1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright © 2006-2014 Intel Corporation. 4 * 5 * Authors: David Woodhouse <dwmw2@infradead.org>, 6 * Ashok Raj <ashok.raj@intel.com>, 7 * Shaohua Li <shaohua.li@intel.com>, 8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>, 9 * Fenghua Yu <fenghua.yu@intel.com> 10 * Joerg Roedel <jroedel@suse.de> 11 */ 12 13 #define pr_fmt(fmt) "DMAR: " fmt 14 #define dev_fmt(fmt) pr_fmt(fmt) 15 16 #include <linux/crash_dump.h> 17 #include <linux/dma-direct.h> 18 #include <linux/dma-iommu.h> 19 #include <linux/dmi.h> 20 #include <linux/intel-iommu.h> 21 #include <linux/intel-svm.h> 22 #include <linux/memory.h> 23 #include <linux/pci.h> 24 #include <linux/pci-ats.h> 25 #include <linux/spinlock.h> 26 #include <linux/syscore_ops.h> 27 #include <linux/tboot.h> 28 29 #include "../irq_remapping.h" 30 #include "../iommu-sva-lib.h" 31 #include "pasid.h" 32 #include "cap_audit.h" 33 34 #define ROOT_SIZE VTD_PAGE_SIZE 35 #define CONTEXT_SIZE VTD_PAGE_SIZE 36 37 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY) 38 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB) 39 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) 40 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e) 41 42 #define IOAPIC_RANGE_START (0xfee00000) 43 #define IOAPIC_RANGE_END (0xfeefffff) 44 #define IOVA_START_ADDR (0x1000) 45 46 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57 47 48 #define MAX_AGAW_WIDTH 64 49 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT) 50 51 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1) 52 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1) 53 54 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR 55 to match. That way, we can use 'unsigned long' for PFNs with impunity. */ 56 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \ 57 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1)) 58 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT) 59 60 /* IO virtual address start page frame number */ 61 #define IOVA_START_PFN (1) 62 63 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) 64 65 /* page table handling */ 66 #define LEVEL_STRIDE (9) 67 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1) 68 69 static inline int agaw_to_level(int agaw) 70 { 71 return agaw + 2; 72 } 73 74 static inline int agaw_to_width(int agaw) 75 { 76 return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH); 77 } 78 79 static inline int width_to_agaw(int width) 80 { 81 return DIV_ROUND_UP(width - 30, LEVEL_STRIDE); 82 } 83 84 static inline unsigned int level_to_offset_bits(int level) 85 { 86 return (level - 1) * LEVEL_STRIDE; 87 } 88 89 static inline int pfn_level_offset(u64 pfn, int level) 90 { 91 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK; 92 } 93 94 static inline u64 level_mask(int level) 95 { 96 return -1ULL << level_to_offset_bits(level); 97 } 98 99 static inline u64 level_size(int level) 100 { 101 return 1ULL << level_to_offset_bits(level); 102 } 103 104 static inline u64 align_to_level(u64 pfn, int level) 105 { 106 return (pfn + level_size(level) - 1) & level_mask(level); 107 } 108 109 static inline unsigned long lvl_to_nr_pages(unsigned int lvl) 110 { 111 return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH); 112 } 113 114 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things 115 are never going to work. */ 116 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn) 117 { 118 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT); 119 } 120 static inline unsigned long page_to_dma_pfn(struct page *pg) 121 { 122 return mm_to_dma_pfn(page_to_pfn(pg)); 123 } 124 static inline unsigned long virt_to_dma_pfn(void *p) 125 { 126 return page_to_dma_pfn(virt_to_page(p)); 127 } 128 129 /* global iommu list, set NULL for ignored DMAR units */ 130 static struct intel_iommu **g_iommus; 131 132 static void __init check_tylersburg_isoch(void); 133 static int rwbf_quirk; 134 static inline struct device_domain_info * 135 dmar_search_domain_by_dev_info(int segment, int bus, int devfn); 136 137 /* 138 * set to 1 to panic kernel if can't successfully enable VT-d 139 * (used when kernel is launched w/ TXT) 140 */ 141 static int force_on = 0; 142 static int intel_iommu_tboot_noforce; 143 static int no_platform_optin; 144 145 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry)) 146 147 /* 148 * Take a root_entry and return the Lower Context Table Pointer (LCTP) 149 * if marked present. 150 */ 151 static phys_addr_t root_entry_lctp(struct root_entry *re) 152 { 153 if (!(re->lo & 1)) 154 return 0; 155 156 return re->lo & VTD_PAGE_MASK; 157 } 158 159 /* 160 * Take a root_entry and return the Upper Context Table Pointer (UCTP) 161 * if marked present. 162 */ 163 static phys_addr_t root_entry_uctp(struct root_entry *re) 164 { 165 if (!(re->hi & 1)) 166 return 0; 167 168 return re->hi & VTD_PAGE_MASK; 169 } 170 171 static inline void context_clear_pasid_enable(struct context_entry *context) 172 { 173 context->lo &= ~(1ULL << 11); 174 } 175 176 static inline bool context_pasid_enabled(struct context_entry *context) 177 { 178 return !!(context->lo & (1ULL << 11)); 179 } 180 181 static inline void context_set_copied(struct context_entry *context) 182 { 183 context->hi |= (1ull << 3); 184 } 185 186 static inline bool context_copied(struct context_entry *context) 187 { 188 return !!(context->hi & (1ULL << 3)); 189 } 190 191 static inline bool __context_present(struct context_entry *context) 192 { 193 return (context->lo & 1); 194 } 195 196 bool context_present(struct context_entry *context) 197 { 198 return context_pasid_enabled(context) ? 199 __context_present(context) : 200 __context_present(context) && !context_copied(context); 201 } 202 203 static inline void context_set_present(struct context_entry *context) 204 { 205 context->lo |= 1; 206 } 207 208 static inline void context_set_fault_enable(struct context_entry *context) 209 { 210 context->lo &= (((u64)-1) << 2) | 1; 211 } 212 213 static inline void context_set_translation_type(struct context_entry *context, 214 unsigned long value) 215 { 216 context->lo &= (((u64)-1) << 4) | 3; 217 context->lo |= (value & 3) << 2; 218 } 219 220 static inline void context_set_address_root(struct context_entry *context, 221 unsigned long value) 222 { 223 context->lo &= ~VTD_PAGE_MASK; 224 context->lo |= value & VTD_PAGE_MASK; 225 } 226 227 static inline void context_set_address_width(struct context_entry *context, 228 unsigned long value) 229 { 230 context->hi |= value & 7; 231 } 232 233 static inline void context_set_domain_id(struct context_entry *context, 234 unsigned long value) 235 { 236 context->hi |= (value & ((1 << 16) - 1)) << 8; 237 } 238 239 static inline int context_domain_id(struct context_entry *c) 240 { 241 return((c->hi >> 8) & 0xffff); 242 } 243 244 static inline void context_clear_entry(struct context_entry *context) 245 { 246 context->lo = 0; 247 context->hi = 0; 248 } 249 250 /* 251 * This domain is a statically identity mapping domain. 252 * 1. This domain creats a static 1:1 mapping to all usable memory. 253 * 2. It maps to each iommu if successful. 254 * 3. Each iommu mapps to this domain if successful. 255 */ 256 static struct dmar_domain *si_domain; 257 static int hw_pass_through = 1; 258 259 #define for_each_domain_iommu(idx, domain) \ 260 for (idx = 0; idx < g_num_of_iommus; idx++) \ 261 if (domain->iommu_refcnt[idx]) 262 263 struct dmar_rmrr_unit { 264 struct list_head list; /* list of rmrr units */ 265 struct acpi_dmar_header *hdr; /* ACPI header */ 266 u64 base_address; /* reserved base address*/ 267 u64 end_address; /* reserved end address */ 268 struct dmar_dev_scope *devices; /* target devices */ 269 int devices_cnt; /* target device count */ 270 }; 271 272 struct dmar_atsr_unit { 273 struct list_head list; /* list of ATSR units */ 274 struct acpi_dmar_header *hdr; /* ACPI header */ 275 struct dmar_dev_scope *devices; /* target devices */ 276 int devices_cnt; /* target device count */ 277 u8 include_all:1; /* include all ports */ 278 }; 279 280 struct dmar_satc_unit { 281 struct list_head list; /* list of SATC units */ 282 struct acpi_dmar_header *hdr; /* ACPI header */ 283 struct dmar_dev_scope *devices; /* target devices */ 284 struct intel_iommu *iommu; /* the corresponding iommu */ 285 int devices_cnt; /* target device count */ 286 u8 atc_required:1; /* ATS is required */ 287 }; 288 289 static LIST_HEAD(dmar_atsr_units); 290 static LIST_HEAD(dmar_rmrr_units); 291 static LIST_HEAD(dmar_satc_units); 292 293 #define for_each_rmrr_units(rmrr) \ 294 list_for_each_entry(rmrr, &dmar_rmrr_units, list) 295 296 /* bitmap for indexing intel_iommus */ 297 static int g_num_of_iommus; 298 299 static void domain_remove_dev_info(struct dmar_domain *domain); 300 static void dmar_remove_one_dev_info(struct device *dev); 301 static void __dmar_remove_one_dev_info(struct device_domain_info *info); 302 303 int dmar_disabled = !IS_ENABLED(CONFIG_INTEL_IOMMU_DEFAULT_ON); 304 int intel_iommu_sm = IS_ENABLED(CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON); 305 306 int intel_iommu_enabled = 0; 307 EXPORT_SYMBOL_GPL(intel_iommu_enabled); 308 309 static int dmar_map_gfx = 1; 310 static int intel_iommu_superpage = 1; 311 static int iommu_identity_mapping; 312 static int iommu_skip_te_disable; 313 314 #define IDENTMAP_GFX 2 315 #define IDENTMAP_AZALIA 4 316 317 int intel_iommu_gfx_mapped; 318 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped); 319 320 DEFINE_SPINLOCK(device_domain_lock); 321 static LIST_HEAD(device_domain_list); 322 323 /* 324 * Iterate over elements in device_domain_list and call the specified 325 * callback @fn against each element. 326 */ 327 int for_each_device_domain(int (*fn)(struct device_domain_info *info, 328 void *data), void *data) 329 { 330 int ret = 0; 331 unsigned long flags; 332 struct device_domain_info *info; 333 334 spin_lock_irqsave(&device_domain_lock, flags); 335 list_for_each_entry(info, &device_domain_list, global) { 336 ret = fn(info, data); 337 if (ret) { 338 spin_unlock_irqrestore(&device_domain_lock, flags); 339 return ret; 340 } 341 } 342 spin_unlock_irqrestore(&device_domain_lock, flags); 343 344 return 0; 345 } 346 347 const struct iommu_ops intel_iommu_ops; 348 349 static bool translation_pre_enabled(struct intel_iommu *iommu) 350 { 351 return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED); 352 } 353 354 static void clear_translation_pre_enabled(struct intel_iommu *iommu) 355 { 356 iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED; 357 } 358 359 static void init_translation_status(struct intel_iommu *iommu) 360 { 361 u32 gsts; 362 363 gsts = readl(iommu->reg + DMAR_GSTS_REG); 364 if (gsts & DMA_GSTS_TES) 365 iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED; 366 } 367 368 static int __init intel_iommu_setup(char *str) 369 { 370 if (!str) 371 return -EINVAL; 372 373 while (*str) { 374 if (!strncmp(str, "on", 2)) { 375 dmar_disabled = 0; 376 pr_info("IOMMU enabled\n"); 377 } else if (!strncmp(str, "off", 3)) { 378 dmar_disabled = 1; 379 no_platform_optin = 1; 380 pr_info("IOMMU disabled\n"); 381 } else if (!strncmp(str, "igfx_off", 8)) { 382 dmar_map_gfx = 0; 383 pr_info("Disable GFX device mapping\n"); 384 } else if (!strncmp(str, "forcedac", 8)) { 385 pr_warn("intel_iommu=forcedac deprecated; use iommu.forcedac instead\n"); 386 iommu_dma_forcedac = true; 387 } else if (!strncmp(str, "strict", 6)) { 388 pr_warn("intel_iommu=strict deprecated; use iommu.strict=1 instead\n"); 389 iommu_set_dma_strict(); 390 } else if (!strncmp(str, "sp_off", 6)) { 391 pr_info("Disable supported super page\n"); 392 intel_iommu_superpage = 0; 393 } else if (!strncmp(str, "sm_on", 5)) { 394 pr_info("Enable scalable mode if hardware supports\n"); 395 intel_iommu_sm = 1; 396 } else if (!strncmp(str, "sm_off", 6)) { 397 pr_info("Scalable mode is disallowed\n"); 398 intel_iommu_sm = 0; 399 } else if (!strncmp(str, "tboot_noforce", 13)) { 400 pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n"); 401 intel_iommu_tboot_noforce = 1; 402 } else { 403 pr_notice("Unknown option - '%s'\n", str); 404 } 405 406 str += strcspn(str, ","); 407 while (*str == ',') 408 str++; 409 } 410 411 return 1; 412 } 413 __setup("intel_iommu=", intel_iommu_setup); 414 415 void *alloc_pgtable_page(int node) 416 { 417 struct page *page; 418 void *vaddr = NULL; 419 420 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0); 421 if (page) 422 vaddr = page_address(page); 423 return vaddr; 424 } 425 426 void free_pgtable_page(void *vaddr) 427 { 428 free_page((unsigned long)vaddr); 429 } 430 431 static inline int domain_type_is_si(struct dmar_domain *domain) 432 { 433 return domain->domain.type == IOMMU_DOMAIN_IDENTITY; 434 } 435 436 static inline bool domain_use_first_level(struct dmar_domain *domain) 437 { 438 return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL; 439 } 440 441 static inline int domain_pfn_supported(struct dmar_domain *domain, 442 unsigned long pfn) 443 { 444 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT; 445 446 return !(addr_width < BITS_PER_LONG && pfn >> addr_width); 447 } 448 449 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw) 450 { 451 unsigned long sagaw; 452 int agaw; 453 454 sagaw = cap_sagaw(iommu->cap); 455 for (agaw = width_to_agaw(max_gaw); 456 agaw >= 0; agaw--) { 457 if (test_bit(agaw, &sagaw)) 458 break; 459 } 460 461 return agaw; 462 } 463 464 /* 465 * Calculate max SAGAW for each iommu. 466 */ 467 int iommu_calculate_max_sagaw(struct intel_iommu *iommu) 468 { 469 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH); 470 } 471 472 /* 473 * calculate agaw for each iommu. 474 * "SAGAW" may be different across iommus, use a default agaw, and 475 * get a supported less agaw for iommus that don't support the default agaw. 476 */ 477 int iommu_calculate_agaw(struct intel_iommu *iommu) 478 { 479 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH); 480 } 481 482 /* This functionin only returns single iommu in a domain */ 483 struct intel_iommu *domain_get_iommu(struct dmar_domain *domain) 484 { 485 int iommu_id; 486 487 /* si_domain and vm domain should not get here. */ 488 if (WARN_ON(!iommu_is_dma_domain(&domain->domain))) 489 return NULL; 490 491 for_each_domain_iommu(iommu_id, domain) 492 break; 493 494 if (iommu_id < 0 || iommu_id >= g_num_of_iommus) 495 return NULL; 496 497 return g_iommus[iommu_id]; 498 } 499 500 static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu) 501 { 502 return sm_supported(iommu) ? 503 ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap); 504 } 505 506 static void domain_update_iommu_coherency(struct dmar_domain *domain) 507 { 508 struct dmar_drhd_unit *drhd; 509 struct intel_iommu *iommu; 510 bool found = false; 511 int i; 512 513 domain->iommu_coherency = true; 514 515 for_each_domain_iommu(i, domain) { 516 found = true; 517 if (!iommu_paging_structure_coherency(g_iommus[i])) { 518 domain->iommu_coherency = false; 519 break; 520 } 521 } 522 if (found) 523 return; 524 525 /* No hardware attached; use lowest common denominator */ 526 rcu_read_lock(); 527 for_each_active_iommu(iommu, drhd) { 528 if (!iommu_paging_structure_coherency(iommu)) { 529 domain->iommu_coherency = false; 530 break; 531 } 532 } 533 rcu_read_unlock(); 534 } 535 536 static int domain_update_iommu_superpage(struct dmar_domain *domain, 537 struct intel_iommu *skip) 538 { 539 struct dmar_drhd_unit *drhd; 540 struct intel_iommu *iommu; 541 int mask = 0x3; 542 543 if (!intel_iommu_superpage) 544 return 0; 545 546 /* set iommu_superpage to the smallest common denominator */ 547 rcu_read_lock(); 548 for_each_active_iommu(iommu, drhd) { 549 if (iommu != skip) { 550 if (domain && domain_use_first_level(domain)) { 551 if (!cap_fl1gp_support(iommu->cap)) 552 mask = 0x1; 553 } else { 554 mask &= cap_super_page_val(iommu->cap); 555 } 556 557 if (!mask) 558 break; 559 } 560 } 561 rcu_read_unlock(); 562 563 return fls(mask); 564 } 565 566 static int domain_update_device_node(struct dmar_domain *domain) 567 { 568 struct device_domain_info *info; 569 int nid = NUMA_NO_NODE; 570 571 assert_spin_locked(&device_domain_lock); 572 573 if (list_empty(&domain->devices)) 574 return NUMA_NO_NODE; 575 576 list_for_each_entry(info, &domain->devices, link) { 577 if (!info->dev) 578 continue; 579 580 /* 581 * There could possibly be multiple device numa nodes as devices 582 * within the same domain may sit behind different IOMMUs. There 583 * isn't perfect answer in such situation, so we select first 584 * come first served policy. 585 */ 586 nid = dev_to_node(info->dev); 587 if (nid != NUMA_NO_NODE) 588 break; 589 } 590 591 return nid; 592 } 593 594 static void domain_update_iotlb(struct dmar_domain *domain); 595 596 /* Return the super pagesize bitmap if supported. */ 597 static unsigned long domain_super_pgsize_bitmap(struct dmar_domain *domain) 598 { 599 unsigned long bitmap = 0; 600 601 /* 602 * 1-level super page supports page size of 2MiB, 2-level super page 603 * supports page size of both 2MiB and 1GiB. 604 */ 605 if (domain->iommu_superpage == 1) 606 bitmap |= SZ_2M; 607 else if (domain->iommu_superpage == 2) 608 bitmap |= SZ_2M | SZ_1G; 609 610 return bitmap; 611 } 612 613 /* Some capabilities may be different across iommus */ 614 static void domain_update_iommu_cap(struct dmar_domain *domain) 615 { 616 domain_update_iommu_coherency(domain); 617 domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL); 618 619 /* 620 * If RHSA is missing, we should default to the device numa domain 621 * as fall back. 622 */ 623 if (domain->nid == NUMA_NO_NODE) 624 domain->nid = domain_update_device_node(domain); 625 626 /* 627 * First-level translation restricts the input-address to a 628 * canonical address (i.e., address bits 63:N have the same 629 * value as address bit [N-1], where N is 48-bits with 4-level 630 * paging and 57-bits with 5-level paging). Hence, skip bit 631 * [N-1]. 