1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2014 Intel Corporation. 4 * 5 * Authors: David Woodhouse <dwmw2@infradead.org>, 6 * Ashok Raj <ashok.raj@intel.com>, 7 * Shaohua Li <shaohua.li@intel.com>, 8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>, 9 * Fenghua Yu <fenghua.yu@intel.com> 10 * Joerg Roedel <jroedel@suse.de> 11 */ 12 13 #define pr_fmt(fmt) "DMAR: " fmt 14 #define dev_fmt(fmt) pr_fmt(fmt) 15 16 #include <linux/init.h> 17 #include <linux/bitmap.h> 18 #include <linux/debugfs.h> 19 #include <linux/export.h> 20 #include <linux/slab.h> 21 #include <linux/irq.h> 22 #include <linux/interrupt.h> 23 #include <linux/spinlock.h> 24 #include <linux/pci.h> 25 #include <linux/dmar.h> 26 #include <linux/dma-map-ops.h> 27 #include <linux/mempool.h> 28 #include <linux/memory.h> 29 #include <linux/cpu.h> 30 #include <linux/timer.h> 31 #include <linux/io.h> 32 #include <linux/iova.h> 33 #include <linux/iommu.h> 34 #include <linux/dma-iommu.h> 35 #include <linux/intel-iommu.h> 36 #include <linux/syscore_ops.h> 37 #include <linux/tboot.h> 38 #include <linux/dmi.h> 39 #include <linux/pci-ats.h> 40 #include <linux/memblock.h> 41 #include <linux/dma-direct.h> 42 #include <linux/crash_dump.h> 43 #include <linux/numa.h> 44 #include <asm/irq_remapping.h> 45 #include <asm/cacheflush.h> 46 #include <asm/iommu.h> 47 48 #include "../irq_remapping.h" 49 #include "../iommu-sva-lib.h" 50 #include "pasid.h" 51 #include "cap_audit.h" 52 53 #define ROOT_SIZE VTD_PAGE_SIZE 54 #define CONTEXT_SIZE VTD_PAGE_SIZE 55 56 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) 57 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB) 58 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) 59 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) 60 61 #define IOAPIC_RANGE_START (0xfee00000) 62 #define IOAPIC_RANGE_END (0xfeefffff) 63 #define IOVA_START_ADDR (0x1000) 64 65 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57 66 67 #define MAX_AGAW_WIDTH 64 68 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT) 69 70 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1) 71 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1) 72 73 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR 74 to match. That way, we can use 'unsigned long' for PFNs with impunity. */ 75 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ 76 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) 77 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) 78 79 /* IO virtual address start page frame number */ 80 #define IOVA_START_PFN (1) 81 82 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 83 84 /* page table handling */ 85 #define LEVEL_STRIDE (9) 86 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) 87 88 /* 89 * This bitmap is used to advertise the page sizes our hardware support 90 * to the IOMMU core, which will then use this information to split 91 * physically contiguous memory regions it is mapping into page sizes 92 * that we support. 93 * 94 * Traditionally the IOMMU core just handed us the mappings directly, 95 * after making sure the size is an order of a 4KiB page and that the 96 * mapping has natural alignment. 97 * 98 * To retain this behavior, we currently advertise that we support 99 * all page sizes that are an order of 4KiB. 100 * 101 * If at some point we'd like to utilize the IOMMU core's new behavior, 102 * we could change this to advertise the real page sizes we support. 103 */ 104 #define INTEL_IOMMU_PGSIZES (~0xFFFUL) 105 106 static inline int agaw_to_level(int agaw) 107 { 108 return agaw + 2; 109 } 110 111 static inline int agaw_to_width(int agaw) 112 { 113 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH); 114 } 115 116 static inline int width_to_agaw(int width) 117 { 118 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE); 119 } 120 121 static inline unsigned int level_to_offset_bits(int level) 122 { 123 return (level - 1) * LEVEL_STRIDE; 124 } 125 126 static inline int pfn_level_offset(u64 pfn, int level) 127 { 128 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; 129 } 130 131 static inline u64 level_mask(int level) 132 { 133 return -1ULL << level_to_offset_bits(level); 134 } 135 136 static inline u64 level_size(int level) 137 { 138 return 1ULL << level_to_offset_bits(level); 139 } 140 141 static inline u64 align_to_level(u64 pfn, int level) 142 { 143 return (pfn + level_size(level) - 1) & level_mask(level); 144 } 145 146 static inline unsigned long lvl_to_nr_pages(unsigned int lvl) 147 { 148 return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH); 149 } 150 151 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things 152 are never going to work. */ 153 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn) 154 { 155 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT); 156 } 157 158 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) 159 { 160 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); 161 } 162 static inline unsigned long page_to_dma_pfn(struct page *pg) 163 { 164 return mm_to_dma_pfn(page_to_pfn(pg)); 165 } 166 static inline unsigned long virt_to_dma_pfn(void *p) 167 { 168 return page_to_dma_pfn(virt_to_page(p)); 169 } 170 171 /* global iommu list, set NULL for ignored DMAR units */ 172 static struct intel_iommu **g_iommus; 173 174 static void __init check_tylersburg_isoch(void); 175 static int rwbf_quirk; 176 177 /* 178 * set to 1 to panic kernel if can't successfully enable VT-d 179 * (used when kernel is launched w/ TXT) 180 */ 181 static int force_on = 0; 182 static int intel_iommu_tboot_noforce; 183 static int no_platform_optin; 184 185 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) 186 187 /* 188 * Take a root_entry and return the Lower Context Table Pointer (LCTP) 189 * if marked present. 190 */ 191 static phys_addr_t root_entry_lctp(struct root_entry *re) 192 { 193 if (!(re->lo & 1)) 194 return 0; 195 196 return re->lo & VTD_PAGE_MASK; 197 } 198 199 /* 200 * Take a root_entry and return the Upper Context Table Pointer (UCTP) 201 * if marked present. 202 */ 203 static phys_addr_t root_entry_uctp(struct root_entry *re) 204 { 205 if (!(re->hi & 1)) 206 return 0; 207 208 return re->hi & VTD_PAGE_MASK; 209 } 210 211 static inline void context_clear_pasid_enable(struct context_entry *context) 212 { 213 context->lo &= ~(1ULL << 11); 214 } 215 216 static inline bool context_pasid_enabled(struct context_entry *context) 217 { 218 return !!(context->lo & (1ULL << 11)); 219 } 220 221 static inline void context_set_copied(struct context_entry *context) 222 { 223 context->hi |= (1ull << 3); 224 } 225 226 static inline bool context_copied(struct context_entry *context) 227 { 228 return !!(context->hi & (1ULL << 3)); 229 } 230 231 static inline bool __context_present(struct context_entry *context) 232 { 233 return (context->lo & 1); 234 } 235 236 bool context_present(struct context_entry *context) 237 { 238 return context_pasid_enabled(context) ? 239 __context_present(context) : 240 __context_present(context) && !context_copied(context); 241 } 242 243 static inline void context_set_present(struct context_entry *context) 244 { 245 context->lo |= 1; 246 } 247 248 static inline void context_set_fault_enable(struct context_entry *context) 249 { 250 context->lo &= (((u64)-1) << 2) | 1; 251 } 252 253 static inline void context_set_translation_type(struct context_entry *context, 254 unsigned long value) 255 { 256 context->lo &= (((u64)-1) << 4) | 3; 257 context->lo |= (value & 3) << 2; 258 } 259 260 static inline void context_set_address_root(struct context_entry *context, 261 unsigned long value) 262 { 263 context->lo &= ~VTD_PAGE_MASK; 264 context->lo |= value & VTD_PAGE_MASK; 265 } 266 267 static inline void context_set_address_width(struct context_entry *context, 268 unsigned long value) 269 { 270 context->hi |= value & 7; 271 } 272 273 static inline void context_set_domain_id(struct context_entry *context, 274 unsigned long value) 275 { 276 context->hi |= (value & ((1 << 16) - 1)) << 8; 277 } 278 279 static inline int context_domain_id(struct context_entry *c) 280 { 281 return((c->hi >> 8) & 0xffff); 282 } 283 284 static inline void context_clear_entry(struct context_entry *context) 285 { 286 context->lo = 0; 287 context->hi = 0; 288 } 289 290 /* 291 * This domain is a statically identity mapping domain. 292 * 1. This domain creats a static 1:1 mapping to all usable memory. 293 * 2. It maps to each iommu if successful. 294 * 3. Each iommu mapps to this domain if successful. 295 */ 296 static struct dmar_domain *si_domain; 297 static int hw_pass_through = 1; 298 299 #define for_each_domain_iommu(idx, domain) \ 300 for (idx = 0; idx < g_num_of_iommus; idx++) \ 301 if (domain->iommu_refcnt[idx]) 302 303 struct dmar_rmrr_unit { 304 struct list_head list; /* list of rmrr units */ 305 struct acpi_dmar_header *hdr; /* ACPI header */ 306 u64 base_address; /* reserved base address*/ 307 u64 end_address; /* reserved end address */ 308 struct dmar_dev_scope *devices; /* target devices */ 309 int devices_cnt; /* target device count */ 310 }; 311 312 struct dmar_atsr_unit { 313 struct list_head list; /* list of ATSR units */ 314 struct acpi_dmar_header *hdr; /* ACPI header */ 315 struct dmar_dev_scope *devices; /* target devices */ 316 int devices_cnt; /* target device count */ 317 u8 include_all:1; /* include all ports */ 318 }; 319 320 struct dmar_satc_unit { 321 struct list_head list; /* list of SATC units */ 322 struct acpi_dmar_header *hdr; /* ACPI header */ 323 struct dmar_dev_scope *devices; /* target devices */ 324 struct intel_iommu *iommu; /* the corresponding iommu */ 325 int devices_cnt; /* target device count */ 326 u8 atc_required:1; /* ATS is required */ 327 }; 328 329 static LIST_HEAD(dmar_atsr_units); 330 static LIST_HEAD(dmar_rmrr_units); 331 static LIST_HEAD(dmar_satc_units); 332 333 #define for_each_rmrr_units(rmrr) \ 334 list_for_each_entry(rmrr, &dmar_rmrr_units, list) 335 336 /* bitmap for indexing intel_iommus */ 337 static int g_num_of_iommus; 338 339 static void domain_exit(struct dmar_domain *domain); 340 static void domain_remove_dev_info(struct dmar_domain *domain); 341 static void dmar_remove_one_dev_info(struct device *dev); 342 static void __dmar_remove_one_dev_info(struct device_domain_info *info); 343 static int intel_iommu_attach_device(struct iommu_domain *domain, 344 struct device *dev); 345 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, 346 dma_addr_t iova); 347 348 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON 349 int dmar_disabled = 0; 350 #else 351 int dmar_disabled = 1; 352 #endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */ 353 354 #ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON 355 int intel_iommu_sm = 1; 356 #else 357 int intel_iommu_sm; 358 #endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */ 359 360 int intel_iommu_enabled = 0; 361 EXPORT_SYMBOL_GPL(intel_iommu_enabled); 362 363 static int dmar_map_gfx = 1; 364 static int intel_iommu_strict; 365 static int intel_iommu_superpage = 1; 366 static int iommu_identity_mapping; 367 static int iommu_skip_te_disable; 368 369 #define IDENTMAP_GFX 2 370 #define IDENTMAP_AZALIA 4 371 372 int intel_iommu_gfx_mapped; 373 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped); 374 375 #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2)) 376 struct device_domain_info *get_domain_info(struct device *dev) 377 { 378 struct device_domain_info *info; 379 380 if (!dev) 381 return NULL; 382 383 info = dev_iommu_priv_get(dev); 384 if (unlikely(info == DEFER_DEVICE_DOMAIN_INFO)) 385 return NULL; 386 387 return info; 388 } 389 390 DEFINE_SPINLOCK(device_domain_lock); 391 static LIST_HEAD(device_domain_list); 392 393 /* 394 * Iterate over elements in device_domain_list and call the specified 395 * callback @fn against each element. 396 */ 397 int for_each_device_domain(int (*fn)(struct device_domain_info *info, 398 void *data), void *data) 399 { 400 int ret = 0; 401 unsigned long flags; 402 struct device_domain_info *info; 403 404 spin_lock_irqsave(&device_domain_lock, flags); 405 list_for_each_entry(info, &device_domain_list, global) { 406 ret = fn(info, data); 407 if (ret) { 408 spin_unlock_irqrestore(&device_domain_lock, flags); 409 return ret; 410 } 411 } 412 spin_unlock_irqrestore(&device_domain_lock, flags); 413 414 return 0; 415 } 416 417 const struct iommu_ops intel_iommu_ops; 418 419 static bool translation_pre_enabled(struct intel_iommu *iommu) 420 { 421 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED); 422 } 423 424 static void clear_translation_pre_enabled(struct intel_iommu *iommu) 425 { 426 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED; 427 } 428 429 static void init_translation_status(struct intel_iommu *iommu) 430 { 431 u32 gsts; 432 433 gsts = readl(iommu->reg + DMAR_GSTS_REG); 434 if (gsts & DMA_GSTS_TES) 435 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED; 436 } 437 438 static int __init intel_iommu_setup(char *str) 439 { 440 if (!str) 441 return -EINVAL; 442 while (*str) { 443 if (!strncmp(str, "on", 2)) { 444 dmar_disabled = 0; 445 pr_info("IOMMU enabled\n"); 446 } else if (!strncmp(str, "off", 3)) { 447 dmar_disabled = 1; 448 no_platform_optin = 1; 449 pr_info("IOMMU disabled\n"); 450 } else if (!strncmp(str, "igfx_off", 8)) { 451 dmar_map_gfx = 0; 452 pr_info("Disable GFX device mapping\n"); 453 } else if (!strncmp(str, "forcedac", 8)) { 454 pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n"); 455 iommu_dma_forcedac = true; 456 } else if (!strncmp(str, "strict", 6)) { 457 pr_info("Disable batched IOTLB flush\n"); 458 intel_iommu_strict = 1; 459 } else if (!strncmp(str, "sp_off", 6)) { 460 pr_info("Disable supported super page\n"); 461 intel_iommu_superpage = 0; 462 } else if (!strncmp(str, "sm_on", 5)) { 463 pr_info("Intel-IOMMU: scalable mode supported\n"); 464 intel_iommu_sm = 1; 465 } else if (!strncmp(str, "tboot_noforce", 13)) { 466 pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n"); 467 intel_iommu_tboot_noforce = 1; 468 } 469 470 str += strcspn(str, ","); 471 while (*str == ',') 472 str++; 473 } 474 return 0; 475 } 476 __setup("intel_iommu=", intel_iommu_setup); 477 478 static struct kmem_cache *iommu_domain_cache; 479 static struct kmem_cache *iommu_devinfo_cache; 480 481 static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did) 482 { 483 struct dmar_domain **domains; 484 int idx = did >> 8; 485 486 domains = iommu->domains[idx]; 487 if (!domains) 488 return NULL; 489 490 return domains[did & 0xff]; 491 } 492 493 static void set_iommu_domain(struct intel_iommu *iommu, u16 did, 494 struct dmar_domain *domain) 495 { 496 struct dmar_domain **domains; 497 int idx = did >> 8; 498 499 if (!iommu->domains[idx]) { 500 size_t size = 256 * sizeof(struct dmar_domain *); 501 iommu->domains[idx] = kzalloc(size, GFP_ATOMIC); 502 } 503 504 domains = iommu->domains[idx]; 505 if (WARN_ON(!domains)) 506 return; 507 else 508 domains[did & 0xff] = domain; 509 } 510 511 void *alloc_pgtable_page(int node) 512 { 513 struct page *page; 514 void *vaddr = NULL; 515 516 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); 517 if (page) 518 vaddr = page_address(page); 519 return vaddr; 520 } 521 522 void free_pgtable_page(void *vaddr) 523 { 524 free_page((unsigned long)vaddr); 525 } 526 527 static inline void *alloc_domain_mem(void) 528 { 529 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC); 530 } 531 532 static void free_domain_mem(void *vaddr) 533 { 534 kmem_cache_free(iommu_domain_cache, vaddr); 535 } 536 537 static inline void * alloc_devinfo_mem(void) 538 { 539 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC); 540 } 541 542 static inline void free_devinfo_mem(void *vaddr) 543 { 544 kmem_cache_free(iommu_devinfo_cache, vaddr); 545 } 546 547 static inline int domain_type_is_si(struct dmar_domain *domain) 548 { 549 return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY; 550 } 551 552 static inline bool domain_use_first_level(struct dmar_domain *domain) 553 { 554 return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL; 555 } 556 557 static inline int domain_pfn_supported(struct dmar_domain *domain, 558 unsigned long pfn) 559 { 560 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; 561 562 return !(addr_width < BITS_PER_LONG && pfn >> addr_width); 563 } 564 565 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) 566 { 567 unsigned long sagaw; 568 int agaw; 569 570 sagaw = cap_sagaw(iommu->cap); 571 for (agaw = width_to_agaw(max_gaw); 572 agaw >= 0; agaw--) { 573 if (test_bit(agaw, &sagaw)) 574 break; 575 } 576 577 return agaw; 578 } 579 580 /* 581 * Calculate max SAGAW for each iommu. 582 */ 583 int iommu_calculate_max_sagaw(struct intel_iommu *iommu) 584 { 585 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); 586 } 587 588 /* 589 * calculate agaw for each iommu. 590 * "SAGAW" may be different across iommus, use a default agaw, and 591 * get a supported less agaw for iommus that don't support the default agaw. 592 */ 593 int iommu_calculate_agaw(struct intel_iommu *iommu) 594 { 595 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); 596 } 597 598 /* This functionin only returns single iommu in a domain */ 599 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) 600 { 601 int iommu_id; 602 603 /* si_domain and vm domain should not get here. */ 604 if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA)) 605 return NULL; 606 607 for_each_domain_iommu(iommu_id, domain) 608 break; 609 610 if (iommu_id < 0 || iommu_id >= g_num_of_iommus) 611 return NULL; 612 613 return g_iommus[iommu_id]; 614 } 615 616 static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu) 617 { 618 return sm_supported(iommu) ? 619 ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap); 620 } 621 622 static void domain_update_iommu_coherency(struct dmar_domain *domain) 623 { 624 struct dmar_drhd_unit *drhd; 625 struct intel_iommu *iommu; 626 bool found = false; 627 int i; 628 629 domain->iommu_coherency = true; 630 631 for_each_domain_iommu(i, domain) { 632 found = true; 633 if (!iommu_paging_structure_coherency(g_iommus[i])) { 634 domain->iommu_coherency = false; 635 break; 636 } 637 } 638 if (found) 639 return; 640 641 /* No hardware attached; use lowest common denominator */ 642 rcu_read_lock(); 643 for_each_active_iommu(iommu, drhd) { 644 if (!iommu_paging_structure_coherency(iommu)) { 645 domain->iommu_coherency = false; 646 break; 647 } 648 } 649 rcu_read_unlock(); 650 } 651 652 static bool domain_update_iommu_snooping(struct intel_iommu *skip) 653 { 654 struct dmar_drhd_unit *drhd; 655 struct intel_iommu *iommu; 656 bool ret = true; 657 658 rcu_read_lock(); 659 for_each_active_iommu(iommu, drhd) { 660 if (iommu != skip) { 661 /* 662 * If the hardware is operating in the scalable mode, 663 * the snooping control is always supported since we 664 * always set PASID-table-entry.PGSNP bit if the domain 665 * is managed outside (UNMANAGED). 666 */ 667 if (!sm_supported(iommu) && 668 !ecap_sc_support(iommu->ecap)) { 669 ret = false; 670 break; 671 } 672 } 673 } 674 rcu_read_unlock(); 675 676 return ret; 677 } 678 679 static int domain_update_iommu_superpage(struct dmar_domain *domain, 680 struct intel_iommu *skip) 681 { 682 struct dmar_drhd_unit *drhd; 683 struct intel_iommu *iommu; 684 int mask = 0x3; 685 686 if (!intel_iommu_superpage) 687 return 0; 688 689 /* set iommu_superpage to the smallest common denominator */ 690 rcu_read_lock(); 691 for_each_active_iommu(iommu, drhd) { 692 if (iommu != skip) { 693 if (domain && domain_use_first_level(domain)) { 694 if (!cap_fl1gp_support(iommu->cap)) 695 mask = 0x1; 696 } else { 697 mask &= cap_super_page_val(iommu->cap); 698 } 699 700 if (!mask) 701 break; 702 } 703 } 704 rcu_read_unlock(); 705 706 return fls(mask); 707 } 708 709 static int domain_update_device_node(struct dmar_domain *domain) 710 { 711 struct device_domain_info *info; 712 int nid = NUMA_NO_NODE; 713 714 assert_spin_locked(&device_domain_lock); 715 716 if (list_empty(&domain->devices)) 717 return NUMA_NO_NODE; 718 719 list_for_each_entry(info, &domain->devices, link) { 720 if (!info->dev) 721 continue; 722 723 /* 724 * There could possibly be multiple device numa nodes as devices 725 * within the same domain may sit behind different IOMMUs. There 726 * isn't perfect answer in such situation, so we select first 727 * come first served policy. 