1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2006, Intel Corporation. 4 * 5 * Copyright (C) 2006-2008 Intel Corporation 6 * Author: Ashok Raj <ashok.raj@intel.com> 7 * Author: Shaohua Li <shaohua.li@intel.com> 8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * This file implements early detection/parsing of Remapping Devices 11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI 12 * tables. 13 * 14 * These routines are used by both DMA-remapping and Interrupt-remapping 15 */ 16 17 #define pr_fmt(fmt) "DMAR: " fmt 18 19 #include <linux/pci.h> 20 #include <linux/dmar.h> 21 #include <linux/iova.h> 22 #include <linux/timer.h> 23 #include <linux/irq.h> 24 #include <linux/interrupt.h> 25 #include <linux/tboot.h> 26 #include <linux/dmi.h> 27 #include <linux/slab.h> 28 #include <linux/iommu.h> 29 #include <linux/numa.h> 30 #include <linux/limits.h> 31 #include <asm/irq_remapping.h> 32 33 #include "iommu.h" 34 #include "../irq_remapping.h" 35 #include "perf.h" 36 #include "trace.h" 37 38 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); 39 struct dmar_res_callback { 40 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; 41 void *arg[ACPI_DMAR_TYPE_RESERVED]; 42 bool ignore_unhandled; 43 bool print_entry; 44 }; 45 46 /* 47 * Assumptions: 48 * 1) The hotplug framework guarentees that DMAR unit will be hot-added 49 * before IO devices managed by that unit. 50 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed 51 * after IO devices managed by that unit. 52 * 3) Hotplug events are rare. 53 * 54 * Locking rules for DMA and interrupt remapping related global data structures: 55 * 1) Use dmar_global_lock in process context 56 * 2) Use RCU in interrupt context 57 */ 58 DECLARE_RWSEM(dmar_global_lock); 59 LIST_HEAD(dmar_drhd_units); 60 61 struct acpi_table_header * __initdata dmar_tbl; 62 static int dmar_dev_scope_status = 1; 63 static DEFINE_IDA(dmar_seq_ids); 64 65 static int alloc_iommu(struct dmar_drhd_unit *drhd); 66 static void free_iommu(struct intel_iommu *iommu); 67 68 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) 69 { 70 /* 71 * add INCLUDE_ALL at the tail, so scan the list will find it at 72 * the very end. 73 */ 74 if (drhd->include_all) 75 list_add_tail_rcu(&drhd->list, &dmar_drhd_units); 76 else 77 list_add_rcu(&drhd->list, &dmar_drhd_units); 78 } 79 80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) 81 { 82 struct acpi_dmar_device_scope *scope; 83 84 *cnt = 0; 85 while (start < end) { 86 scope = start; 87 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || 88 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || 89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) 90 (*cnt)++; 91 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && 92 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { 93 pr_warn("Unsupported device scope\n"); 94 } 95 start += scope->length; 96 } 97 if (*cnt == 0) 98 return NULL; 99 100 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); 101 } 102 103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) 104 { 105 int i; 106 struct device *tmp_dev; 107 108 if (*devices && *cnt) { 109 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) 110 put_device(tmp_dev); 111 kfree(*devices); 112 } 113 114 *devices = NULL; 115 *cnt = 0; 116 } 117 118 /* Optimize out kzalloc()/kfree() for normal cases */ 119 static char dmar_pci_notify_info_buf[64]; 120 121 static struct dmar_pci_notify_info * 122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) 123 { 124 int level = 0; 125 size_t size; 126 struct pci_dev *tmp; 127 struct dmar_pci_notify_info *info; 128 129 BUG_ON(dev->is_virtfn); 130 131 /* 132 * Ignore devices that have a domain number higher than what can 133 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 134 */ 135 if (pci_domain_nr(dev->bus) > U16_MAX) 136 return NULL; 137 138 /* Only generate path[] for device addition event */ 139 if (event == BUS_NOTIFY_ADD_DEVICE) 140 for (tmp = dev; tmp; tmp = tmp->bus->self) 141 level++; 142 143 size = struct_size(info, path, level); 144 if (size <= sizeof(dmar_pci_notify_info_buf)) { 145 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; 146 } else { 147 info = kzalloc(size, GFP_KERNEL); 148 if (!info) { 149 if (dmar_dev_scope_status == 0) 150 dmar_dev_scope_status = -ENOMEM; 151 return NULL; 152 } 153 } 154 155 info->event = event; 156 info->dev = dev; 157 info->seg = pci_domain_nr(dev->bus); 158 info->level = level; 159 if (event == BUS_NOTIFY_ADD_DEVICE) { 160 for (tmp = dev; tmp; tmp = tmp->bus->self) { 161 level--; 162 info->path[level].bus = tmp->bus->number; 163 info->path[level].device = PCI_SLOT(tmp->devfn); 164 info->path[level].function = PCI_FUNC(tmp->devfn); 165 if (pci_is_root_bus(tmp->bus)) 166 info->bus = tmp->bus->number; 167 } 168 } 169 170 return info; 171 } 172 173 