4528 		return 0;
4529 
4530 	/* Devices supporting PRI should have it enabled. */
4531 	if (!info->pri_enabled)
4532 		return -EINVAL;
4533 
4534 	return 0;
4535 }
4536 
4537 static int intel_iommu_enable_iopf(struct device *dev)
4538 {
4539 	struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL;
4540 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4541 	struct intel_iommu *iommu;
4542 	int ret;
4543 
4544 	if (!pdev || !info || !info->ats_enabled || !info->pri_supported)
4545 		return -ENODEV;
4546 
4547 	if (info->pri_enabled)
4548 		return -EBUSY;
4549 
4550 	iommu = info->iommu;
4551 	if (!iommu)
4552 		return -EINVAL;
4553 
4554 	/* PASID is required in PRG Response Message. */
4555 	if (info->pasid_enabled && !pci_prg_resp_pasid_required(pdev))
4556 		return -EINVAL;
4557 
4558 	ret = pci_reset_pri(pdev);
4559 	if (ret)
4560 		return ret;
4561 
4562 	ret = iopf_queue_add_device(iommu->iopf_queue, dev);
4563 	if (ret)
4564 		return ret;
4565 
4566 	ret = iommu_register_device_fault_handler(dev, iommu_queue_iopf, dev);
4567 	if (ret)
4568 		goto iopf_remove_device;
4569 
4570 	ret = pci_enable_pri(pdev, PRQ_DEPTH);
4571 	if (ret)
4572 		goto iopf_unregister_handler;
4573 	info->pri_enabled = 1;
4574 
4575 	return 0;
4576 
4577 iopf_unregister_handler:
4578 	iommu_unregister_device_fault_handler(dev);
4579 iopf_remove_device:
4580 	iopf_queue_remove_device(iommu->iopf_queue, dev);
4581 
4582 	return ret;
4583 }
4584 
4585 static int intel_iommu_disable_iopf(struct device *dev)
4586 {
4587 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4588 	struct intel_iommu *iommu = info->iommu;
4589 
4590 	if (!info->pri_enabled)
4591 		return -EINVAL;
4592 
4593 	/*
4594 	 * PCIe spec states that by clearing PRI enable bit, the Page
4595 	 * Request Interface will not issue new page requests, but has
4596 	 * outstanding page requests that have been transmitted or are
4597 	 * queued for transmission. This is supposed to be called after
4598 	 * the device driver has stopped DMA, all PASIDs have been
4599 	 * unbound and the outstanding PRQs have been drained.
4600 	 */
4601 	pci_disable_pri(to_pci_dev(dev));
4602 	info->pri_enabled = 0;
4603 
4604 	/*
4605 	 * With PRI disabled and outstanding PRQs drained, unregistering
4606 	 * fault handler and removing device from iopf queue should never
4607 	 * fail.
4608 	 */
4609 	WARN_ON(iommu_unregister_device_fault_handler(dev));
4610 	WARN_ON(iopf_queue_remove_device(iommu->iopf_queue, dev));
4611 
4612 	return 0;
4613 }
4614 
4615 static int
4616 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
4617 {
4618 	switch (feat) {
4619 	case IOMMU_DEV_FEAT_IOPF:
4620 		return intel_iommu_enable_iopf(dev);
4621 
4622 	case IOMMU_DEV_FEAT_SVA:
4623 		return intel_iommu_enable_sva(dev);
4624 
4625 	default:
4626 		return -ENODEV;
4627 	}
4628 }
4629 
4630 static int
4631 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
4632 {
4633 	switch (feat) {
4634 	case IOMMU_DEV_FEAT_IOPF:
4635 		return intel_iommu_disable_iopf(dev);
4636 
4637 	case IOMMU_DEV_FEAT_SVA:
4638 		return 0;
4639 
4640 	default:
4641 		return -ENODEV;
4642 	}
4643 }
4644 
4645 static bool intel_iommu_is_attach_deferred(struct device *dev)
4646 {
4647 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4648 
4649 	return translation_pre_enabled(info->iommu) && !info->domain;
4650 }
4651 
4652 /*
4653  * Check that the device does not live on an external facing PCI port that is
4654  * marked as untrusted. Such devices should not be able to apply quirks and
4655  * thus not be able to bypass the IOMMU restrictions.