728 */ 729 nid = dev_to_node(info->dev); 730 if (nid != NUMA_NO_NODE) 731 break; 732 } 733 734 return nid; 735 } 736 737 static void domain_update_iotlb(struct dmar_domain *domain); 738 739 /* Some capabilities may be different across iommus */ 740 static void domain_update_iommu_cap(struct dmar_domain *domain) 741 { 742 domain_update_iommu_coherency(domain); 743 domain->iommu_snooping = domain_update_iommu_snooping(NULL); 744 domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL); 745 746 /* 747 * If RHSA is missing, we should default to the device numa domain 748 * as fall back. 749 */ 750 if (domain->nid == NUMA_NO_NODE) 751 domain->nid = domain_update_device_node(domain); 752 753 /* 754 * First-level translation restricts the input-address to a 755 * canonical address (i.e., address bits 63:N have the same 756 * value as address bit [N-1], where N is 48-bits with 4-level 757 * paging and 57-bits with 5-level paging). Hence, skip bit 758 * [N-1]. 759 */ 760 if (domain_use_first_level(domain)) 761 domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1); 762 else 763 domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw); 764 765 domain_update_iotlb(domain); 766 } 767 768 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus, 769 u8 devfn, int alloc) 770 { 771 struct root_entry *root = &iommu->root_entry[bus]; 772 struct context_entry *context; 773 u64 *entry; 774 775 entry = &root->lo; 776 if (sm_supported(iommu)) { 777 if (devfn >= 0x80) { 778 devfn -= 0x80; 779 entry = &root->hi; 780 } 781 devfn *= 2; 782 } 783 if (*entry & 1) 784 context = phys_to_virt(*entry & VTD_PAGE_MASK); 785 else { 786 unsigned long phy_addr; 787 if (!alloc) 788 return NULL; 789 790 context = alloc_pgtable_page(iommu->node); 791 if (!context) 792 return NULL; 793 794 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); 795 phy_addr = virt_to_phys((void *)context); 796 *entry = phy_addr | 1; 797 __iommu_flush_cache(iommu, entry, sizeof(*entry)); 798 } 799 return &context[devfn]; 800 } 801 802 static bool attach_deferred(struct device *dev) 803 { 804 return dev_iommu_priv_get(dev) == DEFER_DEVICE_DOMAIN_INFO; 805 } 806 807 /** 808 * is_downstream_to_pci_bridge - test if a device belongs to the PCI 809 * sub-hierarchy of a candidate PCI-PCI bridge 810 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy 811 * @bridge: the candidate PCI-PCI bridge 812 * 813 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false. 814 */ 815 static bool 816 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge) 817 { 818 struct pci_dev *pdev, *pbridge; 819 820 if (!dev_is_pci(dev) || !dev_is_pci(bridge)) 821 return false; 822 823 pdev = to_pci_dev(dev); 824 pbridge = to_pci_dev(bridge); 825 826 if (pbridge->subordinate && 827 pbridge->subordinate->number <= pdev->bus->number && 828 pbridge->subordinate->busn_res.end >= pdev->bus->number) 829 return true; 830 831 return false; 832 } 833 834 static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev) 835 { 836 struct dmar_drhd_unit *drhd; 837 u32 vtbar; 838 int rc; 839 840 /* We know that this device on this chipset has its own IOMMU. 841 * If we find it under a different IOMMU, then the BIOS is lying 842 * to us. Hope that the IOMMU for this device is actually 843 * disabled, and it needs no translation... 844 */ 845 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); 846 if (rc) { 847 /* "can't" happen */ 848 dev_info(&pdev->dev, "failed to run vt-d quirk\n"); 849 return false; 850 } 851 vtbar &= 0xffff0000; 852 853 /* we know that the this iommu should be at offset 0xa000 from vtbar */ 854 drhd = dmar_find_matched_drhd_unit(pdev); 855 if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) { 856 pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"); 857 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 858 return true; 859 } 860 861 return false; 862 } 863 864 static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev) 865 { 866 if (!iommu || iommu->drhd->ignored) 867 return true; 868 869 if (dev_is_pci(dev)) { 870 struct pci_dev *pdev = to_pci_dev(dev); 871 872 if (pdev->vendor == PCI_VENDOR_ID_INTEL && 873 pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB && 874 quirk_ioat_snb_local_iommu(pdev)) 875 return true; 876 } 877 878 return false; 879 } 880 881 struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn) 882 { 883 struct dmar_drhd_unit *drhd = NULL; 884 struct pci_dev *pdev = NULL; 885 struct intel_iommu *iommu; 886 struct device *tmp; 887 u16 segment = 0; 888 int i; 889 890 if (!dev) 891 return NULL; 892 893 if (dev_is_pci(dev)) { 894 struct pci_dev *pf_pdev; 895 896 pdev = pci_real_dma_dev(to_pci_dev(dev)); 897 898 /* VFs aren't listed in scope tables; we need to look up 899 * the PF instead to find the IOMMU. */ 900 pf_pdev = pci_physfn(pdev); 901 dev = &pf_pdev->dev; 902 segment = pci_domain_nr(pdev->bus); 903 } else if (has_acpi_companion(dev)) 904 dev = &ACPI_COMPANION(dev)->dev; 905 906 rcu_read_lock(); 907 for_each_iommu(iommu, drhd) { 908 if (pdev && segment != drhd->segment) 909 continue; 910 911 for_each_active_dev_scope(drhd->devices, 912 drhd->devices_cnt, i, tmp) { 913 if (tmp == dev) { 914 /* For a VF use its original BDF# not that of the PF 915 * which we used for the IOMMU lookup. Strictly speaking 916 * we could do this for all PCI devices; we only need to 917 * get the BDF# from the scope table for ACPI matches. */ 918 if (pdev && pdev->is_virtfn) 919 goto got_pdev; 920 921 if (bus && devfn) { 922 *bus = drhd->devices[i].bus; 923 *devfn = drhd->devices[i].devfn; 924 } 925 goto out; 926 } 927 928 if (is_downstream_to_pci_bridge(dev, tmp)) 929 goto got_pdev; 930 } 931 932 if (pdev && drhd->include_all) { 933 got_pdev: 934 if (bus && devfn) { 935 *bus = pdev->bus->number; 936 *devfn = pdev->devfn; 937 } 938 goto out; 939 } 940 } 941 iommu = NULL; 942 out: 943 if (iommu_is_dummy(iommu, dev)) 944 iommu = NULL; 945 946 rcu_read_unlock(); 947 948 return iommu; 949 } 950 951 static void domain_flush_cache(struct dmar_domain *domain, 952 void *addr, int size) 953 { 954 if (!domain->iommu_coherency) 955 clflush_cache_range(addr, size); 956 } 957 958 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) 959 { 960 struct context_entry *context; 961 int ret = 0; 962 unsigned long flags; 963 964 spin_lock_irqsave(&iommu->lock, flags); 965 context = iommu_context_addr(iommu, bus, devfn, 0); 966 if (context) 967 ret = context_present(context); 968 spin_unlock_irqrestore(&iommu->lock, flags); 969 return ret; 970 } 971 972 static void free_context_table(struct intel_iommu *iommu) 973 { 974 int i; 975 unsigned long flags; 976 struct context_entry *context; 977 978 spin_lock_irqsave(&iommu->lock, flags); 979 if (!iommu->root_entry) { 980 goto out; 981 } 982 for (i = 0; i < ROOT_ENTRY_NR; i++) { 983 context = iommu_context_addr(iommu, i, 0, 0); 984 if (context) 985 free_pgtable_page(context); 986 987 if (!sm_supported(iommu)) 988 continue; 989 990 context = iommu_context_addr(iommu, i, 0x80, 0); 991 if (context) 992 free_pgtable_page(context); 993 994 } 995 free_pgtable_page(iommu->root_entry); 996 iommu->root_entry = NULL; 997 out: 998 spin_unlock_irqrestore(&iommu->lock, flags); 999 } 1000 1001 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, 1002 unsigned long pfn, int *target_level) 1003 { 1004 struct dma_pte *parent, *pte; 1005 int level = agaw_to_level(domain->agaw); 1006 int offset; 1007 1008 BUG_ON(!domain->pgd); 1009 1010 if (!domain_pfn_supported(domain, pfn)) 1011 /* Address beyond IOMMU's addressing capabilities. */ 1012 return NULL; 1013 1014 parent = domain->pgd; 1015 1016 while (1) { 1017 void *tmp_page; 1018 1019 offset = pfn_level_offset(pfn, level); 1020 pte = &parent[offset]; 1021 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) 1022 break; 1023 if (level == *target_level) 1024 break; 1025 1026 if (!dma_pte_present(pte)) { 1027 uint64_t pteval; 1028 1029 tmp_page = alloc_pgtable_page(domain->nid); 1030 1031 if (!tmp_page) 1032 return NULL; 1033 1034 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); 1035 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; 1036 if (domain_use_first_level(domain)) { 1037 pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US; 1038 if (domain->domain.type == IOMMU_DOMAIN_DMA) 1039 pteval |= DMA_FL_PTE_ACCESS; 1040 } 1041 if (cmpxchg64(&pte->val, 0ULL, pteval)) 1042 /* Someone else set it while we were thinking; use theirs. */ 1043 free_pgtable_page(tmp_page); 1044 else 1045 domain_flush_cache(domain, pte, sizeof(*pte)); 1046 } 1047 if (level == 1) 1048 break; 1049 1050 parent = phys_to_virt(dma_pte_addr(pte)); 1051 level--; 1052 } 1053 1054 if (!*target_level) 1055 *target_level = level; 1056 1057 return pte; 1058 } 1059 1060 /* return address's pte at specific level */ 1061 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, 1062 unsigned long pfn, 1063 int level, int *large_page) 1064 { 1065 struct dma_pte *parent, *pte; 1066 int total = agaw_to_level(domain->agaw); 1067 int offset; 1068 1069 parent = domain->pgd; 1070 while (level <= total) { 1071 offset = pfn_level_offset(pfn, total); 1072 pte = &parent[offset]; 1073 if (level == total) 1074 return pte; 1075 1076 if (!dma_pte_present(pte)) { 1077 *large_page = total; 1078 break; 1079 } 1080 1081 if (dma_pte_superpage(pte)) { 1082 *large_page = total; 1083 return pte; 1084 } 1085 1086 parent = phys_to_virt(dma_pte_addr(pte)); 1087 total--; 1088 } 1089 return NULL; 1090 } 1091 1092 /* clear last level pte, a tlb flush should be followed */ 1093 static void dma_pte_clear_range(struct dmar_domain *domain, 1094 unsigned long start_pfn, 1095 unsigned long last_pfn) 1096 { 1097 unsigned int large_page; 1098 struct dma_pte *first_pte, *pte; 1099 1100 BUG_ON(!domain_pfn_supported(domain, start_pfn)); 1101 BUG_ON(!domain_pfn_supported(domain, last_pfn)); 1102 BUG_ON(start_pfn > last_pfn); 1103 1104 /* we don't need lock here; nobody else touches the iova range */ 1105 do { 1106 large_page = 1; 1107 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); 1108 if (!pte) { 1109 start_pfn = align_to_level(start_pfn + 1, large_page + 1); 1110 continue; 1111 } 1112 do { 1113 dma_clear_pte(pte); 1114 start_pfn += lvl_to_nr_pages(large_page); 1115 pte++; 1116 } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); 1117 1118 domain_flush_cache(domain, first_pte, 1119 (void *)pte - (void *)first_pte); 1120 1121 } while (start_pfn && start_pfn <= last_pfn); 1122 } 1123 1124 static void dma_pte_free_level(struct dmar_domain *domain, int level, 1125 int retain_level, struct dma_pte *pte, 1126 unsigned long pfn, unsigned long start_pfn, 1127 unsigned long last_pfn) 1128 { 1129 pfn = max(start_pfn, pfn); 1130 pte = &pte[pfn_level_offset(pfn, level)]; 1131 1132 do { 1133 unsigned long level_pfn; 1134 struct dma_pte *level_pte; 1135 1136 if (!dma_pte_present(pte) || dma_pte_superpage(pte)) 1137 goto next; 1138 1139 level_pfn = pfn & level_mask(level); 1140 level_pte = phys_to_virt(dma_pte_addr(pte)); 1141 1142 if (level > 2) { 1143 dma_pte_free_level(domain, level - 1, retain_level, 1144 level_pte, level_pfn, start_pfn, 1145 last_pfn); 1146 } 1147 1148 /* 1149 * Free the page table if we're below the level we want to 1150 * retain and the range covers the entire table. 1151 */ 1152 if (level < retain_level && !(start_pfn > level_pfn || 1153 last_pfn < level_pfn + level_size(level) - 1)) { 1154 dma_clear_pte(pte); 1155 domain_flush_cache(domain, pte, sizeof(*pte)); 1156 free_pgtable_page(level_pte); 1157 } 1158 next: 1159 pfn += level_size(level); 1160 } while (!first_pte_in_page(++pte) && pfn <= last_pfn); 1161 } 1162 1163 /* 1164 * clear last level (leaf) ptes and free page table pages below the 1165 * level we wish to keep intact. 1166 */ 1167 static void dma_pte_free_pagetable(struct dmar_domain *domain, 1168 unsigned long start_pfn, 1169 unsigned long last_pfn, 1170 int retain_level) 1171 { 1172 BUG_ON(!domain_pfn_supported(domain, start_pfn)); 1173 BUG_ON(!domain_pfn_supported(domain, last_pfn)); 1174 BUG_ON(start_pfn > last_pfn); 1175 1176 dma_pte_clear_range(domain, start_pfn, last_pfn); 1177 1178 /* We don't need lock here; nobody else touches the iova range */ 1179 dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level, 1180 domain->pgd, 0, start_pfn, last_pfn); 1181 1182 /* free pgd */ 1183 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { 1184 free_pgtable_page(domain->pgd); 1185 domain->pgd = NULL; 1186 } 1187 } 1188 1189 /* When a page at a given level is being unlinked from its parent, we don't 1190 need to *modify* it at all. All we need to do is make a list of all the 1191 pages which can be freed just as soon as we've flushed the IOTLB and we 1192 know the hardware page-walk will no longer touch them. 1193 The 'pte' argument is the *parent* PTE, pointing to the page that is to 1194 be freed. */ 1195 static struct page *dma_pte_list_pagetables(struct dmar_domain *domain, 1196 int level, struct dma_pte *pte, 1197 struct page *freelist) 1198 { 1199 struct page *pg; 1200 1201 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT); 1202 pg->freelist = freelist; 1203 freelist = pg; 1204 1205 if (level == 1) 1206 return freelist; 1207 1208 pte = page_address(pg); 1209 do { 1210 if (dma_pte_present(pte) && !dma_pte_superpage(pte)) 1211 freelist = dma_pte_list_pagetables(domain, level - 1, 1212 pte, freelist); 1213 pte++; 1214 } while (!first_pte_in_page(pte)); 1215 1216 return freelist; 1217 } 1218 1219 static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level, 1220 struct dma_pte *pte, unsigned long pfn, 1221 unsigned long start_pfn, 1222 unsigned long last_pfn, 1223 struct page *freelist) 1224 { 1225 struct dma_pte *first_pte = NULL, *last_pte = NULL; 1226 1227 pfn = max(start_pfn, pfn); 1228 pte = &pte[pfn_level_offset(pfn, level)]; 1229 1230 do { 1231 unsigned long level_pfn; 1232 1233 if (!dma_pte_present(pte)) 1234 goto next; 1235 1236 level_pfn = pfn & level_mask(level); 1237 1238 /* If range covers entire pagetable, free it */ 1239 if (start_pfn <= level_pfn && 1240 last_pfn >= level_pfn + level_size(level) - 1) { 1241 /* These suborbinate page tables are going away entirely. Don't 1242 bother to clear them; we're just going to *free* them. */ 1243 if (level > 1 && !dma_pte_superpage(pte)) 1244 freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist); 1245 1246 dma_clear_pte(pte); 1247 if (!first_pte) 1248 first_pte = pte; 1249 last_pte = pte; 1250 } else if (level > 1) { 1251 /* Recurse down into a level that isn't *entirely* obsolete */ 1252 freelist = dma_pte_clear_level(domain, level - 1, 1253 phys_to_virt(dma_pte_addr(pte)), 1254 level_pfn, start_pfn, last_pfn, 1255 freelist); 1256 } 1257 next: 1258 pfn += level_size(level); 1259 } while (!first_pte_in_page(++pte) && pfn <= last_pfn); 1260 1261 if (first_pte) 1262 domain_flush_cache(domain, first_pte, 1263 (void *)++last_pte - (void *)first_pte); 1264 1265 return freelist; 1266 } 1267 1268 /* We can't just free the pages because the IOMMU may still be walking 1269 the page tables, and may have cached the intermediate levels. The 1270 pages can only be freed after the IOTLB flush has been done. */ 1271 static struct page *domain_unmap(struct dmar_domain *domain, 1272 unsigned long start_pfn, 1273 unsigned long last_pfn, 1274 struct page *freelist) 1275 { 1276 BUG_ON(!domain_pfn_supported(domain, start_pfn)); 1277 BUG_ON(!domain_pfn_supported(domain, last_pfn)); 1278 BUG_ON(start_pfn > last_pfn); 1279 1280 /* we don't need lock here; nobody else touches the iova range */ 1281 freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw), 1282 domain->pgd, 0, start_pfn, last_pfn, 1283 freelist); 1284 1285 /* free pgd */ 1286 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { 1287 struct page *pgd_page = virt_to_page(domain->pgd); 1288 pgd_page->freelist = freelist; 1289 freelist = pgd_page; 1290 1291 domain->pgd = NULL; 1292 } 1293 1294 return freelist; 1295 } 1296 1297 static void dma_free_pagelist(struct page *freelist) 1298 { 1299 struct page *pg; 1300 1301 while ((pg = freelist)) { 1302 freelist = pg->freelist; 1303 free_pgtable_page(page_address(pg)); 1304 } 1305 } 1306 1307 /* iommu handling */ 1308 static int iommu_alloc_root_entry(struct intel_iommu *iommu) 1309 { 1310 struct root_entry *root; 1311 unsigned long flags; 1312 1313 root = (struct root_entry *)alloc_pgtable_page(iommu->node); 1314 if (!root) { 1315 pr_err("Allocating root entry for %s failed\n", 1316 iommu->name); 1317 return -ENOMEM; 1318 } 1319 1320 __iommu_flush_cache(iommu, root, ROOT_SIZE); 1321 1322 spin_lock_irqsave(&iommu->lock, flags); 1323 iommu->root_entry = root; 1324 spin_unlock_irqrestore(&iommu->lock, flags); 1325 1326 return 0; 1327 } 1328 1329 static void iommu_set_root_entry(struct intel_iommu *iommu) 1330 { 1331 u64 addr; 1332 u32 sts; 1333 unsigned long flag; 1334 1335 addr = virt_to_phys(iommu->root_entry); 1336 if (sm_supported(iommu)) 1337 addr |= DMA_RTADDR_SMT; 1338 1339 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1340 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr); 1341 1342 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); 1343 1344 /* Make sure hardware complete it */ 1345 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1346 readl, (sts & DMA_GSTS_RTPS), sts); 1347 1348 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1349 1350 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); 1351 if (sm_supported(iommu)) 1352 qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0); 1353 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); 1354 } 1355 1356 void iommu_flush_write_buffer(struct intel_iommu *iommu) 1357 { 1358 u32 val; 1359 unsigned long flag; 1360 1361 if (!rwbf_quirk && !cap_rwbf(iommu->cap)) 1362 return; 1363 1364 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1365 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); 1366 1367 /* Make sure hardware complete it */ 1368 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1369 readl, (!(val & DMA_GSTS_WBFS)), val); 1370 1371 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1372 } 1373 1374 /* return value determine if we need a write buffer flush */ 1375 static void __iommu_flush_context(struct intel_iommu *iommu, 1376 u16 did, u16 source_id, u8 function_mask, 1377 u64 type) 1378 { 1379 u64 val = 0; 1380 unsigned long flag; 1381 1382 switch (type) { 1383 case DMA_CCMD_GLOBAL_INVL: 1384 val = DMA_CCMD_GLOBAL_INVL; 1385 break; 1386 case DMA_CCMD_DOMAIN_INVL: 1387 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); 1388 break; 1389 case DMA_CCMD_DEVICE_INVL: 1390 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) 1391 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); 1392 break; 1393 default: 1394 BUG(); 1395 } 1396 val |= DMA_CCMD_ICC; 1397 1398 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1399 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); 1400 1401 /* Make sure hardware complete it */ 1402 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, 1403 dmar_readq, (!(val & DMA_CCMD_ICC)), val); 1404 1405 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1406 } 1407 1408 /* return value determine if we need a write buffer flush */ 1409 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, 1410 u64 addr, unsigned int size_order, u64 type) 1411 { 1412 int tlb_offset = ecap_iotlb_offset(iommu->ecap); 1413 u64 val = 0, val_iva = 0; 1414 unsigned long flag; 1415 1416 switch (type) { 1417 case DMA_TLB_GLOBAL_FLUSH: 1418 /* global flush doesn't need set IVA_REG */ 1419 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; 1420 break; 1421 case DMA_TLB_DSI_FLUSH: 1422 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); 1423 break; 1424 case DMA_TLB_PSI_FLUSH: 1425 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); 1426 /* IH bit is passed in as part of address */ 1427 val_iva = size_order | addr; 1428 break; 1429 default: 1430 BUG(); 1431 } 1432 /* Note: set drain read/write */ 1433 #if 0 1434 /* 1435 * This is probably to be super secure.. Looks like we can 1436 * ignore it without any impact. 1437 */ 1438 if (cap_read_drain(iommu->cap)) 1439 val |= DMA_TLB_READ_DRAIN; 1440 #endif 1441 if (cap_write_drain(iommu->cap)) 1442 val |= DMA_TLB_WRITE_DRAIN; 1443 1444 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1445 /* Note: Only uses first TLB reg currently */ 1446 if (val_iva) 1447 dmar_writeq(iommu->reg + tlb_offset, val_iva); 1448 dmar_writeq(iommu->reg + tlb_offset + 8, val); 1449 1450 /* Make sure hardware complete it */ 1451 IOMMU_WAIT_OP(iommu, tlb_offset + 8, 1452 dmar_readq, (!