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) 174 { 175 if ((void *)info != dmar_pci_notify_info_buf) 176 kfree(info); 177 } 178 179 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, 180 struct acpi_dmar_pci_path *path, int count) 181 { 182 int i; 183 184 if (info->bus != bus) 185 goto fallback; 186 if (info->level != count) 187 goto fallback; 188 189 for (i = 0; i < count; i++) { 190 if (path[i].device != info->path[i].device || 191 path[i].function != info->path[i].function) 192 goto fallback; 193 } 194 195 return true; 196 197 fallback: 198 199 if (count != 1) 200 return false; 201 202 i = info->level - 1; 203 if (bus == info->path[i].bus && 204 path[0].device == info->path[i].device && 205 path[0].function == info->path[i].function) { 206 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", 207 bus, path[0].device, path[0].function); 208 return true; 209 } 210 211 return false; 212 } 213 214 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ 215 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, 216 void *start, void*end, u16 segment, 217 struct dmar_dev_scope *devices, 218 int devices_cnt) 219 { 220 int i, level; 221 struct device *tmp, *dev = &info->dev->dev; 222 struct acpi_dmar_device_scope *scope; 223 struct acpi_dmar_pci_path *path; 224 225 if (segment != info->seg) 226 return 0; 227 228 for (; start < end; start += scope->length) { 229 scope = start; 230 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 231 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) 232 continue; 233 234 path = (struct acpi_dmar_pci_path *)(scope + 1); 235 level = (scope->length - sizeof(*scope)) / sizeof(*path); 236 if (!dmar_match_pci_path(info, scope->bus, path, level)) 237 continue; 238 239 /* 240 * We expect devices with endpoint scope to have normal PCI 241 * headers, and devices with bridge scope to have bridge PCI 242 * headers. However PCI NTB devices may be listed in the 243 * DMAR table with bridge scope, even though they have a 244 * normal PCI header. NTB devices are identified by class 245 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch 246 * for this special case. 247 */ 248 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 249 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || 250 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && 251 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 252 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { 253 pr_warn("Device scope type does not match for %s\n", 254 pci_name(info->dev)); 255 return -EINVAL; 256 } 257 258 for_each_dev_scope(devices, devices_cnt, i, tmp) 259 if (tmp == NULL) { 260 devices[i].bus = info->dev->bus->number; 261 devices[i].devfn = info->dev->devfn; 262 rcu_assign_pointer(devices[i].dev, 263 get_device(dev)); 264 return 1; 265 } 266 BUG_ON(i >= devices_cnt); 267 } 268 269 return 0; 270 } 271 272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, 273 struct dmar_dev_scope *devices, int count) 274 { 275 int index; 276 struct device *tmp; 277 278 if (info->seg != segment) 279 return 0; 280 281 for_each_active_dev_scope(devices, count, index, tmp) 282 if (tmp == &info->dev->dev) { 283 RCU_INIT_POINTER(devices[index].dev, NULL); 284 synchronize_rcu(); 285 put_device(tmp); 286 return 1; 287 } 288 289 return 0; 290 } 291 292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) 293 { 294 int ret = 0; 295 struct dmar_drhd_unit *dmaru; 296 struct acpi_dmar_hardware_unit *drhd; 297 298 for_each_drhd_unit(dmaru) { 299 if (dmaru->include_all) 300 continue; 301 302 drhd = container_of(dmaru->hdr, 303 struct acpi_dmar_hardware_unit, header); 304 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), 305 ((void *)drhd) + drhd->header.length, 306 dmaru->segment, 307 dmaru->devices, dmaru->devices_cnt); 308 if (ret) 309 break; 310 } 311 if (ret >= 0) 312 ret = dmar_iommu_notify_scope_dev(info); 313 if (ret < 0 && dmar_dev_scope_status == 0) 314 dmar_dev_scope_status = ret; 315 316 if (ret >= 0) 317 intel_irq_remap_add_device(info); 318 319 return ret; 320 } 321 322 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) 323 { 324 struct dmar_drhd_unit *dmaru; 325 326 for_each_drhd_unit(dmaru) 327 if (dmar_remove_dev_scope(info, dmaru->segment, 328 dmaru->devices, dmaru->devices_cnt)) 329 break; 330 dmar_iommu_notify_scope_dev(info); 331 } 332 333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev) 334 { 335 struct pci_dev *physfn = pci_physfn(pdev); 336 337 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev)); 338 } 339 340 static int dmar_pci_bus_notifier(struct notifier_block *nb, 341 unsigned long action, void *data) 342 { 343 struct pci_dev *pdev = to_pci_dev(data); 344 struct dmar_pci_notify_info *info; 345 346 /* Only care about add/remove events for physical functions. 