632 */ 633 if (domain_use_first_level(domain)) 634 domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1); 635 else 636 domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw); 637 638 domain->domain.pgsize_bitmap |= domain_super_pgsize_bitmap(domain); 639 domain_update_iotlb(domain); 640 } 641 642 struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus, 643 u8 devfn, int alloc) 644 { 645 struct root_entry *root = &iommu->root_entry[bus]; 646 struct context_entry *context; 647 u64 *entry; 648 649 entry = &root->lo; 650 if (sm_supported(iommu)) { 651 if (devfn >= 0x80) { 652 devfn -= 0x80; 653 entry = &root->hi; 654 } 655 devfn *= 2; 656 } 657 if (*entry & 1) 658 context = phys_to_virt(*entry & VTD_PAGE_MASK); 659 else { 660 unsigned long phy_addr; 661 if (!alloc) 662 return NULL; 663 664 context = alloc_pgtable_page(iommu->node); 665 if (!context) 666 return NULL; 667 668 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE); 669 phy_addr = virt_to_phys((void *)context); 670 *entry = phy_addr | 1; 671 __iommu_flush_cache(iommu, entry, sizeof(*entry)); 672 } 673 return &context[devfn]; 674 } 675 676 /** 677 * is_downstream_to_pci_bridge - test if a device belongs to the PCI 678 * sub-hierarchy of a candidate PCI-PCI bridge 679 * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy 680 * @bridge: the candidate PCI-PCI bridge 681 * 682 * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false. 683 */ 684 static bool 685 is_downstream_to_pci_bridge(struct device *dev, struct device *bridge) 686 { 687 struct pci_dev *pdev, *pbridge; 688 689 if (!dev_is_pci(dev) || !dev_is_pci(bridge)) 690 return false; 691 692 pdev = to_pci_dev(dev); 693 pbridge = to_pci_dev(bridge); 694 695 if (pbridge->subordinate && 696 pbridge->subordinate->number <= pdev->bus->number && 697 pbridge->subordinate->busn_res.end >= pdev->bus->number) 698 return true; 699 700 return false; 701 } 702 703 static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev) 704 { 705 struct dmar_drhd_unit *drhd; 706 u32 vtbar; 707 int rc; 708 709 /* We know that this device on this chipset has its own IOMMU. 710 * If we find it under a different IOMMU, then the BIOS is lying 711 * to us. Hope that the IOMMU for this device is actually 712 * disabled, and it needs no translation... 713 */ 714 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar); 715 if (rc) { 716 /* "can't" happen */ 717 dev_info(&pdev->dev, "failed to run vt-d quirk\n"); 718 return false; 719 } 720 vtbar &= 0xffff0000; 721 722 /* we know that the this iommu should be at offset 0xa000 from vtbar */ 723 drhd = dmar_find_matched_drhd_unit(pdev); 724 if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) { 725 pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"); 726 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 727 return true; 728 } 729 730 return false; 731 } 732 733 static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev) 734 { 735 if (!iommu || iommu->drhd->ignored) 736 return true; 737 738 if (dev_is_pci(dev)) { 739 struct pci_dev *pdev = to_pci_dev(dev); 740 741 if (pdev->vendor == PCI_VENDOR_ID_INTEL && 742 pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB && 743 quirk_ioat_snb_local_iommu(pdev)) 744 return true; 745 } 746 747 return false; 748 } 749 750 struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn) 751 { 752 struct dmar_drhd_unit *drhd = NULL; 753 struct pci_dev *pdev = NULL; 754 struct intel_iommu *iommu; 755 struct device *tmp; 756 u16 segment = 0; 757 int i; 758 759 if (!dev) 760 return NULL; 761 762 if (dev_is_pci(dev)) { 763 struct pci_dev *pf_pdev; 764 765 pdev = pci_real_dma_dev(to_pci_dev(dev)); 766 767 /* VFs aren't listed in scope tables; we need to look up 768 * the PF instead to find the IOMMU. */ 769 pf_pdev = pci_physfn(pdev); 770 dev = &pf_pdev->dev; 771 segment = pci_domain_nr(pdev->bus); 772 } else if (has_acpi_companion(dev)) 773 dev = &ACPI_COMPANION(dev)->dev; 774 775 rcu_read_lock(); 776 for_each_iommu(iommu, drhd) { 777 if (pdev && segment != drhd->segment) 778 continue; 779 780 for_each_active_dev_scope(drhd->devices, 781 drhd->devices_cnt, i, tmp) { 782 if (tmp == dev) { 783 /* For a VF use its original BDF# not that of the PF 784 * which we used for the IOMMU lookup. Strictly speaking 785 * we could do this for all PCI devices; we only need to 786 * get the BDF# from the scope table for ACPI matches. */ 787 if (pdev && pdev->is_virtfn) 788 goto got_pdev; 789 790 if (bus && devfn) { 791 *bus = drhd->devices[i].bus; 792 *devfn = drhd->devices[i].devfn; 793 } 794 goto out; 795 } 796 797 if (is_downstream_to_pci_bridge(dev, tmp)) 798 goto got_pdev; 799 } 800 801 if (pdev && drhd->include_all) { 802 got_pdev: 803 if (bus && devfn) { 804 *bus = pdev->bus->number; 805 *devfn = pdev->devfn; 806 } 807 goto out; 808 } 809 } 810 iommu = NULL; 811 out: 812 if (iommu_is_dummy(iommu, dev)) 813 iommu = NULL; 814 815 rcu_read_unlock(); 816 817 return iommu; 818 } 819 820 static void domain_flush_cache(struct dmar_domain *domain, 821 void *addr, int size) 822 { 823 if (!domain->iommu_coherency) 824 clflush_cache_range(addr, size); 825 } 826 827 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn) 828 { 829 struct context_entry *context; 830 int ret = 0; 831 unsigned long flags; 832 833 spin_lock_irqsave(&iommu->lock, flags); 834 context = iommu_context_addr(iommu, bus, devfn, 0); 835 if (context) 836 ret = context_present(context); 837 spin_unlock_irqrestore(&iommu->lock, flags); 838 return ret; 839 } 840 841 static void free_context_table(struct intel_iommu *iommu) 842 { 843 int i; 844 unsigned long flags; 845 struct context_entry *context; 846 847 spin_lock_irqsave(&iommu->lock, flags); 848 if (!iommu->root_entry) { 849 goto out; 850 } 851 for (i = 0; i < ROOT_ENTRY_NR; i++) { 852 context = iommu_context_addr(iommu, i, 0, 0); 853 if (context) 854 free_pgtable_page(context); 855 856 if (!sm_supported(iommu)) 857 continue; 858 859 context = iommu_context_addr(iommu, i, 0x80, 0); 860 if (context) 861 free_pgtable_page(context); 862 863 } 864 free_pgtable_page(iommu->root_entry); 865 iommu->root_entry = NULL; 866 out: 867 spin_unlock_irqrestore(&iommu->lock, flags); 868 } 869 870 #ifdef CONFIG_DMAR_DEBUG 871 static void pgtable_walk(struct intel_iommu *iommu, unsigned long pfn, u8 bus, u8 devfn) 872 { 873 struct device_domain_info *info; 874 struct dma_pte *parent, *pte; 875 struct dmar_domain *domain; 876 int offset, level; 877 878 info = dmar_search_domain_by_dev_info(iommu->segment, bus, devfn); 879 if (!info || !info->domain) { 880 pr_info("device [%02x:%02x.%d] not probed\n", 881 bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); 882 return; 883 } 884 885 domain = info->domain; 886 level = agaw_to_level(domain->agaw); 887 parent = domain->pgd; 888 if (!parent) { 889 pr_info("no page table setup\n"); 890 return; 891 } 892 893 while (1) { 894 offset = pfn_level_offset(pfn, level); 895 pte = &parent[offset]; 896 if (!pte || (dma_pte_superpage(pte) || !dma_pte_present(pte))) { 897 pr_info("PTE not present at level %d\n", level); 898 break; 899 } 900 901 pr_info("pte level: %d, pte value: 0x%016llx\n", level, pte->val); 902 903 if (level == 1) 904 break; 905 906 parent = phys_to_virt(dma_pte_addr(pte)); 907 level--; 908 } 909 } 910 911 void dmar_fault_dump_ptes(struct intel_iommu *iommu, u16 source_id, 912 unsigned long long addr, u32 pasid) 913 { 914 struct pasid_dir_entry *dir, *pde; 915 struct pasid_entry *entries, *pte; 916 struct context_entry *ctx_entry; 917 struct root_entry *rt_entry; 918 u8 devfn = source_id & 0xff; 919 u8 bus = source_id >> 8; 920 int i, dir_index, index; 921 922 pr_info("Dump %s table entries for IOVA 0x%llx\n", iommu->name, addr); 923 924 /* root entry dump */ 925 rt_entry = &iommu->root_entry[bus]; 926 if (!rt_entry) { 927 pr_info("root table entry is not present\n"); 928 return; 929 } 930 931 if (sm_supported(iommu)) 932 pr_info("scalable mode root entry: hi 0x%016llx, low 0x%016llx\n", 933 rt_entry->hi, rt_entry->lo); 934 else 935 pr_info("root entry: 0x%016llx", rt_entry->lo); 936 937 /* context entry dump */ 938 ctx_entry = iommu_context_addr(iommu, bus, devfn, 0); 939 if (!ctx_entry) { 940 pr_info("context table entry is not present\n"); 941 return; 942 } 943 944 pr_info("context entry: hi 0x%016llx, low 0x%016llx\n", 945 ctx_entry->hi, ctx_entry->lo); 946 947 /* legacy mode does not require PASID entries */ 948 if (!sm_supported(iommu)) 949 goto pgtable_walk; 950 951 /* get the pointer to pasid directory entry */ 952 dir = phys_to_virt(ctx_entry->lo & VTD_PAGE_MASK); 953 if (!dir) { 954 pr_info("pasid directory entry is not present\n"); 955 return; 956 } 957 /* For request-without-pasid, get the pasid from context entry */ 958 if (intel_iommu_sm && pasid == INVALID_IOASID) 959 pasid = PASID_RID2PASID; 960 961 dir_index = pasid >> PASID_PDE_SHIFT; 962 pde = &dir[dir_index]; 963 pr_info("pasid dir entry: 0x%016llx\n", pde->val); 964 965 /* get the pointer to the pasid table entry */ 966 entries = get_pasid_table_from_pde(pde); 967 if (!entries) { 968 pr_info("pasid table entry is not present\n"); 969 return; 970 } 971 index = pasid & PASID_PTE_MASK; 972 pte = &entries[index]; 973 for (i = 0; i < ARRAY_SIZE(pte->val); i++) 974 pr_info("pasid table entry[%d]: 0x%016llx\n", i, pte->val[i]); 975 976 pgtable_walk: 977 pgtable_walk(iommu, addr >> VTD_PAGE_SHIFT, bus, devfn); 978 } 979 #endif 980 981 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain, 982 unsigned long pfn, int *target_level) 983 { 984 struct dma_pte *parent, *pte; 985 int level = agaw_to_level(domain->agaw); 986 int offset; 987 988 BUG_ON(!domain->pgd); 989 990 if (!domain_pfn_supported(domain, pfn)) 991 /* Address beyond IOMMU's addressing capabilities. */ 992 return NULL; 993 994 parent = domain->pgd; 995 996 while (1) { 997 void *tmp_page; 998 999 offset = pfn_level_offset(pfn, level); 1000 pte = &parent[offset]; 1001 if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte))) 1002 break; 1003 if (level == *target_level) 1004 break; 1005 1006 if (!dma_pte_present(pte)) { 1007 uint64_t pteval; 1008 1009 tmp_page = alloc_pgtable_page(domain->nid); 1010 1011 if (!tmp_page) 1012 return NULL; 1013 1014 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE); 1015 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE; 1016 if (domain_use_first_level(domain)) { 1017 pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US; 1018 if (iommu_is_dma_domain(&domain->domain)) 1019 pteval |= DMA_FL_PTE_ACCESS; 1020 } 1021 if (cmpxchg64(&pte->val, 0ULL, pteval)) 1022 /* Someone else set it while we were thinking; use theirs. */ 1023 free_pgtable_page(tmp_page); 1024 else 1025 domain_flush_cache(domain, pte, sizeof(*pte)); 1026 } 1027 if (level == 1) 1028 break; 1029 1030 parent = phys_to_virt(dma_pte_addr(pte)); 1031 level--; 1032 } 1033 1034 if (!*target_level) 1035 *target_level = level; 1036 1037 return pte; 1038 } 1039 1040 /* return address's pte at specific level */ 1041 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain, 1042 unsigned long pfn, 1043 int level, int *large_page) 1044 { 1045 struct dma_pte *parent, *pte; 1046 int total = agaw_to_level(domain->agaw); 1047 int offset; 1048 1049 parent = domain->pgd; 1050 while (level <= total) { 1051 offset = pfn_level_offset(pfn, total); 1052 pte = &parent[offset]; 1053 if (level == total) 1054 return pte; 1055 1056 if (!dma_pte_present(pte)) { 1057 *large_page = total; 1058 break; 1059 } 1060 1061 if (dma_pte_superpage(pte)) { 1062 *large_page = total; 1063 return pte; 1064 } 1065 1066 parent = phys_to_virt(dma_pte_addr(pte)); 1067 total--; 1068 } 1069 return NULL; 1070 } 1071 1072 /* clear last level pte, a tlb flush should be followed */ 1073 static void dma_pte_clear_range(struct dmar_domain *domain, 1074 unsigned long start_pfn, 1075 unsigned long last_pfn) 1076 { 1077 unsigned int large_page; 1078 struct dma_pte *first_pte, *pte; 1079 1080 BUG_ON(!domain_pfn_supported(domain, start_pfn)); 1081 BUG_ON(!domain_pfn_supported(domain, last_pfn)); 1082 BUG_ON(start_pfn > last_pfn); 1083 1084 /* we don't need lock here; nobody else touches the iova range */ 1085 do { 1086 large_page = 1; 1087 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page); 1088 if (!pte) { 1089 start_pfn = align_to_level(start_pfn + 1, large_page + 1); 1090 continue; 1091 } 1092 do { 1093 dma_clear_pte(pte); 1094 start_pfn += lvl_to_nr_pages(large_page); 1095 pte++; 1096 } while (start_pfn <= last_pfn && !first_pte_in_page(pte)); 1097 1098 domain_flush_cache(domain, first_pte, 1099 (void *)pte - (void *)first_pte); 1100 1101 } while (start_pfn && start_pfn <= last_pfn); 1102 } 1103 1104 static void dma_pte_free_level(struct dmar_domain *domain, int level, 1105 int retain_level, struct dma_pte *pte, 1106 unsigned long pfn, unsigned long start_pfn, 1107 unsigned long last_pfn) 1108 { 1109 pfn = max(start_pfn, pfn); 1110 pte = &pte[pfn_level_offset(pfn, level)]; 1111 1112 do { 1113 unsigned long level_pfn; 1114 struct dma_pte *level_pte; 1115 1116 if (!dma_pte_present(pte) || dma_pte_superpage(pte)) 1117 goto next; 1118 1119 level_pfn = pfn & level_mask(level); 1120 level_pte = phys_to_virt(dma_pte_addr(pte)); 1121 1122 if (level > 2) { 1123 dma_pte_free_level(domain, level - 1, retain_level, 1124 level_pte, level_pfn, start_pfn, 1125 last_pfn); 1126 } 1127 1128 /* 1129 * Free the page table if we're below the level we want to 1130 * retain and the range covers the entire table. 1131 */ 1132 if (level < retain_level && !(start_pfn > level_pfn || 1133 last_pfn < level_pfn + level_size(level) - 1)) { 1134 dma_clear_pte(pte); 1135 domain_flush_cache(domain, pte, sizeof(*pte)); 1136 free_pgtable_page(level_pte); 1137 } 1138 next: 1139 pfn += level_size(level); 1140 } while (!first_pte_in_page(++pte) && pfn <= last_pfn); 1141 } 1142 1143 /* 1144 * clear last level (leaf) ptes and free page table pages below the 1145 * level we wish to keep intact. 1146 */ 1147 static void dma_pte_free_pagetable(struct dmar_domain *domain, 1148 unsigned long start_pfn, 1149 unsigned long last_pfn, 1150 int retain_level) 1151 { 1152 dma_pte_clear_range(domain, start_pfn, last_pfn); 1153 1154 /* We don't need lock here; nobody else touches the iova range */ 1155 dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level, 1156 domain->pgd, 0, start_pfn, last_pfn); 1157 1158 /* free pgd */ 1159 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { 1160 free_pgtable_page(domain->pgd); 1161 domain->pgd = NULL; 1162 } 1163 } 1164 1165 /* When a page at a given level is being unlinked from its parent, we don't 1166 need to *modify* it at all. All we need to do is make a list of all the 1167 pages which can be freed just as soon as we've flushed the IOTLB and we 1168 know the hardware page-walk will no longer touch them. 1169 The 'pte' argument is the *parent* PTE, pointing to the page that is to 1170 be freed. */ 1171 static void dma_pte_list_pagetables(struct dmar_domain *domain, 1172 int level, struct dma_pte *pte, 1173 struct list_head *freelist) 1174 { 1175 struct page *pg; 1176 1177 pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT); 1178 list_add_tail(&pg->lru, freelist); 1179 1180 if (level == 1) 1181 return; 1182 1183 pte = page_address(pg); 1184 do { 1185 if (dma_pte_present(pte) && !dma_pte_superpage(pte)) 1186 dma_pte_list_pagetables(domain, level - 1, pte, freelist); 1187 pte++; 1188 } while (!first_pte_in_page(pte)); 1189 } 1190 1191 static void dma_pte_clear_level(struct dmar_domain *domain, int level, 1192 struct dma_pte *pte, unsigned long pfn, 1193 unsigned long start_pfn, unsigned long last_pfn, 1194 struct list_head *freelist) 1195 { 1196 struct dma_pte *first_pte = NULL, *last_pte = NULL; 1197 1198 pfn = max(start_pfn, pfn); 1199 pte = &pte[pfn_level_offset(pfn, level)]; 1200 1201 do { 1202 unsigned long level_pfn = pfn & level_mask(level); 1203 1204 if (!dma_pte_present(pte)) 1205 goto next; 1206 1207 /* If range covers entire pagetable, free it */ 1208 if (start_pfn <= level_pfn && 1209 last_pfn >= level_pfn + level_size(level) - 1) { 1210 /* These suborbinate page tables are going away entirely. Don't 1211 bother to clear them; we're just going to *free* them. */ 1212 if (level > 1 && !dma_pte_superpage(pte)) 1213 dma_pte_list_pagetables(domain, level - 1, pte, freelist); 1214 1215 dma_clear_pte(pte); 1216 if (!first_pte) 1217 first_pte = pte; 1218 last_pte = pte; 1219 } else if (level > 1) { 1220 /* Recurse down into a level that isn't *entirely* obsolete */ 1221 dma_pte_clear_level(domain, level - 1, 1222 phys_to_virt(dma_pte_addr(pte)), 1223 level_pfn, start_pfn, last_pfn, 1224 freelist); 1225 } 1226 next: 1227 pfn = level_pfn + level_size(level); 1228 } while (!first_pte_in_page(++pte) && pfn <= last_pfn); 1229 1230 if (first_pte) 1231 domain_flush_cache(domain, first_pte, 1232 (void *)++last_pte - (void *)first_pte); 1233 } 1234 1235 /* We can't just free the pages because the IOMMU may still be walking 1236 the page tables, and may have cached the intermediate levels. The 1237 pages can only be freed after the IOTLB flush has been done. */ 1238 static void domain_unmap(struct dmar_domain *domain, unsigned long start_pfn, 1239 unsigned long last_pfn, struct list_head *freelist) 1240 { 1241 BUG_ON(!domain_pfn_supported(domain, start_pfn)); 1242 BUG_ON(!domain_pfn_supported(domain, last_pfn)); 1243 BUG_ON(start_pfn > last_pfn); 1244 1245 /* we don't need lock here; nobody else touches the iova range */ 1246 dma_pte_clear_level(domain, agaw_to_level(domain->agaw), 1247 domain->pgd, 0, start_pfn, last_pfn, freelist); 1248 1249 /* free pgd */ 1250 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) { 1251 struct page *pgd_page = virt_to_page(domain->pgd); 1252 list_add_tail(&pgd_page->lru, freelist); 1253 domain->pgd = NULL; 1254 } 1255 } 1256 1257 /* iommu handling */ 1258 static int iommu_alloc_root_entry(struct intel_iommu *iommu) 1259 { 1260 struct root_entry *root; 1261 unsigned long flags; 1262 1263 root = (struct root_entry *)alloc_pgtable_page(iommu->node); 1264 if (!root) { 1265 pr_err("Allocating root entry for %s failed\n", 1266 iommu->name); 1267 return -ENOMEM; 1268 } 1269 1270 __iommu_flush_cache(iommu, root, ROOT_SIZE); 1271 1272 spin_lock_irqsave(&iommu->lock, flags); 1273 iommu->root_entry = root; 1274 spin_unlock_irqrestore(&iommu->lock, flags); 1275 1276 return 0; 1277 } 1278 1279 static void iommu_set_root_entry(struct intel_iommu *iommu) 1280 { 1281 u64 addr; 1282 u32 sts; 1283 unsigned long flag; 1284 1285 addr = virt_to_phys(iommu->root_entry); 1286 if (sm_supported(iommu)) 1287 addr |= DMA_RTADDR_SMT; 1288 1289 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1290 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr); 1291 1292 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG); 1293 1294 /* Make sure hardware complete it */ 1295 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1296 readl, (sts & DMA_GSTS_RTPS), sts); 1297 1298 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1299 1300 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL); 1301 if (sm_supported(iommu)) 1302 qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0); 1303 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH); 1304 } 1305 1306 void iommu_flush_write_buffer(struct intel_iommu *iommu) 1307 { 1308 u32 val; 1309 unsigned long flag; 1310 1311 if (!rwbf_quirk && !cap_rwbf(iommu->cap)) 1312 return; 1313 1314 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1315 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG); 1316 1317 /* Make sure hardware complete it */ 1318 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1319 readl, (!