4656  */
4657 static bool risky_device(struct pci_dev *pdev)
4658 {
4659 	if (pdev->untrusted) {
4660 		pci_info(pdev,
4661 			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
4662 			 pdev->vendor, pdev->device);
4663 		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
4664 		return true;
4665 	}
4666 	return false;
4667 }
4668 
4669 static void intel_iommu_iotlb_sync_map(struct iommu_domain *domain,
4670 				       unsigned long iova, size_t size)
4671 {
4672 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4673 	unsigned long pages = aligned_nrpages(iova, size);
4674 	unsigned long pfn = iova >> VTD_PAGE_SHIFT;
4675 	struct iommu_domain_info *info;
4676 	unsigned long i;
4677 
4678 	xa_for_each(&dmar_domain->iommu_array, i, info)
4679 		__mapping_notify_one(info->iommu, dmar_domain, pfn, pages);
4680 }
4681 
4682 static void intel_iommu_remove_dev_pasid(struct device *dev, ioasid_t pasid)
4683 {
4684 	struct intel_iommu *iommu = device_to_iommu(dev, NULL, NULL);
4685 	struct dev_pasid_info *curr, *dev_pasid = NULL;
4686 	struct dmar_domain *dmar_domain;
4687 	struct iommu_domain *domain;
4688 	unsigned long flags;
4689 
4690 	domain = iommu_get_domain_for_dev_pasid(dev, pasid, 0);
4691 	if (WARN_ON_ONCE(!domain))
4692 		goto out_tear_down;
4693 
4694 	/*
4695 	 * The SVA implementation needs to handle its own stuffs like the mm
4696 	 * notification. Before consolidating that code into iommu core, let
4697 	 * the intel sva code handle it.
4698 	 */
4699 	if (domain->type == IOMMU_DOMAIN_SVA) {
4700 		intel_svm_remove_dev_pasid(dev, pasid);
4701 		goto out_tear_down;
4702 	}
4703 
4704 	dmar_domain = to_dmar_domain(domain);
4705 	spin_lock_irqsave(&dmar_domain->lock, flags);
4706 	list_for_each_entry(curr, &dmar_domain->dev_pasids, link_domain) {
4707 		if (curr->dev == dev && curr->pasid == pasid) {
4708 			list_del(&curr->link_domain);
4709 			dev_pasid = curr;
4710 			break;
4711 		}
4712 	}
4713 	WARN_ON_ONCE(!dev_pasid);
4714 	spin_unlock_irqrestore(&dmar_domain->lock, flags);
4715 
4716 	domain_detach_iommu(dmar_domain, iommu);
4717 	kfree(dev_pasid);
4718 out_tear_down:
4719 	intel_pasid_tear_down_entry(iommu, dev, pasid, false);
4720 	intel_drain_pasid_prq(dev, pasid);
4721 }
4722 
4723 static int intel_iommu_set_dev_pasid(struct iommu_domain *domain,
4724 				     struct device *dev, ioasid_t pasid)
4725 {
4726 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4727 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
4728 	struct intel_iommu *iommu = info->iommu;
4729 	struct dev_pasid_info *dev_pasid;
4730 	unsigned long flags;
4731 	int ret;
4732 
4733 	if (!pasid_supported(iommu) || dev_is_real_dma_subdevice(dev))
4734 		return -EOPNOTSUPP;
4735 
4736 	if (context_copied(iommu, info->bus, info->devfn))
4737 		return -EBUSY;
4738 
4739 	ret = prepare_domain_attach_device(domain, dev);
4740 	if (ret)
4741 		return ret;
4742 
4743 	dev_pasid = kzalloc(sizeof(*dev_pasid), GFP_KERNEL);
4744 	if (!dev_pasid)
4745 		return -ENOMEM;
4746 
4747 	ret = domain_attach_iommu(dmar_domain, iommu);
4748 	if (ret)
4749 		goto out_free;
4750 
4751 	if (domain_type_is_si(dmar_domain))
4752 		ret = intel_pasid_setup_pass_through(iommu, dmar_domain,
4753 						     dev, pasid);
4754 	else if (dmar_domain->use_first_level)
4755 		ret = domain_setup_first_level(iommu, dmar_domain,
4756 					       dev, pasid);
4757 	else
4758 		ret = intel_pasid_setup_second_level(iommu, dmar_domain,
4759 						     dev, pasid);
4760 	if (ret)
4761 		goto out_detach_iommu;
4762 
4763 	dev_pasid->dev = dev;
4764 	dev_pasid->pasid = pasid;
4765 	spin_lock_irqsave(&dmar_domain->lock, flags);
4766 	list_add(&dev_pasid->link_domain, &dmar_domain->dev_pasids);
4767 	spin_unlock_irqrestore(&dmar_domain->lock, flags);
4768 
4769 	return 0;
4770 out_detach_iommu:
4771 	domain_detach_iommu(dmar_domain, iommu);
4772 out_free:
4773 	kfree(dev_pasid);
4774 	return ret;
4775 }
4776 
4777 static void *intel_iommu_hw_info(struct device *dev, u32 *length, u32 *type)
4778 {
4779 	struct device_domain_info *info = dev_iommu_priv_get(dev);
4780 	struct intel_iommu *iommu = info->iommu;