(val & DMA_TLB_IVT)), val); 1453 1454 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1455 1456 /* check IOTLB invalidation granularity */ 1457 if (DMA_TLB_IAIG(val) == 0) 1458 pr_err("Flush IOTLB failed\n"); 1459 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) 1460 pr_debug("TLB flush request %Lx, actual %Lx\n", 1461 (unsigned long long)DMA_TLB_IIRG(type), 1462 (unsigned long long)DMA_TLB_IAIG(val)); 1463 } 1464 1465 static struct device_domain_info * 1466 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu, 1467 u8 bus, u8 devfn) 1468 { 1469 struct device_domain_info *info; 1470 1471 assert_spin_locked(&device_domain_lock); 1472 1473 if (!iommu->qi) 1474 return NULL; 1475 1476 list_for_each_entry(info, &domain->devices, link) 1477 if (info->iommu == iommu && info->bus == bus && 1478 info->devfn == devfn) { 1479 if (info->ats_supported && info->dev) 1480 return info; 1481 break; 1482 } 1483 1484 return NULL; 1485 } 1486 1487 static void domain_update_iotlb(struct dmar_domain *domain) 1488 { 1489 struct device_domain_info *info; 1490 bool has_iotlb_device = false; 1491 1492 assert_spin_locked(&device_domain_lock); 1493 1494 list_for_each_entry(info, &domain->devices, link) 1495 if (info->ats_enabled) { 1496 has_iotlb_device = true; 1497 break; 1498 } 1499 1500 if (!has_iotlb_device) { 1501 struct subdev_domain_info *sinfo; 1502 1503 list_for_each_entry(sinfo, &domain->subdevices, link_domain) { 1504 info = get_domain_info(sinfo->pdev); 1505 if (info && info->ats_enabled) { 1506 has_iotlb_device = true; 1507 break; 1508 } 1509 } 1510 } 1511 1512 domain->has_iotlb_device = has_iotlb_device; 1513 } 1514 1515 static void iommu_enable_dev_iotlb(struct device_domain_info *info) 1516 { 1517 struct pci_dev *pdev; 1518 1519 assert_spin_locked(&device_domain_lock); 1520 1521 if (!info || !dev_is_pci(info->dev)) 1522 return; 1523 1524 pdev = to_pci_dev(info->dev); 1525 /* For IOMMU that supports device IOTLB throttling (DIT), we assign 1526 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge 1527 * queue depth at PF level. If DIT is not set, PFSID will be treated as 1528 * reserved, which should be set to 0. 1529 */ 1530 if (!ecap_dit(info->iommu->ecap)) 1531 info->pfsid = 0; 1532 else { 1533 struct pci_dev *pf_pdev; 1534 1535 /* pdev will be returned if device is not a vf */ 1536 pf_pdev = pci_physfn(pdev); 1537 info->pfsid = pci_dev_id(pf_pdev); 1538 } 1539 1540 #ifdef CONFIG_INTEL_IOMMU_SVM 1541 /* The PCIe spec, in its wisdom, declares that the behaviour of 1542 the device if you enable PASID support after ATS support is 1543 undefined. So always enable PASID support on devices which 1544 have it, even if we can't yet know if we're ever going to 1545 use it. */ 1546 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1)) 1547 info->pasid_enabled = 1; 1548 1549 if (info->pri_supported && 1550 (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) && 1551 !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) 1552 info->pri_enabled = 1; 1553 #endif 1554 if (info->ats_supported && pci_ats_page_aligned(pdev) && 1555 !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) { 1556 info->ats_enabled = 1; 1557 domain_update_iotlb(info->domain); 1558 info->ats_qdep = pci_ats_queue_depth(pdev); 1559 } 1560 } 1561 1562 static void iommu_disable_dev_iotlb(struct device_domain_info *info) 1563 { 1564 struct pci_dev *pdev; 1565 1566 assert_spin_locked(&device_domain_lock); 1567 1568 if (!dev_is_pci(info->dev)) 1569 return; 1570 1571 pdev = to_pci_dev(info->dev); 1572 1573 if (info->ats_enabled) { 1574 pci_disable_ats(pdev); 1575 info->ats_enabled = 0; 1576 domain_update_iotlb(info->domain); 1577 } 1578 #ifdef CONFIG_INTEL_IOMMU_SVM 1579 if (info->pri_enabled) { 1580 pci_disable_pri(pdev); 1581 info->pri_enabled = 0; 1582 } 1583 if (info->pasid_enabled) { 1584 pci_disable_pasid(pdev); 1585 info->pasid_enabled = 0; 1586 } 1587 #endif 1588 } 1589 1590 static void __iommu_flush_dev_iotlb(struct device_domain_info *info, 1591 u64 addr, unsigned int mask) 1592 { 1593 u16 sid, qdep; 1594 1595 if (!info || !info->ats_enabled) 1596 return; 1597 1598 sid = info->bus << 8 | info->devfn; 1599 qdep = info->ats_qdep; 1600 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid, 1601 qdep, addr, mask); 1602 } 1603 1604 static void iommu_flush_dev_iotlb(struct dmar_domain *domain, 1605 u64 addr, unsigned mask) 1606 { 1607 unsigned long flags; 1608 struct device_domain_info *info; 1609 struct subdev_domain_info *sinfo; 1610 1611 if (!domain->has_iotlb_device) 1612 return; 1613 1614 spin_lock_irqsave(&device_domain_lock, flags); 1615 list_for_each_entry(info, &domain->devices, link) 1616 __iommu_flush_dev_iotlb(info, addr, mask); 1617 1618 list_for_each_entry(sinfo, &domain->subdevices, link_domain) { 1619 info = get_domain_info(sinfo->pdev); 1620 __iommu_flush_dev_iotlb(info, addr, mask); 1621 } 1622 spin_unlock_irqrestore(&device_domain_lock, flags); 1623 } 1624 1625 static void domain_flush_piotlb(struct intel_iommu *iommu, 1626 struct dmar_domain *domain, 1627 u64 addr, unsigned long npages, bool ih) 1628 { 1629 u16 did = domain->iommu_did[iommu->seq_id]; 1630 1631 if (domain->default_pasid) 1632 qi_flush_piotlb(iommu, did, domain->default_pasid, 1633 addr, npages, ih); 1634 1635 if (!list_empty(&domain->devices)) 1636 qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih); 1637 } 1638 1639 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, 1640 struct dmar_domain *domain, 1641 unsigned long pfn, unsigned int pages, 1642 int ih, int map) 1643 { 1644 unsigned int mask = ilog2(__roundup_pow_of_two(pages)); 1645 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; 1646 u16 did = domain->iommu_did[iommu->seq_id]; 1647 1648 BUG_ON(pages == 0); 1649 1650 if (ih) 1651 ih = 1 << 6; 1652 1653 if (domain_use_first_level(domain)) { 1654 domain_flush_piotlb(iommu, domain, addr, pages, ih); 1655 } else { 1656 /* 1657 * Fallback to domain selective flush if no PSI support or 1658 * the size is too big. PSI requires page size to be 2 ^ x, 1659 * and the base address is naturally aligned to the size. 1660 */ 1661 if (!cap_pgsel_inv(iommu->cap) || 1662 mask > cap_max_amask_val(iommu->cap)) 1663 iommu->flush.flush_iotlb(iommu, did, 0, 0, 1664 DMA_TLB_DSI_FLUSH); 1665 else 1666 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask, 1667 DMA_TLB_PSI_FLUSH); 1668 } 1669 1670 /* 1671 * In caching mode, changes of pages from non-present to present require 1672 * flush. However, device IOTLB doesn't need to be flushed in this case. 1673 */ 1674 if (!cap_caching_mode(iommu->cap) || !map) 1675 iommu_flush_dev_iotlb(domain, addr, mask); 1676 } 1677 1678 /* Notification for newly created mappings */ 1679 static inline void __mapping_notify_one(struct intel_iommu *iommu, 1680 struct dmar_domain *domain, 1681 unsigned long pfn, unsigned int pages) 1682 { 1683 /* 1684 * It's a non-present to present mapping. Only flush if caching mode 1685 * and second level. 1686 */ 1687 if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain)) 1688 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1); 1689 else 1690 iommu_flush_write_buffer(iommu); 1691 } 1692 1693 static void intel_flush_iotlb_all(struct iommu_domain *domain) 1694 { 1695 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 1696 int idx; 1697 1698 for_each_domain_iommu(idx, dmar_domain) { 1699 struct intel_iommu *iommu = g_iommus[idx]; 1700 u16 did = dmar_domain->iommu_did[iommu->seq_id]; 1701 1702 if (domain_use_first_level(dmar_domain)) 1703 domain_flush_piotlb(iommu, dmar_domain, 0, -1, 0); 1704 else 1705 iommu->flush.flush_iotlb(iommu, did, 0, 0, 1706 DMA_TLB_DSI_FLUSH); 1707 1708 if (!cap_caching_mode(iommu->cap)) 1709 iommu_flush_dev_iotlb(get_iommu_domain(iommu, did), 1710 0, MAX_AGAW_PFN_WIDTH); 1711 } 1712 } 1713 1714 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) 1715 { 1716 u32 pmen; 1717 unsigned long flags; 1718 1719 if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap)) 1720 return; 1721 1722 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1723 pmen = readl(iommu->reg + DMAR_PMEN_REG); 1724 pmen &= ~DMA_PMEN_EPM; 1725 writel(pmen, iommu->reg + DMAR_PMEN_REG); 1726 1727 /* wait for the protected region status bit to clear */ 1728 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, 1729 readl, !(pmen & DMA_PMEN_PRS), pmen); 1730 1731 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1732 } 1733 1734 static void iommu_enable_translation(struct intel_iommu *iommu) 1735 { 1736 u32 sts; 1737 unsigned long flags; 1738 1739 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1740 iommu->gcmd |= DMA_GCMD_TE; 1741 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1742 1743 /* Make sure hardware complete it */ 1744 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1745 readl, (sts & DMA_GSTS_TES), sts); 1746 1747 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1748 } 1749 1750 static void iommu_disable_translation(struct intel_iommu *iommu) 1751 { 1752 u32 sts; 1753 unsigned long flag; 1754 1755 if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated && 1756 (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap))) 1757 return; 1758 1759 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1760 iommu->gcmd &= ~DMA_GCMD_TE; 1761 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1762 1763 /* Make sure hardware complete it */ 1764 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1765 readl, (!(sts & DMA_GSTS_TES)), sts); 1766 1767 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1768 } 1769 1770 static int iommu_init_domains(struct intel_iommu *iommu) 1771 { 1772 u32 ndomains, nlongs; 1773 size_t size; 1774 1775 ndomains = cap_ndoms(iommu->cap); 1776 pr_debug("%s: Number of Domains supported <%d>\n", 1777 iommu->name, ndomains); 1778 nlongs = BITS_TO_LONGS(ndomains); 1779 1780 spin_lock_init(&iommu->lock); 1781 1782 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL); 1783 if (!iommu->domain_ids) { 1784 pr_err("%s: Allocating domain id array failed\n", 1785 iommu->name); 1786 return -ENOMEM; 1787 } 1788 1789 size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **); 1790 iommu->domains = kzalloc(size, GFP_KERNEL); 1791 1792 if (iommu->domains) { 1793 size = 256 * sizeof(struct dmar_domain *); 1794 iommu->domains[0] = kzalloc(size, GFP_KERNEL); 1795 } 1796 1797 if (!iommu->domains || !iommu->domains[0]) { 1798 pr_err("%s: Allocating domain array failed\n", 1799 iommu->name); 1800 kfree(iommu->domain_ids); 1801 kfree(iommu->domains); 1802 iommu->domain_ids = NULL; 1803 iommu->domains = NULL; 1804 return -ENOMEM; 1805 } 1806 1807 /* 1808 * If Caching mode is set, then invalid translations are tagged 1809 * with domain-id 0, hence we need to pre-allocate it. We also 1810 * use domain-id 0 as a marker for non-allocated domain-id, so 1811 * make sure it is not used for a real domain. 1812 */ 1813 set_bit(0, iommu->domain_ids); 1814 1815 /* 1816 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid 1817 * entry for first-level or pass-through translation modes should 1818 * be programmed with a domain id different from those used for 1819 * second-level or nested translation. We reserve a domain id for 1820 * this purpose. 1821 */ 1822 if (sm_supported(iommu)) 1823 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids); 1824 1825 return 0; 1826 } 1827 1828 static void disable_dmar_iommu(struct intel_iommu *iommu) 1829 { 1830 struct device_domain_info *info, *tmp; 1831 unsigned long flags; 1832 1833 if (!iommu->domains || !iommu->domain_ids) 1834 return; 1835 1836 spin_lock_irqsave(&device_domain_lock, flags); 1837 list_for_each_entry_safe(info, tmp, &device_domain_list, global) { 1838 if (info->iommu != iommu) 1839 continue; 1840 1841 if (!info->dev || !info->domain) 1842 continue; 1843 1844 __dmar_remove_one_dev_info(info); 1845 } 1846 spin_unlock_irqrestore(&device_domain_lock, flags); 1847 1848 if (iommu->gcmd & DMA_GCMD_TE) 1849 iommu_disable_translation(iommu); 1850 } 1851 1852 static void free_dmar_iommu(struct intel_iommu *iommu) 1853 { 1854 if ((iommu->domains) && (iommu->domain_ids)) { 1855 int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8; 1856 int i; 1857 1858 for (i = 0; i < elems; i++) 1859 kfree(iommu->domains[i]); 1860 kfree(iommu->domains); 1861 kfree(iommu->domain_ids); 1862 iommu->domains = NULL; 1863 iommu->domain_ids = NULL; 1864 } 1865 1866 g_iommus[iommu->seq_id] = NULL; 1867 1868 /* free context mapping */ 1869 free_context_table(iommu); 1870 1871 #ifdef CONFIG_INTEL_IOMMU_SVM 1872 if (pasid_supported(iommu)) { 1873 if (ecap_prs(iommu->ecap)) 1874 intel_svm_finish_prq(iommu); 1875 } 1876 if (vccap_pasid(iommu->vccap)) 1877 ioasid_unregister_allocator(&iommu->pasid_allocator); 1878 1879 #endif 1880 } 1881 1882 /* 1883 * Check and return whether first level is used by default for 1884 * DMA translation. 1885 */ 1886 static bool first_level_by_default(void) 1887 { 1888 return scalable_mode_support() && intel_cap_flts_sanity(); 1889 } 1890 1891 static struct dmar_domain *alloc_domain(int flags) 1892 { 1893 struct dmar_domain *domain; 1894 1895 domain = alloc_domain_mem(); 1896 if (!domain) 1897 return NULL; 1898 1899 memset(domain, 0, sizeof(*domain)); 1900 domain->nid = NUMA_NO_NODE; 1901 domain->flags = flags; 1902 if (first_level_by_default()) 1903 domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL; 1904 domain->has_iotlb_device = false; 1905 INIT_LIST_HEAD(&domain->devices); 1906 INIT_LIST_HEAD(&domain->subdevices); 1907 1908 return domain; 1909 } 1910 1911 /* Must be called with iommu->lock */ 1912 static int domain_attach_iommu(struct dmar_domain *domain, 1913 struct intel_iommu *iommu) 1914 { 1915 unsigned long ndomains; 1916 int num; 1917 1918 assert_spin_locked(&device_domain_lock); 1919 assert_spin_locked(&iommu->lock); 1920 1921 domain->iommu_refcnt[iommu->seq_id] += 1; 1922 if (domain->iommu_refcnt[iommu->seq_id] == 1) { 1923 ndomains = cap_ndoms(iommu->cap); 1924 num = find_first_zero_bit(iommu->domain_ids, ndomains); 1925 1926 if (num >= ndomains) { 1927 pr_err("%s: No free domain ids\n", iommu->name); 1928 domain->iommu_refcnt[iommu->seq_id] -= 1; 1929 return -ENOSPC; 1930 } 1931 1932 set_bit(num, iommu->domain_ids); 1933 set_iommu_domain(iommu, num, domain); 1934 1935 domain->iommu_did[iommu->seq_id] = num; 1936 domain->nid = iommu->node; 1937 1938 domain_update_iommu_cap(domain); 1939 } 1940 1941 return 0; 1942 } 1943 1944 static void domain_detach_iommu(struct dmar_domain *domain, 1945 struct intel_iommu *iommu) 1946 { 1947 int num; 1948 1949 assert_spin_locked(&device_domain_lock); 1950 assert_spin_locked(&iommu->lock); 1951 1952 domain->iommu_refcnt[iommu->seq_id] -= 1; 1953 if (domain->iommu_refcnt[iommu->seq_id] == 0) { 1954 num = domain->iommu_did[iommu->seq_id]; 1955 clear_bit(num, iommu->domain_ids); 1956 set_iommu_domain(iommu, num, NULL); 1957 1958 domain_update_iommu_cap(domain); 1959 domain->iommu_did[iommu->seq_id] = 0; 1960 } 1961 } 1962 1963 static inline int guestwidth_to_adjustwidth(int gaw) 1964 { 1965 int agaw; 1966 int r = (gaw - 12) % 9; 1967 1968 if (r == 0) 1969 agaw = gaw; 1970 else 1971 agaw = gaw + 9 - r; 1972 if (agaw > 64) 1973 agaw = 64; 1974 return agaw; 1975 } 1976 1977 static void domain_exit(struct dmar_domain *domain) 1978 { 1979 1980 /* Remove associated devices and clear attached or cached domains */ 1981 domain_remove_dev_info(domain); 1982 1983 /* destroy iovas */ 1984 if (domain->domain.type == IOMMU_DOMAIN_DMA) 1985 iommu_put_dma_cookie(&domain->domain); 1986 1987 if (domain->pgd) { 1988 struct page *freelist; 1989 1990 freelist = domain_unmap(domain, 0, 1991 DOMAIN_MAX_PFN(domain->gaw), NULL); 1992 dma_free_pagelist(freelist); 1993 } 1994 1995 free_domain_mem(domain); 1996 } 1997 1998 /* 1999 * Get the PASID directory size for scalable mode context entry. 2000 * Value of X in the PDTS field of a scalable mode context entry 2001 * indicates PASID directory with 2^(X + 7) entries. 2002 */ 2003 static inline unsigned long context_get_sm_pds(struct pasid_table *table) 2004 { 2005 int pds, max_pde; 2006 2007 max_pde = table->max_pasid >> PASID_PDE_SHIFT; 2008 pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS); 2009 if (pds < 7) 2010 return 0; 2011 2012 return pds - 7; 2013 } 2014 2015 /* 2016 * Set the RID_PASID field of a scalable mode context entry. The 2017 * IOMMU hardware will use the PASID value set in this field for 2018 * DMA translations of DMA requests without PASID. 2019 */ 2020 static inline void 2021 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid) 2022 { 2023 context->hi |= pasid & ((1 << 20) - 1); 2024 } 2025 2026 /* 2027 * Set the DTE(Device-TLB Enable) field of a scalable mode context 2028 * entry. 2029 */ 2030 static inline void context_set_sm_dte(struct context_entry *context) 2031 { 2032 context->lo |= (1 << 2); 2033 } 2034 2035 /* 2036 * Set the PRE(Page Request Enable) field of a scalable mode context 2037 * entry. 2038 */ 2039 static inline void context_set_sm_pre(struct context_entry *context) 2040 { 2041 context->lo |= (1 << 4); 2042 } 2043 2044 /* Convert value to context PASID directory size field coding. */ 2045 #define context_pdts(pds) (((pds) & 0x7) << 9) 2046 2047 static int domain_context_mapping_one(struct dmar_domain *domain, 2048 struct intel_iommu *iommu, 2049 struct pasid_table *table, 2050 u8 bus, u8 devfn) 2051 { 2052 u16 did = domain->iommu_did[iommu->seq_id]; 2053 int translation = CONTEXT_TT_MULTI_LEVEL; 2054 struct device_domain_info *info = NULL; 2055 struct context_entry *context; 2056 unsigned long flags; 2057 int ret; 2058 2059 WARN_ON(did == 0); 2060 2061 if (hw_pass_through && domain_type_is_si(domain)) 2062 translation = CONTEXT_TT_PASS_THROUGH; 2063 2064 pr_debug("Set context mapping for %02x:%02x.%d\n", 2065 bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); 2066 2067 BUG_ON(!domain->pgd); 2068 2069 spin_lock_irqsave(&device_domain_lock, flags); 2070 spin_lock(&iommu->lock); 2071 2072 ret = -ENOMEM; 2073 context = iommu_context_addr(iommu, bus, devfn, 1); 2074 if (!context) 2075 goto out_unlock; 2076 2077 ret = 0; 2078 if (context_present(context)) 2079 goto out_unlock; 2080 2081 /* 2082 * For kdump cases, old valid entries may be cached due to the 2083 * in-flight DMA and copied pgtable, but there is no unmapping 2084 * behaviour for them, thus we need an explicit cache flush for 2085 * the newly-mapped device. For kdump, at this point, the device 2086 * is supposed to finish reset at its driver probe stage, so no 2087 * in-flight DMA will exist, and we don't need to worry anymore 2088 * hereafter. 2089 */ 2090 if (context_copied(context)) { 2091 u16 did_old = context_domain_id(context); 2092 2093 if (did_old < cap_ndoms(iommu->cap)) { 2094 iommu->flush.flush_context(iommu, did_old, 2095 (((u16)bus) << 8) | devfn, 2096 DMA_CCMD_MASK_NOBIT, 2097 DMA_CCMD_DEVICE_INVL); 2098 iommu->flush.flush_iotlb(iommu, did_old, 0, 0, 2099 DMA_TLB_DSI_FLUSH); 2100 } 2101 } 2102 2103 context_clear_entry(context); 2104 2105 if (sm_supported(iommu)) { 2106 unsigned long pds; 2107 2108 WARN_ON(!table); 2109 2110 /* Setup the PASID DIR pointer: */ 2111 pds = context_get_sm_pds(table); 2112 context->lo = (u64)virt_to_phys(table->table) | 2113 context_pdts(pds); 2114 2115 /* Setup the RID_PASID field: */ 2116 context_set_sm_rid2pasid(context, PASID_RID2PASID); 2117 2118 /* 2119 * Setup the Device-TLB enable bit and Page request 2120 * Enable bit: 2121 */ 2122 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); 2123 if (info && info->ats_supported) 2124 context_set_sm_dte(context); 2125 if (info && info->pri_supported) 2126 context_set_sm_pre(context); 2127 } else { 2128 struct dma_pte *pgd = domain->pgd; 2129 int agaw; 2130 2131 context_set_domain_id(context, did); 2132 2133 if (translation != CONTEXT_TT_PASS_THROUGH) { 2134 /* 2135 * Skip top levels of page tables for iommu which has 2136 * less agaw than default. Unnecessary for PT mode. 2137 */ 2138 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { 2139 ret = -ENOMEM; 2140 pgd = phys_to_virt(dma_pte_addr(pgd)); 2141 if (!dma_pte_present(pgd)) 2142 goto out_unlock; 2143 } 2144 2145 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); 2146 if (info && info->ats_supported) 2147 translation = CONTEXT_TT_DEV_IOTLB; 2148 else 2149 translation = CONTEXT_TT_MULTI_LEVEL; 2150 2151 context_set_address_root(context, virt_to_phys(pgd)); 2152 context_set_address_width(context, agaw); 2153 } else { 2154 /* 2155 * In pass through mode, AW must be programmed to 2156 * indicate the largest AGAW value supported by 2157 * hardware. And ASR is ignored by hardware. 