(val & DMA_GSTS_WBFS)), val); 1320 1321 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1322 } 1323 1324 /* return value determine if we need a write buffer flush */ 1325 static void __iommu_flush_context(struct intel_iommu *iommu, 1326 u16 did, u16 source_id, u8 function_mask, 1327 u64 type) 1328 { 1329 u64 val = 0; 1330 unsigned long flag; 1331 1332 switch (type) { 1333 case DMA_CCMD_GLOBAL_INVL: 1334 val = DMA_CCMD_GLOBAL_INVL; 1335 break; 1336 case DMA_CCMD_DOMAIN_INVL: 1337 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did); 1338 break; 1339 case DMA_CCMD_DEVICE_INVL: 1340 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did) 1341 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask); 1342 break; 1343 default: 1344 BUG(); 1345 } 1346 val |= DMA_CCMD_ICC; 1347 1348 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1349 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val); 1350 1351 /* Make sure hardware complete it */ 1352 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG, 1353 dmar_readq, (!(val & DMA_CCMD_ICC)), val); 1354 1355 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1356 } 1357 1358 /* return value determine if we need a write buffer flush */ 1359 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, 1360 u64 addr, unsigned int size_order, u64 type) 1361 { 1362 int tlb_offset = ecap_iotlb_offset(iommu->ecap); 1363 u64 val = 0, val_iva = 0; 1364 unsigned long flag; 1365 1366 switch (type) { 1367 case DMA_TLB_GLOBAL_FLUSH: 1368 /* global flush doesn't need set IVA_REG */ 1369 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT; 1370 break; 1371 case DMA_TLB_DSI_FLUSH: 1372 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); 1373 break; 1374 case DMA_TLB_PSI_FLUSH: 1375 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did); 1376 /* IH bit is passed in as part of address */ 1377 val_iva = size_order | addr; 1378 break; 1379 default: 1380 BUG(); 1381 } 1382 /* Note: set drain read/write */ 1383 #if 0 1384 /* 1385 * This is probably to be super secure.. Looks like we can 1386 * ignore it without any impact. 1387 */ 1388 if (cap_read_drain(iommu->cap)) 1389 val |= DMA_TLB_READ_DRAIN; 1390 #endif 1391 if (cap_write_drain(iommu->cap)) 1392 val |= DMA_TLB_WRITE_DRAIN; 1393 1394 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1395 /* Note: Only uses first TLB reg currently */ 1396 if (val_iva) 1397 dmar_writeq(iommu->reg + tlb_offset, val_iva); 1398 dmar_writeq(iommu->reg + tlb_offset + 8, val); 1399 1400 /* Make sure hardware complete it */ 1401 IOMMU_WAIT_OP(iommu, tlb_offset + 8, 1402 dmar_readq, (!(val & DMA_TLB_IVT)), val); 1403 1404 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1405 1406 /* check IOTLB invalidation granularity */ 1407 if (DMA_TLB_IAIG(val) == 0) 1408 pr_err("Flush IOTLB failed\n"); 1409 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type)) 1410 pr_debug("TLB flush request %Lx, actual %Lx\n", 1411 (unsigned long long)DMA_TLB_IIRG(type), 1412 (unsigned long long)DMA_TLB_IAIG(val)); 1413 } 1414 1415 static struct device_domain_info * 1416 iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu, 1417 u8 bus, u8 devfn) 1418 { 1419 struct device_domain_info *info; 1420 1421 assert_spin_locked(&device_domain_lock); 1422 1423 if (!iommu->qi) 1424 return NULL; 1425 1426 list_for_each_entry(info, &domain->devices, link) 1427 if (info->iommu == iommu && info->bus == bus && 1428 info->devfn == devfn) { 1429 if (info->ats_supported && info->dev) 1430 return info; 1431 break; 1432 } 1433 1434 return NULL; 1435 } 1436 1437 static void domain_update_iotlb(struct dmar_domain *domain) 1438 { 1439 struct device_domain_info *info; 1440 bool has_iotlb_device = false; 1441 1442 assert_spin_locked(&device_domain_lock); 1443 1444 list_for_each_entry(info, &domain->devices, link) 1445 if (info->ats_enabled) { 1446 has_iotlb_device = true; 1447 break; 1448 } 1449 1450 domain->has_iotlb_device = has_iotlb_device; 1451 } 1452 1453 static void iommu_enable_dev_iotlb(struct device_domain_info *info) 1454 { 1455 struct pci_dev *pdev; 1456 1457 assert_spin_locked(&device_domain_lock); 1458 1459 if (!info || !dev_is_pci(info->dev)) 1460 return; 1461 1462 pdev = to_pci_dev(info->dev); 1463 /* For IOMMU that supports device IOTLB throttling (DIT), we assign 1464 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge 1465 * queue depth at PF level. If DIT is not set, PFSID will be treated as 1466 * reserved, which should be set to 0. 1467 */ 1468 if (!ecap_dit(info->iommu->ecap)) 1469 info->pfsid = 0; 1470 else { 1471 struct pci_dev *pf_pdev; 1472 1473 /* pdev will be returned if device is not a vf */ 1474 pf_pdev = pci_physfn(pdev); 1475 info->pfsid = pci_dev_id(pf_pdev); 1476 } 1477 1478 #ifdef CONFIG_INTEL_IOMMU_SVM 1479 /* The PCIe spec, in its wisdom, declares that the behaviour of 1480 the device if you enable PASID support after ATS support is 1481 undefined. So always enable PASID support on devices which 1482 have it, even if we can't yet know if we're ever going to 1483 use it. */ 1484 if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1)) 1485 info->pasid_enabled = 1; 1486 1487 if (info->pri_supported && 1488 (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1) && 1489 !pci_reset_pri(pdev) && !pci_enable_pri(pdev, PRQ_DEPTH)) 1490 info->pri_enabled = 1; 1491 #endif 1492 if (info->ats_supported && pci_ats_page_aligned(pdev) && 1493 !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) { 1494 info->ats_enabled = 1; 1495 domain_update_iotlb(info->domain); 1496 info->ats_qdep = pci_ats_queue_depth(pdev); 1497 } 1498 } 1499 1500 static void iommu_disable_dev_iotlb(struct device_domain_info *info) 1501 { 1502 struct pci_dev *pdev; 1503 1504 assert_spin_locked(&device_domain_lock); 1505 1506 if (!dev_is_pci(info->dev)) 1507 return; 1508 1509 pdev = to_pci_dev(info->dev); 1510 1511 if (info->ats_enabled) { 1512 pci_disable_ats(pdev); 1513 info->ats_enabled = 0; 1514 domain_update_iotlb(info->domain); 1515 } 1516 #ifdef CONFIG_INTEL_IOMMU_SVM 1517 if (info->pri_enabled) { 1518 pci_disable_pri(pdev); 1519 info->pri_enabled = 0; 1520 } 1521 if (info->pasid_enabled) { 1522 pci_disable_pasid(pdev); 1523 info->pasid_enabled = 0; 1524 } 1525 #endif 1526 } 1527 1528 static void __iommu_flush_dev_iotlb(struct device_domain_info *info, 1529 u64 addr, unsigned int mask) 1530 { 1531 u16 sid, qdep; 1532 1533 if (!info || !info->ats_enabled) 1534 return; 1535 1536 sid = info->bus << 8 | info->devfn; 1537 qdep = info->ats_qdep; 1538 qi_flush_dev_iotlb(info->iommu, sid, info->pfsid, 1539 qdep, addr, mask); 1540 } 1541 1542 static void iommu_flush_dev_iotlb(struct dmar_domain *domain, 1543 u64 addr, unsigned mask) 1544 { 1545 unsigned long flags; 1546 struct device_domain_info *info; 1547 1548 if (!domain->has_iotlb_device) 1549 return; 1550 1551 spin_lock_irqsave(&device_domain_lock, flags); 1552 list_for_each_entry(info, &domain->devices, link) 1553 __iommu_flush_dev_iotlb(info, addr, mask); 1554 1555 spin_unlock_irqrestore(&device_domain_lock, flags); 1556 } 1557 1558 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, 1559 struct dmar_domain *domain, 1560 unsigned long pfn, unsigned int pages, 1561 int ih, int map) 1562 { 1563 unsigned int aligned_pages = __roundup_pow_of_two(pages); 1564 unsigned int mask = ilog2(aligned_pages); 1565 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT; 1566 u16 did = domain->iommu_did[iommu->seq_id]; 1567 1568 BUG_ON(pages == 0); 1569 1570 if (ih) 1571 ih = 1 << 6; 1572 1573 if (domain_use_first_level(domain)) { 1574 qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, pages, ih); 1575 } else { 1576 unsigned long bitmask = aligned_pages - 1; 1577 1578 /* 1579 * PSI masks the low order bits of the base address. If the 1580 * address isn't aligned to the mask, then compute a mask value 1581 * needed to ensure the target range is flushed. 1582 */ 1583 if (unlikely(bitmask & pfn)) { 1584 unsigned long end_pfn = pfn + pages - 1, shared_bits; 1585 1586 /* 1587 * Since end_pfn <= pfn + bitmask, the only way bits 1588 * higher than bitmask can differ in pfn and end_pfn is 1589 * by carrying. This means after masking out bitmask, 1590 * high bits starting with the first set bit in 1591 * shared_bits are all equal in both pfn and end_pfn. 1592 */ 1593 shared_bits = ~(pfn ^ end_pfn) & ~bitmask; 1594 mask = shared_bits ? __ffs(shared_bits) : BITS_PER_LONG; 1595 } 1596 1597 /* 1598 * Fallback to domain selective flush if no PSI support or 1599 * the size is too big. 1600 */ 1601 if (!cap_pgsel_inv(iommu->cap) || 1602 mask > cap_max_amask_val(iommu->cap)) 1603 iommu->flush.flush_iotlb(iommu, did, 0, 0, 1604 DMA_TLB_DSI_FLUSH); 1605 else 1606 iommu->flush.flush_iotlb(iommu, did, addr | ih, mask, 1607 DMA_TLB_PSI_FLUSH); 1608 } 1609 1610 /* 1611 * In caching mode, changes of pages from non-present to present require 1612 * flush. However, device IOTLB doesn't need to be flushed in this case. 1613 */ 1614 if (!cap_caching_mode(iommu->cap) || !map) 1615 iommu_flush_dev_iotlb(domain, addr, mask); 1616 } 1617 1618 /* Notification for newly created mappings */ 1619 static inline void __mapping_notify_one(struct intel_iommu *iommu, 1620 struct dmar_domain *domain, 1621 unsigned long pfn, unsigned int pages) 1622 { 1623 /* 1624 * It's a non-present to present mapping. Only flush if caching mode 1625 * and second level. 1626 */ 1627 if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain)) 1628 iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1); 1629 else 1630 iommu_flush_write_buffer(iommu); 1631 } 1632 1633 static void intel_flush_iotlb_all(struct iommu_domain *domain) 1634 { 1635 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 1636 int idx; 1637 1638 for_each_domain_iommu(idx, dmar_domain) { 1639 struct intel_iommu *iommu = g_iommus[idx]; 1640 u16 did = dmar_domain->iommu_did[iommu->seq_id]; 1641 1642 if (domain_use_first_level(dmar_domain)) 1643 qi_flush_piotlb(iommu, did, PASID_RID2PASID, 0, -1, 0); 1644 else 1645 iommu->flush.flush_iotlb(iommu, did, 0, 0, 1646 DMA_TLB_DSI_FLUSH); 1647 1648 if (!cap_caching_mode(iommu->cap)) 1649 iommu_flush_dev_iotlb(dmar_domain, 0, MAX_AGAW_PFN_WIDTH); 1650 } 1651 } 1652 1653 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu) 1654 { 1655 u32 pmen; 1656 unsigned long flags; 1657 1658 if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap)) 1659 return; 1660 1661 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1662 pmen = readl(iommu->reg + DMAR_PMEN_REG); 1663 pmen &= ~DMA_PMEN_EPM; 1664 writel(pmen, iommu->reg + DMAR_PMEN_REG); 1665 1666 /* wait for the protected region status bit to clear */ 1667 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG, 1668 readl, !(pmen & DMA_PMEN_PRS), pmen); 1669 1670 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1671 } 1672 1673 static void iommu_enable_translation(struct intel_iommu *iommu) 1674 { 1675 u32 sts; 1676 unsigned long flags; 1677 1678 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1679 iommu->gcmd |= DMA_GCMD_TE; 1680 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1681 1682 /* Make sure hardware complete it */ 1683 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1684 readl, (sts & DMA_GSTS_TES), sts); 1685 1686 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1687 } 1688 1689 static void iommu_disable_translation(struct intel_iommu *iommu) 1690 { 1691 u32 sts; 1692 unsigned long flag; 1693 1694 if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated && 1695 (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap))) 1696 return; 1697 1698 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1699 iommu->gcmd &= ~DMA_GCMD_TE; 1700 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1701 1702 /* Make sure hardware complete it */ 1703 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, 1704 readl, (!(sts & DMA_GSTS_TES)), sts); 1705 1706 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1707 } 1708 1709 static int iommu_init_domains(struct intel_iommu *iommu) 1710 { 1711 u32 ndomains; 1712 1713 ndomains = cap_ndoms(iommu->cap); 1714 pr_debug("%s: Number of Domains supported <%d>\n", 1715 iommu->name, ndomains); 1716 1717 spin_lock_init(&iommu->lock); 1718 1719 iommu->domain_ids = bitmap_zalloc(ndomains, GFP_KERNEL); 1720 if (!iommu->domain_ids) 1721 return -ENOMEM; 1722 1723 /* 1724 * If Caching mode is set, then invalid translations are tagged 1725 * with domain-id 0, hence we need to pre-allocate it. We also 1726 * use domain-id 0 as a marker for non-allocated domain-id, so 1727 * make sure it is not used for a real domain. 1728 */ 1729 set_bit(0, iommu->domain_ids); 1730 1731 /* 1732 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid 1733 * entry for first-level or pass-through translation modes should 1734 * be programmed with a domain id different from those used for 1735 * second-level or nested translation. We reserve a domain id for 1736 * this purpose. 1737 */ 1738 if (sm_supported(iommu)) 1739 set_bit(FLPT_DEFAULT_DID, iommu->domain_ids); 1740 1741 return 0; 1742 } 1743 1744 static void disable_dmar_iommu(struct intel_iommu *iommu) 1745 { 1746 struct device_domain_info *info, *tmp; 1747 unsigned long flags; 1748 1749 if (!iommu->domain_ids) 1750 return; 1751 1752 spin_lock_irqsave(&device_domain_lock, flags); 1753 list_for_each_entry_safe(info, tmp, &device_domain_list, global) { 1754 if (info->iommu != iommu) 1755 continue; 1756 1757 if (!info->dev || !info->domain) 1758 continue; 1759 1760 __dmar_remove_one_dev_info(info); 1761 } 1762 spin_unlock_irqrestore(&device_domain_lock, flags); 1763 1764 if (iommu->gcmd & DMA_GCMD_TE) 1765 iommu_disable_translation(iommu); 1766 } 1767 1768 static void free_dmar_iommu(struct intel_iommu *iommu) 1769 { 1770 if (iommu->domain_ids) { 1771 bitmap_free(iommu->domain_ids); 1772 iommu->domain_ids = NULL; 1773 } 1774 1775 g_iommus[iommu->seq_id] = NULL; 1776 1777 /* free context mapping */ 1778 free_context_table(iommu); 1779 1780 #ifdef CONFIG_INTEL_IOMMU_SVM 1781 if (pasid_supported(iommu)) { 1782 if (ecap_prs(iommu->ecap)) 1783 intel_svm_finish_prq(iommu); 1784 } 1785 if (vccap_pasid(iommu->vccap)) 1786 ioasid_unregister_allocator(&iommu->pasid_allocator); 1787 1788 #endif 1789 } 1790 1791 /* 1792 * Check and return whether first level is used by default for 1793 * DMA translation. 1794 */ 1795 static bool first_level_by_default(unsigned int type) 1796 { 1797 /* Only SL is available in legacy mode */ 1798 if (!scalable_mode_support()) 1799 return false; 1800 1801 /* Only level (either FL or SL) is available, just use it */ 1802 if (intel_cap_flts_sanity() ^ intel_cap_slts_sanity()) 1803 return intel_cap_flts_sanity(); 1804 1805 /* Both levels are available, decide it based on domain type */ 1806 return type != IOMMU_DOMAIN_UNMANAGED; 1807 } 1808 1809 static struct dmar_domain *alloc_domain(unsigned int type) 1810 { 1811 struct dmar_domain *domain; 1812 1813 domain = kzalloc(sizeof(*domain), GFP_KERNEL); 1814 if (!domain) 1815 return NULL; 1816 1817 domain->nid = NUMA_NO_NODE; 1818 if (first_level_by_default(type)) 1819 domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL; 1820 domain->has_iotlb_device = false; 1821 INIT_LIST_HEAD(&domain->devices); 1822 1823 return domain; 1824 } 1825 1826 /* Must be called with iommu->lock */ 1827 static int domain_attach_iommu(struct dmar_domain *domain, 1828 struct intel_iommu *iommu) 1829 { 1830 unsigned long ndomains; 1831 int num; 1832 1833 assert_spin_locked(&device_domain_lock); 1834 assert_spin_locked(&iommu->lock); 1835 1836 domain->iommu_refcnt[iommu->seq_id] += 1; 1837 if (domain->iommu_refcnt[iommu->seq_id] == 1) { 1838 ndomains = cap_ndoms(iommu->cap); 1839 num = find_first_zero_bit(iommu->domain_ids, ndomains); 1840 1841 if (num >= ndomains) { 1842 pr_err("%s: No free domain ids\n", iommu->name); 1843 domain->iommu_refcnt[iommu->seq_id] -= 1; 1844 return -ENOSPC; 1845 } 1846 1847 set_bit(num, iommu->domain_ids); 1848 domain->iommu_did[iommu->seq_id] = num; 1849 domain->nid = iommu->node; 1850 domain_update_iommu_cap(domain); 1851 } 1852 1853 return 0; 1854 } 1855 1856 static void domain_detach_iommu(struct dmar_domain *domain, 1857 struct intel_iommu *iommu) 1858 { 1859 int num; 1860 1861 assert_spin_locked(&device_domain_lock); 1862 assert_spin_locked(&iommu->lock); 1863 1864 domain->iommu_refcnt[iommu->seq_id] -= 1; 1865 if (domain->iommu_refcnt[iommu->seq_id] == 0) { 1866 num = domain->iommu_did[iommu->seq_id]; 1867 clear_bit(num, iommu->domain_ids); 1868 domain_update_iommu_cap(domain); 1869 domain->iommu_did[iommu->seq_id] = 0; 1870 } 1871 } 1872 1873 static inline int guestwidth_to_adjustwidth(int gaw) 1874 { 1875 int agaw; 1876 int r = (gaw - 12) % 9; 1877 1878 if (r == 0) 1879 agaw = gaw; 1880 else 1881 agaw = gaw + 9 - r; 1882 if (agaw > 64) 1883 agaw = 64; 1884 return agaw; 1885 } 1886 1887 static void domain_exit(struct dmar_domain *domain) 1888 { 1889 1890 /* Remove associated devices and clear attached or cached domains */ 1891 domain_remove_dev_info(domain); 1892 1893 if (domain->pgd) { 1894 LIST_HEAD(freelist); 1895 1896 domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw), &freelist); 1897 put_pages_list(&freelist); 1898 } 1899 1900 kfree(domain); 1901 } 1902 1903 /* 1904 * Get the PASID directory size for scalable mode context entry. 1905 * Value of X in the PDTS field of a scalable mode context entry 1906 * indicates PASID directory with 2^(X + 7) entries. 1907 */ 1908 static inline unsigned long context_get_sm_pds(struct pasid_table *table) 1909 { 1910 unsigned long pds, max_pde; 1911 1912 max_pde = table->max_pasid >> PASID_PDE_SHIFT; 1913 pds = find_first_bit(&max_pde, MAX_NR_PASID_BITS); 1914 if (pds < 7) 1915 return 0; 1916 1917 return pds - 7; 1918 } 1919 1920 /* 1921 * Set the RID_PASID field of a scalable mode context entry. The 1922 * IOMMU hardware will use the PASID value set in this field for 1923 * DMA translations of DMA requests without PASID. 