4781 	struct iommu_hw_info_vtd *vtd;
4782 
4783 	vtd = kzalloc(sizeof(*vtd), GFP_KERNEL);
4784 	if (!vtd)
4785 		return ERR_PTR(-ENOMEM);
4786 
4787 	vtd->cap_reg = iommu->cap;
4788 	vtd->ecap_reg = iommu->ecap;
4789 	*length = sizeof(*vtd);
4790 	*type = IOMMU_HW_INFO_TYPE_INTEL_VTD;
4791 	return vtd;
4792 }
4793 
4794 const struct iommu_ops intel_iommu_ops = {
4795 	.capable		= intel_iommu_capable,
4796 	.hw_info		= intel_iommu_hw_info,
4797 	.domain_alloc		= intel_iommu_domain_alloc,
4798 	.probe_device		= intel_iommu_probe_device,
4799 	.probe_finalize		= intel_iommu_probe_finalize,
4800 	.release_device		= intel_iommu_release_device,
4801 	.get_resv_regions	= intel_iommu_get_resv_regions,
4802 	.device_group		= intel_iommu_device_group,
4803 	.dev_enable_feat	= intel_iommu_dev_enable_feat,
4804 	.dev_disable_feat	= intel_iommu_dev_disable_feat,
4805 	.is_attach_deferred	= intel_iommu_is_attach_deferred,
4806 	.def_domain_type	= device_def_domain_type,
4807 	.remove_dev_pasid	= intel_iommu_remove_dev_pasid,
4808 	.pgsize_bitmap		= SZ_4K,
4809 #ifdef CONFIG_INTEL_IOMMU_SVM
4810 	.page_response		= intel_svm_page_response,
4811 #endif
4812 	.default_domain_ops = &(const struct iommu_domain_ops) {
4813 		.attach_dev		= intel_iommu_attach_device,
4814 		.set_dev_pasid		= intel_iommu_set_dev_pasid,
4815 		.map_pages		= intel_iommu_map_pages,
4816 		.unmap_pages		= intel_iommu_unmap_pages,
4817 		.iotlb_sync_map		= intel_iommu_iotlb_sync_map,
4818 		.flush_iotlb_all        = intel_flush_iotlb_all,
4819 		.iotlb_sync		= intel_iommu_tlb_sync,
4820 		.iova_to_phys		= intel_iommu_iova_to_phys,
4821 		.free			= intel_iommu_domain_free,
4822 		.enforce_cache_coherency = intel_iommu_enforce_cache_coherency,
4823 	}
4824 };
4825 
4826 static void quirk_iommu_igfx(struct pci_dev *dev)
4827 {
4828 	if (risky_device(dev))
4829 		return;
4830 
4831 	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
4832 	dmar_map_gfx = 0;
4833 }
4834 
4835 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4836 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
4837 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
4838 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
4839 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
4840 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
4841 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
4842 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);
4843 
4844 /* Broadwell igfx malfunctions with dmar */
4845 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
4846 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
4847 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
4848 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
4849 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
4850 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
4851 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
4852 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
4853 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
4854 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
4855 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
4856 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
4857 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
4858 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
4859 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
4860 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
4861 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
4862 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
4863 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
4864 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
4865 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
4866 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
4867 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
4868 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
4869 
4870 static void quirk_iommu_rwbf(struct pci_dev *dev)
4871 {
4872 	if (risky_device(dev))
4873 		return;
4874 
4875 	/*
4876 	 * Mobile 4 Series Chipset neglects to set RWBF capability,
4877 	 * but needs it. Same seems to hold for the desktop versions.