2158 */ 2159 context_set_address_width(context, iommu->msagaw); 2160 } 2161 2162 context_set_translation_type(context, translation); 2163 } 2164 2165 context_set_fault_enable(context); 2166 context_set_present(context); 2167 if (!ecap_coherent(iommu->ecap)) 2168 clflush_cache_range(context, sizeof(*context)); 2169 2170 /* 2171 * It's a non-present to present mapping. If hardware doesn't cache 2172 * non-present entry we only need to flush the write-buffer. If the 2173 * _does_ cache non-present entries, then it does so in the special 2174 * domain #0, which we have to flush: 2175 */ 2176 if (cap_caching_mode(iommu->cap)) { 2177 iommu->flush.flush_context(iommu, 0, 2178 (((u16)bus) << 8) | devfn, 2179 DMA_CCMD_MASK_NOBIT, 2180 DMA_CCMD_DEVICE_INVL); 2181 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH); 2182 } else { 2183 iommu_flush_write_buffer(iommu); 2184 } 2185 iommu_enable_dev_iotlb(info); 2186 2187 ret = 0; 2188 2189 out_unlock: 2190 spin_unlock(&iommu->lock); 2191 spin_unlock_irqrestore(&device_domain_lock, flags); 2192 2193 return ret; 2194 } 2195 2196 struct domain_context_mapping_data { 2197 struct dmar_domain *domain; 2198 struct intel_iommu *iommu; 2199 struct pasid_table *table; 2200 }; 2201 2202 static int domain_context_mapping_cb(struct pci_dev *pdev, 2203 u16 alias, void *opaque) 2204 { 2205 struct domain_context_mapping_data *data = opaque; 2206 2207 return domain_context_mapping_one(data->domain, data->iommu, 2208 data->table, PCI_BUS_NUM(alias), 2209 alias & 0xff); 2210 } 2211 2212 static int 2213 domain_context_mapping(struct dmar_domain *domain, struct device *dev) 2214 { 2215 struct domain_context_mapping_data data; 2216 struct pasid_table *table; 2217 struct intel_iommu *iommu; 2218 u8 bus, devfn; 2219 2220 iommu = device_to_iommu(dev, &bus, &devfn); 2221 if (!iommu) 2222 return -ENODEV; 2223 2224 table = intel_pasid_get_table(dev); 2225 2226 if (!dev_is_pci(dev)) 2227 return domain_context_mapping_one(domain, iommu, table, 2228 bus, devfn); 2229 2230 data.domain = domain; 2231 data.iommu = iommu; 2232 data.table = table; 2233 2234 return pci_for_each_dma_alias(to_pci_dev(dev), 2235 &domain_context_mapping_cb, &data); 2236 } 2237 2238 static int domain_context_mapped_cb(struct pci_dev *pdev, 2239 u16 alias, void *opaque) 2240 { 2241 struct intel_iommu *iommu = opaque; 2242 2243 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff); 2244 } 2245 2246 static int domain_context_mapped(struct device *dev) 2247 { 2248 struct intel_iommu *iommu; 2249 u8 bus, devfn; 2250 2251 iommu = device_to_iommu(dev, &bus, &devfn); 2252 if (!iommu) 2253 return -ENODEV; 2254 2255 if (!dev_is_pci(dev)) 2256 return device_context_mapped(iommu, bus, devfn); 2257 2258 return !pci_for_each_dma_alias(to_pci_dev(dev), 2259 domain_context_mapped_cb, iommu); 2260 } 2261 2262 /* Returns a number of VTD pages, but aligned to MM page size */ 2263 static inline unsigned long aligned_nrpages(unsigned long host_addr, 2264 size_t size) 2265 { 2266 host_addr &= ~PAGE_MASK; 2267 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; 2268 } 2269 2270 /* Return largest possible superpage level for a given mapping */ 2271 static inline int hardware_largepage_caps(struct dmar_domain *domain, 2272 unsigned long iov_pfn, 2273 unsigned long phy_pfn, 2274 unsigned long pages) 2275 { 2276 int support, level = 1; 2277 unsigned long pfnmerge; 2278 2279 support = domain->iommu_superpage; 2280 2281 /* To use a large page, the virtual *and* physical addresses 2282 must be aligned to 2MiB/1GiB/etc. Lower bits set in either 2283 of them will mean we have to use smaller pages. So just 2284 merge them and check both at once. */ 2285 pfnmerge = iov_pfn | phy_pfn; 2286 2287 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { 2288 pages >>= VTD_STRIDE_SHIFT; 2289 if (!pages) 2290 break; 2291 pfnmerge >>= VTD_STRIDE_SHIFT; 2292 level++; 2293 support--; 2294 } 2295 return level; 2296 } 2297 2298 /* 2299 * Ensure that old small page tables are removed to make room for superpage(s). 2300 * We're going to add new large pages, so make sure we don't remove their parent 2301 * tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared. 2302 */ 2303 static void switch_to_super_page(struct dmar_domain *domain, 2304 unsigned long start_pfn, 2305 unsigned long end_pfn, int level) 2306 { 2307 unsigned long lvl_pages = lvl_to_nr_pages(level); 2308 struct dma_pte *pte = NULL; 2309 int i; 2310 2311 while (start_pfn <= end_pfn) { 2312 if (!pte) 2313 pte = pfn_to_dma_pte(domain, start_pfn, &level); 2314 2315 if (dma_pte_present(pte)) { 2316 dma_pte_free_pagetable(domain, start_pfn, 2317 start_pfn + lvl_pages - 1, 2318 level + 1); 2319 2320 for_each_domain_iommu(i, domain) 2321 iommu_flush_iotlb_psi(g_iommus[i], domain, 2322 start_pfn, lvl_pages, 2323 0, 0); 2324 } 2325 2326 pte++; 2327 start_pfn += lvl_pages; 2328 if (first_pte_in_page(pte)) 2329 pte = NULL; 2330 } 2331 } 2332 2333 static int 2334 __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, 2335 unsigned long phys_pfn, unsigned long nr_pages, int prot) 2336 { 2337 unsigned int largepage_lvl = 0; 2338 unsigned long lvl_pages = 0; 2339 struct dma_pte *pte = NULL; 2340 phys_addr_t pteval; 2341 u64 attr; 2342 2343 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)); 2344 2345 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) 2346 return -EINVAL; 2347 2348 attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP); 2349 attr |= DMA_FL_PTE_PRESENT; 2350 if (domain_use_first_level(domain)) { 2351 attr |= DMA_FL_PTE_XD | DMA_FL_PTE_US; 2352 2353 if (domain->domain.type == IOMMU_DOMAIN_DMA) { 2354 attr |= DMA_FL_PTE_ACCESS; 2355 if (prot & DMA_PTE_WRITE) 2356 attr |= DMA_FL_PTE_DIRTY; 2357 } 2358 } 2359 2360 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr; 2361 2362 while (nr_pages > 0) { 2363 uint64_t tmp; 2364 2365 if (!pte) { 2366 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, 2367 phys_pfn, nr_pages); 2368 2369 pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl); 2370 if (!pte) 2371 return -ENOMEM; 2372 /* It is large page*/ 2373 if (largepage_lvl > 1) { 2374 unsigned long end_pfn; 2375 2376 pteval |= DMA_PTE_LARGE_PAGE; 2377 end_pfn = ((iov_pfn + nr_pages) & level_mask(largepage_lvl)) - 1; 2378 switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl); 2379 } else { 2380 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; 2381 } 2382 2383 } 2384 /* We don't need lock here, nobody else 2385 * touches the iova range 2386 */ 2387 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); 2388 if (tmp) { 2389 static int dumps = 5; 2390 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", 2391 iov_pfn, tmp, (unsigned long long)pteval); 2392 if (dumps) { 2393 dumps--; 2394 debug_dma_dump_mappings(NULL); 2395 } 2396 WARN_ON(1); 2397 } 2398 2399 lvl_pages = lvl_to_nr_pages(largepage_lvl); 2400 2401 BUG_ON(nr_pages < lvl_pages); 2402 2403 nr_pages -= lvl_pages; 2404 iov_pfn += lvl_pages; 2405 phys_pfn += lvl_pages; 2406 pteval += lvl_pages * VTD_PAGE_SIZE; 2407 2408 /* If the next PTE would be the first in a new page, then we 2409 * need to flush the cache on the entries we've just written. 2410 * And then we'll need to recalculate 'pte', so clear it and 2411 * let it get set again in the if (!pte) block above. 2412 * 2413 * If we're done (!nr_pages) we need to flush the cache too. 2414 * 2415 * Also if we've been setting superpages, we may need to 2416 * recalculate 'pte' and switch back to smaller pages for the 2417 * end of the mapping, if the trailing size is not enough to 2418 * use another superpage (i.e. nr_pages < lvl_pages). 2419 * 2420 * We leave clflush for the leaf pte changes to iotlb_sync_map() 2421 * callback. 2422 */ 2423 pte++; 2424 if (!nr_pages || first_pte_in_page(pte) || 2425 (largepage_lvl > 1 && nr_pages < lvl_pages)) 2426 pte = NULL; 2427 } 2428 2429 return 0; 2430 } 2431 2432 static void domain_context_clear_one(struct device_domain_info *info, u8 bus, u8 devfn) 2433 { 2434 struct intel_iommu *iommu = info->iommu; 2435 struct context_entry *context; 2436 unsigned long flags; 2437 u16 did_old; 2438 2439 if (!iommu) 2440 return; 2441 2442 spin_lock_irqsave(&iommu->lock, flags); 2443 context = iommu_context_addr(iommu, bus, devfn, 0); 2444 if (!context) { 2445 spin_unlock_irqrestore(&iommu->lock, flags); 2446 return; 2447 } 2448 2449 if (sm_supported(iommu)) { 2450 if (hw_pass_through && domain_type_is_si(info->domain)) 2451 did_old = FLPT_DEFAULT_DID; 2452 else 2453 did_old = info->domain->iommu_did[iommu->seq_id]; 2454 } else { 2455 did_old = context_domain_id(context); 2456 } 2457 2458 context_clear_entry(context); 2459 __iommu_flush_cache(iommu, context, sizeof(*context)); 2460 spin_unlock_irqrestore(&iommu->lock, flags); 2461 iommu->flush.flush_context(iommu, 2462 did_old, 2463 (((u16)bus) << 8) | devfn, 2464 DMA_CCMD_MASK_NOBIT, 2465 DMA_CCMD_DEVICE_INVL); 2466 2467 if (sm_supported(iommu)) 2468 qi_flush_pasid_cache(iommu, did_old, QI_PC_ALL_PASIDS, 0); 2469 2470 iommu->flush.flush_iotlb(iommu, 2471 did_old, 2472 0, 2473 0, 2474 DMA_TLB_DSI_FLUSH); 2475 2476 __iommu_flush_dev_iotlb(info, 0, MAX_AGAW_PFN_WIDTH); 2477 } 2478 2479 static inline void unlink_domain_info(struct device_domain_info *info) 2480 { 2481 assert_spin_locked(&device_domain_lock); 2482 list_del(&info->link); 2483 list_del(&info->global); 2484 if (info->dev) 2485 dev_iommu_priv_set(info->dev, NULL); 2486 } 2487 2488 static void domain_remove_dev_info(struct dmar_domain *domain) 2489 { 2490 struct device_domain_info *info, *tmp; 2491 unsigned long flags; 2492 2493 spin_lock_irqsave(&device_domain_lock, flags); 2494 list_for_each_entry_safe(info, tmp, &domain->devices, link) 2495 __dmar_remove_one_dev_info(info); 2496 spin_unlock_irqrestore(&device_domain_lock, flags); 2497 } 2498 2499 struct dmar_domain *find_domain(struct device *dev) 2500 { 2501 struct device_domain_info *info; 2502 2503 if (unlikely(!dev || !dev->iommu)) 2504 return NULL; 2505 2506 if (unlikely(attach_deferred(dev))) 2507 return NULL; 2508 2509 /* No lock here, assumes no domain exit in normal case */ 2510 info = get_domain_info(dev); 2511 if (likely(info)) 2512 return info->domain; 2513 2514 return NULL; 2515 } 2516 2517 static inline struct device_domain_info * 2518 dmar_search_domain_by_dev_info(int segment, int bus, int devfn) 2519 { 2520 struct device_domain_info *info; 2521 2522 list_for_each_entry(info, &device_domain_list, global) 2523 if (info->segment == segment && info->bus == bus && 2524 info->devfn == devfn) 2525 return info; 2526 2527 return NULL; 2528 } 2529 2530 static int domain_setup_first_level(struct intel_iommu *iommu, 2531 struct dmar_domain *domain, 2532 struct device *dev, 2533 u32 pasid) 2534 { 2535 struct dma_pte *pgd = domain->pgd; 2536 int agaw, level; 2537 int flags = 0; 2538 2539 /* 2540 * Skip top levels of page tables for iommu which has 2541 * less agaw than default. Unnecessary for PT mode. 2542 */ 2543 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { 2544 pgd = phys_to_virt(dma_pte_addr(pgd)); 2545 if (!dma_pte_present(pgd)) 2546 return -ENOMEM; 2547 } 2548 2549 level = agaw_to_level(agaw); 2550 if (level != 4 && level != 5) 2551 return -EINVAL; 2552 2553 if (pasid != PASID_RID2PASID) 2554 flags |= PASID_FLAG_SUPERVISOR_MODE; 2555 if (level == 5) 2556 flags |= PASID_FLAG_FL5LP; 2557 2558 if (domain->domain.type == IOMMU_DOMAIN_UNMANAGED) 2559 flags |= PASID_FLAG_PAGE_SNOOP; 2560 2561 return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid, 2562 domain->iommu_did[iommu->seq_id], 2563 flags); 2564 } 2565 2566 static bool dev_is_real_dma_subdevice(struct device *dev) 2567 { 2568 return dev && dev_is_pci(dev) && 2569 pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev); 2570 } 2571 2572 static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu, 2573 int bus, int devfn, 2574 struct device *dev, 2575 struct dmar_domain *domain) 2576 { 2577 struct dmar_domain *found = NULL; 2578 struct device_domain_info *info; 2579 unsigned long flags; 2580 int ret; 2581 2582 info = alloc_devinfo_mem(); 2583 if (!info) 2584 return NULL; 2585 2586 if (!dev_is_real_dma_subdevice(dev)) { 2587 info->bus = bus; 2588 info->devfn = devfn; 2589 info->segment = iommu->segment; 2590 } else { 2591 struct pci_dev *pdev = to_pci_dev(dev); 2592 2593 info->bus = pdev->bus->number; 2594 info->devfn = pdev->devfn; 2595 info->segment = pci_domain_nr(pdev->bus); 2596 } 2597 2598 info->ats_supported = info->pasid_supported = info->pri_supported = 0; 2599 info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0; 2600 info->ats_qdep = 0; 2601 info->dev = dev; 2602 info->domain = domain; 2603 info->iommu = iommu; 2604 info->pasid_table = NULL; 2605 info->auxd_enabled = 0; 2606 INIT_LIST_HEAD(&info->subdevices); 2607 2608 if (dev && dev_is_pci(dev)) { 2609 struct pci_dev *pdev = to_pci_dev(info->dev); 2610 2611 if (ecap_dev_iotlb_support(iommu->ecap) && 2612 pci_ats_supported(pdev) && 2613 dmar_find_matched_atsr_unit(pdev)) 2614 info->ats_supported = 1; 2615 2616 if (sm_supported(iommu)) { 2617 if (pasid_supported(iommu)) { 2618 int features = pci_pasid_features(pdev); 2619 if (features >= 0) 2620 info->pasid_supported = features | 1; 2621 } 2622 2623 if (info->ats_supported && ecap_prs(iommu->ecap) && 2624 pci_pri_supported(pdev)) 2625 info->pri_supported = 1; 2626 } 2627 } 2628 2629 spin_lock_irqsave(&device_domain_lock, flags); 2630 if (dev) 2631 found = find_domain(dev); 2632 2633 if (!found) { 2634 struct device_domain_info *info2; 2635 info2 = dmar_search_domain_by_dev_info(info->segment, info->bus, 2636 info->devfn); 2637 if (info2) { 2638 found = info2->domain; 2639 info2->dev = dev; 2640 } 2641 } 2642 2643 if (found) { 2644 spin_unlock_irqrestore(&device_domain_lock, flags); 2645 free_devinfo_mem(info); 2646 /* Caller must free the original domain */ 2647 return found; 2648 } 2649 2650 spin_lock(&iommu->lock); 2651 ret = domain_attach_iommu(domain, iommu); 2652 spin_unlock(&iommu->lock); 2653 2654 if (ret) { 2655 spin_unlock_irqrestore(&device_domain_lock, flags); 2656 free_devinfo_mem(info); 2657 return NULL; 2658 } 2659 2660 list_add(&info->link, &domain->devices); 2661 list_add(&info->global, &device_domain_list); 2662 if (dev) 2663 dev_iommu_priv_set(dev, info); 2664 spin_unlock_irqrestore(&device_domain_lock, flags); 2665 2666 /* PASID table is mandatory for a PCI device in scalable mode. */ 2667 if (dev && dev_is_pci(dev) && sm_supported(iommu)) { 2668 ret = intel_pasid_alloc_table(dev); 2669 if (ret) { 2670 dev_err(dev, "PASID table allocation failed\n"); 2671 dmar_remove_one_dev_info(dev); 2672 return NULL; 2673 } 2674 2675 /* Setup the PASID entry for requests without PASID: */ 2676 spin_lock_irqsave(&iommu->lock, flags); 2677 if (hw_pass_through && domain_type_is_si(domain)) 2678 ret = intel_pasid_setup_pass_through(iommu, domain, 2679 dev, PASID_RID2PASID); 2680 else if (domain_use_first_level(domain)) 2681 ret = domain_setup_first_level(iommu, domain, dev, 2682 PASID_RID2PASID); 2683 else 2684 ret = intel_pasid_setup_second_level(iommu, domain, 2685 dev, PASID_RID2PASID); 2686 spin_unlock_irqrestore(&iommu->lock, flags); 2687 if (ret) { 2688 dev_err(dev, "Setup RID2PASID failed\n"); 2689 dmar_remove_one_dev_info(dev); 2690 return NULL; 2691 } 2692 } 2693 2694 if (dev && domain_context_mapping(domain, dev)) { 2695 dev_err(dev, "Domain context map failed\n"); 2696 dmar_remove_one_dev_info(dev); 2697 return NULL; 2698 } 2699 2700 return domain; 2701 } 2702 2703 static int iommu_domain_identity_map(struct dmar_domain *domain, 2704 unsigned long first_vpfn, 2705 unsigned long last_vpfn) 2706 { 2707 /* 2708 * RMRR range might have overlap with physical memory range, 2709 * clear it first 2710 */ 2711 dma_pte_clear_range(domain, first_vpfn, last_vpfn); 2712 2713 return __domain_mapping(domain, first_vpfn, 2714 first_vpfn, last_vpfn - first_vpfn + 1, 2715 DMA_PTE_READ|DMA_PTE_WRITE); 2716 } 2717 2718 static int md_domain_init(struct dmar_domain *domain, int guest_width); 2719 2720 static int __init si_domain_init(int hw) 2721 { 2722 struct dmar_rmrr_unit *rmrr; 2723 struct device *dev; 2724 int i, nid, ret; 2725 2726 si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY); 2727 if (!si_domain) 2728 return -EFAULT; 2729 2730 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { 2731 domain_exit(si_domain); 2732 return -EFAULT; 2733 } 2734 2735 if (hw) 2736 return 0; 2737 2738 for_each_online_node(nid) { 2739 unsigned long start_pfn, end_pfn; 2740 int i; 2741 2742 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 2743 ret = iommu_domain_identity_map(si_domain, 2744 mm_to_dma_pfn(start_pfn), 2745 mm_to_dma_pfn(end_pfn)); 2746 if (ret) 2747 return ret; 2748 } 2749 } 2750 2751 /* 2752 * Identity map the RMRRs so that devices with RMRRs could also use 2753 * the si_domain. 2754 */ 2755 for_each_rmrr_units(rmrr) { 2756 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, 2757 i, dev) { 2758 unsigned long long start = rmrr->base_address; 2759 unsigned long long end = rmrr->end_address; 2760 2761 if (WARN_ON(end < start || 2762 end >> agaw_to_width(si_domain->agaw))) 2763 continue; 2764 2765 ret = iommu_domain_identity_map(si_domain, 2766 mm_to_dma_pfn(start >> PAGE_SHIFT), 2767 mm_to_dma_pfn(end >> PAGE_SHIFT)); 2768 if (ret) 2769 return ret; 2770 } 2771 } 2772 2773 return 0; 2774 } 2775 2776 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev) 2777 { 2778 struct dmar_domain *ndomain; 2779 struct intel_iommu *iommu; 2780 u8 bus, devfn; 2781 2782 iommu = device_to_iommu(dev, &bus, &devfn); 2783 if (!iommu) 2784 return -ENODEV; 2785 2786 ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain); 2787 if (ndomain != domain) 2788 return -EBUSY; 2789 2790 return 0; 2791 } 2792 2793 static bool device_has_rmrr(struct device *dev) 2794 { 2795 struct dmar_rmrr_unit *rmrr; 2796 struct device *tmp; 2797 int i; 2798 2799 rcu_read_lock(); 2800 for_each_rmrr_units(rmrr) { 2801 /* 2802 * Return TRUE if this RMRR contains the device that 2803 * is passed in. 2804 */ 2805 for_each_active_dev_scope(rmrr->devices, 2806 rmrr->devices_cnt, i, tmp) 2807 if (tmp == dev || 2808 is_downstream_to_pci_bridge(dev, tmp)) { 2809 rcu_read_unlock(); 2810 return true; 2811 } 2812 } 2813 rcu_read_unlock(); 2814 return false; 2815 } 2816 2817 /** 2818 * device_rmrr_is_relaxable - Test whether the RMRR of this device 2819 * is relaxable (ie. is allowed to be not enforced under some conditions) 2820 * @dev: device handle 2821 * 2822 * We assume that PCI USB devices with RMRRs have them largely 2823 * for historical reasons and that the RMRR space is not actively used post 2824 * boot. This exclusion may change if vendors begin to abuse it. 2825 * 2826 * The same exception is made for graphics devices, with the requirement that 2827 * any use of the RMRR regions will be torn down before assigning the device 2828 * to a guest. 2829 * 2830 * Return: true if the RMRR is relaxable, false otherwise 2831 */ 2832 static bool device_rmrr_is_relaxable(struct device *dev) 2833 { 2834 struct pci_dev *pdev; 2835 2836 if (!dev_is_pci(dev)) 2837 return false; 2838 2839 pdev = to_pci_dev(dev); 2840 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev)) 2841 return true; 2842 else 2843 return false; 2844 } 2845 2846 /* 2847 * There are a couple cases where we need to restrict the functionality of 2848 * devices associated with RMRRs. The first is when evaluating a device for 2849 * identity mapping because problems exist when devices are moved in and out 2850 * of domains and their respective RMRR information is lost. This means that 2851 * a device with associated RMRRs will never be in a "passthrough" domain. 2852 * The second is use of the device through the IOMMU API. This interface 2853 * expects to have full control of the IOVA space for the device. We cannot 2854 * satisfy both the requirement that RMRR access is maintained and have an 2855 * unencumbered IOVA space. We also have no ability to quiesce the device's 2856 * use of the RMRR space or even inform the IOMMU API user of the restriction. 2857 * We therefore prevent devices associated with an RMRR from participating in 2858 * the IOMMU API, which eliminates them from device assignment. 2859 * 2860 * In both cases, devices which have relaxable RMRRs are not concerned by this 2861 * restriction. See device_rmrr_is_relaxable comment. 2862 */ 2863 static bool device_is_rmrr_locked(struct device *dev) 2864 { 2865 if (!device_has_rmrr(dev)) 2866 return false; 2867 2868 if (device_rmrr_is_relaxable(dev)) 2869 return false; 2870 2871 return true; 2872 } 2873 2874 /* 2875 * Return the required default domain type for a specific device. 2876 * 2877 * @dev: the device in query 2878 * @startup: true if this is during early boot 2879 * 2880 * Returns: 2881 * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain 2882 * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain 2883 * - 0: both identity and dynamic domains work for this device 2884 */ 2885 static int device_def_domain_type(struct device *dev) 2886 { 2887 if (dev_is_pci(dev)) { 2888 struct pci_dev *pdev = to_pci_dev(dev); 2889 2890 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) 2891 return IOMMU_DOMAIN_IDENTITY; 2892 2893 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) 2894 return IOMMU_DOMAIN_IDENTITY; 2895 } 2896 2897 return 0; 2898 } 2899 2900 static void intel_iommu_init_qi(struct intel_iommu *iommu) 2901 { 2902 /* 2903 * Start from the sane iommu hardware state. 2904 * If the queued invalidation is already initialized by us 2905 * (for example, while enabling interrupt-remapping) then 2906 * we got the things already rolling from a sane state. 