1924 */ 1925 static inline void 1926 context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid) 1927 { 1928 context->hi |= pasid & ((1 << 20) - 1); 1929 } 1930 1931 /* 1932 * Set the DTE(Device-TLB Enable) field of a scalable mode context 1933 * entry. 1934 */ 1935 static inline void context_set_sm_dte(struct context_entry *context) 1936 { 1937 context->lo |= (1 << 2); 1938 } 1939 1940 /* 1941 * Set the PRE(Page Request Enable) field of a scalable mode context 1942 * entry. 1943 */ 1944 static inline void context_set_sm_pre(struct context_entry *context) 1945 { 1946 context->lo |= (1 << 4); 1947 } 1948 1949 /* Convert value to context PASID directory size field coding. */ 1950 #define context_pdts(pds) (((pds) & 0x7) << 9) 1951 1952 static int domain_context_mapping_one(struct dmar_domain *domain, 1953 struct intel_iommu *iommu, 1954 struct pasid_table *table, 1955 u8 bus, u8 devfn) 1956 { 1957 u16 did = domain->iommu_did[iommu->seq_id]; 1958 int translation = CONTEXT_TT_MULTI_LEVEL; 1959 struct device_domain_info *info = NULL; 1960 struct context_entry *context; 1961 unsigned long flags; 1962 int ret; 1963 1964 WARN_ON(did == 0); 1965 1966 if (hw_pass_through && domain_type_is_si(domain)) 1967 translation = CONTEXT_TT_PASS_THROUGH; 1968 1969 pr_debug("Set context mapping for %02x:%02x.%d\n", 1970 bus, PCI_SLOT(devfn), PCI_FUNC(devfn)); 1971 1972 BUG_ON(!domain->pgd); 1973 1974 spin_lock_irqsave(&device_domain_lock, flags); 1975 spin_lock(&iommu->lock); 1976 1977 ret = -ENOMEM; 1978 context = iommu_context_addr(iommu, bus, devfn, 1); 1979 if (!context) 1980 goto out_unlock; 1981 1982 ret = 0; 1983 if (context_present(context)) 1984 goto out_unlock; 1985 1986 /* 1987 * For kdump cases, old valid entries may be cached due to the 1988 * in-flight DMA and copied pgtable, but there is no unmapping 1989 * behaviour for them, thus we need an explicit cache flush for 1990 * the newly-mapped device. For kdump, at this point, the device 1991 * is supposed to finish reset at its driver probe stage, so no 1992 * in-flight DMA will exist, and we don't need to worry anymore 1993 * hereafter. 1994 */ 1995 if (context_copied(context)) { 1996 u16 did_old = context_domain_id(context); 1997 1998 if (did_old < cap_ndoms(iommu->cap)) { 1999 iommu->flush.flush_context(iommu, did_old, 2000 (((u16)bus) << 8) | devfn, 2001 DMA_CCMD_MASK_NOBIT, 2002 DMA_CCMD_DEVICE_INVL); 2003 iommu->flush.flush_iotlb(iommu, did_old, 0, 0, 2004 DMA_TLB_DSI_FLUSH); 2005 } 2006 } 2007 2008 context_clear_entry(context); 2009 2010 if (sm_supported(iommu)) { 2011 unsigned long pds; 2012 2013 WARN_ON(!table); 2014 2015 /* Setup the PASID DIR pointer: */ 2016 pds = context_get_sm_pds(table); 2017 context->lo = (u64)virt_to_phys(table->table) | 2018 context_pdts(pds); 2019 2020 /* Setup the RID_PASID field: */ 2021 context_set_sm_rid2pasid(context, PASID_RID2PASID); 2022 2023 /* 2024 * Setup the Device-TLB enable bit and Page request 2025 * Enable bit: 2026 */ 2027 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); 2028 if (info && info->ats_supported) 2029 context_set_sm_dte(context); 2030 if (info && info->pri_supported) 2031 context_set_sm_pre(context); 2032 } else { 2033 struct dma_pte *pgd = domain->pgd; 2034 int agaw; 2035 2036 context_set_domain_id(context, did); 2037 2038 if (translation != CONTEXT_TT_PASS_THROUGH) { 2039 /* 2040 * Skip top levels of page tables for iommu which has 2041 * less agaw than default. Unnecessary for PT mode. 2042 */ 2043 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { 2044 ret = -ENOMEM; 2045 pgd = phys_to_virt(dma_pte_addr(pgd)); 2046 if (!dma_pte_present(pgd)) 2047 goto out_unlock; 2048 } 2049 2050 info = iommu_support_dev_iotlb(domain, iommu, bus, devfn); 2051 if (info && info->ats_supported) 2052 translation = CONTEXT_TT_DEV_IOTLB; 2053 else 2054 translation = CONTEXT_TT_MULTI_LEVEL; 2055 2056 context_set_address_root(context, virt_to_phys(pgd)); 2057 context_set_address_width(context, agaw); 2058 } else { 2059 /* 2060 * In pass through mode, AW must be programmed to 2061 * indicate the largest AGAW value supported by 2062 * hardware. And ASR is ignored by hardware. 2063 */ 2064 context_set_address_width(context, iommu->msagaw); 2065 } 2066 2067 context_set_translation_type(context, translation); 2068 } 2069 2070 context_set_fault_enable(context); 2071 context_set_present(context); 2072 if (!ecap_coherent(iommu->ecap)) 2073 clflush_cache_range(context, sizeof(*context)); 2074 2075 /* 2076 * It's a non-present to present mapping. If hardware doesn't cache 2077 * non-present entry we only need to flush the write-buffer. If the 2078 * _does_ cache non-present entries, then it does so in the special 2079 * domain #0, which we have to flush: 2080 */ 2081 if (cap_caching_mode(iommu->cap)) { 2082 iommu->flush.flush_context(iommu, 0, 2083 (((u16)bus) << 8) | devfn, 2084 DMA_CCMD_MASK_NOBIT, 2085 DMA_CCMD_DEVICE_INVL); 2086 iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH); 2087 } else { 2088 iommu_flush_write_buffer(iommu); 2089 } 2090 iommu_enable_dev_iotlb(info); 2091 2092 ret = 0; 2093 2094 out_unlock: 2095 spin_unlock(&iommu->lock); 2096 spin_unlock_irqrestore(&device_domain_lock, flags); 2097 2098 return ret; 2099 } 2100 2101 struct domain_context_mapping_data { 2102 struct dmar_domain *domain; 2103 struct intel_iommu *iommu; 2104 struct pasid_table *table; 2105 }; 2106 2107 static int domain_context_mapping_cb(struct pci_dev *pdev, 2108 u16 alias, void *opaque) 2109 { 2110 struct domain_context_mapping_data *data = opaque; 2111 2112 return domain_context_mapping_one(data->domain, data->iommu, 2113 data->table, PCI_BUS_NUM(alias), 2114 alias & 0xff); 2115 } 2116 2117 static int 2118 domain_context_mapping(struct dmar_domain *domain, struct device *dev) 2119 { 2120 struct domain_context_mapping_data data; 2121 struct pasid_table *table; 2122 struct intel_iommu *iommu; 2123 u8 bus, devfn; 2124 2125 iommu = device_to_iommu(dev, &bus, &devfn); 2126 if (!iommu) 2127 return -ENODEV; 2128 2129 table = intel_pasid_get_table(dev); 2130 2131 if (!dev_is_pci(dev)) 2132 return domain_context_mapping_one(domain, iommu, table, 2133 bus, devfn); 2134 2135 data.domain = domain; 2136 data.iommu = iommu; 2137 data.table = table; 2138 2139 return pci_for_each_dma_alias(to_pci_dev(dev), 2140 &domain_context_mapping_cb, &data); 2141 } 2142 2143 static int domain_context_mapped_cb(struct pci_dev *pdev, 2144 u16 alias, void *opaque) 2145 { 2146 struct intel_iommu *iommu = opaque; 2147 2148 return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff); 2149 } 2150 2151 static int domain_context_mapped(struct device *dev) 2152 { 2153 struct intel_iommu *iommu; 2154 u8 bus, devfn; 2155 2156 iommu = device_to_iommu(dev, &bus, &devfn); 2157 if (!iommu) 2158 return -ENODEV; 2159 2160 if (!dev_is_pci(dev)) 2161 return device_context_mapped(iommu, bus, devfn); 2162 2163 return !pci_for_each_dma_alias(to_pci_dev(dev), 2164 domain_context_mapped_cb, iommu); 2165 } 2166 2167 /* Returns a number of VTD pages, but aligned to MM page size */ 2168 static inline unsigned long aligned_nrpages(unsigned long host_addr, 2169 size_t size) 2170 { 2171 host_addr &= ~PAGE_MASK; 2172 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT; 2173 } 2174 2175 /* Return largest possible superpage level for a given mapping */ 2176 static inline int hardware_largepage_caps(struct dmar_domain *domain, 2177 unsigned long iov_pfn, 2178 unsigned long phy_pfn, 2179 unsigned long pages) 2180 { 2181 int support, level = 1; 2182 unsigned long pfnmerge; 2183 2184 support = domain->iommu_superpage; 2185 2186 /* To use a large page, the virtual *and* physical addresses 2187 must be aligned to 2MiB/1GiB/etc. Lower bits set in either 2188 of them will mean we have to use smaller pages. So just 2189 merge them and check both at once. */ 2190 pfnmerge = iov_pfn | phy_pfn; 2191 2192 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) { 2193 pages >>= VTD_STRIDE_SHIFT; 2194 if (!pages) 2195 break; 2196 pfnmerge >>= VTD_STRIDE_SHIFT; 2197 level++; 2198 support--; 2199 } 2200 return level; 2201 } 2202 2203 /* 2204 * Ensure that old small page tables are removed to make room for superpage(s). 2205 * We're going to add new large pages, so make sure we don't remove their parent 2206 * tables. The IOTLB/devTLBs should be flushed if any PDE/PTEs are cleared. 2207 */ 2208 static void switch_to_super_page(struct dmar_domain *domain, 2209 unsigned long start_pfn, 2210 unsigned long end_pfn, int level) 2211 { 2212 unsigned long lvl_pages = lvl_to_nr_pages(level); 2213 struct dma_pte *pte = NULL; 2214 int i; 2215 2216 while (start_pfn <= end_pfn) { 2217 if (!pte) 2218 pte = pfn_to_dma_pte(domain, start_pfn, &level); 2219 2220 if (dma_pte_present(pte)) { 2221 dma_pte_free_pagetable(domain, start_pfn, 2222 start_pfn + lvl_pages - 1, 2223 level + 1); 2224 2225 for_each_domain_iommu(i, domain) 2226 iommu_flush_iotlb_psi(g_iommus[i], domain, 2227 start_pfn, lvl_pages, 2228 0, 0); 2229 } 2230 2231 pte++; 2232 start_pfn += lvl_pages; 2233 if (first_pte_in_page(pte)) 2234 pte = NULL; 2235 } 2236 } 2237 2238 static int 2239 __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn, 2240 unsigned long phys_pfn, unsigned long nr_pages, int prot) 2241 { 2242 struct dma_pte *first_pte = NULL, *pte = NULL; 2243 unsigned int largepage_lvl = 0; 2244 unsigned long lvl_pages = 0; 2245 phys_addr_t pteval; 2246 u64 attr; 2247 2248 BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1)); 2249 2250 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0) 2251 return -EINVAL; 2252 2253 attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP); 2254 attr |= DMA_FL_PTE_PRESENT; 2255 if (domain_use_first_level(domain)) { 2256 attr |= DMA_FL_PTE_XD | DMA_FL_PTE_US | DMA_FL_PTE_ACCESS; 2257 if (prot & DMA_PTE_WRITE) 2258 attr |= DMA_FL_PTE_DIRTY; 2259 } 2260 2261 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr; 2262 2263 while (nr_pages > 0) { 2264 uint64_t tmp; 2265 2266 if (!pte) { 2267 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, 2268 phys_pfn, nr_pages); 2269 2270 pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl); 2271 if (!pte) 2272 return -ENOMEM; 2273 first_pte = pte; 2274 2275 lvl_pages = lvl_to_nr_pages(largepage_lvl); 2276 2277 /* It is large page*/ 2278 if (largepage_lvl > 1) { 2279 unsigned long end_pfn; 2280 unsigned long pages_to_remove; 2281 2282 pteval |= DMA_PTE_LARGE_PAGE; 2283 pages_to_remove = min_t(unsigned long, nr_pages, 2284 nr_pte_to_next_page(pte) * lvl_pages); 2285 end_pfn = iov_pfn + pages_to_remove - 1; 2286 switch_to_super_page(domain, iov_pfn, end_pfn, largepage_lvl); 2287 } else { 2288 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE; 2289 } 2290 2291 } 2292 /* We don't need lock here, nobody else 2293 * touches the iova range 2294 */ 2295 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval); 2296 if (tmp) { 2297 static int dumps = 5; 2298 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n", 2299 iov_pfn, tmp, (unsigned long long)pteval); 2300 if (dumps) { 2301 dumps--; 2302 debug_dma_dump_mappings(NULL); 2303 } 2304 WARN_ON(1); 2305 } 2306 2307 nr_pages -= lvl_pages; 2308 iov_pfn += lvl_pages; 2309 phys_pfn += lvl_pages; 2310 pteval += lvl_pages * VTD_PAGE_SIZE; 2311 2312 /* If the next PTE would be the first in a new page, then we 2313 * need to flush the cache on the entries we've just written. 2314 * And then we'll need to recalculate 'pte', so clear it and 2315 * let it get set again in the if (!pte) block above. 2316 * 2317 * If we're done (!nr_pages) we need to flush the cache too. 2318 * 2319 * Also if we've been setting superpages, we may need to 2320 * recalculate 'pte' and switch back to smaller pages for the 2321 * end of the mapping, if the trailing size is not enough to 2322 * use another superpage (i.e. nr_pages < lvl_pages). 2323 */ 2324 pte++; 2325 if (!nr_pages || first_pte_in_page(pte) || 2326 (largepage_lvl > 1 && nr_pages < lvl_pages)) { 2327 domain_flush_cache(domain, first_pte, 2328 (void *)pte - (void *)first_pte); 2329 pte = NULL; 2330 } 2331 } 2332 2333 return 0; 2334 } 2335 2336 static void domain_context_clear_one(struct device_domain_info *info, u8 bus, u8 devfn) 2337 { 2338 struct intel_iommu *iommu = info->iommu; 2339 struct context_entry *context; 2340 unsigned long flags; 2341 u16 did_old; 2342 2343 if (!iommu) 2344 return; 2345 2346 spin_lock_irqsave(&iommu->lock, flags); 2347 context = iommu_context_addr(iommu, bus, devfn, 0); 2348 if (!context) { 2349 spin_unlock_irqrestore(&iommu->lock, flags); 2350 return; 2351 } 2352 2353 if (sm_supported(iommu)) { 2354 if (hw_pass_through && domain_type_is_si(info->domain)) 2355 did_old = FLPT_DEFAULT_DID; 2356 else 2357 did_old = info->domain->iommu_did[iommu->seq_id]; 2358 } else { 2359 did_old = context_domain_id(context); 2360 } 2361 2362 context_clear_entry(context); 2363 __iommu_flush_cache(iommu, context, sizeof(*context)); 2364 spin_unlock_irqrestore(&iommu->lock, flags); 2365 iommu->flush.flush_context(iommu, 2366 did_old, 2367 (((u16)bus) << 8) | devfn, 2368 DMA_CCMD_MASK_NOBIT, 2369 DMA_CCMD_DEVICE_INVL); 2370 2371 if (sm_supported(iommu)) 2372 qi_flush_pasid_cache(iommu, did_old, QI_PC_ALL_PASIDS, 0); 2373 2374 iommu->flush.flush_iotlb(iommu, 2375 did_old, 2376 0, 2377 0, 2378 DMA_TLB_DSI_FLUSH); 2379 2380 __iommu_flush_dev_iotlb(info, 0, MAX_AGAW_PFN_WIDTH); 2381 } 2382 2383 static void domain_remove_dev_info(struct dmar_domain *domain) 2384 { 2385 struct device_domain_info *info, *tmp; 2386 unsigned long flags; 2387 2388 spin_lock_irqsave(&device_domain_lock, flags); 2389 list_for_each_entry_safe(info, tmp, &domain->devices, link) 2390 __dmar_remove_one_dev_info(info); 2391 spin_unlock_irqrestore(&device_domain_lock, flags); 2392 } 2393 2394 static inline struct device_domain_info * 2395 dmar_search_domain_by_dev_info(int segment, int bus, int devfn) 2396 { 2397 struct device_domain_info *info; 2398 2399 list_for_each_entry(info, &device_domain_list, global) 2400 if (info->segment == segment && info->bus == bus && 2401 info->devfn == devfn) 2402 return info; 2403 2404 return NULL; 2405 } 2406 2407 static int domain_setup_first_level(struct intel_iommu *iommu, 2408 struct dmar_domain *domain, 2409 struct device *dev, 2410 u32 pasid) 2411 { 2412 struct dma_pte *pgd = domain->pgd; 2413 int agaw, level; 2414 int flags = 0; 2415 2416 /* 2417 * Skip top levels of page tables for iommu which has 2418 * less agaw than default. Unnecessary for PT mode. 2419 */ 2420 for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) { 2421 pgd = phys_to_virt(dma_pte_addr(pgd)); 2422 if (!dma_pte_present(pgd)) 2423 return -ENOMEM; 2424 } 2425 2426 level = agaw_to_level(agaw); 2427 if (level != 4 && level != 5) 2428 return -EINVAL; 2429 2430 if (pasid != PASID_RID2PASID) 2431 flags |= PASID_FLAG_SUPERVISOR_MODE; 2432 if (level == 5) 2433 flags |= PASID_FLAG_FL5LP; 2434 2435 if (domain->force_snooping) 2436 flags |= PASID_FLAG_PAGE_SNOOP; 2437 2438 return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid, 2439 domain->iommu_did[iommu->seq_id], 2440 flags); 2441 } 2442 2443 static bool dev_is_real_dma_subdevice(struct device *dev) 2444 { 2445 return dev && dev_is_pci(dev) && 2446 pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev); 2447 } 2448 2449 static int iommu_domain_identity_map(struct dmar_domain *domain, 2450 unsigned long first_vpfn, 2451 unsigned long last_vpfn) 2452 { 2453 /* 2454 * RMRR range might have overlap with physical memory range, 2455 * clear it first 2456 */ 2457 dma_pte_clear_range(domain, first_vpfn, last_vpfn); 2458 2459 return __domain_mapping(domain, first_vpfn, 2460 first_vpfn, last_vpfn - first_vpfn + 1, 2461 DMA_PTE_READ|DMA_PTE_WRITE); 2462 } 2463 2464 static int md_domain_init(struct dmar_domain *domain, int guest_width); 2465 2466 static int __init si_domain_init(int hw) 2467 { 2468 struct dmar_rmrr_unit *rmrr; 2469 struct device *dev; 2470 int i, nid, ret; 2471 2472 si_domain = alloc_domain(IOMMU_DOMAIN_IDENTITY); 2473 if (!si_domain) 2474 return -EFAULT; 2475 2476 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { 2477 domain_exit(si_domain); 2478 return -EFAULT; 2479 } 2480 2481 if (hw) 2482 return 0; 2483 2484 for_each_online_node(nid) { 2485 unsigned long start_pfn, end_pfn; 2486 int i; 2487 2488 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 2489 ret = iommu_domain_identity_map(si_domain, 2490 mm_to_dma_pfn(start_pfn), 2491 mm_to_dma_pfn(end_pfn)); 2492 if (ret) 2493 return ret; 2494 } 2495 } 2496 2497 /* 2498 * Identity map the RMRRs so that devices with RMRRs could also use 2499 * the si_domain. 2500 */ 2501 for_each_rmrr_units(rmrr) { 2502 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, 2503 i, dev) { 2504 unsigned long long start = rmrr->base_address; 2505 unsigned long long end = rmrr->end_address; 2506 2507 if (WARN_ON(end < start || 2508 end >> agaw_to_width(si_domain->agaw))) 2509 continue; 2510 2511 ret = iommu_domain_identity_map(si_domain, 2512 mm_to_dma_pfn(start >> PAGE_SHIFT), 2513 mm_to_dma_pfn(end >> PAGE_SHIFT)); 2514 if (ret) 2515 return ret; 2516 } 2517 } 2518 2519 return 0; 2520 } 2521 2522 static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev) 2523 { 2524 struct device_domain_info *info = dev_iommu_priv_get(dev); 2525 struct intel_iommu *iommu; 2526 unsigned long flags; 2527 u8 bus, devfn; 2528 int ret; 2529 2530 iommu = device_to_iommu(dev, &bus, &devfn); 2531 if (!iommu) 2532 return -ENODEV; 2533 2534 spin_lock_irqsave(&device_domain_lock, flags); 2535 info->domain = domain; 2536 spin_lock(&iommu->lock); 2537 ret = domain_attach_iommu(domain, iommu); 2538 spin_unlock(&iommu->lock); 2539 if (ret) { 2540 spin_unlock_irqrestore(&device_domain_lock, flags); 2541 return ret; 2542 } 2543 list_add(&info->link, &domain->devices); 2544 spin_unlock_irqrestore(&device_domain_lock, flags); 2545 2546 /* PASID table is mandatory for a PCI device in scalable mode. */ 2547 if (sm_supported(iommu) && !dev_is_real_dma_subdevice(dev)) { 2548 ret = intel_pasid_alloc_table(dev); 2549 if (ret) { 2550 dev_err(dev, "PASID table allocation failed\n"); 2551 dmar_remove_one_dev_info(dev); 2552 return ret; 2553 } 2554 2555 /* Setup the PASID entry for requests without PASID: */ 2556 spin_lock_irqsave(&iommu->lock, flags); 2557 if (hw_pass_through && domain_type_is_si(domain)) 2558 ret = intel_pasid_setup_pass_through(iommu, domain, 2559 dev, PASID_RID2PASID); 2560 else if (domain_use_first_level(domain)) 2561 ret = domain_setup_first_level(iommu, domain, dev, 2562 PASID_RID2PASID); 2563 else 2564 ret = intel_pasid_setup_second_level(iommu, domain, 2565 dev, PASID_RID2PASID); 2566 spin_unlock_irqrestore(&iommu->lock, flags); 2567 if (ret) { 2568 dev_err(dev, "Setup RID2PASID failed\n"); 2569 dmar_remove_one_dev_info(dev); 2570 return ret; 2571 } 2572 } 2573 2574 ret = domain_context_mapping(domain, dev); 2575 if (ret) { 2576 dev_err(dev, "Domain context map failed\n"); 2577 dmar_remove_one_dev_info(dev); 2578 return ret; 2579 } 2580 2581 return 0; 2582 } 2583 2584 static bool device_has_rmrr(struct device *dev) 2585 { 2586 struct dmar_rmrr_unit *rmrr; 2587 struct device *tmp; 2588 int i; 2589 2590 rcu_read_lock(); 2591 for_each_rmrr_units(rmrr) { 2592 /* 2593 * Return TRUE if this RMRR contains the device that 2594 * is passed in. 2595 */ 2596 for_each_active_dev_scope(rmrr->devices, 2597 rmrr->devices_cnt, i, tmp) 2598 if (tmp == dev || 2599 is_downstream_to_pci_bridge(dev, tmp)) { 2600 rcu_read_unlock(); 2601 return true; 2602 } 2603 } 2604 rcu_read_unlock(); 2605 return false; 2606 } 2607 2608 /** 2609 * device_rmrr_is_relaxable - Test whether the RMRR of this device 2610 * is relaxable (ie. is allowed to be not enforced under some conditions) 2611 * @dev: device handle 2612 * 2613 * We assume that PCI USB devices with RMRRs have them largely 2614 * for historical reasons and that the RMRR space is not actively used post 2615 * boot. This exclusion may change if vendors begin to abuse it. 2616 * 2617 * The same exception is made for graphics devices, with the requirement that 2618 * any use of the RMRR regions will be torn down before assigning the device 2619 * to a guest. 