4878 	 */
4879 	pci_info(dev, "Forcing write-buffer flush capability\n");
4880 	rwbf_quirk = 1;
4881 }
4882 
4883 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4884 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4885 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4886 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4887 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4888 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4889 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4890 
4891 #define GGC 0x52
4892 #define GGC_MEMORY_SIZE_MASK	(0xf << 8)
4893 #define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
4894 #define GGC_MEMORY_SIZE_1M	(0x1 << 8)
4895 #define GGC_MEMORY_SIZE_2M	(0x3 << 8)
4896 #define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
4897 #define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
4898 #define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
4899 #define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)
4900 
4901 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4902 {
4903 	unsigned short ggc;
4904 
4905 	if (risky_device(dev))
4906 		return;
4907 
4908 	if (pci_read_config_word(dev, GGC, &ggc))
4909 		return;
4910 
4911 	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4912 		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4913 		dmar_map_gfx = 0;
4914 	} else if (dmar_map_gfx) {
4915 		/* we have to ensure the gfx device is idle before we flush */
4916 		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
4917 		iommu_set_dma_strict();
4918 	}
4919 }
4920 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4921 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4922 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4923 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4924 
4925 static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
4926 {
4927 	unsigned short ver;
4928 
4929 	if (!IS_GFX_DEVICE(dev))
4930 		return;
4931 
4932 	ver = (dev->device >> 8) & 0xff;
4933 	if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
4934 	    ver != 0x4e && ver != 0x8a && ver != 0x98 &&
4935 	    ver != 0x9a && ver != 0xa7 && ver != 0x7d)
4936 		return;
4937 
4938 	if (risky_device(dev))
4939 		return;
4940 
4941 	pci_info(dev, "Skip IOMMU disabling for graphics\n");
4942 	iommu_skip_te_disable = 1;
4943 }
4944 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);
4945 
4946 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4947    ISOCH DMAR unit for the Azalia sound device, but not give it any
4948    TLB entries, which causes it to deadlock. Check for that.  We do
4949    this in a function called from init_dmars(), instead of in a PCI
4950    quirk, because we don't want to print the obnoxious "BIOS broken"
4951    message if VT-d is actually disabled.
4952 */
4953 static void __init check_tylersburg_isoch(void)
4954 {
4955 	struct pci_dev *pdev;
4956 	uint32_t vtisochctrl;
4957 
4958 	/* If there's no Azalia in the system anyway, forget it. */
4959 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4960 	if (!pdev)
4961 		return;
4962 
4963 	if (risky_device(pdev)) {
4964 		pci_dev_put(pdev);
4965 		return;
4966 	}
4967 
4968 	pci_dev_put(pdev);
4969 
4970 	/* System Management Registers. Might be hidden, in which case
4971 	   we can't do the sanity check. But that's OK, because the
4972 	   known-broken BIOSes _don't_ actually hide it, so far. */
4973 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4974 	if (!pdev)
4975 		return;
4976 
4977 	if (risky_device(pdev)) {
4978 		pci_dev_put(pdev);
4979 		return;
4980 	}
4981 
4982 	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4983 		pci_dev_put(pdev);
4984 		return;
4985 	}
4986 
4987 	pci_dev_put(pdev);
4988 
4989 	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4990 	if (vtisochctrl & 1)
4991 		return;
4992 
4993 	/* Drop all bits other than the number of TLB entries */
4994 	vtisochctrl &= 0x1c;
4995 
4996 	/* If we have the recommended number of TLB entries (16), fine. */
4997 	if (vtisochctrl == 0x10)
4998 		return;
4999 
5000 	/* Zero TLB entries? You get to ride the short bus to school. */
5001 	if (!vtisochctrl) {
5002 		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5003 		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5004 		     dmi_get_system_info(DMI_BIOS_VENDOR),
5005 		     dmi_get_system_info(DMI_BIOS_VERSION),
5006 		     dmi_get_system_info(DMI_PRODUCT_VERSION));
5007 		iommu_identity_mapping |= IDENTMAP_AZALIA;
5008 		return;
5009 	}
5010 
5011 	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
5012 	       vtisochctrl);
5013 }
5014 
5015 /*
5016  * Here we deal with a device TLB defect where device may inadvertently issue ATS
5017  * invalidation completion before posted writes initiated with translated address
5018  * that utilized translations matching the invalidation address range, violating
5019  * the invalidation completion ordering.