2907 */ 2908 if (!iommu->qi) { 2909 /* 2910 * Clear any previous faults. 2911 */ 2912 dmar_fault(-1, iommu); 2913 /* 2914 * Disable queued invalidation if supported and already enabled 2915 * before OS handover. 2916 */ 2917 dmar_disable_qi(iommu); 2918 } 2919 2920 if (dmar_enable_qi(iommu)) { 2921 /* 2922 * Queued Invalidate not enabled, use Register Based Invalidate 2923 */ 2924 iommu->flush.flush_context = __iommu_flush_context; 2925 iommu->flush.flush_iotlb = __iommu_flush_iotlb; 2926 pr_info("%s: Using Register based invalidation\n", 2927 iommu->name); 2928 } else { 2929 iommu->flush.flush_context = qi_flush_context; 2930 iommu->flush.flush_iotlb = qi_flush_iotlb; 2931 pr_info("%s: Using Queued invalidation\n", iommu->name); 2932 } 2933 } 2934 2935 static int copy_context_table(struct intel_iommu *iommu, 2936 struct root_entry *old_re, 2937 struct context_entry **tbl, 2938 int bus, bool ext) 2939 { 2940 int tbl_idx, pos = 0, idx, devfn, ret = 0, did; 2941 struct context_entry *new_ce = NULL, ce; 2942 struct context_entry *old_ce = NULL; 2943 struct root_entry re; 2944 phys_addr_t old_ce_phys; 2945 2946 tbl_idx = ext ? bus * 2 : bus; 2947 memcpy(&re, old_re, sizeof(re)); 2948 2949 for (devfn = 0; devfn < 256; devfn++) { 2950 /* First calculate the correct index */ 2951 idx = (ext ? devfn * 2 : devfn) % 256; 2952 2953 if (idx == 0) { 2954 /* First save what we may have and clean up */ 2955 if (new_ce) { 2956 tbl[tbl_idx] = new_ce; 2957 __iommu_flush_cache(iommu, new_ce, 2958 VTD_PAGE_SIZE); 2959 pos = 1; 2960 } 2961 2962 if (old_ce) 2963 memunmap(old_ce); 2964 2965 ret = 0; 2966 if (devfn < 0x80) 2967 old_ce_phys = root_entry_lctp(&re); 2968 else 2969 old_ce_phys = root_entry_uctp(&re); 2970 2971 if (!old_ce_phys) { 2972 if (ext && devfn == 0) { 2973 /* No LCTP, try UCTP */ 2974 devfn = 0x7f; 2975 continue; 2976 } else { 2977 goto out; 2978 } 2979 } 2980 2981 ret = -ENOMEM; 2982 old_ce = memremap(old_ce_phys, PAGE_SIZE, 2983 MEMREMAP_WB); 2984 if (!old_ce) 2985 goto out; 2986 2987 new_ce = alloc_pgtable_page(iommu->node); 2988 if (!new_ce) 2989 goto out_unmap; 2990 2991 ret = 0; 2992 } 2993 2994 /* Now copy the context entry */ 2995 memcpy(&ce, old_ce + idx, sizeof(ce)); 2996 2997 if (!__context_present(&ce)) 2998 continue; 2999 3000 did = context_domain_id(&ce); 3001 if (did >= 0 && did < cap_ndoms(iommu->cap)) 3002 set_bit(did, iommu->domain_ids); 3003 3004 /* 3005 * We need a marker for copied context entries. This 3006 * marker needs to work for the old format as well as 3007 * for extended context entries. 3008 * 3009 * Bit 67 of the context entry is used. In the old 3010 * format this bit is available to software, in the 3011 * extended format it is the PGE bit, but PGE is ignored 3012 * by HW if PASIDs are disabled (and thus still 3013 * available). 3014 * 3015 * So disable PASIDs first and then mark the entry 3016 * copied. This means that we don't copy PASID 3017 * translations from the old kernel, but this is fine as 3018 * faults there are not fatal. 3019 */ 3020 context_clear_pasid_enable(&ce); 3021 context_set_copied(&ce); 3022 3023 new_ce[idx] = ce; 3024 } 3025 3026 tbl[tbl_idx + pos] = new_ce; 3027 3028 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE); 3029 3030 out_unmap: 3031 memunmap(old_ce); 3032 3033 out: 3034 return ret; 3035 } 3036 3037 static int copy_translation_tables(struct intel_iommu *iommu) 3038 { 3039 struct context_entry **ctxt_tbls; 3040 struct root_entry *old_rt; 3041 phys_addr_t old_rt_phys; 3042 int ctxt_table_entries; 3043 unsigned long flags; 3044 u64 rtaddr_reg; 3045 int bus, ret; 3046 bool new_ext, ext; 3047 3048 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG); 3049 ext = !!(rtaddr_reg & DMA_RTADDR_RTT); 3050 new_ext = !!ecap_ecs(iommu->ecap); 3051 3052 /* 3053 * The RTT bit can only be changed when translation is disabled, 3054 * but disabling translation means to open a window for data 3055 * corruption. So bail out and don't copy anything if we would 3056 * have to change the bit. 3057 */ 3058 if (new_ext != ext) 3059 return -EINVAL; 3060 3061 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK; 3062 if (!old_rt_phys) 3063 return -EINVAL; 3064 3065 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB); 3066 if (!old_rt) 3067 return -ENOMEM; 3068 3069 /* This is too big for the stack - allocate it from slab */ 3070 ctxt_table_entries = ext ? 512 : 256; 3071 ret = -ENOMEM; 3072 ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL); 3073 if (!ctxt_tbls) 3074 goto out_unmap; 3075 3076 for (bus = 0; bus < 256; bus++) { 3077 ret = copy_context_table(iommu, &old_rt[bus], 3078 ctxt_tbls, bus, ext); 3079 if (ret) { 3080 pr_err("%s: Failed to copy context table for bus %d\n", 3081 iommu->name, bus); 3082 continue; 3083 } 3084 } 3085 3086 spin_lock_irqsave(&iommu->lock, flags); 3087 3088 /* Context tables are copied, now write them to the root_entry table */ 3089 for (bus = 0; bus < 256; bus++) { 3090 int idx = ext ? bus * 2 : bus; 3091 u64 val; 3092 3093 if (ctxt_tbls[idx]) { 3094 val = virt_to_phys(ctxt_tbls[idx]) | 1; 3095 iommu->root_entry[bus].lo = val; 3096 } 3097 3098 if (!ext || !ctxt_tbls[idx + 1]) 3099 continue; 3100 3101 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1; 3102 iommu->root_entry[bus].hi = val; 3103 } 3104 3105 spin_unlock_irqrestore(&iommu->lock, flags); 3106 3107 kfree(ctxt_tbls); 3108 3109 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE); 3110 3111 ret = 0; 3112 3113 out_unmap: 3114 memunmap(old_rt); 3115 3116 return ret; 3117 } 3118 3119 #ifdef CONFIG_INTEL_IOMMU_SVM 3120 static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data) 3121 { 3122 struct intel_iommu *iommu = data; 3123 ioasid_t ioasid; 3124 3125 if (!iommu) 3126 return INVALID_IOASID; 3127 /* 3128 * VT-d virtual command interface always uses the full 20 bit 3129 * PASID range. Host can partition guest PASID range based on 3130 * policies but it is out of guest's control. 3131 */ 3132 if (min < PASID_MIN || max > intel_pasid_max_id) 3133 return INVALID_IOASID; 3134 3135 if (vcmd_alloc_pasid(iommu, &ioasid)) 3136 return INVALID_IOASID; 3137 3138 return ioasid; 3139 } 3140 3141 static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data) 3142 { 3143 struct intel_iommu *iommu = data; 3144 3145 if (!iommu) 3146 return; 3147 /* 3148 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO 3149 * We can only free the PASID when all the devices are unbound. 3150 */ 3151 if (ioasid_find(NULL, ioasid, NULL)) { 3152 pr_alert("Cannot free active IOASID %d\n", ioasid); 3153 return; 3154 } 3155 vcmd_free_pasid(iommu, ioasid); 3156 } 3157 3158 static void register_pasid_allocator(struct intel_iommu *iommu) 3159 { 3160 /* 3161 * If we are running in the host, no need for custom allocator 3162 * in that PASIDs are allocated from the host system-wide. 3163 */ 3164 if (!cap_caching_mode(iommu->cap)) 3165 return; 3166 3167 if (!sm_supported(iommu)) { 3168 pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n"); 3169 return; 3170 } 3171 3172 /* 3173 * Register a custom PASID allocator if we are running in a guest, 3174 * guest PASID must be obtained via virtual command interface. 3175 * There can be multiple vIOMMUs in each guest but only one allocator 3176 * is active. All vIOMMU allocators will eventually be calling the same 3177 * host allocator. 3178 */ 3179 if (!vccap_pasid(iommu->vccap)) 3180 return; 3181 3182 pr_info("Register custom PASID allocator\n"); 3183 iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc; 3184 iommu->pasid_allocator.free = intel_vcmd_ioasid_free; 3185 iommu->pasid_allocator.pdata = (void *)iommu; 3186 if (ioasid_register_allocator(&iommu->pasid_allocator)) { 3187 pr_warn("Custom PASID allocator failed, scalable mode disabled\n"); 3188 /* 3189 * Disable scalable mode on this IOMMU if there 3190 * is no custom allocator. Mixing SM capable vIOMMU 3191 * and non-SM vIOMMU are not supported. 3192 */ 3193 intel_iommu_sm = 0; 3194 } 3195 } 3196 #endif 3197 3198 static int __init init_dmars(void) 3199 { 3200 struct dmar_drhd_unit *drhd; 3201 struct intel_iommu *iommu; 3202 int ret; 3203 3204 /* 3205 * for each drhd 3206 * allocate root 3207 * initialize and program root entry to not present 3208 * endfor 3209 */ 3210 for_each_drhd_unit(drhd) { 3211 /* 3212 * lock not needed as this is only incremented in the single 3213 * threaded kernel __init code path all other access are read 3214 * only 3215 */ 3216 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) { 3217 g_num_of_iommus++; 3218 continue; 3219 } 3220 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED); 3221 } 3222 3223 /* Preallocate enough resources for IOMMU hot-addition */ 3224 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) 3225 g_num_of_iommus = DMAR_UNITS_SUPPORTED; 3226 3227 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), 3228 GFP_KERNEL); 3229 if (!g_iommus) { 3230 pr_err("Allocating global iommu array failed\n"); 3231 ret = -ENOMEM; 3232 goto error; 3233 } 3234 3235 ret = intel_cap_audit(CAP_AUDIT_STATIC_DMAR, NULL); 3236 if (ret) 3237 goto free_iommu; 3238 3239 for_each_iommu(iommu, drhd) { 3240 if (drhd->ignored) { 3241 iommu_disable_translation(iommu); 3242 continue; 3243 } 3244 3245 /* 3246 * Find the max pasid size of all IOMMU's in the system. 3247 * We need to ensure the system pasid table is no bigger 3248 * than the smallest supported. 3249 */ 3250 if (pasid_supported(iommu)) { 3251 u32 temp = 2 << ecap_pss(iommu->ecap); 3252 3253 intel_pasid_max_id = min_t(u32, temp, 3254 intel_pasid_max_id); 3255 } 3256 3257 g_iommus[iommu->seq_id] = iommu; 3258 3259 intel_iommu_init_qi(iommu); 3260 3261 ret = iommu_init_domains(iommu); 3262 if (ret) 3263 goto free_iommu; 3264 3265 init_translation_status(iommu); 3266 3267 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) { 3268 iommu_disable_translation(iommu); 3269 clear_translation_pre_enabled(iommu); 3270 pr_warn("Translation was enabled for %s but we are not in kdump mode\n", 3271 iommu->name); 3272 } 3273 3274 /* 3275 * TBD: 3276 * we could share the same root & context tables 3277 * among all IOMMU's. Need to Split it later. 3278 */ 3279 ret = iommu_alloc_root_entry(iommu); 3280 if (ret) 3281 goto free_iommu; 3282 3283 if (translation_pre_enabled(iommu)) { 3284 pr_info("Translation already enabled - trying to copy translation structures\n"); 3285 3286 ret = copy_translation_tables(iommu); 3287 if (ret) { 3288 /* 3289 * We found the IOMMU with translation 3290 * enabled - but failed to copy over the 3291 * old root-entry table. Try to proceed 3292 * by disabling translation now and 3293 * allocating a clean root-entry table. 3294 * This might cause DMAR faults, but 3295 * probably the dump will still succeed. 3296 */ 3297 pr_err("Failed to copy translation tables from previous kernel for %s\n", 3298 iommu->name); 3299 iommu_disable_translation(iommu); 3300 clear_translation_pre_enabled(iommu); 3301 } else { 3302 pr_info("Copied translation tables from previous kernel for %s\n", 3303 iommu->name); 3304 } 3305 } 3306 3307 if (!ecap_pass_through(iommu->ecap)) 3308 hw_pass_through = 0; 3309 intel_svm_check(iommu); 3310 } 3311 3312 /* 3313 * Now that qi is enabled on all iommus, set the root entry and flush 3314 * caches. This is required on some Intel X58 chipsets, otherwise the 3315 * flush_context function will loop forever and the boot hangs. 3316 */ 3317 for_each_active_iommu(iommu, drhd) { 3318 iommu_flush_write_buffer(iommu); 3319 #ifdef CONFIG_INTEL_IOMMU_SVM 3320 register_pasid_allocator(iommu); 3321 #endif 3322 iommu_set_root_entry(iommu); 3323 } 3324 3325 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA 3326 dmar_map_gfx = 0; 3327 #endif 3328 3329 if (!dmar_map_gfx) 3330 iommu_identity_mapping |= IDENTMAP_GFX; 3331 3332 check_tylersburg_isoch(); 3333 3334 ret = si_domain_init(hw_pass_through); 3335 if (ret) 3336 goto free_iommu; 3337 3338 /* 3339 * for each drhd 3340 * enable fault log 3341 * global invalidate context cache 3342 * global invalidate iotlb 3343 * enable translation 3344 */ 3345 for_each_iommu(iommu, drhd) { 3346 if (drhd->ignored) { 3347 /* 3348 * we always have to disable PMRs or DMA may fail on 3349 * this device 3350 */ 3351 if (force_on) 3352 iommu_disable_protect_mem_regions(iommu); 3353 continue; 3354 } 3355 3356 iommu_flush_write_buffer(iommu); 3357 3358 #ifdef CONFIG_INTEL_IOMMU_SVM 3359 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { 3360 /* 3361 * Call dmar_alloc_hwirq() with dmar_global_lock held, 3362 * could cause possible lock race condition. 3363 */ 3364 up_write(&dmar_global_lock); 3365 ret = intel_svm_enable_prq(iommu); 3366 down_write(&dmar_global_lock); 3367 if (ret) 3368 goto free_iommu; 3369 } 3370 #endif 3371 ret = dmar_set_interrupt(iommu); 3372 if (ret) 3373 goto free_iommu; 3374 } 3375 3376 return 0; 3377 3378 free_iommu: 3379 for_each_active_iommu(iommu, drhd) { 3380 disable_dmar_iommu(iommu); 3381 free_dmar_iommu(iommu); 3382 } 3383 3384 kfree(g_iommus); 3385 3386 error: 3387 return ret; 3388 } 3389 3390 static inline int iommu_domain_cache_init(void) 3391 { 3392 int ret = 0; 3393 3394 iommu_domain_cache = kmem_cache_create("iommu_domain", 3395 sizeof(struct dmar_domain), 3396 0, 3397 SLAB_HWCACHE_ALIGN, 3398 3399 NULL); 3400 if (!iommu_domain_cache) { 3401 pr_err("Couldn't create iommu_domain cache\n"); 3402 ret = -ENOMEM; 3403 } 3404 3405 return ret; 3406 } 3407 3408 static inline int iommu_devinfo_cache_init(void) 3409 { 3410 int ret = 0; 3411 3412 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo", 3413 sizeof(struct device_domain_info), 3414 0, 3415 SLAB_HWCACHE_ALIGN, 3416 NULL); 3417 if (!iommu_devinfo_cache) { 3418 pr_err("Couldn't create devinfo cache\n"); 3419 ret = -ENOMEM; 3420 } 3421 3422 return ret; 3423 } 3424 3425 static int __init iommu_init_mempool(void) 3426 { 3427 int ret; 3428 ret = iova_cache_get(); 3429 if (ret) 3430 return ret; 3431 3432 ret = iommu_domain_cache_init(); 3433 if (ret) 3434 goto domain_error; 3435 3436 ret = iommu_devinfo_cache_init(); 3437 if (!ret) 3438 return ret; 3439 3440 kmem_cache_destroy(iommu_domain_cache); 3441 domain_error: 3442 iova_cache_put(); 3443 3444 return -ENOMEM; 3445 } 3446 3447 static void __init iommu_exit_mempool(void) 3448 { 3449 kmem_cache_destroy(iommu_devinfo_cache); 3450 kmem_cache_destroy(iommu_domain_cache); 3451 iova_cache_put(); 3452 } 3453 3454 static void __init init_no_remapping_devices(void) 3455 { 3456 struct dmar_drhd_unit *drhd; 3457 struct device *dev; 3458 int i; 3459 3460 for_each_drhd_unit(drhd) { 3461 if (!drhd->include_all) { 3462 for_each_active_dev_scope(drhd->devices, 3463 drhd->devices_cnt, i, dev) 3464 break; 3465 /* ignore DMAR unit if no devices exist */ 3466 if (i == drhd->devices_cnt) 3467 drhd->ignored = 1; 3468 } 3469 } 3470 3471 for_each_active_drhd_unit(drhd) { 3472 if (drhd->include_all) 3473 continue; 3474 3475 for_each_active_dev_scope(drhd->devices, 3476 drhd->devices_cnt, i, dev) 3477 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev))) 3478 break; 3479 if (i < drhd->devices_cnt) 3480 continue; 3481 3482 /* This IOMMU has *only* gfx devices. Either bypass it or 3483 set the gfx_mapped flag, as appropriate */ 3484 drhd->gfx_dedicated = 1; 3485 if (!dmar_map_gfx) 3486 drhd->ignored = 1; 3487 } 3488 } 3489 3490 #ifdef CONFIG_SUSPEND 3491 static int init_iommu_hw(void) 3492 { 3493 struct dmar_drhd_unit *drhd; 3494 struct intel_iommu *iommu = NULL; 3495 3496 for_each_active_iommu(iommu, drhd) 3497 if (iommu->qi) 3498 dmar_reenable_qi(iommu); 3499 3500 for_each_iommu(iommu, drhd) { 3501 if (drhd->ignored) { 3502 /* 3503 * we always have to disable PMRs or DMA may fail on 3504 * this device 3505 */ 3506 if (force_on) 3507 iommu_disable_protect_mem_regions(iommu); 3508 continue; 3509 } 3510 3511 iommu_flush_write_buffer(iommu); 3512 iommu_set_root_entry(iommu); 3513 iommu_enable_translation(iommu); 3514 iommu_disable_protect_mem_regions(iommu); 3515 } 3516 3517 return 0; 3518 } 3519 3520 static void iommu_flush_all(void) 3521 { 3522 struct dmar_drhd_unit *drhd; 3523 struct intel_iommu *iommu; 3524 3525 for_each_active_iommu(iommu, drhd) { 3526 iommu->flush.flush_context(iommu, 0, 0, 0, 3527 DMA_CCMD_GLOBAL_INVL); 3528 iommu->flush.flush_iotlb(iommu, 0, 0, 0, 3529 DMA_TLB_GLOBAL_FLUSH); 3530 } 3531 } 3532 3533 static int iommu_suspend(void) 3534 { 3535 struct dmar_drhd_unit *drhd; 3536 struct intel_iommu *iommu = NULL; 3537 unsigned long flag; 3538 3539 for_each_active_iommu(iommu, drhd) { 3540 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32), 3541 GFP_KERNEL); 3542 if (!iommu->iommu_state) 3543 goto nomem; 3544 } 3545 3546 iommu_flush_all(); 3547 3548 for_each_active_iommu(iommu, drhd) { 3549 iommu_disable_translation(iommu); 3550 3551 raw_spin_lock_irqsave(&iommu->register_lock, flag); 3552 3553 iommu->iommu_state[SR_DMAR_FECTL_REG] = 3554 readl(iommu->reg + DMAR_FECTL_REG); 3555 iommu->iommu_state[SR_DMAR_FEDATA_REG] = 3556 readl(iommu->reg + DMAR_FEDATA_REG); 3557 iommu->iommu_state[SR_DMAR_FEADDR_REG] = 3558 readl(iommu->reg + DMAR_FEADDR_REG); 3559 iommu->iommu_state[SR_DMAR_FEUADDR_REG] = 3560 readl(iommu->reg + DMAR_FEUADDR_REG); 3561 3562 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 3563 } 3564 return 0; 3565 3566 nomem: 3567 for_each_active_iommu(iommu, drhd) 3568 kfree(iommu->iommu_state); 3569 3570 return -ENOMEM; 3571 } 3572 3573 static void iommu_resume(void) 3574 { 3575 struct dmar_drhd_unit *drhd; 3576 struct intel_iommu *iommu = NULL; 3577 unsigned long flag; 3578 3579 if (init_iommu_hw()) { 3580 if (force_on) 3581 panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); 3582 else 3583 WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); 3584 return; 3585 } 3586 3587 for_each_active_iommu(iommu, drhd) { 3588 3589 raw_spin_lock_irqsave(&iommu->register_lock, flag); 3590 3591 writel(iommu->iommu_state[SR_DMAR_FECTL_REG], 3592 iommu->reg + DMAR_FECTL_REG); 3593 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], 3594 iommu->reg + DMAR_FEDATA_REG); 3595 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], 3596 iommu->reg + DMAR_FEADDR_REG); 3597 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], 3598 iommu->reg + DMAR_FEUADDR_REG); 3599 3600 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 3601 } 3602 3603 for_each_active_iommu(iommu, drhd) 3604 kfree(iommu->iommu_state); 3605 } 3606 3607 static struct syscore_ops iommu_syscore_ops = { 3608 .resume = iommu_resume, 3609 .suspend = iommu_suspend, 3610 }; 3611 3612 static void __init init_iommu_pm_ops(void) 3613 { 3614 register_syscore_ops(&iommu_syscore_ops); 3615 } 3616 3617 #else 3618 static inline void init_iommu_pm_ops(void) {} 3619 #endif /* CONFIG_PM */ 3620 3621 static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr) 3622 { 3623 if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) || 3624 !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) || 3625 rmrr->end_address <= rmrr->base_address || 3626 arch_rmrr_sanity_check(rmrr)) 3627 return -EINVAL; 3628 3629 return 0; 3630 } 3631 3632 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg) 3633 { 3634 struct acpi_dmar_reserved_memory *rmrr; 3635 struct dmar_rmrr_unit *rmrru; 3636 3637 rmrr = (struct acpi_dmar_reserved_memory *)header; 3638 if (rmrr_sanity_check(rmrr)) { 3639 pr_warn(FW_BUG 3640 "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n" 3641 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 3642 rmrr->base_address, rmrr->end_address, 3643 dmi_get_system_info(DMI_BIOS_VENDOR), 3644 dmi_get_system_info(DMI_BIOS_VERSION), 3645 dmi_get_system_info(DMI_PRODUCT_VERSION)); 3646 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 3647 } 3648 3649 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); 3650 if (!rmrru) 3651 goto out; 3652 3653 rmrru->hdr = header; 3654 3655 rmrru->base_address = rmrr->base_address; 3656 rmrru->end_address = rmrr->end_address; 3657 3658 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1), 3659 ((void *)rmrr) + rmrr->header.length, 3660 &rmrru->devices_cnt); 3661 if (rmrru->devices_cnt && rmrru->devices == NULL) 3662 goto free_rmrru; 3663 3664 list_add(&rmrru->list, &dmar_rmrr_units); 3665 3666 return 0; 3667 free_rmrru: 3668 kfree(rmrru); 3669 out: 3670 return -ENOMEM; 3671 } 3672 3673 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr) 3674 { 3675 struct dmar_atsr_unit *atsru; 3676 struct acpi_dmar_atsr *tmp; 3677 3678 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list, 3679 dmar_rcu_check()) { 3680 tmp = (struct acpi_dmar_atsr *)atsru->hdr; 3681 if (atsr->segment != tmp->segment) 3682 continue; 3683 if (atsr->header.length != tmp->header.length) 3684 continue; 3685 if (memcmp(atsr, tmp, atsr->header.length) == 0) 3686 return atsru; 3687 } 3688 3689 return NULL; 3690 } 3691 3692 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3693 { 3694 struct acpi_dmar_atsr *atsr; 3695 struct dmar_atsr_unit *atsru; 3696 3697 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) 3698 return 0; 3699 3700 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3701 atsru = dmar_find_atsr(atsr); 3702 if (atsru) 3703 return 0; 3704 3705 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL); 3706 if (!atsru) 3707 return -ENOMEM; 3708 3709 /* 3710 * If memory is allocated from slab by ACPI _DSM method, we need to 3711 * copy the memory content because the memory buffer will be freed 3712 * on return. 