2620 * 2621 * Return: true if the RMRR is relaxable, false otherwise 2622 */ 2623 static bool device_rmrr_is_relaxable(struct device *dev) 2624 { 2625 struct pci_dev *pdev; 2626 2627 if (!dev_is_pci(dev)) 2628 return false; 2629 2630 pdev = to_pci_dev(dev); 2631 if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev)) 2632 return true; 2633 else 2634 return false; 2635 } 2636 2637 /* 2638 * There are a couple cases where we need to restrict the functionality of 2639 * devices associated with RMRRs. The first is when evaluating a device for 2640 * identity mapping because problems exist when devices are moved in and out 2641 * of domains and their respective RMRR information is lost. This means that 2642 * a device with associated RMRRs will never be in a "passthrough" domain. 2643 * The second is use of the device through the IOMMU API. This interface 2644 * expects to have full control of the IOVA space for the device. We cannot 2645 * satisfy both the requirement that RMRR access is maintained and have an 2646 * unencumbered IOVA space. We also have no ability to quiesce the device's 2647 * use of the RMRR space or even inform the IOMMU API user of the restriction. 2648 * We therefore prevent devices associated with an RMRR from participating in 2649 * the IOMMU API, which eliminates them from device assignment. 2650 * 2651 * In both cases, devices which have relaxable RMRRs are not concerned by this 2652 * restriction. See device_rmrr_is_relaxable comment. 2653 */ 2654 static bool device_is_rmrr_locked(struct device *dev) 2655 { 2656 if (!device_has_rmrr(dev)) 2657 return false; 2658 2659 if (device_rmrr_is_relaxable(dev)) 2660 return false; 2661 2662 return true; 2663 } 2664 2665 /* 2666 * Return the required default domain type for a specific device. 2667 * 2668 * @dev: the device in query 2669 * @startup: true if this is during early boot 2670 * 2671 * Returns: 2672 * - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain 2673 * - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain 2674 * - 0: both identity and dynamic domains work for this device 2675 */ 2676 static int device_def_domain_type(struct device *dev) 2677 { 2678 if (dev_is_pci(dev)) { 2679 struct pci_dev *pdev = to_pci_dev(dev); 2680 2681 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev)) 2682 return IOMMU_DOMAIN_IDENTITY; 2683 2684 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev)) 2685 return IOMMU_DOMAIN_IDENTITY; 2686 } 2687 2688 return 0; 2689 } 2690 2691 static void intel_iommu_init_qi(struct intel_iommu *iommu) 2692 { 2693 /* 2694 * Start from the sane iommu hardware state. 2695 * If the queued invalidation is already initialized by us 2696 * (for example, while enabling interrupt-remapping) then 2697 * we got the things already rolling from a sane state. 2698 */ 2699 if (!iommu->qi) { 2700 /* 2701 * Clear any previous faults. 2702 */ 2703 dmar_fault(-1, iommu); 2704 /* 2705 * Disable queued invalidation if supported and already enabled 2706 * before OS handover. 2707 */ 2708 dmar_disable_qi(iommu); 2709 } 2710 2711 if (dmar_enable_qi(iommu)) { 2712 /* 2713 * Queued Invalidate not enabled, use Register Based Invalidate 2714 */ 2715 iommu->flush.flush_context = __iommu_flush_context; 2716 iommu->flush.flush_iotlb = __iommu_flush_iotlb; 2717 pr_info("%s: Using Register based invalidation\n", 2718 iommu->name); 2719 } else { 2720 iommu->flush.flush_context = qi_flush_context; 2721 iommu->flush.flush_iotlb = qi_flush_iotlb; 2722 pr_info("%s: Using Queued invalidation\n", iommu->name); 2723 } 2724 } 2725 2726 static int copy_context_table(struct intel_iommu *iommu, 2727 struct root_entry *old_re, 2728 struct context_entry **tbl, 2729 int bus, bool ext) 2730 { 2731 int tbl_idx, pos = 0, idx, devfn, ret = 0, did; 2732 struct context_entry *new_ce = NULL, ce; 2733 struct context_entry *old_ce = NULL; 2734 struct root_entry re; 2735 phys_addr_t old_ce_phys; 2736 2737 tbl_idx = ext ? bus * 2 : bus; 2738 memcpy(&re, old_re, sizeof(re)); 2739 2740 for (devfn = 0; devfn < 256; devfn++) { 2741 /* First calculate the correct index */ 2742 idx = (ext ? devfn * 2 : devfn) % 256; 2743 2744 if (idx == 0) { 2745 /* First save what we may have and clean up */ 2746 if (new_ce) { 2747 tbl[tbl_idx] = new_ce; 2748 __iommu_flush_cache(iommu, new_ce, 2749 VTD_PAGE_SIZE); 2750 pos = 1; 2751 } 2752 2753 if (old_ce) 2754 memunmap(old_ce); 2755 2756 ret = 0; 2757 if (devfn < 0x80) 2758 old_ce_phys = root_entry_lctp(&re); 2759 else 2760 old_ce_phys = root_entry_uctp(&re); 2761 2762 if (!old_ce_phys) { 2763 if (ext && devfn == 0) { 2764 /* No LCTP, try UCTP */ 2765 devfn = 0x7f; 2766 continue; 2767 } else { 2768 goto out; 2769 } 2770 } 2771 2772 ret = -ENOMEM; 2773 old_ce = memremap(old_ce_phys, PAGE_SIZE, 2774 MEMREMAP_WB); 2775 if (!old_ce) 2776 goto out; 2777 2778 new_ce = alloc_pgtable_page(iommu->node); 2779 if (!new_ce) 2780 goto out_unmap; 2781 2782 ret = 0; 2783 } 2784 2785 /* Now copy the context entry */ 2786 memcpy(&ce, old_ce + idx, sizeof(ce)); 2787 2788 if (!__context_present(&ce)) 2789 continue; 2790 2791 did = context_domain_id(&ce); 2792 if (did >= 0 && did < cap_ndoms(iommu->cap)) 2793 set_bit(did, iommu->domain_ids); 2794 2795 /* 2796 * We need a marker for copied context entries. This 2797 * marker needs to work for the old format as well as 2798 * for extended context entries. 2799 * 2800 * Bit 67 of the context entry is used. In the old 2801 * format this bit is available to software, in the 2802 * extended format it is the PGE bit, but PGE is ignored 2803 * by HW if PASIDs are disabled (and thus still 2804 * available). 2805 * 2806 * So disable PASIDs first and then mark the entry 2807 * copied. This means that we don't copy PASID 2808 * translations from the old kernel, but this is fine as 2809 * faults there are not fatal. 2810 */ 2811 context_clear_pasid_enable(&ce); 2812 context_set_copied(&ce); 2813 2814 new_ce[idx] = ce; 2815 } 2816 2817 tbl[tbl_idx + pos] = new_ce; 2818 2819 __iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE); 2820 2821 out_unmap: 2822 memunmap(old_ce); 2823 2824 out: 2825 return ret; 2826 } 2827 2828 static int copy_translation_tables(struct intel_iommu *iommu) 2829 { 2830 struct context_entry **ctxt_tbls; 2831 struct root_entry *old_rt; 2832 phys_addr_t old_rt_phys; 2833 int ctxt_table_entries; 2834 unsigned long flags; 2835 u64 rtaddr_reg; 2836 int bus, ret; 2837 bool new_ext, ext; 2838 2839 rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG); 2840 ext = !!(rtaddr_reg & DMA_RTADDR_RTT); 2841 new_ext = !!ecap_ecs(iommu->ecap); 2842 2843 /* 2844 * The RTT bit can only be changed when translation is disabled, 2845 * but disabling translation means to open a window for data 2846 * corruption. So bail out and don't copy anything if we would 2847 * have to change the bit. 2848 */ 2849 if (new_ext != ext) 2850 return -EINVAL; 2851 2852 old_rt_phys = rtaddr_reg & VTD_PAGE_MASK; 2853 if (!old_rt_phys) 2854 return -EINVAL; 2855 2856 old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB); 2857 if (!old_rt) 2858 return -ENOMEM; 2859 2860 /* This is too big for the stack - allocate it from slab */ 2861 ctxt_table_entries = ext ? 512 : 256; 2862 ret = -ENOMEM; 2863 ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL); 2864 if (!ctxt_tbls) 2865 goto out_unmap; 2866 2867 for (bus = 0; bus < 256; bus++) { 2868 ret = copy_context_table(iommu, &old_rt[bus], 2869 ctxt_tbls, bus, ext); 2870 if (ret) { 2871 pr_err("%s: Failed to copy context table for bus %d\n", 2872 iommu->name, bus); 2873 continue; 2874 } 2875 } 2876 2877 spin_lock_irqsave(&iommu->lock, flags); 2878 2879 /* Context tables are copied, now write them to the root_entry table */ 2880 for (bus = 0; bus < 256; bus++) { 2881 int idx = ext ? bus * 2 : bus; 2882 u64 val; 2883 2884 if (ctxt_tbls[idx]) { 2885 val = virt_to_phys(ctxt_tbls[idx]) | 1; 2886 iommu->root_entry[bus].lo = val; 2887 } 2888 2889 if (!ext || !ctxt_tbls[idx + 1]) 2890 continue; 2891 2892 val = virt_to_phys(ctxt_tbls[idx + 1]) | 1; 2893 iommu->root_entry[bus].hi = val; 2894 } 2895 2896 spin_unlock_irqrestore(&iommu->lock, flags); 2897 2898 kfree(ctxt_tbls); 2899 2900 __iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE); 2901 2902 ret = 0; 2903 2904 out_unmap: 2905 memunmap(old_rt); 2906 2907 return ret; 2908 } 2909 2910 #ifdef CONFIG_INTEL_IOMMU_SVM 2911 static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data) 2912 { 2913 struct intel_iommu *iommu = data; 2914 ioasid_t ioasid; 2915 2916 if (!iommu) 2917 return INVALID_IOASID; 2918 /* 2919 * VT-d virtual command interface always uses the full 20 bit 2920 * PASID range. Host can partition guest PASID range based on 2921 * policies but it is out of guest's control. 2922 */ 2923 if (min < PASID_MIN || max > intel_pasid_max_id) 2924 return INVALID_IOASID; 2925 2926 if (vcmd_alloc_pasid(iommu, &ioasid)) 2927 return INVALID_IOASID; 2928 2929 return ioasid; 2930 } 2931 2932 static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data) 2933 { 2934 struct intel_iommu *iommu = data; 2935 2936 if (!iommu) 2937 return; 2938 /* 2939 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO 2940 * We can only free the PASID when all the devices are unbound. 2941 */ 2942 if (ioasid_find(NULL, ioasid, NULL)) { 2943 pr_alert("Cannot free active IOASID %d\n", ioasid); 2944 return; 2945 } 2946 vcmd_free_pasid(iommu, ioasid); 2947 } 2948 2949 static void register_pasid_allocator(struct intel_iommu *iommu) 2950 { 2951 /* 2952 * If we are running in the host, no need for custom allocator 2953 * in that PASIDs are allocated from the host system-wide. 2954 */ 2955 if (!cap_caching_mode(iommu->cap)) 2956 return; 2957 2958 if (!sm_supported(iommu)) { 2959 pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n"); 2960 return; 2961 } 2962 2963 /* 2964 * Register a custom PASID allocator if we are running in a guest, 2965 * guest PASID must be obtained via virtual command interface. 2966 * There can be multiple vIOMMUs in each guest but only one allocator 2967 * is active. All vIOMMU allocators will eventually be calling the same 2968 * host allocator. 2969 */ 2970 if (!vccap_pasid(iommu->vccap)) 2971 return; 2972 2973 pr_info("Register custom PASID allocator\n"); 2974 iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc; 2975 iommu->pasid_allocator.free = intel_vcmd_ioasid_free; 2976 iommu->pasid_allocator.pdata = (void *)iommu; 2977 if (ioasid_register_allocator(&iommu->pasid_allocator)) { 2978 pr_warn("Custom PASID allocator failed, scalable mode disabled\n"); 2979 /* 2980 * Disable scalable mode on this IOMMU if there 2981 * is no custom allocator. Mixing SM capable vIOMMU 2982 * and non-SM vIOMMU are not supported. 2983 */ 2984 intel_iommu_sm = 0; 2985 } 2986 } 2987 #endif 2988 2989 static int __init init_dmars(void) 2990 { 2991 struct dmar_drhd_unit *drhd; 2992 struct intel_iommu *iommu; 2993 int ret; 2994 2995 /* 2996 * for each drhd 2997 * allocate root 2998 * initialize and program root entry to not present 2999 * endfor 3000 */ 3001 for_each_drhd_unit(drhd) { 3002 /* 3003 * lock not needed as this is only incremented in the single 3004 * threaded kernel __init code path all other access are read 3005 * only 3006 */ 3007 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) { 3008 g_num_of_iommus++; 3009 continue; 3010 } 3011 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED); 3012 } 3013 3014 /* Preallocate enough resources for IOMMU hot-addition */ 3015 if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) 3016 g_num_of_iommus = DMAR_UNITS_SUPPORTED; 3017 3018 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *), 3019 GFP_KERNEL); 3020 if (!g_iommus) { 3021 ret = -ENOMEM; 3022 goto error; 3023 } 3024 3025 ret = intel_cap_audit(CAP_AUDIT_STATIC_DMAR, NULL); 3026 if (ret) 3027 goto free_iommu; 3028 3029 for_each_iommu(iommu, drhd) { 3030 if (drhd->ignored) { 3031 iommu_disable_translation(iommu); 3032 continue; 3033 } 3034 3035 /* 3036 * Find the max pasid size of all IOMMU's in the system. 3037 * We need to ensure the system pasid table is no bigger 3038 * than the smallest supported. 3039 */ 3040 if (pasid_supported(iommu)) { 3041 u32 temp = 2 << ecap_pss(iommu->ecap); 3042 3043 intel_pasid_max_id = min_t(u32, temp, 3044 intel_pasid_max_id); 3045 } 3046 3047 g_iommus[iommu->seq_id] = iommu; 3048 3049 intel_iommu_init_qi(iommu); 3050 3051 ret = iommu_init_domains(iommu); 3052 if (ret) 3053 goto free_iommu; 3054 3055 init_translation_status(iommu); 3056 3057 if (translation_pre_enabled(iommu) && !is_kdump_kernel()) { 3058 iommu_disable_translation(iommu); 3059 clear_translation_pre_enabled(iommu); 3060 pr_warn("Translation was enabled for %s but we are not in kdump mode\n", 3061 iommu->name); 3062 } 3063 3064 /* 3065 * TBD: 3066 * we could share the same root & context tables 3067 * among all IOMMU's. Need to Split it later. 3068 */ 3069 ret = iommu_alloc_root_entry(iommu); 3070 if (ret) 3071 goto free_iommu; 3072 3073 if (translation_pre_enabled(iommu)) { 3074 pr_info("Translation already enabled - trying to copy translation structures\n"); 3075 3076 ret = copy_translation_tables(iommu); 3077 if (ret) { 3078 /* 3079 * We found the IOMMU with translation 3080 * enabled - but failed to copy over the 3081 * old root-entry table. Try to proceed 3082 * by disabling translation now and 3083 * allocating a clean root-entry table. 3084 * This might cause DMAR faults, but 3085 * probably the dump will still succeed. 3086 */ 3087 pr_err("Failed to copy translation tables from previous kernel for %s\n", 3088 iommu->name); 3089 iommu_disable_translation(iommu); 3090 clear_translation_pre_enabled(iommu); 3091 } else { 3092 pr_info("Copied translation tables from previous kernel for %s\n", 3093 iommu->name); 3094 } 3095 } 3096 3097 if (!ecap_pass_through(iommu->ecap)) 3098 hw_pass_through = 0; 3099 intel_svm_check(iommu); 3100 } 3101 3102 /* 3103 * Now that qi is enabled on all iommus, set the root entry and flush 3104 * caches. This is required on some Intel X58 chipsets, otherwise the 3105 * flush_context function will loop forever and the boot hangs. 3106 */ 3107 for_each_active_iommu(iommu, drhd) { 3108 iommu_flush_write_buffer(iommu); 3109 #ifdef CONFIG_INTEL_IOMMU_SVM 3110 register_pasid_allocator(iommu); 3111 #endif 3112 iommu_set_root_entry(iommu); 3113 } 3114 3115 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA 3116 dmar_map_gfx = 0; 3117 #endif 3118 3119 if (!dmar_map_gfx) 3120 iommu_identity_mapping |= IDENTMAP_GFX; 3121 3122 check_tylersburg_isoch(); 3123 3124 ret = si_domain_init(hw_pass_through); 3125 if (ret) 3126 goto free_iommu; 3127 3128 /* 3129 * for each drhd 3130 * enable fault log 3131 * global invalidate context cache 3132 * global invalidate iotlb 3133 * enable translation 3134 */ 3135 for_each_iommu(iommu, drhd) { 3136 if (drhd->ignored) { 3137 /* 3138 * we always have to disable PMRs or DMA may fail on 3139 * this device 3140 */ 3141 if (force_on) 3142 iommu_disable_protect_mem_regions(iommu); 3143 continue; 3144 } 3145 3146 iommu_flush_write_buffer(iommu); 3147 3148 #ifdef CONFIG_INTEL_IOMMU_SVM 3149 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { 3150 /* 3151 * Call dmar_alloc_hwirq() with dmar_global_lock held, 3152 * could cause possible lock race condition. 