5020  * Therefore, any use cases that cannot guarantee DMA is stopped before unmap is
5021  * vulnerable to this defect. In other words, any dTLB invalidation initiated not
5022  * under the control of the trusted/privileged host device driver must use this
5023  * quirk.
5024  * Device TLBs are invalidated under the following six conditions:
5025  * 1. Device driver does DMA API unmap IOVA
5026  * 2. Device driver unbind a PASID from a process, sva_unbind_device()
5027  * 3. PASID is torn down, after PASID cache is flushed. e.g. process
5028  *    exit_mmap() due to crash
5029  * 4. Under SVA usage, called by mmu_notifier.invalidate_range() where
5030  *    VM has to free pages that were unmapped
5031  * 5. Userspace driver unmaps a DMA buffer
5032  * 6. Cache invalidation in vSVA usage (upcoming)
5033  *
5034  * For #1 and #2, device drivers are responsible for stopping DMA traffic
5035  * before unmap/unbind. For #3, iommu driver gets mmu_notifier to
5036  * invalidate TLB the same way as normal user unmap which will use this quirk.
5037  * The dTLB invalidation after PASID cache flush does not need this quirk.
5038  *
5039  * As a reminder, #6 will *NEED* this quirk as we enable nested translation.
5040  */
5041 void quirk_extra_dev_tlb_flush(struct device_domain_info *info,
5042 			       unsigned long address, unsigned long mask,
5043 			       u32 pasid, u16 qdep)
5044 {
5045 	u16 sid;
5046 
5047 	if (likely(!info->dtlb_extra_inval))
5048 		return;
5049 
5050 	sid = PCI_DEVID(info->bus, info->devfn);
5051 	if (pasid == IOMMU_NO_PASID) {
5052 		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
5053 				   qdep, address, mask);
5054 	} else {
5055 		qi_flush_dev_iotlb_pasid(info->iommu, sid, info->pfsid,
5056 					 pasid, qdep, address, mask);
5057 	}
5058 }
5059 
5060 #define ecmd_get_status_code(res)	(((res) & 0xff) >> 1)
5061 
5062 /*
5063  * Function to submit a command to the enhanced command interface. The
5064  * valid enhanced command descriptions are defined in Table 47 of the
5065  * VT-d spec. The VT-d hardware implementation may support some but not
5066  * all commands, which can be determined by checking the Enhanced
5067  * Command Capability Register.
5068  *
5069  * Return values:
5070  *  - 0: Command successful without any error;
5071  *  - Negative: software error value;
5072  *  - Nonzero positive: failure status code defined in Table 48.
5073  */
5074 int ecmd_submit_sync(struct intel_iommu *iommu, u8 ecmd, u64 oa, u64 ob)
5075 {
5076 	unsigned long flags;
5077 	u64 res;
5078 	int ret;
5079 
5080 	if (!cap_ecmds(iommu->cap))
5081 		return -ENODEV;
5082 
5083 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
5084 
5085 	res = dmar_readq(iommu->reg + DMAR_ECRSP_REG);
5086 	if (res & DMA_ECMD_ECRSP_IP) {
5087 		ret = -EBUSY;
5088 		goto err;
5089 	}
5090 
5091 	/*
5092 	 * Unconditionally write the operand B, because
5093 	 * - There is no side effect if an ecmd doesn't require an
5094 	 *   operand B, but we set the register to some value.
5095 	 * - It's not invoked in any critical path. The extra MMIO
5096 	 *   write doesn't bring any performance concerns.
5097 	 */
5098 	dmar_writeq(iommu->reg + DMAR_ECEO_REG, ob);
5099 	dmar_writeq(iommu->reg + DMAR_ECMD_REG, ecmd | (oa << DMA_ECMD_OA_SHIFT));
5100 
5101 	IOMMU_WAIT_OP(iommu, DMAR_ECRSP_REG, dmar_readq,
5102 		      !(res & DMA_ECMD_ECRSP_IP), res);
5103 
5104 	if (res & DMA_ECMD_ECRSP_IP) {
5105 		ret = -ETIMEDOUT;
5106 		goto err;
5107 	}
5108 
5109 	ret = ecmd_get_status_code(res);
5110 err:
5111 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
5112 
5113 	return ret;
5114 }
5115