3713 */ 3714 atsru->hdr = (void *)(atsru + 1); 3715 memcpy(atsru->hdr, hdr, hdr->length); 3716 atsru->include_all = atsr->flags & 0x1; 3717 if (!atsru->include_all) { 3718 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1), 3719 (void *)atsr + atsr->header.length, 3720 &atsru->devices_cnt); 3721 if (atsru->devices_cnt && atsru->devices == NULL) { 3722 kfree(atsru); 3723 return -ENOMEM; 3724 } 3725 } 3726 3727 list_add_rcu(&atsru->list, &dmar_atsr_units); 3728 3729 return 0; 3730 } 3731 3732 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru) 3733 { 3734 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt); 3735 kfree(atsru); 3736 } 3737 3738 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3739 { 3740 struct acpi_dmar_atsr *atsr; 3741 struct dmar_atsr_unit *atsru; 3742 3743 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3744 atsru = dmar_find_atsr(atsr); 3745 if (atsru) { 3746 list_del_rcu(&atsru->list); 3747 synchronize_rcu(); 3748 intel_iommu_free_atsr(atsru); 3749 } 3750 3751 return 0; 3752 } 3753 3754 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3755 { 3756 int i; 3757 struct device *dev; 3758 struct acpi_dmar_atsr *atsr; 3759 struct dmar_atsr_unit *atsru; 3760 3761 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3762 atsru = dmar_find_atsr(atsr); 3763 if (!atsru) 3764 return 0; 3765 3766 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) { 3767 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt, 3768 i, dev) 3769 return -EBUSY; 3770 } 3771 3772 return 0; 3773 } 3774 3775 static struct dmar_satc_unit *dmar_find_satc(struct acpi_dmar_satc *satc) 3776 { 3777 struct dmar_satc_unit *satcu; 3778 struct acpi_dmar_satc *tmp; 3779 3780 list_for_each_entry_rcu(satcu, &dmar_satc_units, list, 3781 dmar_rcu_check()) { 3782 tmp = (struct acpi_dmar_satc *)satcu->hdr; 3783 if (satc->segment != tmp->segment) 3784 continue; 3785 if (satc->header.length != tmp->header.length) 3786 continue; 3787 if (memcmp(satc, tmp, satc->header.length) == 0) 3788 return satcu; 3789 } 3790 3791 return NULL; 3792 } 3793 3794 int dmar_parse_one_satc(struct acpi_dmar_header *hdr, void *arg) 3795 { 3796 struct acpi_dmar_satc *satc; 3797 struct dmar_satc_unit *satcu; 3798 3799 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) 3800 return 0; 3801 3802 satc = container_of(hdr, struct acpi_dmar_satc, header); 3803 satcu = dmar_find_satc(satc); 3804 if (satcu) 3805 return 0; 3806 3807 satcu = kzalloc(sizeof(*satcu) + hdr->length, GFP_KERNEL); 3808 if (!satcu) 3809 return -ENOMEM; 3810 3811 satcu->hdr = (void *)(satcu + 1); 3812 memcpy(satcu->hdr, hdr, hdr->length); 3813 satcu->atc_required = satc->flags & 0x1; 3814 satcu->devices = dmar_alloc_dev_scope((void *)(satc + 1), 3815 (void *)satc + satc->header.length, 3816 &satcu->devices_cnt); 3817 if (satcu->devices_cnt && !satcu->devices) { 3818 kfree(satcu); 3819 return -ENOMEM; 3820 } 3821 list_add_rcu(&satcu->list, &dmar_satc_units); 3822 3823 return 0; 3824 } 3825 3826 static int intel_iommu_add(struct dmar_drhd_unit *dmaru) 3827 { 3828 int sp, ret; 3829 struct intel_iommu *iommu = dmaru->iommu; 3830 3831 if (g_iommus[iommu->seq_id]) 3832 return 0; 3833 3834 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_DMAR, iommu); 3835 if (ret) 3836 goto out; 3837 3838 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) { 3839 pr_warn("%s: Doesn't support hardware pass through.\n", 3840 iommu->name); 3841 return -ENXIO; 3842 } 3843 if (!ecap_sc_support(iommu->ecap) && 3844 domain_update_iommu_snooping(iommu)) { 3845 pr_warn("%s: Doesn't support snooping.\n", 3846 iommu->name); 3847 return -ENXIO; 3848 } 3849 sp = domain_update_iommu_superpage(NULL, iommu) - 1; 3850 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) { 3851 pr_warn("%s: Doesn't support large page.\n", 3852 iommu->name); 3853 return -ENXIO; 3854 } 3855 3856 /* 3857 * Disable translation if already enabled prior to OS handover. 3858 */ 3859 if (iommu->gcmd & DMA_GCMD_TE) 3860 iommu_disable_translation(iommu); 3861 3862 g_iommus[iommu->seq_id] = iommu; 3863 ret = iommu_init_domains(iommu); 3864 if (ret == 0) 3865 ret = iommu_alloc_root_entry(iommu); 3866 if (ret) 3867 goto out; 3868 3869 intel_svm_check(iommu); 3870 3871 if (dmaru->ignored) { 3872 /* 3873 * we always have to disable PMRs or DMA may fail on this device 3874 */ 3875 if (force_on) 3876 iommu_disable_protect_mem_regions(iommu); 3877 return 0; 3878 } 3879 3880 intel_iommu_init_qi(iommu); 3881 iommu_flush_write_buffer(iommu); 3882 3883 #ifdef CONFIG_INTEL_IOMMU_SVM 3884 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { 3885 ret = intel_svm_enable_prq(iommu); 3886 if (ret) 3887 goto disable_iommu; 3888 } 3889 #endif 3890 ret = dmar_set_interrupt(iommu); 3891 if (ret) 3892 goto disable_iommu; 3893 3894 iommu_set_root_entry(iommu); 3895 iommu_enable_translation(iommu); 3896 3897 iommu_disable_protect_mem_regions(iommu); 3898 return 0; 3899 3900 disable_iommu: 3901 disable_dmar_iommu(iommu); 3902 out: 3903 free_dmar_iommu(iommu); 3904 return ret; 3905 } 3906 3907 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 3908 { 3909 int ret = 0; 3910 struct intel_iommu *iommu = dmaru->iommu; 3911 3912 if (!intel_iommu_enabled) 3913 return 0; 3914 if (iommu == NULL) 3915 return -EINVAL; 3916 3917 if (insert) { 3918 ret = intel_iommu_add(dmaru); 3919 } else { 3920 disable_dmar_iommu(iommu); 3921 free_dmar_iommu(iommu); 3922 } 3923 3924 return ret; 3925 } 3926 3927 static void intel_iommu_free_dmars(void) 3928 { 3929 struct dmar_rmrr_unit *rmrru, *rmrr_n; 3930 struct dmar_atsr_unit *atsru, *atsr_n; 3931 struct dmar_satc_unit *satcu, *satc_n; 3932 3933 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) { 3934 list_del(&rmrru->list); 3935 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt); 3936 kfree(rmrru); 3937 } 3938 3939 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) { 3940 list_del(&atsru->list); 3941 intel_iommu_free_atsr(atsru); 3942 } 3943 list_for_each_entry_safe(satcu, satc_n, &dmar_satc_units, list) { 3944 list_del(&satcu->list); 3945 dmar_free_dev_scope(&satcu->devices, &satcu->devices_cnt); 3946 kfree(satcu); 3947 } 3948 } 3949 3950 int dmar_find_matched_atsr_unit(struct pci_dev *dev) 3951 { 3952 int i, ret = 1; 3953 struct pci_bus *bus; 3954 struct pci_dev *bridge = NULL; 3955 struct device *tmp; 3956 struct acpi_dmar_atsr *atsr; 3957 struct dmar_atsr_unit *atsru; 3958 3959 dev = pci_physfn(dev); 3960 for (bus = dev->bus; bus; bus = bus->parent) { 3961 bridge = bus->self; 3962 /* If it's an integrated device, allow ATS */ 3963 if (!bridge) 3964 return 1; 3965 /* Connected via non-PCIe: no ATS */ 3966 if (!pci_is_pcie(bridge) || 3967 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) 3968 return 0; 3969 /* If we found the root port, look it up in the ATSR */ 3970 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) 3971 break; 3972 } 3973 3974 rcu_read_lock(); 3975 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) { 3976 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); 3977 if (atsr->segment != pci_domain_nr(dev->bus)) 3978 continue; 3979 3980 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp) 3981 if (tmp == &bridge->dev) 3982 goto out; 3983 3984 if (atsru->include_all) 3985 goto out; 3986 } 3987 ret = 0; 3988 out: 3989 rcu_read_unlock(); 3990 3991 return ret; 3992 } 3993 3994 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info) 3995 { 3996 int ret; 3997 struct dmar_rmrr_unit *rmrru; 3998 struct dmar_atsr_unit *atsru; 3999 struct dmar_satc_unit *satcu; 4000 struct acpi_dmar_atsr *atsr; 4001 struct acpi_dmar_reserved_memory *rmrr; 4002 struct acpi_dmar_satc *satc; 4003 4004 if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING) 4005 return 0; 4006 4007 list_for_each_entry(rmrru, &dmar_rmrr_units, list) { 4008 rmrr = container_of(rmrru->hdr, 4009 struct acpi_dmar_reserved_memory, header); 4010 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 4011 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1), 4012 ((void *)rmrr) + rmrr->header.length, 4013 rmrr->segment, rmrru->devices, 4014 rmrru->devices_cnt); 4015 if (ret < 0) 4016 return ret; 4017 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 4018 dmar_remove_dev_scope(info, rmrr->segment, 4019 rmrru->devices, rmrru->devices_cnt); 4020 } 4021 } 4022 4023 list_for_each_entry(atsru, &dmar_atsr_units, list) { 4024 if (atsru->include_all) 4025 continue; 4026 4027 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); 4028 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 4029 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1), 4030 (void *)atsr + atsr->header.length, 4031 atsr->segment, atsru->devices, 4032 atsru->devices_cnt); 4033 if (ret > 0) 4034 break; 4035 else if (ret < 0) 4036 return ret; 4037 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 4038 if (dmar_remove_dev_scope(info, atsr->segment, 4039 atsru->devices, atsru->devices_cnt)) 4040 break; 4041 } 4042 } 4043 list_for_each_entry(satcu, &dmar_satc_units, list) { 4044 satc = container_of(satcu->hdr, struct acpi_dmar_satc, header); 4045 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 4046 ret = dmar_insert_dev_scope(info, (void *)(satc + 1), 4047 (void *)satc + satc->header.length, 4048 satc->segment, satcu->devices, 4049 satcu->devices_cnt); 4050 if (ret > 0) 4051 break; 4052 else if (ret < 0) 4053 return ret; 4054 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 4055 if (dmar_remove_dev_scope(info, satc->segment, 4056 satcu->devices, satcu->devices_cnt)) 4057 break; 4058 } 4059 } 4060 4061 return 0; 4062 } 4063 4064 static int intel_iommu_memory_notifier(struct notifier_block *nb, 4065 unsigned long val, void *v) 4066 { 4067 struct memory_notify *mhp = v; 4068 unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn); 4069 unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn + 4070 mhp->nr_pages - 1); 4071 4072 switch (val) { 4073 case MEM_GOING_ONLINE: 4074 if (iommu_domain_identity_map(si_domain, 4075 start_vpfn, last_vpfn)) { 4076 pr_warn("Failed to build identity map for [%lx-%lx]\n", 4077 start_vpfn, last_vpfn); 4078 return NOTIFY_BAD; 4079 } 4080 break; 4081 4082 case MEM_OFFLINE: 4083 case MEM_CANCEL_ONLINE: 4084 { 4085 struct dmar_drhd_unit *drhd; 4086 struct intel_iommu *iommu; 4087 struct page *freelist; 4088 4089 freelist = domain_unmap(si_domain, 4090 start_vpfn, last_vpfn, 4091 NULL); 4092 4093 rcu_read_lock(); 4094 for_each_active_iommu(iommu, drhd) 4095 iommu_flush_iotlb_psi(iommu, si_domain, 4096 start_vpfn, mhp->nr_pages, 4097 !freelist, 0); 4098 rcu_read_unlock(); 4099 dma_free_pagelist(freelist); 4100 } 4101 break; 4102 } 4103 4104 return NOTIFY_OK; 4105 } 4106 4107 static struct notifier_block intel_iommu_memory_nb = { 4108 .notifier_call = intel_iommu_memory_notifier, 4109 .priority = 0 4110 }; 4111 4112 static void intel_disable_iommus(void) 4113 { 4114 struct intel_iommu *iommu = NULL; 4115 struct dmar_drhd_unit *drhd; 4116 4117 for_each_iommu(iommu, drhd) 4118 iommu_disable_translation(iommu); 4119 } 4120 4121 void intel_iommu_shutdown(void) 4122 { 4123 struct dmar_drhd_unit *drhd; 4124 struct intel_iommu *iommu = NULL; 4125 4126 if (no_iommu || dmar_disabled) 4127 return; 4128 4129 down_write(&dmar_global_lock); 4130 4131 /* Disable PMRs explicitly here. */ 4132 for_each_iommu(iommu, drhd) 4133 iommu_disable_protect_mem_regions(iommu); 4134 4135 /* Make sure the IOMMUs are switched off */ 4136 intel_disable_iommus(); 4137 4138 up_write(&dmar_global_lock); 4139 } 4140 4141 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev) 4142 { 4143 struct iommu_device *iommu_dev = dev_to_iommu_device(dev); 4144 4145 return container_of(iommu_dev, struct intel_iommu, iommu); 4146 } 4147 4148 static ssize_t version_show(struct device *dev, 4149 struct device_attribute *attr, char *buf) 4150 { 4151 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 4152 u32 ver = readl(iommu->reg + DMAR_VER_REG); 4153 return sprintf(buf, "%d:%d\n", 4154 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver)); 4155 } 4156 static DEVICE_ATTR_RO(version); 4157 4158 static ssize_t address_show(struct device *dev, 4159 struct device_attribute *attr, char *buf) 4160 { 4161 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 4162 return sprintf(buf, "%llx\n", iommu->reg_phys); 4163 } 4164 static DEVICE_ATTR_RO(address); 4165 4166 static ssize_t cap_show(struct device *dev, 4167 struct device_attribute *attr, char *buf) 4168 { 4169 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 4170 return sprintf(buf, "%llx\n", iommu->cap); 4171 } 4172 static DEVICE_ATTR_RO(cap); 4173 4174 static ssize_t ecap_show(struct device *dev, 4175 struct device_attribute *attr, char *buf) 4176 { 4177 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 4178 return sprintf(buf, "%llx\n", iommu->ecap); 4179 } 4180 static DEVICE_ATTR_RO(ecap); 4181 4182 static ssize_t domains_supported_show(struct device *dev, 4183 struct device_attribute *attr, char *buf) 4184 { 4185 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 4186 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap)); 4187 } 4188 static DEVICE_ATTR_RO(domains_supported); 4189 4190 static ssize_t domains_used_show(struct device *dev, 4191 struct device_attribute *attr, char *buf) 4192 { 4193 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 4194 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids, 4195 cap_ndoms(iommu->cap))); 4196 } 4197 static DEVICE_ATTR_RO(domains_used); 4198 4199 static struct attribute *intel_iommu_attrs[] = { 4200 &dev_attr_version.attr, 4201 &dev_attr_address.attr, 4202 &dev_attr_cap.attr, 4203 &dev_attr_ecap.attr, 4204 &dev_attr_domains_supported.attr, 4205 &dev_attr_domains_used.attr, 4206 NULL, 4207 }; 4208 4209 static struct attribute_group intel_iommu_group = { 4210 .name = "intel-iommu", 4211 .attrs = intel_iommu_attrs, 4212 }; 4213 4214 const struct attribute_group *intel_iommu_groups[] = { 4215 &intel_iommu_group, 4216 NULL, 4217 }; 4218 4219 static inline bool has_external_pci(void) 4220 { 4221 struct pci_dev *pdev = NULL; 4222 4223 for_each_pci_dev(pdev) 4224 if (pdev->external_facing) 4225 return true; 4226 4227 return false; 4228 } 4229 4230 static int __init platform_optin_force_iommu(void) 4231 { 4232 if (!dmar_platform_optin() || no_platform_optin || !has_external_pci()) 4233 return 0; 4234 4235 if (no_iommu || dmar_disabled) 4236 pr_info("Intel-IOMMU force enabled due to platform opt in\n"); 4237 4238 /* 4239 * If Intel-IOMMU is disabled by default, we will apply identity 4240 * map for all devices except those marked as being untrusted. 4241 */ 4242 if (dmar_disabled) 4243 iommu_set_default_passthrough(false); 4244 4245 dmar_disabled = 0; 4246 no_iommu = 0; 4247 4248 return 1; 4249 } 4250 4251 static int __init probe_acpi_namespace_devices(void) 4252 { 4253 struct dmar_drhd_unit *drhd; 4254 /* To avoid a -Wunused-but-set-variable warning. */ 4255 struct intel_iommu *iommu __maybe_unused; 4256 struct device *dev; 4257 int i, ret = 0; 4258 4259 for_each_active_iommu(iommu, drhd) { 4260 for_each_active_dev_scope(drhd->devices, 4261 drhd->devices_cnt, i, dev) { 4262 struct acpi_device_physical_node *pn; 4263 struct iommu_group *group; 4264 struct acpi_device *adev; 4265 4266 if (dev->bus != &acpi_bus_type) 4267 continue; 4268 4269 adev = to_acpi_device(dev); 4270 mutex_lock(&adev->physical_node_lock); 4271 list_for_each_entry(pn, 4272 &adev->physical_node_list, node) { 4273 group = iommu_group_get(pn->dev); 4274 if (group) { 4275 iommu_group_put(group); 4276 continue; 4277 } 4278 4279 pn->dev->bus->iommu_ops = &intel_iommu_ops; 4280 ret = iommu_probe_device(pn->dev); 4281 if (ret) 4282 break; 4283 } 4284 mutex_unlock(&adev->physical_node_lock); 4285 4286 if (ret) 4287 return ret; 4288 } 4289 } 4290 4291 return 0; 4292 } 4293 4294 int __init intel_iommu_init(void) 4295 { 4296 int ret = -ENODEV; 4297 struct dmar_drhd_unit *drhd; 4298 struct intel_iommu *iommu; 4299 4300 /* 4301 * Intel IOMMU is required for a TXT/tboot launch or platform 4302 * opt in, so enforce that. 4303 */ 4304 force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) || 4305 platform_optin_force_iommu(); 4306 4307 if (iommu_init_mempool()) { 4308 if (force_on) 4309 panic("tboot: Failed to initialize iommu memory\n"); 4310 return -ENOMEM; 4311 } 4312 4313 down_write(&dmar_global_lock); 4314 if (dmar_table_init()) { 4315 if (force_on) 4316 panic("tboot: Failed to initialize DMAR table\n"); 4317 goto out_free_dmar; 4318 } 4319 4320 if (dmar_dev_scope_init() < 0) { 4321 if (force_on) 4322 panic("tboot: Failed to initialize DMAR device scope\n"); 4323 goto out_free_dmar; 4324 } 4325 4326 up_write(&dmar_global_lock); 4327 4328 /* 4329 * The bus notifier takes the dmar_global_lock, so lockdep will 4330 * complain later when we register it under the lock. 4331 */ 4332 dmar_register_bus_notifier(); 4333 4334 down_write(&dmar_global_lock); 4335 4336 if (!no_iommu) 4337 intel_iommu_debugfs_init(); 4338 4339 if (no_iommu || dmar_disabled) { 4340 /* 4341 * We exit the function here to ensure IOMMU's remapping and 4342 * mempool aren't setup, which means that the IOMMU's PMRs 4343 * won't be disabled via the call to init_dmars(). So disable 4344 * it explicitly here. The PMRs were setup by tboot prior to 4345 * calling SENTER, but the kernel is expected to reset/tear 4346 * down the PMRs. 4347 */ 4348 if (intel_iommu_tboot_noforce) { 4349 for_each_iommu(iommu, drhd) 4350 iommu_disable_protect_mem_regions(iommu); 4351 } 4352 4353 /* 4354 * Make sure the IOMMUs are switched off, even when we 4355 * boot into a kexec kernel and the previous kernel left 4356 * them enabled 4357 */ 4358 intel_disable_iommus(); 4359 goto out_free_dmar; 4360 } 4361 4362 if (list_empty(&dmar_rmrr_units)) 4363 pr_info("No RMRR found\n"); 4364 4365 if (list_empty(&dmar_atsr_units)) 4366 pr_info("No ATSR found\n"); 4367 4368 if (list_empty(&dmar_satc_units)) 4369 pr_info("No SATC found\n"); 4370 4371 if (dmar_map_gfx) 4372 intel_iommu_gfx_mapped = 1; 4373 4374 init_no_remapping_devices(); 4375 4376 ret = init_dmars(); 4377 if (ret) { 4378 if (force_on) 4379 panic("tboot: Failed to initialize DMARs\n"); 4380 pr_err("Initialization failed\n"); 4381 goto out_free_dmar; 4382 } 4383 up_write(&dmar_global_lock); 4384 4385 init_iommu_pm_ops(); 4386 4387 down_read(&dmar_global_lock); 4388 for_each_active_iommu(iommu, drhd) { 4389 /* 4390 * The flush queue implementation does not perform 4391 * page-selective invalidations that are required for efficient 4392 * TLB flushes in virtual environments. The benefit of batching 4393 * is likely to be much lower than the overhead of synchronizing 4394 * the virtual and physical IOMMU page-tables. 4395 */ 4396 if (!intel_iommu_strict && cap_caching_mode(iommu->cap)) { 4397 pr_warn("IOMMU batching is disabled due to virtualization"); 4398 intel_iommu_strict = 1; 4399 } 4400 iommu_device_sysfs_add(&iommu->iommu, NULL, 4401 intel_iommu_groups, 4402 "%s", iommu->name); 4403 iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL); 4404 } 4405 up_read(&dmar_global_lock); 4406 4407 iommu_set_dma_strict(intel_iommu_strict); 4408 bus_set_iommu(&pci_bus_type, &intel_iommu_ops); 4409 if (si_domain && !hw_pass_through) 4410 register_memory_notifier(&intel_iommu_memory_nb); 4411 4412 down_read(&dmar_global_lock); 4413 if (probe_acpi_namespace_devices()) 4414 pr_warn("ACPI name space devices didn't probe correctly\n"); 4415 4416 /* Finally, we enable the DMA remapping hardware. */ 4417 for_each_iommu(iommu, drhd) { 4418 if (!drhd->ignored && !translation_pre_enabled(iommu)) 4419 iommu_enable_translation(iommu); 4420 4421 iommu_disable_protect_mem_regions(iommu); 4422 } 4423 up_read(&dmar_global_lock); 4424 4425 pr_info("Intel(R) Virtualization Technology for Directed I/O\n"); 4426 4427 intel_iommu_enabled = 1; 4428 4429 return 0; 4430 4431 out_free_dmar: 4432 intel_iommu_free_dmars(); 4433 up_write(&dmar_global_lock); 4434 iommu_exit_mempool(); 4435 return ret; 4436 } 4437 4438 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque) 4439 { 4440 struct device_domain_info *info = opaque; 4441 4442 domain_context_clear_one(info, PCI_BUS_NUM(alias), alias & 0xff); 4443 return 0; 4444 } 4445 4446 /* 4447 * NB - intel-iommu lacks any sort of reference counting for the users of 4448 * dependent devices. If multiple endpoints have intersecting dependent 4449 * devices, unbinding the driver from any one of them will possibly leave 4450 * the others unable to operate. 