3153 */ 3154 up_write(&dmar_global_lock); 3155 ret = intel_svm_enable_prq(iommu); 3156 down_write(&dmar_global_lock); 3157 if (ret) 3158 goto free_iommu; 3159 } 3160 #endif 3161 ret = dmar_set_interrupt(iommu); 3162 if (ret) 3163 goto free_iommu; 3164 } 3165 3166 return 0; 3167 3168 free_iommu: 3169 for_each_active_iommu(iommu, drhd) { 3170 disable_dmar_iommu(iommu); 3171 free_dmar_iommu(iommu); 3172 } 3173 3174 kfree(g_iommus); 3175 3176 error: 3177 return ret; 3178 } 3179 3180 static void __init init_no_remapping_devices(void) 3181 { 3182 struct dmar_drhd_unit *drhd; 3183 struct device *dev; 3184 int i; 3185 3186 for_each_drhd_unit(drhd) { 3187 if (!drhd->include_all) { 3188 for_each_active_dev_scope(drhd->devices, 3189 drhd->devices_cnt, i, dev) 3190 break; 3191 /* ignore DMAR unit if no devices exist */ 3192 if (i == drhd->devices_cnt) 3193 drhd->ignored = 1; 3194 } 3195 } 3196 3197 for_each_active_drhd_unit(drhd) { 3198 if (drhd->include_all) 3199 continue; 3200 3201 for_each_active_dev_scope(drhd->devices, 3202 drhd->devices_cnt, i, dev) 3203 if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev))) 3204 break; 3205 if (i < drhd->devices_cnt) 3206 continue; 3207 3208 /* This IOMMU has *only* gfx devices. Either bypass it or 3209 set the gfx_mapped flag, as appropriate */ 3210 drhd->gfx_dedicated = 1; 3211 if (!dmar_map_gfx) 3212 drhd->ignored = 1; 3213 } 3214 } 3215 3216 #ifdef CONFIG_SUSPEND 3217 static int init_iommu_hw(void) 3218 { 3219 struct dmar_drhd_unit *drhd; 3220 struct intel_iommu *iommu = NULL; 3221 3222 for_each_active_iommu(iommu, drhd) 3223 if (iommu->qi) 3224 dmar_reenable_qi(iommu); 3225 3226 for_each_iommu(iommu, drhd) { 3227 if (drhd->ignored) { 3228 /* 3229 * we always have to disable PMRs or DMA may fail on 3230 * this device 3231 */ 3232 if (force_on) 3233 iommu_disable_protect_mem_regions(iommu); 3234 continue; 3235 } 3236 3237 iommu_flush_write_buffer(iommu); 3238 iommu_set_root_entry(iommu); 3239 iommu_enable_translation(iommu); 3240 iommu_disable_protect_mem_regions(iommu); 3241 } 3242 3243 return 0; 3244 } 3245 3246 static void iommu_flush_all(void) 3247 { 3248 struct dmar_drhd_unit *drhd; 3249 struct intel_iommu *iommu; 3250 3251 for_each_active_iommu(iommu, drhd) { 3252 iommu->flush.flush_context(iommu, 0, 0, 0, 3253 DMA_CCMD_GLOBAL_INVL); 3254 iommu->flush.flush_iotlb(iommu, 0, 0, 0, 3255 DMA_TLB_GLOBAL_FLUSH); 3256 } 3257 } 3258 3259 static int iommu_suspend(void) 3260 { 3261 struct dmar_drhd_unit *drhd; 3262 struct intel_iommu *iommu = NULL; 3263 unsigned long flag; 3264 3265 for_each_active_iommu(iommu, drhd) { 3266 iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32), 3267 GFP_KERNEL); 3268 if (!iommu->iommu_state) 3269 goto nomem; 3270 } 3271 3272 iommu_flush_all(); 3273 3274 for_each_active_iommu(iommu, drhd) { 3275 iommu_disable_translation(iommu); 3276 3277 raw_spin_lock_irqsave(&iommu->register_lock, flag); 3278 3279 iommu->iommu_state[SR_DMAR_FECTL_REG] = 3280 readl(iommu->reg + DMAR_FECTL_REG); 3281 iommu->iommu_state[SR_DMAR_FEDATA_REG] = 3282 readl(iommu->reg + DMAR_FEDATA_REG); 3283 iommu->iommu_state[SR_DMAR_FEADDR_REG] = 3284 readl(iommu->reg + DMAR_FEADDR_REG); 3285 iommu->iommu_state[SR_DMAR_FEUADDR_REG] = 3286 readl(iommu->reg + DMAR_FEUADDR_REG); 3287 3288 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 3289 } 3290 return 0; 3291 3292 nomem: 3293 for_each_active_iommu(iommu, drhd) 3294 kfree(iommu->iommu_state); 3295 3296 return -ENOMEM; 3297 } 3298 3299 static void iommu_resume(void) 3300 { 3301 struct dmar_drhd_unit *drhd; 3302 struct intel_iommu *iommu = NULL; 3303 unsigned long flag; 3304 3305 if (init_iommu_hw()) { 3306 if (force_on) 3307 panic("tboot: IOMMU setup failed, DMAR can not resume!\n"); 3308 else 3309 WARN(1, "IOMMU setup failed, DMAR can not resume!\n"); 3310 return; 3311 } 3312 3313 for_each_active_iommu(iommu, drhd) { 3314 3315 raw_spin_lock_irqsave(&iommu->register_lock, flag); 3316 3317 writel(iommu->iommu_state[SR_DMAR_FECTL_REG], 3318 iommu->reg + DMAR_FECTL_REG); 3319 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG], 3320 iommu->reg + DMAR_FEDATA_REG); 3321 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG], 3322 iommu->reg + DMAR_FEADDR_REG); 3323 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG], 3324 iommu->reg + DMAR_FEUADDR_REG); 3325 3326 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 3327 } 3328 3329 for_each_active_iommu(iommu, drhd) 3330 kfree(iommu->iommu_state); 3331 } 3332 3333 static struct syscore_ops iommu_syscore_ops = { 3334 .resume = iommu_resume, 3335 .suspend = iommu_suspend, 3336 }; 3337 3338 static void __init init_iommu_pm_ops(void) 3339 { 3340 register_syscore_ops(&iommu_syscore_ops); 3341 } 3342 3343 #else 3344 static inline void init_iommu_pm_ops(void) {} 3345 #endif /* CONFIG_PM */ 3346 3347 static int __init rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr) 3348 { 3349 if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) || 3350 !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) || 3351 rmrr->end_address <= rmrr->base_address || 3352 arch_rmrr_sanity_check(rmrr)) 3353 return -EINVAL; 3354 3355 return 0; 3356 } 3357 3358 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg) 3359 { 3360 struct acpi_dmar_reserved_memory *rmrr; 3361 struct dmar_rmrr_unit *rmrru; 3362 3363 rmrr = (struct acpi_dmar_reserved_memory *)header; 3364 if (rmrr_sanity_check(rmrr)) { 3365 pr_warn(FW_BUG 3366 "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n" 3367 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 3368 rmrr->base_address, rmrr->end_address, 3369 dmi_get_system_info(DMI_BIOS_VENDOR), 3370 dmi_get_system_info(DMI_BIOS_VERSION), 3371 dmi_get_system_info(DMI_PRODUCT_VERSION)); 3372 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 3373 } 3374 3375 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL); 3376 if (!rmrru) 3377 goto out; 3378 3379 rmrru->hdr = header; 3380 3381 rmrru->base_address = rmrr->base_address; 3382 rmrru->end_address = rmrr->end_address; 3383 3384 rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1), 3385 ((void *)rmrr) + rmrr->header.length, 3386 &rmrru->devices_cnt); 3387 if (rmrru->devices_cnt && rmrru->devices == NULL) 3388 goto free_rmrru; 3389 3390 list_add(&rmrru->list, &dmar_rmrr_units); 3391 3392 return 0; 3393 free_rmrru: 3394 kfree(rmrru); 3395 out: 3396 return -ENOMEM; 3397 } 3398 3399 static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr) 3400 { 3401 struct dmar_atsr_unit *atsru; 3402 struct acpi_dmar_atsr *tmp; 3403 3404 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list, 3405 dmar_rcu_check()) { 3406 tmp = (struct acpi_dmar_atsr *)atsru->hdr; 3407 if (atsr->segment != tmp->segment) 3408 continue; 3409 if (atsr->header.length != tmp->header.length) 3410 continue; 3411 if (memcmp(atsr, tmp, atsr->header.length) == 0) 3412 return atsru; 3413 } 3414 3415 return NULL; 3416 } 3417 3418 int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3419 { 3420 struct acpi_dmar_atsr *atsr; 3421 struct dmar_atsr_unit *atsru; 3422 3423 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) 3424 return 0; 3425 3426 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3427 atsru = dmar_find_atsr(atsr); 3428 if (atsru) 3429 return 0; 3430 3431 atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL); 3432 if (!atsru) 3433 return -ENOMEM; 3434 3435 /* 3436 * If memory is allocated from slab by ACPI _DSM method, we need to 3437 * copy the memory content because the memory buffer will be freed 3438 * on return. 3439 */ 3440 atsru->hdr = (void *)(atsru + 1); 3441 memcpy(atsru->hdr, hdr, hdr->length); 3442 atsru->include_all = atsr->flags & 0x1; 3443 if (!atsru->include_all) { 3444 atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1), 3445 (void *)atsr + atsr->header.length, 3446 &atsru->devices_cnt); 3447 if (atsru->devices_cnt && atsru->devices == NULL) { 3448 kfree(atsru); 3449 return -ENOMEM; 3450 } 3451 } 3452 3453 list_add_rcu(&atsru->list, &dmar_atsr_units); 3454 3455 return 0; 3456 } 3457 3458 static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru) 3459 { 3460 dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt); 3461 kfree(atsru); 3462 } 3463 3464 int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3465 { 3466 struct acpi_dmar_atsr *atsr; 3467 struct dmar_atsr_unit *atsru; 3468 3469 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3470 atsru = dmar_find_atsr(atsr); 3471 if (atsru) { 3472 list_del_rcu(&atsru->list); 3473 synchronize_rcu(); 3474 intel_iommu_free_atsr(atsru); 3475 } 3476 3477 return 0; 3478 } 3479 3480 int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg) 3481 { 3482 int i; 3483 struct device *dev; 3484 struct acpi_dmar_atsr *atsr; 3485 struct dmar_atsr_unit *atsru; 3486 3487 atsr = container_of(hdr, struct acpi_dmar_atsr, header); 3488 atsru = dmar_find_atsr(atsr); 3489 if (!atsru) 3490 return 0; 3491 3492 if (!atsru->include_all && atsru->devices && atsru->devices_cnt) { 3493 for_each_active_dev_scope(atsru->devices, atsru->devices_cnt, 3494 i, dev) 3495 return -EBUSY; 3496 } 3497 3498 return 0; 3499 } 3500 3501 static struct dmar_satc_unit *dmar_find_satc(struct acpi_dmar_satc *satc) 3502 { 3503 struct dmar_satc_unit *satcu; 3504 struct acpi_dmar_satc *tmp; 3505 3506 list_for_each_entry_rcu(satcu, &dmar_satc_units, list, 3507 dmar_rcu_check()) { 3508 tmp = (struct acpi_dmar_satc *)satcu->hdr; 3509 if (satc->segment != tmp->segment) 3510 continue; 3511 if (satc->header.length != tmp->header.length) 3512 continue; 3513 if (memcmp(satc, tmp, satc->header.length) == 0) 3514 return satcu; 3515 } 3516 3517 return NULL; 3518 } 3519 3520 int dmar_parse_one_satc(struct acpi_dmar_header *hdr, void *arg) 3521 { 3522 struct acpi_dmar_satc *satc; 3523 struct dmar_satc_unit *satcu; 3524 3525 if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled) 3526 return 0; 3527 3528 satc = container_of(hdr, struct acpi_dmar_satc, header); 3529 satcu = dmar_find_satc(satc); 3530 if (satcu) 3531 return 0; 3532 3533 satcu = kzalloc(sizeof(*satcu) + hdr->length, GFP_KERNEL); 3534 if (!satcu) 3535 return -ENOMEM; 3536 3537 satcu->hdr = (void *)(satcu + 1); 3538 memcpy(satcu->hdr, hdr, hdr->length); 3539 satcu->atc_required = satc->flags & 0x1; 3540 satcu->devices = dmar_alloc_dev_scope((void *)(satc + 1), 3541 (void *)satc + satc->header.length, 3542 &satcu->devices_cnt); 3543 if (satcu->devices_cnt && !satcu->devices) { 3544 kfree(satcu); 3545 return -ENOMEM; 3546 } 3547 list_add_rcu(&satcu->list, &dmar_satc_units); 3548 3549 return 0; 3550 } 3551 3552 static int intel_iommu_add(struct dmar_drhd_unit *dmaru) 3553 { 3554 int sp, ret; 3555 struct intel_iommu *iommu = dmaru->iommu; 3556 3557 if (g_iommus[iommu->seq_id]) 3558 return 0; 3559 3560 ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_DMAR, iommu); 3561 if (ret) 3562 goto out; 3563 3564 if (hw_pass_through && !ecap_pass_through(iommu->ecap)) { 3565 pr_warn("%s: Doesn't support hardware pass through.\n", 3566 iommu->name); 3567 return -ENXIO; 3568 } 3569 3570 sp = domain_update_iommu_superpage(NULL, iommu) - 1; 3571 if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) { 3572 pr_warn("%s: Doesn't support large page.\n", 3573 iommu->name); 3574 return -ENXIO; 3575 } 3576 3577 /* 3578 * Disable translation if already enabled prior to OS handover. 3579 */ 3580 if (iommu->gcmd & DMA_GCMD_TE) 3581 iommu_disable_translation(iommu); 3582 3583 g_iommus[iommu->seq_id] = iommu; 3584 ret = iommu_init_domains(iommu); 3585 if (ret == 0) 3586 ret = iommu_alloc_root_entry(iommu); 3587 if (ret) 3588 goto out; 3589 3590 intel_svm_check(iommu); 3591 3592 if (dmaru->ignored) { 3593 /* 3594 * we always have to disable PMRs or DMA may fail on this device 3595 */ 3596 if (force_on) 3597 iommu_disable_protect_mem_regions(iommu); 3598 return 0; 3599 } 3600 3601 intel_iommu_init_qi(iommu); 3602 iommu_flush_write_buffer(iommu); 3603 3604 #ifdef CONFIG_INTEL_IOMMU_SVM 3605 if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) { 3606 ret = intel_svm_enable_prq(iommu); 3607 if (ret) 3608 goto disable_iommu; 3609 } 3610 #endif 3611 ret = dmar_set_interrupt(iommu); 3612 if (ret) 3613 goto disable_iommu; 3614 3615 iommu_set_root_entry(iommu); 3616 iommu_enable_translation(iommu); 3617 3618 iommu_disable_protect_mem_regions(iommu); 3619 return 0; 3620 3621 disable_iommu: 3622 disable_dmar_iommu(iommu); 3623 out: 3624 free_dmar_iommu(iommu); 3625 return ret; 3626 } 3627 3628 int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert) 3629 { 3630 int ret = 0; 3631 struct intel_iommu *iommu = dmaru->iommu; 3632 3633 if (!intel_iommu_enabled) 3634 return 0; 3635 if (iommu == NULL) 3636 return -EINVAL; 3637 3638 if (insert) { 3639 ret = intel_iommu_add(dmaru); 3640 } else { 3641 disable_dmar_iommu(iommu); 3642 free_dmar_iommu(iommu); 3643 } 3644 3645 return ret; 3646 } 3647 3648 static void intel_iommu_free_dmars(void) 3649 { 3650 struct dmar_rmrr_unit *rmrru, *rmrr_n; 3651 struct dmar_atsr_unit *atsru, *atsr_n; 3652 struct dmar_satc_unit *satcu, *satc_n; 3653 3654 list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) { 3655 list_del(&rmrru->list); 3656 dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt); 3657 kfree(rmrru); 3658 } 3659 3660 list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) { 3661 list_del(&atsru->list); 3662 intel_iommu_free_atsr(atsru); 3663 } 3664 list_for_each_entry_safe(satcu, satc_n, &dmar_satc_units, list) { 3665 list_del(&satcu->list); 3666 dmar_free_dev_scope(&satcu->devices, &satcu->devices_cnt); 3667 kfree(satcu); 3668 } 3669 } 3670 3671 static struct dmar_satc_unit *dmar_find_matched_satc_unit(struct pci_dev *dev) 3672 { 3673 struct dmar_satc_unit *satcu; 3674 struct acpi_dmar_satc *satc; 3675 struct device *tmp; 3676 int i; 3677 3678 dev = pci_physfn(dev); 3679 rcu_read_lock(); 3680 3681 list_for_each_entry_rcu(satcu, &dmar_satc_units, list) { 3682 satc = container_of(satcu->hdr, struct acpi_dmar_satc, header); 3683 if (satc->segment != pci_domain_nr(dev->bus)) 3684 continue; 3685 for_each_dev_scope(satcu->devices, satcu->devices_cnt, i, tmp) 3686 if (to_pci_dev(tmp) == dev) 3687 goto out; 3688 } 3689 satcu = NULL; 3690 out: 3691 rcu_read_unlock(); 3692 return satcu; 3693 } 3694 3695 static int dmar_ats_supported(struct pci_dev *dev, struct intel_iommu *iommu) 3696 { 3697 int i, ret = 1; 3698 struct pci_bus *bus; 3699 struct pci_dev *bridge = NULL; 3700 struct device *tmp; 3701 struct acpi_dmar_atsr *atsr; 3702 struct dmar_atsr_unit *atsru; 3703 struct dmar_satc_unit *satcu; 3704 3705 dev = pci_physfn(dev); 3706 satcu = dmar_find_matched_satc_unit(dev); 3707 if (satcu) 3708 /* 3709 * This device supports ATS as it is in SATC table. 3710 * When IOMMU is in legacy mode, enabling ATS is done 3711 * automatically by HW for the device that requires 3712 * ATS, hence OS should not enable this device ATS 3713 * to avoid duplicated TLB invalidation. 3714 */ 3715 return !(satcu->atc_required && !sm_supported(iommu)); 3716 3717 for (bus = dev->bus; bus; bus = bus->parent) { 3718 bridge = bus->self; 3719 /* If it's an integrated device, allow ATS */ 3720 if (!bridge) 3721 return 1; 3722 /* Connected via non-PCIe: no ATS */ 3723 if (!pci_is_pcie(bridge) || 3724 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) 3725 return 0; 3726 /* If we found the root port, look it up in the ATSR */ 3727 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) 3728 break; 3729 } 3730 3731 rcu_read_lock(); 3732 list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) { 3733 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); 3734 if (atsr->segment != pci_domain_nr(dev->bus)) 3735 continue; 3736 3737 for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp) 3738 if (tmp == &bridge->dev) 3739 goto out; 3740 3741 if (atsru->include_all) 3742 goto out; 3743 } 3744 ret = 0; 3745 out: 3746 rcu_read_unlock(); 3747 3748 return ret; 3749 } 3750 3751 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info) 3752 { 3753 int ret; 3754 struct dmar_rmrr_unit *rmrru; 3755 struct dmar_atsr_unit *atsru; 3756 struct dmar_satc_unit *satcu; 3757 struct acpi_dmar_atsr *atsr; 3758 struct acpi_dmar_reserved_memory *rmrr; 3759 struct acpi_dmar_satc *satc; 3760 3761 if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING) 3762 return 0; 3763 3764 list_for_each_entry(rmrru, &dmar_rmrr_units, list) { 3765 rmrr = container_of(rmrru->hdr, 3766 struct acpi_dmar_reserved_memory, header); 3767 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 3768 ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1), 3769 ((void *)rmrr) + rmrr->header.length, 3770 rmrr->segment, rmrru->devices, 3771 rmrru->devices_cnt); 3772 if (ret < 0) 3773 return ret; 3774 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 3775 dmar_remove_dev_scope(info, rmrr->segment, 3776 rmrru->devices, rmrru->devices_cnt); 3777 } 3778 } 3779 3780 list_for_each_entry(atsru, &dmar_atsr_units, list) { 3781 if (atsru->include_all) 3782 continue; 3783 3784 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header); 3785 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 3786 ret = dmar_insert_dev_scope(info, (void *)(atsr + 1), 3787 (void *)atsr + atsr->header.length, 3788 atsr->segment, atsru->devices, 3789 atsru->devices_cnt); 3790 if (ret > 0) 3791 break; 3792 else if (ret < 0) 3793 return ret; 3794 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 3795 if (dmar_remove_dev_scope(info, atsr->segment, 3796 atsru->devices, atsru->devices_cnt)) 3797 break; 3798 } 3799 } 3800 list_for_each_entry(satcu, &dmar_satc_units, list) { 3801 satc = container_of(satcu->hdr, struct acpi_dmar_satc, header); 3802 if (info->event == BUS_NOTIFY_ADD_DEVICE) { 3803 ret = dmar_insert_dev_scope(info, (void *)(satc + 1), 3804 (void *)satc + satc->header.length, 3805 satc->segment, satcu->devices, 3806 satcu->devices_cnt); 3807 if (ret > 0) 3808 break; 3809 else if (ret < 0) 3810 return ret; 3811 } else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) { 3812 if (dmar_remove_dev_scope(info, satc->segment, 3813 satcu->devices, satcu->devices_cnt)) 3814 break; 3815 } 3816 } 3817 3818 return 0; 3819 } 3820 3821 static int intel_iommu_memory_notifier(struct notifier_block *nb, 3822 unsigned long val, void *v) 3823 { 3824 struct memory_notify *mhp = v; 3825 unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn); 3826 unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn + 3827 mhp->nr_pages - 1); 3828 3829 switch (val) { 3830 case MEM_GOING_ONLINE: 3831 if (iommu_domain_identity_map(si_domain, 3832 start_vpfn, last_vpfn)) { 3833 pr_warn("Failed to build identity map for [%lx-%lx]\n", 3834 start_vpfn, last_vpfn); 3835 return NOTIFY_BAD; 3836 } 3837 break; 3838 3839 case MEM_OFFLINE: 3840 case MEM_CANCEL_ONLINE: 3841 { 3842 struct dmar_drhd_unit *drhd; 3843 struct intel_iommu *iommu; 3844 LIST_HEAD(freelist); 3845 3846 domain_unmap(si_domain, start_vpfn, last_vpfn, &freelist); 3847 3848 rcu_read_lock(); 3849 for_each_active_iommu(iommu, drhd) 3850 iommu_flush_iotlb_psi(iommu, si_domain, 3851 start_vpfn, mhp->nr_pages, 3852 list_empty(&freelist), 0); 3853 rcu_read_unlock(); 3854 put_pages_list(&freelist); 3855 } 3856 break; 3857 } 3858 3859 return NOTIFY_OK; 3860 } 3861 3862 static struct notifier_block intel_iommu_memory_nb = { 3863 .notifier_call = intel_iommu_memory_notifier, 3864 .priority = 0 3865 }; 3866 3867 static void intel_disable_iommus(void) 3868 { 3869 struct intel_iommu *iommu = NULL; 3870 struct dmar_drhd_unit *drhd; 3871 3872 for_each_iommu(iommu, drhd) 3873 iommu_disable_translation(iommu); 3874 } 3875 3876 void intel_iommu_shutdown(void) 3877 { 3878 struct dmar_drhd_unit *drhd; 3879 struct intel_iommu *iommu = NULL; 3880 3881 if (no_iommu || dmar_disabled) 3882 return; 3883 3884 down_write(&dmar_global_lock); 3885 3886 /* Disable PMRs explicitly here. */ 3887 for_each_iommu(iommu, drhd) 3888 iommu_disable_protect_mem_regions(iommu); 3889 3890 /* Make sure the IOMMUs are switched off */ 3891 intel_disable_iommus(); 3892 3893 up_write(&dmar_global_lock); 3894 } 3895 3896 static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev) 3897 { 3898 struct iommu_device *iommu_dev = dev_to_iommu_device(dev); 3899 3900 return container_of(iommu_dev, struct intel_iommu, iommu); 3901 } 3902 3903 static ssize_t version_show(struct device *dev, 3904 struct device_attribute *attr, char *buf) 3905 { 3906 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3907 u32 ver = readl(iommu->reg + DMAR_VER_REG); 3908 return sprintf(buf, "%d:%d\n", 3909 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver)); 3910 } 3911 static DEVICE_ATTR_RO(version); 3912 3913 static ssize_t address_show(struct device *dev, 3914 struct device_attribute *attr, char *buf) 3915 { 3916 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3917 return sprintf(buf, "%llx\n", iommu->reg_phys); 3918 } 3919 static DEVICE_ATTR_RO(address); 3920 3921 static ssize_t cap_show(struct device *dev, 3922 struct device_attribute *attr, char *buf) 3923 { 3924 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3925 return sprintf(buf, "%llx\n", iommu->cap); 3926 } 3927 static DEVICE_ATTR_RO(cap); 3928 3929 static ssize_t ecap_show(struct device *dev, 3930 struct device_attribute *attr, char *buf) 3931 { 3932 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3933 return sprintf(buf, "%llx\n", iommu->ecap); 3934 } 3935 static DEVICE_ATTR_RO(ecap); 3936 3937 static ssize_t domains_supported_show(struct device *dev, 3938 struct device_attribute *attr, char *buf) 3939 { 3940 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3941 return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap)); 3942 } 3943 static DEVICE_ATTR_RO(domains_supported); 3944 3945 static ssize_t domains_used_show(struct device *dev, 3946 struct device_attribute *attr, char *buf) 3947 { 3948 struct intel_iommu *iommu = dev_to_intel_iommu(dev); 3949 return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids, 3950 cap_ndoms(iommu->cap))); 3951 } 3952 static DEVICE_ATTR_RO(domains_used); 3953 3954 static struct attribute *intel_iommu_attrs[] = { 3955 &dev_attr_version.attr, 3956 &dev_attr_address.attr, 3957 &dev_attr_cap.attr, 3958 &dev_attr_ecap.attr, 3959 &dev_attr_domains_supported.attr, 3960 &dev_attr_domains_used.attr, 3961 NULL, 3962 }; 3963 3964 static struct attribute_group intel_iommu_group = { 3965 .name = "intel-iommu", 3966 .attrs = intel_iommu_attrs, 3967 }; 3968 3969 const struct attribute_group *intel_iommu_groups[] = { 3970 &intel_iommu_group, 3971 NULL, 3972 }; 3973 3974 static inline bool has_external_pci(void) 3975 { 3976 struct pci_dev *pdev = NULL; 3977 3978 for_each_pci_dev(pdev) 3979 if (pdev->external_facing) 3980 return true; 3981 3982 return false; 3983 } 3984 3985 static int __init platform_optin_force_iommu(void) 3986 { 3987 if (!dmar_platform_optin() || no_platform_optin || !has_external_pci()) 3988 return 0; 3989 3990 if (no_iommu || dmar_disabled) 3991 pr_info("Intel-IOMMU force enabled due to platform opt in\n"); 3992 3993 /* 3994 * If Intel-IOMMU is disabled by default, we will apply identity 3995 * map for all devices except those marked as being untrusted. 3996 */ 3997 if (dmar_disabled) 3998 iommu_set_default_passthrough(false); 3999 4000 dmar_disabled = 0; 4001 no_iommu = 0; 4002 4003 return 1; 4004 } 4005 4006 static int __init probe_acpi_namespace_devices(void) 4007 { 4008 struct dmar_drhd_unit *drhd; 4009 /* To avoid a -Wunused-but-set-variable warning. */ 4010 struct intel_iommu *iommu __maybe_unused; 4011 struct device *dev; 4012 int i, ret = 0; 4013 4014 for_each_active_iommu(iommu, drhd) { 4015 for_each_active_dev_scope(drhd->devices, 4016 drhd->devices_cnt, i, dev) { 4017 struct acpi_device_physical_node *pn; 4018 struct iommu_group *group; 4019 struct acpi_device *adev; 4020 4021 if (dev->bus != &acpi_bus_type) 4022 continue; 4023 4024 adev = to_acpi_device(dev); 4025 mutex_lock(&adev->physical_node_lock); 4026 list_for_each_entry(pn, 4027 &adev->physical_node_list, node) { 4028 group = iommu_group_get(pn->dev); 4029 if (group) { 4030 iommu_group_put(group); 4031 continue; 4032 } 4033 4034 pn->dev->bus->iommu_ops = &intel_iommu_ops; 4035 ret = iommu_probe_device(pn->dev); 4036 if (ret) 4037 break; 4038 } 4039 mutex_unlock(&adev->physical_node_lock); 4040 4041 if (ret) 4042 return ret; 4043 } 4044 } 4045 4046 return 0; 4047 } 4048 4049 int __init intel_iommu_init(void) 4050 { 4051 int ret = -ENODEV; 4052 struct dmar_drhd_unit *drhd; 4053 struct intel_iommu *iommu; 4054 4055 /* 4056 * Intel IOMMU is required for a TXT/tboot launch or platform 4057 * opt in, so enforce that. 4058 */ 4059 force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) || 4060 platform_optin_force_iommu(); 4061 4062 down_write(&dmar_global_lock); 4063 if (dmar_table_init()) { 4064 if (force_on) 4065 panic("tboot: Failed to initialize DMAR table\n"); 4066 goto out_free_dmar; 4067 } 4068 4069 if (dmar_dev_scope_init() < 0) { 4070 if (force_on) 4071 panic("tboot: Failed to initialize DMAR device scope\n"); 4072 goto out_free_dmar; 4073 } 4074 4075 up_write(&dmar_global_lock); 4076 4077 /* 4078 * The bus notifier takes the dmar_global_lock, so lockdep will 4079 * complain later when we register it under the lock. 4080 */ 4081 dmar_register_bus_notifier(); 4082 4083 down_write(&dmar_global_lock); 4084 4085 if (!no_iommu) 4086 intel_iommu_debugfs_init(); 4087 4088 if (no_iommu || dmar_disabled) { 4089 /* 4090 * We exit the function here to ensure IOMMU's remapping and 4091 * mempool aren't setup, which means that the IOMMU's PMRs 4092 * won't be disabled via the call to init_dmars(). So disable 4093 * it explicitly here. The PMRs were setup by tboot prior to 4094 * calling SENTER, but the kernel is expected to reset/tear 4095 * down the PMRs. 4096 */ 4097 if (intel_iommu_tboot_noforce) { 4098 for_each_iommu(iommu, drhd) 4099 iommu_disable_protect_mem_regions(iommu); 4100 } 4101 4102 /* 4103 * Make sure the IOMMUs are switched off, even when we 4104 * boot into a kexec kernel and the previous kernel left 4105 * them enabled 4106 */ 4107 intel_disable_iommus(); 4108 goto out_free_dmar; 4109 } 4110 4111 if (list_empty(&dmar_rmrr_units)) 4112 pr_info("No RMRR found\n"); 4113 4114 if (list_empty(&dmar_atsr_units)) 4115 pr_info("No ATSR found\n"); 4116 4117 if (list_empty(&dmar_satc_units)) 4118 pr_info("No SATC found\n"); 4119 4120 if (dmar_map_gfx) 4121 intel_iommu_gfx_mapped = 1; 4122 4123 init_no_remapping_devices(); 4124 4125 ret = init_dmars(); 4126 if (ret) { 4127 if (force_on) 4128 panic("tboot: Failed to initialize DMARs\n"); 4129 pr_err("Initialization failed\n"); 4130 goto out_free_dmar; 4131 } 4132 up_write(&dmar_global_lock); 4133 4134 init_iommu_pm_ops(); 4135 4136 down_read(&dmar_global_lock); 4137 for_each_active_iommu(iommu, drhd) { 4138 /* 4139 * The flush queue implementation does not perform 4140 * page-selective invalidations that are required for efficient 4141 * TLB flushes in virtual environments. The benefit of batching 4142 * is likely to be much lower than the overhead of synchronizing 4143 * the virtual and physical IOMMU page-tables. 4144 */ 4145 if (cap_caching_mode(iommu->cap)) { 4146 pr_info_once("IOMMU batching disallowed due to virtualization\n"); 4147 iommu_set_dma_strict(); 4148 } 4149 iommu_device_sysfs_add(&iommu->iommu, NULL, 4150 intel_iommu_groups, 4151 "%s", iommu->name); 4152 iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL); 4153 } 4154 up_read(&dmar_global_lock); 4155 4156 bus_set_iommu(&pci_bus_type, &intel_iommu_ops); 4157 if (si_domain && !hw_pass_through) 4158 register_memory_notifier(&intel_iommu_memory_nb); 4159 4160 down_read(&dmar_global_lock); 4161 if (probe_acpi_namespace_devices()) 4162 pr_warn("ACPI name space devices didn't probe correctly\n"); 4163 4164 /* Finally, we enable the DMA remapping hardware. */ 4165 for_each_iommu(iommu, drhd) { 4166 if (!drhd->ignored && !translation_pre_enabled(iommu)) 4167 iommu_enable_translation(iommu); 4168 4169 iommu_disable_protect_mem_regions(iommu); 4170 } 4171 up_read(&dmar_global_lock); 4172 4173 pr_info("Intel(R) Virtualization Technology for Directed I/O\n"); 4174 4175 intel_iommu_enabled = 1; 4176 4177 return 0; 4178 4179 out_free_dmar: 4180 intel_iommu_free_dmars(); 4181 up_write(&dmar_global_lock); 4182 return ret; 4183 } 4184 4185 static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque) 4186 { 4187 struct device_domain_info *info = opaque; 4188 4189 domain_context_clear_one(info, PCI_BUS_NUM(alias), alias & 0xff); 4190 return 0; 4191 } 4192 4193 /* 4194 * NB - intel-iommu lacks any sort of reference counting for the users of 4195 * dependent devices. If multiple endpoints have intersecting dependent 4196 * devices, unbinding the driver from any one of them will possibly leave 4197 * the others unable to operate. 4198 */ 4199 static void domain_context_clear(struct device_domain_info *info) 4200 { 4201 if (!info->iommu || !info->dev || !dev_is_pci(info->dev)) 4202 return; 4203 4204 pci_for_each_dma_alias(to_pci_dev(info->dev), 4205 &domain_context_clear_one_cb, info); 4206 } 4207 4208 static void __dmar_remove_one_dev_info(struct device_domain_info *info) 4209 { 4210 struct dmar_domain *domain; 4211 struct intel_iommu *iommu; 4212 unsigned long flags; 4213 4214 assert_spin_locked(&device_domain_lock); 4215 4216 if (WARN_ON(!info)) 4217 return; 4218 4219 iommu = info->iommu; 4220 domain = info->domain; 4221 4222 if (info->dev && !dev_is_real_dma_subdevice(info->dev)) { 4223 if (dev_is_pci(info->dev) && sm_supported(iommu)) 4224 intel_pasid_tear_down_entry(iommu, info->dev, 4225 PASID_RID2PASID, false); 4226 4227 iommu_disable_dev_iotlb(info); 4228 domain_context_clear(info); 4229 intel_pasid_free_table(info->dev); 4230 } 4231 4232 list_del(&info->link); 4233 4234 spin_lock_irqsave(&iommu->lock, flags); 4235 domain_detach_iommu(domain, iommu); 4236 spin_unlock_irqrestore(&iommu->lock, flags); 4237 } 4238 4239 static void dmar_remove_one_dev_info(struct device *dev) 4240 { 4241 struct device_domain_info *info; 4242 unsigned long flags; 4243 4244 spin_lock_irqsave(&device_domain_lock, flags); 4245 info = dev_iommu_priv_get(dev); 4246 if (info) 4247 __dmar_remove_one_dev_info(info); 4248 spin_unlock_irqrestore(&device_domain_lock, flags); 4249 } 4250 4251 static int md_domain_init(struct dmar_domain *domain, int guest_width) 4252 { 4253 int adjust_width; 4254 4255 /* calculate AGAW */ 4256 domain->gaw = guest_width; 4257 adjust_width = guestwidth_to_adjustwidth(guest_width); 4258 domain->agaw = width_to_agaw(adjust_width); 4259 4260 domain->iommu_coherency = false; 4261 domain->iommu_superpage = 0; 4262 domain->max_addr = 0; 4263 4264 /* always allocate the top pgd */ 4265 domain->pgd = alloc_pgtable_page(domain->nid); 4266 if (!domain->pgd) 4267 return -ENOMEM; 4268 domain_flush_cache(domain, domain->pgd, PAGE_SIZE); 4269 return 0; 4270 } 4271 4272 static struct iommu_domain *intel_iommu_domain_alloc(unsigned type) 4273 { 4274 struct dmar_domain *dmar_domain; 4275 struct iommu_domain *domain; 4276 4277 switch (type) { 4278 case IOMMU_DOMAIN_DMA: 4279 case IOMMU_DOMAIN_DMA_FQ: 4280 case IOMMU_DOMAIN_UNMANAGED: 4281 dmar_domain = alloc_domain(type); 4282 if (!dmar_domain) { 4283 pr_err("Can't allocate dmar_domain\n"); 4284 return NULL; 4285 } 4286 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) { 4287 pr_err("Domain initialization failed\n"); 4288 domain_exit(dmar_domain); 4289 return NULL; 4290 } 4291 4292 domain = &dmar_domain->domain; 4293 domain->geometry.aperture_start = 0; 4294 domain->geometry.aperture_end = 4295 __DOMAIN_MAX_ADDR(dmar_domain->gaw); 4296 domain->geometry.force_aperture = true; 4297 4298 return domain; 4299 case IOMMU_DOMAIN_IDENTITY: 4300 return &si_domain->domain; 4301 default: 4302 return NULL; 4303 } 4304 4305 return NULL; 4306 } 4307 4308 static void intel_iommu_domain_free(struct iommu_domain *domain) 4309 { 4310 if (domain != &si_domain->domain) 4311 domain_exit(to_dmar_domain(domain)); 4312 } 4313 4314 static int prepare_domain_attach_device(struct iommu_domain *domain, 4315 struct device *dev) 4316 { 4317 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4318 struct intel_iommu *iommu; 4319 int addr_width; 4320 4321 iommu = device_to_iommu(dev, NULL, NULL); 4322 if (!iommu) 4323 return -ENODEV; 4324 4325 if (dmar_domain->force_snooping && !ecap_sc_support(iommu->ecap)) 4326 return -EOPNOTSUPP; 4327 4328 /* check if this iommu agaw is sufficient for max mapped address */ 4329 addr_width = agaw_to_width(iommu->agaw); 4330 if (addr_width > cap_mgaw(iommu->cap)) 4331 addr_width = cap_mgaw(iommu->cap); 4332 4333 if (dmar_domain->max_addr > (1LL << addr_width)) { 4334 dev_err(dev, "%s: iommu width (%d) is not " 4335 "sufficient for the mapped address (%llx)\n", 4336 __func__, addr_width, dmar_domain->max_addr); 4337 return -EFAULT; 4338 } 4339 dmar_domain->gaw = addr_width; 4340 4341 /* 4342 * Knock out extra levels of page tables if necessary 4343 */ 4344 while (iommu->agaw < dmar_domain->agaw) { 4345 struct dma_pte *pte; 4346 4347 pte = dmar_domain->pgd; 4348 if (dma_pte_present(pte)) { 4349 dmar_domain->pgd = phys_to_virt(dma_pte_addr(pte)); 4350 free_pgtable_page(pte); 4351 } 4352 dmar_domain->agaw--; 4353 } 4354 4355 return 0; 4356 } 4357 4358 static int intel_iommu_attach_device(struct iommu_domain *domain, 4359 struct device *dev) 4360 { 4361 int ret; 4362 4363 if (domain->type == IOMMU_DOMAIN_UNMANAGED && 4364 device_is_rmrr_locked(dev)) { 4365 dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n"); 4366 return -EPERM; 4367 } 4368 4369 /* normally dev is not mapped */ 4370 if (unlikely(domain_context_mapped(dev))) { 4371 struct device_domain_info *info = dev_iommu_priv_get(dev); 4372 4373 if (info->domain) 4374 dmar_remove_one_dev_info(dev); 4375 } 4376 4377 ret = prepare_domain_attach_device(domain, dev); 4378 if (ret) 4379 return ret; 4380 4381 return domain_add_dev_info(to_dmar_domain(domain), dev); 4382 } 4383 4384 static void intel_iommu_detach_device(struct iommu_domain *domain, 4385 struct device *dev) 4386 { 4387 dmar_remove_one_dev_info(dev); 4388 } 4389 4390 static int intel_iommu_map(struct iommu_domain *domain, 4391 unsigned long iova, phys_addr_t hpa, 4392 size_t size, int iommu_prot, gfp_t gfp) 4393 { 4394 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4395 u64 max_addr; 4396 int prot = 0; 4397 4398 if (iommu_prot & IOMMU_READ) 4399 prot |= DMA_PTE_READ; 4400 if (iommu_prot & IOMMU_WRITE) 4401 prot |= DMA_PTE_WRITE; 4402 if (dmar_domain->set_pte_snp) 4403 prot |= DMA_PTE_SNP; 4404 4405 max_addr = iova + size; 4406 if (dmar_domain->max_addr < max_addr) { 4407 u64 end; 4408 4409 /* check if minimum agaw is sufficient for mapped address */ 4410 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1; 4411 if (end < max_addr) { 4412 pr_err("%s: iommu width (%d) is not " 4413 "sufficient for the mapped address (%llx)\n", 4414 __func__, dmar_domain->gaw, max_addr); 4415 return -EFAULT; 4416 } 4417 dmar_domain->max_addr = max_addr; 4418 } 4419 /* Round up size to next multiple of PAGE_SIZE, if it and 4420 the low bits of hpa would take us onto the next page */ 4421 size = aligned_nrpages(hpa, size); 4422 return __domain_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT, 4423 hpa >> VTD_PAGE_SHIFT, size, prot); 4424 } 4425 4426 static int intel_iommu_map_pages(struct iommu_domain *domain, 4427 unsigned long iova, phys_addr_t paddr, 4428 size_t pgsize, size_t pgcount, 4429 int prot, gfp_t gfp, size_t *mapped) 4430 { 4431 unsigned long pgshift = __ffs(pgsize); 4432 size_t size = pgcount << pgshift; 4433 int ret; 4434 4435 if (pgsize != SZ_4K && pgsize != SZ_2M && pgsize != SZ_1G) 4436 return -EINVAL; 4437 4438 if (!IS_ALIGNED(iova | paddr, pgsize)) 4439 return -EINVAL; 4440 4441 ret = intel_iommu_map(domain, iova, paddr, size, prot, gfp); 4442 if (!ret && mapped) 4443 *mapped = size; 4444 4445 return ret; 4446 } 4447 4448 static size_t intel_iommu_unmap(struct iommu_domain *domain, 4449 unsigned long iova, size_t size, 4450 struct iommu_iotlb_gather *gather) 4451 { 4452 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4453 unsigned long start_pfn, last_pfn; 4454 int level = 0; 4455 4456 /* Cope with horrid API which requires us to unmap more than the 4457 size argument if it happens to be a large-page mapping. */ 4458 BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level)); 4459 4460 if (size < VTD_PAGE_SIZE << level_to_offset_bits(level)) 4461 size = VTD_PAGE_SIZE << level_to_offset_bits(level); 4462 4463 start_pfn = iova >> VTD_PAGE_SHIFT; 4464 last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT; 4465 4466 domain_unmap(dmar_domain, start_pfn, last_pfn, &gather->freelist); 4467 4468 if (dmar_domain->max_addr == iova + size) 4469 dmar_domain->max_addr = iova; 4470 4471 iommu_iotlb_gather_add_page(domain, gather, iova, size); 4472 4473 return size; 4474 } 4475 4476 static size_t intel_iommu_unmap_pages(struct iommu_domain *domain, 4477 unsigned long iova, 4478 size_t pgsize, size_t pgcount, 4479 struct iommu_iotlb_gather *gather) 4480 { 4481 unsigned long pgshift = __ffs(pgsize); 4482 size_t size = pgcount << pgshift; 4483 4484 return intel_iommu_unmap(domain, iova, size, gather); 4485 } 4486 4487 static void intel_iommu_tlb_sync(struct iommu_domain *domain, 4488 struct iommu_iotlb_gather *gather) 4489 { 4490 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4491 unsigned long iova_pfn = IOVA_PFN(gather->start); 4492 size_t size = gather->end - gather->start; 4493 unsigned long start_pfn; 4494 unsigned long nrpages; 4495 int iommu_id; 4496 4497 nrpages = aligned_nrpages(gather->start, size); 4498 start_pfn = mm_to_dma_pfn(iova_pfn); 4499 4500 for_each_domain_iommu(iommu_id, dmar_domain) 4501 iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain, 4502 start_pfn, nrpages, 4503 list_empty(&gather->freelist), 0); 4504 4505 put_pages_list(&gather->freelist); 4506 } 4507 4508 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain, 4509 dma_addr_t iova) 4510 { 4511 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4512 struct dma_pte *pte; 4513 int level = 0; 4514 u64 phys = 0; 4515 4516 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level); 4517 if (pte && dma_pte_present(pte)) 4518 phys = dma_pte_addr(pte) + 4519 (iova & (BIT_MASK(level_to_offset_bits(level) + 4520 VTD_PAGE_SHIFT) - 1)); 4521 4522 return phys; 4523 } 4524 4525 static bool domain_support_force_snooping(struct dmar_domain *domain) 4526 { 4527 struct device_domain_info *info; 4528 bool support = true; 4529 4530 assert_spin_locked(&device_domain_lock); 4531 list_for_each_entry(info, &domain->devices, link) { 