4451 */ 4452 static void domain_context_clear(struct device_domain_info *info) 4453 { 4454 if (!info->iommu || !info->dev || !dev_is_pci(info->dev)) 4455 return; 4456 4457 pci_for_each_dma_alias(to_pci_dev(info->dev), 4458 &domain_context_clear_one_cb, info); 4459 } 4460 4461 static void __dmar_remove_one_dev_info(struct device_domain_info *info) 4462 { 4463 struct dmar_domain *domain; 4464 struct intel_iommu *iommu; 4465 unsigned long flags; 4466 4467 assert_spin_locked(&device_domain_lock); 4468 4469 if (WARN_ON(!info)) 4470 return; 4471 4472 iommu = info->iommu; 4473 domain = info->domain; 4474 4475 if (info->dev && !dev_is_real_dma_subdevice(info->dev)) { 4476 if (dev_is_pci(info->dev) && sm_supported(iommu)) 4477 intel_pasid_tear_down_entry(iommu, info->dev, 4478 PASID_RID2PASID, false); 4479 4480 iommu_disable_dev_iotlb(info); 4481 domain_context_clear(info); 4482 intel_pasid_free_table(info->dev); 4483 } 4484 4485 unlink_domain_info(info); 4486 4487 spin_lock_irqsave(&iommu->lock, flags); 4488 domain_detach_iommu(domain, iommu); 4489 spin_unlock_irqrestore(&iommu->lock, flags); 4490 4491 free_devinfo_mem(info); 4492 } 4493 4494 static void dmar_remove_one_dev_info(struct device *dev) 4495 { 4496 struct device_domain_info *info; 4497 unsigned long flags; 4498 4499 spin_lock_irqsave(&device_domain_lock, flags); 4500 info = get_domain_info(dev); 4501 if (info) 4502 __dmar_remove_one_dev_info(info); 4503 spin_unlock_irqrestore(&device_domain_lock, flags); 4504 } 4505 4506 static int md_domain_init(struct dmar_domain *domain, int guest_width) 4507 { 4508 int adjust_width; 4509 4510 /* calculate AGAW */ 4511 domain->gaw = guest_width; 4512 adjust_width = guestwidth_to_adjustwidth(guest_width); 4513 domain->agaw = width_to_agaw(adjust_width); 4514 4515 domain->iommu_coherency = false; 4516 domain->iommu_snooping = false; 4517 domain->iommu_superpage = 0; 4518 domain->max_addr = 0; 4519 4520 /* always allocate the top pgd */ 4521 domain->pgd = alloc_pgtable_page(domain->nid); 4522 if (!domain->pgd) 4523 return -ENOMEM; 4524 domain_flush_cache(domain, domain->pgd, PAGE_SIZE); 4525 return 0; 4526 } 4527 4528 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type) 4529 { 4530 struct dmar_domain *dmar_domain; 4531 struct iommu_domain *domain; 4532 4533 switch (type) { 4534 case IOMMU_DOMAIN_DMA: 4535 case IOMMU_DOMAIN_UNMANAGED: 4536 dmar_domain = alloc_domain(0); 4537 if (!dmar_domain) { 4538 pr_err("Can't allocate dmar_domain\n"); 4539 return NULL; 4540 } 4541 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { 4542 pr_err("Domain initialization failed\n"); 4543 domain_exit(dmar_domain); 4544 return NULL; 4545 } 4546 4547 if (type == IOMMU_DOMAIN_DMA && 4548 iommu_get_dma_cookie(&dmar_domain->domain)) 4549 return NULL; 4550 4551 domain = &dmar_domain->domain; 4552 domain->geometry.aperture_start = 0; 4553 domain->geometry.aperture_end = 4554 __DOMAIN_MAX_ADDR(dmar_domain->gaw); 4555 domain->geometry.force_aperture = true; 4556 4557 return domain; 4558 case IOMMU_DOMAIN_IDENTITY: 4559 return &si_domain->domain; 4560 default: 4561 return NULL; 4562 } 4563 4564 return NULL; 4565 } 4566 4567 static void intel_iommu_domain_free(struct iommu_domain *domain) 4568 { 4569 if (domain != &si_domain->domain) 4570 domain_exit(to_dmar_domain(domain)); 4571 } 4572 4573 /* 4574 * Check whether a @domain could be attached to the @dev through the 4575 * aux-domain attach/detach APIs. 4576 */ 4577 static inline bool 4578 is_aux_domain(struct device *dev, struct iommu_domain *domain) 4579 { 4580 struct device_domain_info *info = get_domain_info(dev); 4581 4582 return info && info->auxd_enabled && 4583 domain->type == IOMMU_DOMAIN_UNMANAGED; 4584 } 4585 4586 static inline struct subdev_domain_info * 4587 lookup_subdev_info(struct dmar_domain *domain, struct device *dev) 4588 { 4589 struct subdev_domain_info *sinfo; 4590 4591 if (!list_empty(&domain->subdevices)) { 4592 list_for_each_entry(sinfo, &domain->subdevices, link_domain) { 4593 if (sinfo->pdev == dev) 4594 return sinfo; 4595 } 4596 } 4597 4598 return NULL; 4599 } 4600 4601 static int auxiliary_link_device(struct dmar_domain *domain, 4602 struct device *dev) 4603 { 4604 struct device_domain_info *info = get_domain_info(dev); 4605 struct subdev_domain_info *sinfo = lookup_subdev_info(domain, dev); 4606 4607 assert_spin_locked(&device_domain_lock); 4608 if (WARN_ON(!info)) 4609 return -EINVAL; 4610 4611 if (!sinfo) { 4612 sinfo = kzalloc(sizeof(*sinfo), GFP_ATOMIC); 4613 if (!sinfo) 4614 return -ENOMEM; 4615 sinfo->domain = domain; 4616 sinfo->pdev = dev; 4617 list_add(&sinfo->link_phys, &info->subdevices); 4618 list_add(&sinfo->link_domain, &domain->subdevices); 4619 } 4620 4621 return ++sinfo->users; 4622 } 4623 4624 static int auxiliary_unlink_device(struct dmar_domain *domain, 4625 struct device *dev) 4626 { 4627 struct device_domain_info *info = get_domain_info(dev); 4628 struct subdev_domain_info *sinfo = lookup_subdev_info(domain, dev); 4629 int ret; 4630 4631 assert_spin_locked(&device_domain_lock); 4632 if (WARN_ON(!info || !sinfo || sinfo->users <= 0)) 4633 return -EINVAL; 4634 4635 ret = --sinfo->users; 4636 if (!ret) { 4637 list_del(&sinfo->link_phys); 4638 list_del(&sinfo->link_domain); 4639 kfree(sinfo); 4640 } 4641 4642 return ret; 4643 } 4644 4645 static int aux_domain_add_dev(struct dmar_domain *domain, 4646 struct device *dev) 4647 { 4648 int ret; 4649 unsigned long flags; 4650 struct intel_iommu *iommu; 4651 4652 iommu = device_to_iommu(dev, NULL, NULL); 4653 if (!iommu) 4654 return -ENODEV; 4655 4656 if (domain->default_pasid <= 0) { 4657 u32 pasid; 4658 4659 /* No private data needed for the default pasid */ 4660 pasid = ioasid_alloc(NULL, PASID_MIN, 4661 pci_max_pasids(to_pci_dev(dev)) - 1, 4662 NULL); 4663 if (pasid == INVALID_IOASID) { 4664 pr_err("Can't allocate default pasid\n"); 4665 return -ENODEV; 4666 } 4667 domain->default_pasid = pasid; 4668 } 4669 4670 spin_lock_irqsave(&device_domain_lock, flags); 4671 ret = auxiliary_link_device(domain, dev); 4672 if (ret <= 0) 4673 goto link_failed; 4674 4675 /* 4676 * Subdevices from the same physical device can be attached to the 4677 * same domain. For such cases, only the first subdevice attachment 4678 * needs to go through the full steps in this function. So if ret > 4679 * 1, just goto out. 4680 */ 4681 if (ret > 1) 4682 goto out; 4683 4684 /* 4685 * iommu->lock must be held to attach domain to iommu and setup the 4686 * pasid entry for second level translation. 4687 */ 4688 spin_lock(&iommu->lock); 4689 ret = domain_attach_iommu(domain, iommu); 4690 if (ret) 4691 goto attach_failed; 4692 4693 /* Setup the PASID entry for mediated devices: */ 4694 if (domain_use_first_level(domain)) 4695 ret = domain_setup_first_level(iommu, domain, dev, 4696 domain->default_pasid); 4697 else 4698 ret = intel_pasid_setup_second_level(iommu, domain, dev, 4699 domain->default_pasid); 4700 if (ret) 4701 goto table_failed; 4702 4703 spin_unlock(&iommu->lock); 4704 out: 4705 spin_unlock_irqrestore(&device_domain_lock, flags); 4706 4707 return 0; 4708 4709 table_failed: 4710 domain_detach_iommu(domain, iommu); 4711 attach_failed: 4712 spin_unlock(&iommu->lock); 4713 auxiliary_unlink_device(domain, dev); 4714 link_failed: 4715 spin_unlock_irqrestore(&device_domain_lock, flags); 4716 if (list_empty(&domain->subdevices) && domain->default_pasid > 0) 4717 ioasid_put(domain->default_pasid); 4718 4719 return ret; 4720 } 4721 4722 static void aux_domain_remove_dev(struct dmar_domain *domain, 4723 struct device *dev) 4724 { 4725 struct device_domain_info *info; 4726 struct intel_iommu *iommu; 4727 unsigned long flags; 4728 4729 if (!is_aux_domain(dev, &domain->domain)) 4730 return; 4731 4732 spin_lock_irqsave(&device_domain_lock, flags); 4733 info = get_domain_info(dev); 4734 iommu = info->iommu; 4735 4736 if (!auxiliary_unlink_device(domain, dev)) { 4737 spin_lock(&iommu->lock); 4738 intel_pasid_tear_down_entry(iommu, dev, 4739 domain->default_pasid, false); 4740 domain_detach_iommu(domain, iommu); 4741 spin_unlock(&iommu->lock); 4742 } 4743 4744 spin_unlock_irqrestore(&device_domain_lock, flags); 4745 4746 if (list_empty(&domain->subdevices) && domain->default_pasid > 0) 4747 ioasid_put(domain->default_pasid); 4748 } 4749 4750 static int prepare_domain_attach_device(struct iommu_domain *domain, 4751 struct device *dev) 4752 { 4753 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4754 struct intel_iommu *iommu; 4755 int addr_width; 4756 4757 iommu = device_to_iommu(dev, NULL, NULL); 4758 if (!iommu) 4759 return -ENODEV; 4760 4761 if ((dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE) && 4762 !ecap_nest(iommu->ecap)) { 4763 dev_err(dev, "%s: iommu not support nested translation\n", 4764 iommu->name); 4765 return -EINVAL; 4766 } 4767 4768 /* check if this iommu agaw is sufficient for max mapped address */ 4769 addr_width = agaw_to_width(iommu->agaw); 4770 if (addr_width > cap_mgaw(iommu->cap)) 4771 addr_width = cap_mgaw(iommu->cap); 4772 4773 if (dmar_domain->max_addr > (1LL << addr_width)) { 4774 dev_err(dev, "%s: iommu width (%d) is not " 4775 "sufficient for the mapped address (%llx)\n", 4776 __func__, addr_width, dmar_domain->max_addr); 4777 return -EFAULT; 4778 } 4779 dmar_domain->gaw = addr_width; 4780 4781 /* 4782 * Knock out extra levels of page tables if necessary 4783 */ 4784 while (iommu->agaw < dmar_domain->agaw) { 4785 struct dma_pte *pte; 4786 4787 pte = dmar_domain->pgd; 4788 if (dma_pte_present(pte)) { 4789 dmar_domain->pgd = phys_to_virt(dma_pte_addr(pte)); 4790 free_pgtable_page(pte); 4791 } 4792 dmar_domain->agaw--; 4793 } 4794 4795 return 0; 4796 } 4797 4798 static int intel_iommu_attach_device(struct iommu_domain *domain, 4799 struct device *dev) 4800 { 4801 int ret; 4802 4803 if (domain->type == IOMMU_DOMAIN_UNMANAGED && 4804 device_is_rmrr_locked(dev)) { 4805 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n"); 4806 return -EPERM; 4807 } 4808 4809 if (is_aux_domain(dev, domain)) 4810 return -EPERM; 4811 4812 /* normally dev is not mapped */ 4813 if (unlikely(domain_context_mapped(dev))) { 4814 struct dmar_domain *old_domain; 4815 4816 old_domain = find_domain(dev); 4817 if (old_domain) 4818 dmar_remove_one_dev_info(dev); 4819 } 4820 4821 ret = prepare_domain_attach_device(domain, dev); 4822 if (ret) 4823 return ret; 4824 4825 return domain_add_dev_info(to_dmar_domain(domain), dev); 4826 } 4827 4828 static int intel_iommu_aux_attach_device(struct iommu_domain *domain, 4829 struct device *dev) 4830 { 4831 int ret; 4832 4833 if (!is_aux_domain(dev, domain)) 4834 return -EPERM; 4835 4836 ret = prepare_domain_attach_device(domain, dev); 4837 if (ret) 4838 return ret; 4839 4840 return aux_domain_add_dev(to_dmar_domain(domain), dev); 4841 } 4842 4843 static void intel_iommu_detach_device(struct iommu_domain *domain, 4844 struct device *dev) 4845 { 4846 dmar_remove_one_dev_info(dev); 4847 } 4848 4849 static void intel_iommu_aux_detach_device(struct iommu_domain *domain, 4850 struct device *dev) 4851 { 4852 aux_domain_remove_dev(to_dmar_domain(domain), dev); 4853 } 4854 4855 #ifdef CONFIG_INTEL_IOMMU_SVM 4856 /* 4857 * 2D array for converting and sanitizing IOMMU generic TLB granularity to 4858 * VT-d granularity. Invalidation is typically included in the unmap operation 4859 * as a result of DMA or VFIO unmap. However, for assigned devices guest 4860 * owns the first level page tables. Invalidations of translation caches in the 4861 * guest are trapped and passed down to the host. 4862 * 4863 * vIOMMU in the guest will only expose first level page tables, therefore 4864 * we do not support IOTLB granularity for request without PASID (second level). 4865 * 4866 * For example, to find the VT-d granularity encoding for IOTLB 4867 * type and page selective granularity within PASID: 4868 * X: indexed by iommu cache type 4869 * Y: indexed by enum iommu_inv_granularity 4870 * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR] 4871 */ 4872 4873 static const int 4874 inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = { 4875 /* 4876 * PASID based IOTLB invalidation: PASID selective (per PASID), 4877 * page selective (address granularity) 4878 */ 4879 {-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID}, 4880 /* PASID based dev TLBs */ 4881 {-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL}, 4882 /* PASID cache */ 4883 {-EINVAL, -EINVAL, -EINVAL} 4884 }; 4885 4886 static inline int to_vtd_granularity(int type, int granu) 4887 { 4888 return inv_type_granu_table[type][granu]; 4889 } 4890 4891 static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules) 4892 { 4893 u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT; 4894 4895 /* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc. 4896 * IOMMU cache invalidate API passes granu_size in bytes, and number of 4897 * granu size in contiguous memory. 4898 */ 4899 return order_base_2(nr_pages); 4900 } 4901 4902 static int 4903 intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev, 4904 struct iommu_cache_invalidate_info *inv_info) 4905 { 4906 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4907 struct device_domain_info *info; 4908 struct intel_iommu *iommu; 4909 unsigned long flags; 4910 int cache_type; 4911 u8 bus, devfn; 4912 u16 did, sid; 4913 int ret = 0; 4914 u64 size = 0; 4915 4916 if (!inv_info || !dmar_domain) 4917 return -EINVAL; 4918 4919 if (!dev || !dev_is_pci(dev)) 4920 return -ENODEV; 4921 4922 iommu = device_to_iommu(dev, &bus, &devfn); 4923 if (!iommu) 4924 return -ENODEV; 4925 4926 if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE)) 4927 return -EINVAL; 4928 4929 spin_lock_irqsave(&device_domain_lock, flags); 4930 spin_lock(&iommu->lock); 4931 info = get_domain_info(dev); 4932 if (!info) { 4933 ret = -EINVAL; 4934 goto out_unlock; 4935 } 4936 did = dmar_domain->iommu_did[iommu->seq_id]; 4937 sid = PCI_DEVID(bus, devfn); 4938 4939 /* Size is only valid in address selective invalidation */ 4940 if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) 4941 size = to_vtd_size(inv_info->granu.addr_info.granule_size, 4942 inv_info->granu.addr_info.nb_granules); 4943 4944 for_each_set_bit(cache_type, 4945 (unsigned long *)&inv_info->cache, 4946 IOMMU_CACHE_INV_TYPE_NR) { 4947 int granu = 0; 4948 u64 pasid = 0; 4949 u64 addr = 0; 4950 4951 granu = to_vtd_granularity(cache_type, inv_info->granularity); 4952 if (granu == -EINVAL) { 4953 pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n", 4954 cache_type, inv_info->granularity); 4955 break; 4956 } 4957 4958 /* 4959 * PASID is stored in different locations based on the 4960 * granularity. 4961 */ 4962 if (inv_info->granularity == IOMMU_INV_GRANU_PASID && 4963 (inv_info->granu.pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID)) 4964 pasid = inv_info->granu.pasid_info.pasid; 4965 else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR && 4966 (inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID)) 4967 pasid = inv_info->granu.addr_info.pasid; 4968 4969 switch (BIT(cache_type)) { 4970 case IOMMU_CACHE_INV_TYPE_IOTLB: 4971 /* HW will ignore LSB bits based on address mask */ 4972 if (inv_info->granularity == IOMMU_INV_GRANU_ADDR && 4973 size && 4974 (inv_info->granu.addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) { 4975 pr_err_ratelimited("User address not aligned, 0x%llx, size order %llu\n", 4976 inv_info->granu.addr_info.addr, size); 4977 } 4978 4979 /* 4980 * If granu is PASID-selective, address is ignored. 4981 * We use npages = -1 to indicate that. 4982 */ 4983 qi_flush_piotlb(iommu, did, pasid, 4984 mm_to_dma_pfn(inv_info->granu.addr_info.addr), 4985 (granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size, 4986 inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF); 4987 4988 if (!info->ats_enabled) 4989 break; 4990 /* 4991 * Always flush device IOTLB if ATS is enabled. vIOMMU 4992 * in the guest may assume IOTLB flush is inclusive, 4993 * which is more efficient. 4994 */ 4995 fallthrough; 4996 case IOMMU_CACHE_INV_TYPE_DEV_IOTLB: 4997 /* 4998 * PASID based device TLB invalidation does not support 4999 * IOMMU_INV_GRANU_PASID granularity but only supports 5000 * IOMMU_INV_GRANU_ADDR. 5001 * The equivalent of that is we set the size to be the 5002 * entire range of 64 bit. User only provides PASID info 5003 * without address info. So we set addr to 0. 5004 */ 5005 if (inv_info->granularity == IOMMU_INV_GRANU_PASID) { 5006 size = 64 - VTD_PAGE_SHIFT; 5007 addr = 0; 5008 } else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) { 5009 addr = inv_info->granu.addr_info.addr; 5010 } 5011 5012 if (info->ats_enabled) 5013 qi_flush_dev_iotlb_pasid(iommu, sid, 5014 info->pfsid, pasid, 5015 info->ats_qdep, addr, 5016 size); 5017 else 5018 pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n"); 5019 break; 5020 default: 5021 dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n", 5022 cache_type); 5023 ret = -EINVAL; 5024 } 5025 } 5026 out_unlock: 5027 spin_unlock(&iommu->lock); 5028 spin_unlock_irqrestore(&device_domain_lock, flags); 5029 5030 return ret; 5031 } 5032 #endif 5033 5034 static int intel_iommu_map(struct iommu_domain *domain, 5035 unsigned long iova, phys_addr_t hpa, 5036 size_t size, int iommu_prot, gfp_t gfp) 5037 { 5038 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5039 u64 max_addr; 5040 int prot = 0; 5041 5042 if (iommu_prot & IOMMU_READ) 5043 prot |= DMA_PTE_READ; 5044 if (iommu_prot & IOMMU_WRITE) 5045 prot |= DMA_PTE_WRITE; 5046 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping) 5047 prot |= DMA_PTE_SNP; 5048 5049 max_addr = iova + size; 5050 if (dmar_domain->max_addr < max_addr) { 5051 u64 end; 5052 5053 /* check if minimum agaw is sufficient for mapped address */ 5054 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; 5055 if (end < max_addr) { 5056 pr_err("%s: iommu width (%d) is not " 5057 "sufficient for the mapped address (%llx)\n", 5058 __func__, dmar_domain->gaw, max_addr); 5059 return -EFAULT; 5060 } 5061 dmar_domain->max_addr = max_addr; 5062 } 5063 /* Round up size to next multiple of PAGE_SIZE, if it and 5064 the low bits of hpa would take us onto the next page */ 5065 size = aligned_nrpages(hpa, size); 5066 return __domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, 5067 hpa >> VTD_PAGE_SHIFT, size, prot); 5068 } 5069 5070 static size_t intel_iommu_unmap(struct iommu_domain *domain, 5071 unsigned long iova, size_t size, 5072 struct iommu_iotlb_gather *gather) 5073 { 5074 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5075 unsigned long start_pfn, last_pfn; 5076 int level = 0; 5077 5078 /* Cope with horrid API which requires us to unmap more than the 5079 size argument if it happens to be a large-page mapping. */ 5080 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level)); 5081 5082 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level)) 5083 size = VTD_PAGE_SIZE << level_to_offset_bits(level); 5084 5085 start_pfn = iova >> VTD_PAGE_SHIFT; 5086 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT; 5087 5088 gather->freelist = domain_unmap(dmar_domain, start_pfn, 5089 last_pfn, gather->freelist); 5090 5091 if (dmar_domain->max_addr == iova + size) 5092 dmar_domain->max_addr = iova; 5093 5094 iommu_iotlb_gather_add_page(domain, gather, iova, size); 5095 5096 return size; 5097 } 5098 5099 static void intel_iommu_tlb_sync(struct iommu_domain *domain, 5100 struct iommu_iotlb_gather *gather) 5101 { 5102 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5103 unsigned long iova_pfn = IOVA_PFN(gather->start); 5104 size_t size = gather->end - gather->start; 5105 unsigned long start_pfn; 5106 unsigned long nrpages; 5107 int iommu_id; 5108 5109 nrpages = aligned_nrpages(gather->start, size); 5110 start_pfn = mm_to_dma_pfn(iova_pfn); 5111 5112 for_each_domain_iommu(iommu_id, dmar_domain) 5113 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain, 5114 start_pfn, nrpages, !gather->freelist, 0); 5115 5116 dma_free_pagelist(gather->freelist); 5117 } 5118 5119 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, 5120 dma_addr_t iova) 5121 { 5122 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5123 struct dma_pte *pte; 5124 int level = 0; 5125 u64 phys = 0; 5126 5127 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level); 5128 if (pte && dma_pte_present(pte)) 5129 phys = dma_pte_addr(pte) + 5130 (iova & (BIT_MASK(level_to_offset_bits(level) + 5131 VTD_PAGE_SHIFT) - 1)); 5132 5133 return phys; 5134 } 5135 5136 static bool intel_iommu_capable(enum iommu_cap cap) 5137 { 5138 if (cap == IOMMU_CAP_CACHE_COHERENCY) 5139 return domain_update_iommu_snooping(NULL); 5140 if (cap == IOMMU_CAP_INTR_REMAP) 5141 return irq_remapping_enabled == 1; 5142 5143 return false; 5144 } 5145 5146 static struct iommu_device *intel_iommu_probe_device(struct device *dev) 5147 { 5148 struct intel_iommu *iommu; 5149 5150 iommu = device_to_iommu(dev, NULL, NULL); 5151 if (!iommu) 5152 return ERR_PTR(-ENODEV); 5153 5154 if (translation_pre_enabled(iommu)) 5155 dev_iommu_priv_set(dev, DEFER_DEVICE_DOMAIN_INFO); 5156 5157 return &iommu->iommu; 5158 } 5159 5160 static void intel_iommu_release_device(struct device *dev) 5161 { 5162 struct intel_iommu *iommu; 5163 5164 iommu = device_to_iommu(dev, NULL, NULL); 5165 if (!iommu) 5166 return; 5167 5168 dmar_remove_one_dev_info(dev); 5169 5170 set_dma_ops(dev, NULL); 5171 } 5172 5173 static void intel_iommu_probe_finalize(struct device *dev) 5174 { 5175 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 5176 5177 if (domain && domain->type == IOMMU_DOMAIN_DMA) 5178 iommu_setup_dma_ops(dev, 0, U64_MAX); 5179 else 5180 set_dma_ops(dev, NULL); 5181 } 5182 5183 static void intel_iommu_get_resv_regions(struct device *device, 5184 struct list_head *head) 5185 { 5186 int prot = DMA_PTE_READ | DMA_PTE_WRITE; 5187 struct iommu_resv_region *reg; 5188 struct dmar_rmrr_unit *rmrr; 5189 struct device *i_dev; 5190 int i; 5191 5192 down_read(&dmar_global_lock); 5193 for_each_rmrr_units(rmrr) { 5194 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, 5195 i, i_dev) { 5196 struct iommu_resv_region *resv; 5197 enum iommu_resv_type type; 5198 size_t length; 5199 5200 if (i_dev != device && 5201 !is_downstream_to_pci_bridge(device, i_dev)) 5202 continue; 5203 5204 length = rmrr->end_address - rmrr->base_address + 1; 5205 5206 type = device_rmrr_is_relaxable(device) ? 5207 IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT; 5208 5209 resv = iommu_alloc_resv_region(rmrr->base_address, 5210 length, prot, type); 5211 if (!resv) 5212 break; 5213 5214 list_add_tail(&resv->list, head); 5215 } 5216 } 5217 up_read(&dmar_global_lock); 5218 5219 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA 5220 if (dev_is_pci(device)) { 5221 struct pci_dev *pdev = to_pci_dev(device); 5222 5223 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) { 5224 reg = iommu_alloc_resv_region(0, 1UL << 24, prot, 5225 IOMMU_RESV_DIRECT_RELAXABLE); 5226 if (reg) 5227 list_add_tail(®->list, head); 5228 } 5229 } 5230 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */ 5231 5232 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START, 5233 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1, 5234 0, IOMMU_RESV_MSI); 5235 if (!reg) 5236 return; 5237 list_add_tail(®->list, head); 5238 } 5239 5240 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev) 5241 { 5242 struct device_domain_info *info; 5243 struct context_entry *context; 5244 struct dmar_domain *domain; 5245 unsigned long flags; 5246 u64 ctx_lo; 5247 int ret; 5248 5249 domain = find_domain(dev); 5250 if (!domain) 5251 return -EINVAL; 5252 5253 spin_lock_irqsave(&device_domain_lock, flags); 5254 spin_lock(&iommu->lock); 5255 5256 ret = -EINVAL; 5257 info = get_domain_info(dev); 5258 if (!info || !info->pasid_supported) 5259 goto out; 5260 5261 context = iommu_context_addr(iommu, info->bus, info->devfn, 0); 5262 if (WARN_ON(!context)) 5263 goto out; 5264 5265 ctx_lo = context[0].lo; 5266 5267 if (!(ctx_lo & CONTEXT_PASIDE)) { 5268 ctx_lo |= CONTEXT_PASIDE; 5269 context[0].lo = ctx_lo; 5270 wmb(); 5271 iommu->flush.flush_context(iommu, 5272 domain->iommu_did[iommu->seq_id], 5273 PCI_DEVID(info->bus, info->devfn), 5274 DMA_CCMD_MASK_NOBIT, 5275 DMA_CCMD_DEVICE_INVL); 5276 } 5277 5278 /* Enable PASID support in the device, if it wasn't already */ 5279 if (!info->pasid_enabled) 5280 iommu_enable_dev_iotlb(info); 5281 5282 ret = 0; 5283 5284 out: 5285 spin_unlock(&iommu->lock); 5286 spin_unlock_irqrestore(&device_domain_lock, flags); 5287 5288 return ret; 5289 } 5290 5291 static struct iommu_group *intel_iommu_device_group(struct device *dev) 5292 { 5293 if (dev_is_pci(dev)) 5294 return pci_device_group(dev); 5295 return generic_device_group(dev); 5296 } 5297 5298 static int intel_iommu_enable_auxd(struct device *dev) 5299 { 5300 struct device_domain_info *info; 5301 struct intel_iommu *iommu; 5302 unsigned long flags; 5303 int ret; 5304 5305 iommu = device_to_iommu(dev, NULL, NULL); 5306 if (!iommu || dmar_disabled) 5307 return -EINVAL; 5308 5309 if (!sm_supported(iommu) || !pasid_supported(iommu)) 5310 return -EINVAL; 5311 5312 ret = intel_iommu_enable_pasid(iommu, dev); 5313 if (ret) 5314 return -ENODEV; 5315 5316 spin_lock_irqsave(&device_domain_lock, flags); 5317 info = get_domain_info(dev); 5318 info->auxd_enabled = 1; 5319 spin_unlock_irqrestore(&device_domain_lock, flags); 5320 5321 return 0; 5322 } 5323 5324 static int intel_iommu_disable_auxd(struct device *dev) 5325 { 5326 struct device_domain_info *info; 5327 unsigned long flags; 5328 5329 spin_lock_irqsave(&device_domain_lock, flags); 5330 info = get_domain_info(dev); 5331 if (!WARN_ON(!info)) 5332 info->auxd_enabled = 0; 5333 spin_unlock_irqrestore(&device_domain_lock, flags); 5334 5335 return 0; 5336 } 5337 5338 static int intel_iommu_enable_sva(struct device *dev) 5339 { 5340 struct device_domain_info *info = get_domain_info(dev); 5341 struct intel_iommu *iommu; 5342 int ret; 5343 5344 if (!info || dmar_disabled) 5345 return -EINVAL; 5346 5347 iommu = info->iommu; 5348 if (!iommu) 5349 return -EINVAL; 5350 5351 if (!(iommu->flags & VTD_FLAG_SVM_CAPABLE)) 5352 return -ENODEV; 5353 5354 if (intel_iommu_enable_pasid(iommu, dev)) 5355 return -ENODEV; 5356 5357 if (!info->pasid_enabled || !info->pri_enabled || !info->ats_enabled) 5358 return -EINVAL; 5359 5360 ret = iopf_queue_add_device(iommu->iopf_queue, dev); 5361 if (!ret) 5362 ret = iommu_register_device_fault_handler(dev, iommu_queue_iopf, dev); 5363 5364 return ret; 5365 } 5366 5367 static int intel_iommu_disable_sva(struct device *dev) 5368 { 5369 struct device_domain_info *info = get_domain_info(dev); 5370 struct intel_iommu *iommu = info->iommu; 5371 int ret; 5372 5373 ret = iommu_unregister_device_fault_handler(dev); 5374 if (!ret) 5375 ret = iopf_queue_remove_device(iommu->iopf_queue, dev); 5376 5377 return ret; 5378 } 5379 5380 /* 5381 * A PCI express designated vendor specific extended capability is defined 5382 * in the section 3.7 of Intel scalable I/O virtualization technical spec 5383 * for system software and tools to detect endpoint devices supporting the 5384 * Intel scalable IO virtualization without host driver dependency. 5385 * 5386 * Returns the address of the matching extended capability structure within 5387 * the device's PCI configuration space or 0 if the device does not support 5388 * it. 5389 */ 5390 static int siov_find_pci_dvsec(struct pci_dev *pdev) 5391 { 5392 int pos; 5393 u16 vendor, id; 5394 5395 pos = pci_find_next_ext_capability(pdev, 0, 0x23); 5396 while (pos) { 5397 pci_read_config_word(pdev, pos + 4, &vendor); 5398 pci_read_config_word(pdev, pos + 8, &id); 5399 if (vendor == PCI_VENDOR_ID_INTEL && id == 5) 5400 return pos; 5401 5402 pos = pci_find_next_ext_capability(pdev, pos, 0x23); 5403 } 5404 5405 return 0; 5406 } 5407 5408 static bool 5409 intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat) 5410 { 5411 struct device_domain_info *info = get_domain_info(dev); 5412 5413 if (feat == IOMMU_DEV_FEAT_AUX) { 5414 int ret; 5415 5416 if (!dev_is_pci(dev) || dmar_disabled || 5417 !scalable_mode_support() || !pasid_mode_support()) 5418 return false; 5419 5420 ret = pci_pasid_features(to_pci_dev(dev)); 5421 if (ret < 0) 5422 return false; 5423 5424 return !!siov_find_pci_dvsec(to_pci_dev(dev)); 5425 } 5426 5427 if (feat == IOMMU_DEV_FEAT_IOPF) 5428 return info && info->pri_supported; 5429 5430 if (feat == IOMMU_DEV_FEAT_SVA) 5431 return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) && 5432 info->pasid_supported && info->pri_supported && 5433 info->ats_supported; 5434 5435 return false; 5436 } 5437 5438 static int 5439 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat) 5440 { 5441 switch (feat) { 5442 case IOMMU_DEV_FEAT_AUX: 5443 return intel_iommu_enable_auxd(dev); 5444 5445 case IOMMU_DEV_FEAT_IOPF: 5446 return intel_iommu_dev_has_feat(dev, feat) ? 0 : -ENODEV; 5447 5448 case IOMMU_DEV_FEAT_SVA: 5449 return intel_iommu_enable_sva(dev); 5450 5451 default: 5452 return -ENODEV; 5453 } 5454 } 5455 5456 static int 5457 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat) 5458 { 5459 switch (feat) { 5460 case IOMMU_DEV_FEAT_AUX: 5461 return intel_iommu_disable_auxd(dev); 5462 5463 case IOMMU_DEV_FEAT_IOPF: 5464 return 0; 5465 5466 case IOMMU_DEV_FEAT_SVA: 5467 return intel_iommu_disable_sva(dev); 5468 5469 default: 5470 return -ENODEV; 5471 } 5472 } 5473 5474 static bool 5475 intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat) 5476 { 5477 struct device_domain_info *info = get_domain_info(dev); 5478 5479 if (feat == IOMMU_DEV_FEAT_AUX) 5480 return scalable_mode_support() && info && info->auxd_enabled; 5481 5482 return false; 5483 } 5484 5485 static int 5486 intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev) 5487 { 5488 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5489 5490 return dmar_domain->default_pasid > 0 ? 5491 dmar_domain->default_pasid : -EINVAL; 5492 } 5493 5494 static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain, 5495 struct device *dev) 5496 { 5497 return attach_deferred(dev); 5498 } 5499 5500 static int 5501 intel_iommu_enable_nesting(struct iommu_domain *domain) 5502 { 5503 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5504 unsigned long flags; 5505 int ret = -ENODEV; 5506 5507 spin_lock_irqsave(&device_domain_lock, flags); 5508 if (list_empty(&dmar_domain->devices)) { 5509 dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE; 5510 dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL; 5511 ret = 0; 5512 } 5513 spin_unlock_irqrestore(&device_domain_lock, flags); 5514 5515 return ret; 5516 } 5517 5518 /* 5519 * Check that the device does not live on an external facing PCI port that is 5520 * marked as untrusted. Such devices should not be able to apply quirks and 5521 * thus not be able to bypass the IOMMU restrictions. 5522 */ 5523 static bool risky_device(struct pci_dev *pdev) 5524 { 5525 if (pdev->untrusted) { 5526 pci_info(pdev, 5527 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n", 5528 pdev->vendor, pdev->device); 5529 pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n"); 5530 return true; 5531 } 5532 return false; 5533 } 5534 5535 static void clflush_sync_map(struct dmar_domain *domain, unsigned long clf_pfn, 5536 unsigned long clf_pages) 5537 { 5538 struct dma_pte *first_pte = NULL, *pte = NULL; 5539 unsigned long lvl_pages = 0; 5540 int level = 0; 5541 5542 while (clf_pages > 0) { 5543 if (!pte) { 5544 level = 0; 5545 pte = pfn_to_dma_pte(domain, clf_pfn, &level); 5546 if (WARN_ON(!pte)) 5547 return; 5548 first_pte = pte; 5549 lvl_pages = lvl_to_nr_pages(level); 5550 } 5551 5552 if (WARN_ON(!lvl_pages || clf_pages < lvl_pages)) 5553 return; 5554 5555 clf_pages -= lvl_pages; 5556 clf_pfn += lvl_pages; 5557 pte++; 5558 5559 if (!clf_pages || first_pte_in_page(pte) || 5560 (level > 1 && clf_pages < lvl_pages)) { 5561 domain_flush_cache(domain, first_pte, 5562 (void *)pte - (void *)first_pte); 5563 pte = NULL; 5564 } 5565 } 5566 } 5567 5568 static void intel_iommu_iotlb_sync_map(struct iommu_domain *domain, 5569 unsigned long iova, size_t size) 5570 { 5571 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 5572 unsigned long pages = aligned_nrpages(iova, size); 5573 unsigned long pfn = iova >> VTD_PAGE_SHIFT; 5574 struct intel_iommu *iommu; 5575 int iommu_id; 5576 5577 if (!dmar_domain->iommu_coherency) 5578 clflush_sync_map(dmar_domain, pfn, pages); 5579 5580 for_each_domain_iommu(iommu_id, dmar_domain) { 5581 iommu = g_iommus[iommu_id]; 5582 __mapping_notify_one(iommu, dmar_domain, pfn, pages); 5583 } 5584 } 5585 5586 const struct iommu_ops intel_iommu_ops = { 5587 .capable = intel_iommu_capable, 5588 .domain_alloc = intel_iommu_domain_alloc, 5589 .domain_free = intel_iommu_domain_free, 5590 .enable_nesting = intel_iommu_enable_nesting, 5591 .attach_dev = intel_iommu_attach_device, 5592 .detach_dev = intel_iommu_detach_device, 5593 .aux_attach_dev = intel_iommu_aux_attach_device, 5594 .aux_detach_dev = intel_iommu_aux_detach_device, 5595 .aux_get_pasid = intel_iommu_aux_get_pasid, 5596 .map = intel_iommu_map, 5597 .iotlb_sync_map = intel_iommu_iotlb_sync_map, 5598 .unmap = intel_iommu_unmap, 5599 .flush_iotlb_all = intel_flush_iotlb_all, 5600 .iotlb_sync = intel_iommu_tlb_sync, 5601 .iova_to_phys = intel_iommu_iova_to_phys, 5602 .probe_device = intel_iommu_probe_device, 5603 .probe_finalize = intel_iommu_probe_finalize, 5604 .release_device = intel_iommu_release_device, 5605 .get_resv_regions = intel_iommu_get_resv_regions, 5606 .put_resv_regions = generic_iommu_put_resv_regions, 5607 .device_group = intel_iommu_device_group, 5608 .dev_has_feat = intel_iommu_dev_has_feat, 5609 .dev_feat_enabled = intel_iommu_dev_feat_enabled, 5610 .dev_enable_feat = intel_iommu_dev_enable_feat, 5611 .dev_disable_feat = intel_iommu_dev_disable_feat, 5612 .is_attach_deferred = intel_iommu_is_attach_deferred, 5613 .def_domain_type = device_def_domain_type, 5614 .pgsize_bitmap = INTEL_IOMMU_PGSIZES, 5615 #ifdef CONFIG_INTEL_IOMMU_SVM 5616 .cache_invalidate = intel_iommu_sva_invalidate, 5617 .sva_bind_gpasid = intel_svm_bind_gpasid, 5618 .sva_unbind_gpasid = intel_svm_unbind_gpasid, 5619 .sva_bind = intel_svm_bind, 5620 .sva_unbind = intel_svm_unbind, 5621 .sva_get_pasid = intel_svm_get_pasid, 5622 .page_response = intel_svm_page_response, 5623 #endif 5624 }; 5625 5626 static void quirk_iommu_igfx(struct pci_dev *dev) 5627 { 5628 if (risky_device(dev)) 5629 return; 5630 5631 pci_info(dev, "Disabling IOMMU for graphics on this chipset\n"); 5632 dmar_map_gfx = 0; 5633 } 5634 5635 /* G4x/GM45 integrated gfx dmar support is totally busted. */ 5636 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx); 5637 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx); 5638 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx); 5639 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx); 5640 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx); 5641 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx); 5642 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx); 5643 5644 /* Broadwell igfx malfunctions with dmar */ 5645 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx); 5646 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx); 5647 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx); 5648 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx); 5649 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx); 5650 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx); 5651 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx); 5652 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx); 5653 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx); 5654 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx); 5655 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx); 5656 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx); 5657 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx); 5658 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx); 5659 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx); 5660 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx); 5661 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx); 5662 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx); 5663 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx); 5664 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx); 5665 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx); 5666 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx); 5667 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx); 5668 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx); 5669 5670 static void quirk_iommu_rwbf(struct pci_dev *dev) 5671 { 5672 if (risky_device(dev)) 5673 return; 5674 5675 /* 5676 * Mobile 4 Series Chipset neglects to set RWBF capability, 5677 * but needs it. Same seems to hold for the desktop versions. 5678 */ 5679 pci_info(dev, "Forcing write-buffer flush capability\n"); 5680 rwbf_quirk = 1; 5681 } 5682 5683 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); 5684 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf); 5685 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf); 5686 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf); 5687 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf); 5688 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf); 5689 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf); 5690 5691 #define GGC 0x52 5692 #define GGC_MEMORY_SIZE_MASK (0xf << 8) 5693 #define GGC_MEMORY_SIZE_NONE (0x0 << 8) 5694 #define GGC_MEMORY_SIZE_1M (0x1 << 8) 5695 #define GGC_MEMORY_SIZE_2M (0x3 << 8) 5696 #define GGC_MEMORY_VT_ENABLED (0x8 << 8) 5697 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8) 5698 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8) 5699 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8) 5700 5701 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev) 5702 { 5703 unsigned short ggc; 5704 5705 if (risky_device(dev)) 5706 return; 5707 5708 if (pci_read_config_word(dev, GGC, &ggc)) 5709 return; 5710 5711 if (!(ggc & GGC_MEMORY_VT_ENABLED)) { 5712 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); 5713 dmar_map_gfx = 0; 5714 } else if (dmar_map_gfx) { 5715 /* we have to ensure the gfx device is idle before we flush */ 5716 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n"); 5717 intel_iommu_strict = 1; 5718 } 5719 } 5720 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); 5721 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); 5722 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); 5723 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); 5724 5725 static void quirk_igfx_skip_te_disable(struct pci_dev *dev) 5726 { 5727 unsigned short ver; 5728 5729 if (!IS_GFX_DEVICE(dev)) 5730 return; 5731 5732 ver = (dev->device >> 8) & 0xff; 5733 if (ver != 0x45 && ver != 0x46 && ver != 0x4c && 5734 ver != 0x4e && ver != 0x8a && ver != 0x98 && 5735 ver != 0x9a) 5736 return; 5737 5738 if (risky_device(dev)) 5739 return; 5740 5741 pci_info(dev, "Skip IOMMU disabling for graphics\n"); 5742 iommu_skip_te_disable = 1; 5743 } 5744 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable); 5745 5746 /* On Tylersburg chipsets, some BIOSes have been known to enable the 5747 ISOCH DMAR unit for the Azalia sound device, but not give it any 5748 TLB entries, which causes it to deadlock. Check for that. We do 5749 this in a function called from init_dmars(), instead of in a PCI 5750 quirk, because we don't want to print the obnoxious "BIOS broken" 5751 message if VT-d is actually disabled. 5752 */ 5753 static void __init check_tylersburg_isoch(void) 5754 { 5755 struct pci_dev *pdev; 5756 uint32_t vtisochctrl; 5757 5758 /* If there's no Azalia in the system anyway, forget it. */ 5759 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); 5760 if (!pdev) 5761 return; 5762 5763 if (risky_device(pdev)) { 5764 pci_dev_put(pdev); 5765 return; 5766 } 5767 5768 pci_dev_put(pdev); 5769 5770 /* System Management Registers. Might be hidden, in which case 5771 we can't do the sanity check. But that's OK, because the 5772 known-broken BIOSes _don't_ actually hide it, so far. */ 5773 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); 5774 if (!pdev) 5775 return; 5776 5777 if (risky_device(pdev)) { 5778 pci_dev_put(pdev); 5779 return; 5780 } 5781 5782 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { 5783 pci_dev_put(pdev); 5784 return; 5785 } 5786 5787 pci_dev_put(pdev); 5788 5789 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ 5790 if (vtisochctrl & 1) 5791 return; 5792 5793 /* Drop all bits other than the number of TLB entries */ 5794 vtisochctrl &= 0x1c; 5795 5796 /* If we have the recommended number of TLB entries (16), fine. */ 5797 if (vtisochctrl == 0x10) 5798 return; 5799 5800 /* Zero TLB entries? You get to ride the short bus to school. */ 5801 if (!vtisochctrl) { 5802 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" 5803 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 5804 dmi_get_system_info(DMI_BIOS_VENDOR), 5805 dmi_get_system_info(DMI_BIOS_VERSION), 5806 dmi_get_system_info(DMI_PRODUCT_VERSION)); 5807 iommu_identity_mapping |= IDENTMAP_AZALIA; 5808 return; 5809 } 5810 5811 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", 5812 vtisochctrl); 5813 } 5814