4532 if (!ecap_sc_support(info->iommu->ecap)) { 4533 support = false; 4534 break; 4535 } 4536 } 4537 4538 return support; 4539 } 4540 4541 static void domain_set_force_snooping(struct dmar_domain *domain) 4542 { 4543 struct device_domain_info *info; 4544 4545 assert_spin_locked(&device_domain_lock); 4546 4547 /* 4548 * Second level page table supports per-PTE snoop control. The 4549 * iommu_map() interface will handle this by setting SNP bit. 4550 */ 4551 if (!domain_use_first_level(domain)) { 4552 domain->set_pte_snp = true; 4553 return; 4554 } 4555 4556 list_for_each_entry(info, &domain->devices, link) 4557 intel_pasid_setup_page_snoop_control(info->iommu, info->dev, 4558 PASID_RID2PASID); 4559 } 4560 4561 static bool intel_iommu_enforce_cache_coherency(struct iommu_domain *domain) 4562 { 4563 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4564 unsigned long flags; 4565 4566 if (dmar_domain->force_snooping) 4567 return true; 4568 4569 spin_lock_irqsave(&device_domain_lock, flags); 4570 if (!domain_support_force_snooping(dmar_domain)) { 4571 spin_unlock_irqrestore(&device_domain_lock, flags); 4572 return false; 4573 } 4574 4575 domain_set_force_snooping(dmar_domain); 4576 dmar_domain->force_snooping = true; 4577 spin_unlock_irqrestore(&device_domain_lock, flags); 4578 4579 return true; 4580 } 4581 4582 static bool intel_iommu_capable(enum iommu_cap cap) 4583 { 4584 if (cap == IOMMU_CAP_CACHE_COHERENCY) 4585 return true; 4586 if (cap == IOMMU_CAP_INTR_REMAP) 4587 return irq_remapping_enabled == 1; 4588 if (cap == IOMMU_CAP_PRE_BOOT_PROTECTION) 4589 return dmar_platform_optin(); 4590 4591 return false; 4592 } 4593 4594 static struct iommu_device *intel_iommu_probe_device(struct device *dev) 4595 { 4596 struct pci_dev *pdev = dev_is_pci(dev) ? to_pci_dev(dev) : NULL; 4597 struct device_domain_info *info; 4598 struct intel_iommu *iommu; 4599 unsigned long flags; 4600 u8 bus, devfn; 4601 4602 iommu = device_to_iommu(dev, &bus, &devfn); 4603 if (!iommu) 4604 return ERR_PTR(-ENODEV); 4605 4606 info = kzalloc(sizeof(*info), GFP_KERNEL); 4607 if (!info) 4608 return ERR_PTR(-ENOMEM); 4609 4610 if (dev_is_real_dma_subdevice(dev)) { 4611 info->bus = pdev->bus->number; 4612 info->devfn = pdev->devfn; 4613 info->segment = pci_domain_nr(pdev->bus); 4614 } else { 4615 info->bus = bus; 4616 info->devfn = devfn; 4617 info->segment = iommu->segment; 4618 } 4619 4620 info->dev = dev; 4621 info->iommu = iommu; 4622 if (dev_is_pci(dev)) { 4623 if (ecap_dev_iotlb_support(iommu->ecap) && 4624 pci_ats_supported(pdev) && 4625 dmar_ats_supported(pdev, iommu)) 4626 info->ats_supported = 1; 4627 4628 if (sm_supported(iommu)) { 4629 if (pasid_supported(iommu)) { 4630 int features = pci_pasid_features(pdev); 4631 4632 if (features >= 0) 4633 info->pasid_supported = features | 1; 4634 } 4635 4636 if (info->ats_supported && ecap_prs(iommu->ecap) && 4637 pci_pri_supported(pdev)) 4638 info->pri_supported = 1; 4639 } 4640 } 4641 4642 spin_lock_irqsave(&device_domain_lock, flags); 4643 list_add(&info->global, &device_domain_list); 4644 dev_iommu_priv_set(dev, info); 4645 spin_unlock_irqrestore(&device_domain_lock, flags); 4646 4647 return &iommu->iommu; 4648 } 4649 4650 static void intel_iommu_release_device(struct device *dev) 4651 { 4652 struct device_domain_info *info = dev_iommu_priv_get(dev); 4653 unsigned long flags; 4654 4655 dmar_remove_one_dev_info(dev); 4656 4657 spin_lock_irqsave(&device_domain_lock, flags); 4658 dev_iommu_priv_set(dev, NULL); 4659 list_del(&info->global); 4660 spin_unlock_irqrestore(&device_domain_lock, flags); 4661 4662 kfree(info); 4663 set_dma_ops(dev, NULL); 4664 } 4665 4666 static void intel_iommu_probe_finalize(struct device *dev) 4667 { 4668 set_dma_ops(dev, NULL); 4669 iommu_setup_dma_ops(dev, 0, U64_MAX); 4670 } 4671 4672 static void intel_iommu_get_resv_regions(struct device *device, 4673 struct list_head *head) 4674 { 4675 int prot = DMA_PTE_READ | DMA_PTE_WRITE; 4676 struct iommu_resv_region *reg; 4677 struct dmar_rmrr_unit *rmrr; 4678 struct device *i_dev; 4679 int i; 4680 4681 down_read(&dmar_global_lock); 4682 for_each_rmrr_units(rmrr) { 4683 for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt, 4684 i, i_dev) { 4685 struct iommu_resv_region *resv; 4686 enum iommu_resv_type type; 4687 size_t length; 4688 4689 if (i_dev != device && 4690 !is_downstream_to_pci_bridge(device, i_dev)) 4691 continue; 4692 4693 length = rmrr->end_address - rmrr->base_address + 1; 4694 4695 type = device_rmrr_is_relaxable(device) ? 4696 IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT; 4697 4698 resv = iommu_alloc_resv_region(rmrr->base_address, 4699 length, prot, type); 4700 if (!resv) 4701 break; 4702 4703 list_add_tail(&resv->list, head); 4704 } 4705 } 4706 up_read(&dmar_global_lock); 4707 4708 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA 4709 if (dev_is_pci(device)) { 4710 struct pci_dev *pdev = to_pci_dev(device); 4711 4712 if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) { 4713 reg = iommu_alloc_resv_region(0, 1UL << 24, prot, 4714 IOMMU_RESV_DIRECT_RELAXABLE); 4715 if (reg) 4716 list_add_tail(®->list, head); 4717 } 4718 } 4719 #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */ 4720 4721 reg = iommu_alloc_resv_region(IOAPIC_RANGE_START, 4722 IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1, 4723 0, IOMMU_RESV_MSI); 4724 if (!reg) 4725 return; 4726 list_add_tail(®->list, head); 4727 } 4728 4729 int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev) 4730 { 4731 struct device_domain_info *info = dev_iommu_priv_get(dev); 4732 struct context_entry *context; 4733 struct dmar_domain *domain; 4734 unsigned long flags; 4735 u64 ctx_lo; 4736 int ret; 4737 4738 domain = info->domain; 4739 if (!domain) 4740 return -EINVAL; 4741 4742 spin_lock_irqsave(&device_domain_lock, flags); 4743 spin_lock(&iommu->lock); 4744 4745 ret = -EINVAL; 4746 if (!info->pasid_supported) 4747 goto out; 4748 4749 context = iommu_context_addr(iommu, info->bus, info->devfn, 0); 4750 if (WARN_ON(!context)) 4751 goto out; 4752 4753 ctx_lo = context[0].lo; 4754 4755 if (!(ctx_lo & CONTEXT_PASIDE)) { 4756 ctx_lo |= CONTEXT_PASIDE; 4757 context[0].lo = ctx_lo; 4758 wmb(); 4759 iommu->flush.flush_context(iommu, 4760 domain->iommu_did[iommu->seq_id], 4761 PCI_DEVID(info->bus, info->devfn), 4762 DMA_CCMD_MASK_NOBIT, 4763 DMA_CCMD_DEVICE_INVL); 4764 } 4765 4766 /* Enable PASID support in the device, if it wasn't already */ 4767 if (!info->pasid_enabled) 4768 iommu_enable_dev_iotlb(info); 4769 4770 ret = 0; 4771 4772 out: 4773 spin_unlock(&iommu->lock); 4774 spin_unlock_irqrestore(&device_domain_lock, flags); 4775 4776 return ret; 4777 } 4778 4779 static struct iommu_group *intel_iommu_device_group(struct device *dev) 4780 { 4781 if (dev_is_pci(dev)) 4782 return pci_device_group(dev); 4783 return generic_device_group(dev); 4784 } 4785 4786 static int intel_iommu_enable_sva(struct device *dev) 4787 { 4788 struct device_domain_info *info = dev_iommu_priv_get(dev); 4789 struct intel_iommu *iommu; 4790 int ret; 4791 4792 if (!info || dmar_disabled) 4793 return -EINVAL; 4794 4795 iommu = info->iommu; 4796 if (!iommu) 4797 return -EINVAL; 4798 4799 if (!(iommu->flags & VTD_FLAG_SVM_CAPABLE)) 4800 return -ENODEV; 4801 4802 if (intel_iommu_enable_pasid(iommu, dev)) 4803 return -ENODEV; 4804 4805 if (!info->pasid_enabled || !info->pri_enabled || !info->ats_enabled) 4806 return -EINVAL; 4807 4808 ret = iopf_queue_add_device(iommu->iopf_queue, dev); 4809 if (!ret) 4810 ret = iommu_register_device_fault_handler(dev, iommu_queue_iopf, dev); 4811 4812 return ret; 4813 } 4814 4815 static int intel_iommu_disable_sva(struct device *dev) 4816 { 4817 struct device_domain_info *info = dev_iommu_priv_get(dev); 4818 struct intel_iommu *iommu = info->iommu; 4819 int ret; 4820 4821 ret = iommu_unregister_device_fault_handler(dev); 4822 if (!ret) 4823 ret = iopf_queue_remove_device(iommu->iopf_queue, dev); 4824 4825 return ret; 4826 } 4827 4828 static int intel_iommu_enable_iopf(struct device *dev) 4829 { 4830 struct device_domain_info *info = dev_iommu_priv_get(dev); 4831 4832 if (info && info->pri_supported) 4833 return 0; 4834 4835 return -ENODEV; 4836 } 4837 4838 static int 4839 intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat) 4840 { 4841 switch (feat) { 4842 case IOMMU_DEV_FEAT_IOPF: 4843 return intel_iommu_enable_iopf(dev); 4844 4845 case IOMMU_DEV_FEAT_SVA: 4846 return intel_iommu_enable_sva(dev); 4847 4848 default: 4849 return -ENODEV; 4850 } 4851 } 4852 4853 static int 4854 intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat) 4855 { 4856 switch (feat) { 4857 case IOMMU_DEV_FEAT_IOPF: 4858 return 0; 4859 4860 case IOMMU_DEV_FEAT_SVA: 4861 return intel_iommu_disable_sva(dev); 4862 4863 default: 4864 return -ENODEV; 4865 } 4866 } 4867 4868 static bool intel_iommu_is_attach_deferred(struct device *dev) 4869 { 4870 struct device_domain_info *info = dev_iommu_priv_get(dev); 4871 4872 return translation_pre_enabled(info->iommu) && !info->domain; 4873 } 4874 4875 /* 4876 * Check that the device does not live on an external facing PCI port that is 4877 * marked as untrusted. Such devices should not be able to apply quirks and 4878 * thus not be able to bypass the IOMMU restrictions. 4879 */ 4880 static bool risky_device(struct pci_dev *pdev) 4881 { 4882 if (pdev->untrusted) { 4883 pci_info(pdev, 4884 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n", 4885 pdev->vendor, pdev->device); 4886 pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n"); 4887 return true; 4888 } 4889 return false; 4890 } 4891 4892 static void intel_iommu_iotlb_sync_map(struct iommu_domain *domain, 4893 unsigned long iova, size_t size) 4894 { 4895 struct dmar_domain *dmar_domain = to_dmar_domain(domain); 4896 unsigned long pages = aligned_nrpages(iova, size); 4897 unsigned long pfn = iova >> VTD_PAGE_SHIFT; 4898 struct intel_iommu *iommu; 4899 int iommu_id; 4900 4901 for_each_domain_iommu(iommu_id, dmar_domain) { 4902 iommu = g_iommus[iommu_id]; 4903 __mapping_notify_one(iommu, dmar_domain, pfn, pages); 4904 } 4905 } 4906 4907 const struct iommu_ops intel_iommu_ops = { 4908 .capable = intel_iommu_capable, 4909 .domain_alloc = intel_iommu_domain_alloc, 4910 .probe_device = intel_iommu_probe_device, 4911 .probe_finalize = intel_iommu_probe_finalize, 4912 .release_device = intel_iommu_release_device, 4913 .get_resv_regions = intel_iommu_get_resv_regions, 4914 .put_resv_regions = generic_iommu_put_resv_regions, 4915 .device_group = intel_iommu_device_group, 4916 .dev_enable_feat = intel_iommu_dev_enable_feat, 4917 .dev_disable_feat = intel_iommu_dev_disable_feat, 4918 .is_attach_deferred = intel_iommu_is_attach_deferred, 4919 .def_domain_type = device_def_domain_type, 4920 .pgsize_bitmap = SZ_4K, 4921 #ifdef CONFIG_INTEL_IOMMU_SVM 4922 .sva_bind = intel_svm_bind, 4923 .sva_unbind = intel_svm_unbind, 4924 .sva_get_pasid = intel_svm_get_pasid, 4925 .page_response = intel_svm_page_response, 4926 #endif 4927 .default_domain_ops = &(const struct iommu_domain_ops) { 4928 .attach_dev = intel_iommu_attach_device, 4929 .detach_dev = intel_iommu_detach_device, 4930 .map_pages = intel_iommu_map_pages, 4931 .unmap_pages = intel_iommu_unmap_pages, 4932 .iotlb_sync_map = intel_iommu_iotlb_sync_map, 4933 .flush_iotlb_all = intel_flush_iotlb_all, 4934 .iotlb_sync = intel_iommu_tlb_sync, 4935 .iova_to_phys = intel_iommu_iova_to_phys, 4936 .free = intel_iommu_domain_free, 4937 .enforce_cache_coherency = intel_iommu_enforce_cache_coherency, 4938 } 4939 }; 4940 4941 static void quirk_iommu_igfx(struct pci_dev *dev) 4942 { 4943 if (risky_device(dev)) 4944 return; 4945 4946 pci_info(dev, "Disabling IOMMU for graphics on this chipset\n"); 4947 dmar_map_gfx = 0; 4948 } 4949 4950 /* G4x/GM45 integrated gfx dmar support is totally busted. */ 4951 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx); 4952 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx); 4953 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx); 4954 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx); 4955 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx); 4956 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx); 4957 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx); 4958 4959 /* Broadwell igfx malfunctions with dmar */ 4960 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx); 4961 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx); 4962 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx); 4963 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx); 4964 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx); 4965 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx); 4966 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx); 4967 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx); 4968 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx); 4969 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx); 4970 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx); 4971 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx); 4972 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx); 4973 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx); 4974 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx); 4975 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx); 4976 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx); 4977 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx); 4978 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx); 4979 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx); 4980 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx); 4981 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx); 4982 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx); 4983 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx); 4984 4985 static void quirk_iommu_rwbf(struct pci_dev *dev) 4986 { 4987 if (risky_device(dev)) 4988 return; 4989 4990 /* 4991 * Mobile 4 Series Chipset neglects to set RWBF capability, 4992 * but needs it. Same seems to hold for the desktop versions. 4993 */ 4994 pci_info(dev, "Forcing write-buffer flush capability\n"); 4995 rwbf_quirk = 1; 4996 } 4997 4998 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf); 4999 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf); 5000 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf); 5001 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf); 5002 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf); 5003 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf); 5004 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf); 5005 5006 #define GGC 0x52 5007 #define GGC_MEMORY_SIZE_MASK (0xf << 8) 5008 #define GGC_MEMORY_SIZE_NONE (0x0 << 8) 5009 #define GGC_MEMORY_SIZE_1M (0x1 << 8) 5010 #define GGC_MEMORY_SIZE_2M (0x3 << 8) 5011 #define GGC_MEMORY_VT_ENABLED (0x8 << 8) 5012 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8) 5013 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8) 5014 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8) 5015 5016 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev) 5017 { 5018 unsigned short ggc; 5019 5020 if (risky_device(dev)) 5021 return; 5022 5023 if (pci_read_config_word(dev, GGC, &ggc)) 5024 return; 5025 5026 if (!(ggc & GGC_MEMORY_VT_ENABLED)) { 5027 pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n"); 5028 dmar_map_gfx = 0; 5029 } else if (dmar_map_gfx) { 5030 /* we have to ensure the gfx device is idle before we flush */ 5031 pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n"); 5032 iommu_set_dma_strict(); 5033 } 5034 } 5035 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt); 5036 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt); 5037 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt); 5038 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt); 5039 5040 static void quirk_igfx_skip_te_disable(struct pci_dev *dev) 5041 { 5042 unsigned short ver; 5043 5044 if (!IS_GFX_DEVICE(dev)) 5045 return; 5046 5047 ver = (dev->device >> 8) & 0xff; 5048 if (ver != 0x45 && ver != 0x46 && ver != 0x4c && 5049 ver != 0x4e && ver != 0x8a && ver != 0x98 && 5050 ver != 0x9a && ver != 0xa7) 5051 return; 5052 5053 if (risky_device(dev)) 5054 return; 5055 5056 pci_info(dev, "Skip IOMMU disabling for graphics\n"); 5057 iommu_skip_te_disable = 1; 5058 } 5059 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable); 5060 5061 /* On Tylersburg chipsets, some BIOSes have been known to enable the 5062 ISOCH DMAR unit for the Azalia sound device, but not give it any 5063 TLB entries, which causes it to deadlock. Check for that. We do 5064 this in a function called from init_dmars(), instead of in a PCI 5065 quirk, because we don't want to print the obnoxious "BIOS broken" 5066 message if VT-d is actually disabled. 5067 */ 5068 static void __init check_tylersburg_isoch(void) 5069 { 5070 struct pci_dev *pdev; 5071 uint32_t vtisochctrl; 5072 5073 /* If there's no Azalia in the system anyway, forget it. */ 5074 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL); 5075 if (!pdev) 5076 return; 5077 5078 if (risky_device(pdev)) { 5079 pci_dev_put(pdev); 5080 return; 5081 } 5082 5083 pci_dev_put(pdev); 5084 5085 /* System Management Registers. Might be hidden, in which case 5086 we can't do the sanity check. But that's OK, because the 5087 known-broken BIOSes _don't_ actually hide it, so far. */ 5088 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL); 5089 if (!pdev) 5090 return; 5091 5092 if (risky_device(pdev)) { 5093 pci_dev_put(pdev); 5094 return; 5095 } 5096 5097 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) { 5098 pci_dev_put(pdev); 5099 return; 5100 } 5101 5102 pci_dev_put(pdev); 5103 5104 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */ 5105 if (vtisochctrl & 1) 5106 return; 5107 5108 /* Drop all bits other than the number of TLB entries */ 5109 vtisochctrl &= 0x1c; 5110 5111 /* If we have the recommended number of TLB entries (16), fine. */ 5112 if (vtisochctrl == 0x10) 5113 return; 5114 5115 /* Zero TLB entries? You get to ride the short bus to school. */ 5116 if (!vtisochctrl) { 5117 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n" 5118 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 5119 dmi_get_system_info(DMI_BIOS_VENDOR), 5120 dmi_get_system_info(DMI_BIOS_VERSION), 5121 dmi_get_system_info(DMI_PRODUCT_VERSION)); 5122 iommu_identity_mapping |= IDENTMAP_AZALIA; 5123 return; 5124 } 5125 5126 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n", 5127 vtisochctrl); 5128 } 5129