347 * For VFs we actually do the lookup based on the corresponding 348 * PF in device_to_iommu() anyway. */ 349 if (pdev->is_virtfn) { 350 /* 351 * Ensure that the VF device inherits the irq domain of the 352 * PF device. Ideally the device would inherit the domain 353 * from the bus, but DMAR can have multiple units per bus 354 * which makes this impossible. The VF 'bus' could inherit 355 * from the PF device, but that's yet another x86'sism to 356 * inflict on everybody else. 357 */ 358 if (action == BUS_NOTIFY_ADD_DEVICE) 359 vf_inherit_msi_domain(pdev); 360 return NOTIFY_DONE; 361 } 362 363 if (action != BUS_NOTIFY_ADD_DEVICE && 364 action != BUS_NOTIFY_REMOVED_DEVICE) 365 return NOTIFY_DONE; 366 367 info = dmar_alloc_pci_notify_info(pdev, action); 368 if (!info) 369 return NOTIFY_DONE; 370 371 down_write(&dmar_global_lock); 372 if (action == BUS_NOTIFY_ADD_DEVICE) 373 dmar_pci_bus_add_dev(info); 374 else if (action == BUS_NOTIFY_REMOVED_DEVICE) 375 dmar_pci_bus_del_dev(info); 376 up_write(&dmar_global_lock); 377 378 dmar_free_pci_notify_info(info); 379 380 return NOTIFY_OK; 381 } 382 383 static struct notifier_block dmar_pci_bus_nb = { 384 .notifier_call = dmar_pci_bus_notifier, 385 .priority = 1, 386 }; 387 388 static struct dmar_drhd_unit * 389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) 390 { 391 struct dmar_drhd_unit *dmaru; 392 393 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, 394 dmar_rcu_check()) 395 if (dmaru->segment == drhd->segment && 396 dmaru->reg_base_addr == drhd->address) 397 return dmaru; 398 399 return NULL; 400 } 401 402 /* 403 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition 404 * structure which uniquely represent one DMA remapping hardware unit 405 * present in the platform 406 */ 407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) 408 { 409 struct acpi_dmar_hardware_unit *drhd; 410 struct dmar_drhd_unit *dmaru; 411 int ret; 412 413 drhd = (struct acpi_dmar_hardware_unit *)header; 414 dmaru = dmar_find_dmaru(drhd); 415 if (dmaru) 416 goto out; 417 418 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); 419 if (!dmaru) 420 return -ENOMEM; 421 422 /* 423 * If header is allocated from slab by ACPI _DSM method, we need to 424 * copy the content because the memory buffer will be freed on return. 425 */ 426 dmaru->hdr = (void *)(dmaru + 1); 427 memcpy(dmaru->hdr, header, header->length); 428 dmaru->reg_base_addr = drhd->address; 429 dmaru->segment = drhd->segment; 430 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ 431 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), 432 ((void *)drhd) + drhd->header.length, 433 &dmaru->devices_cnt); 434 if (dmaru->devices_cnt && dmaru->devices == NULL) { 435 kfree(dmaru); 436 return -ENOMEM; 437 } 438 439 ret = alloc_iommu(dmaru); 440 if (ret) { 441 dmar_free_dev_scope(&dmaru->devices, 442 &dmaru->devices_cnt); 443 kfree(dmaru); 444 return ret; 445 } 446 dmar_register_drhd_unit(dmaru); 447 448 out: 449 if (arg) 450 (*(int *)arg)++; 451 452 return 0; 453 } 454 455 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) 456 { 457 if (dmaru->devices && dmaru->devices_cnt) 458 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); 459 if (dmaru->iommu) 460 free_iommu(dmaru->iommu); 461 kfree(dmaru); 462 } 463 464 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, 465 void *arg) 466 { 467 struct acpi_dmar_andd *andd = (void *)header; 468 469 /* Check for NUL termination within the designated length */ 470 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { 471 pr_warn(FW_BUG 472 "Your BIOS is broken; ANDD object name is not NUL-terminated\n" 473 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 474 dmi_get_system_info(DMI_BIOS_VENDOR), 475 dmi_get_system_info(DMI_BIOS_VERSION), 476 dmi_get_system_info(DMI_PRODUCT_VERSION)); 477 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 478 return -EINVAL; 479 } 480 pr_info("ANDD device: %x name: %s\n", andd->device_number, 481 andd->device_name); 482 483 return 0; 484 } 485 486 #ifdef CONFIG_ACPI_NUMA 487 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) 488 { 489 struct acpi_dmar_rhsa *rhsa; 490 struct dmar_drhd_unit *drhd; 491 492 rhsa = (struct acpi_dmar_rhsa *)header; 493 for_each_drhd_unit(drhd) { 494 if (drhd->reg_base_addr == rhsa->base_address) { 495 int node = pxm_to_node(rhsa->proximity_domain); 496 497 if (node != NUMA_NO_NODE && !node_online(node)) 498 node = NUMA_NO_NODE; 499 drhd->iommu->node = node; 500 return 0; 501 } 502 } 503 pr_warn(FW_BUG 504 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" 505 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 506 rhsa->base_address, 507 dmi_get_system_info(DMI_BIOS_VENDOR), 508 dmi_get_system_info(DMI_BIOS_VERSION), 509 dmi_get_system_info(DMI_PRODUCT_VERSION)); 510 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 511 512 return 0; 513 } 514 #else 515 #define dmar_parse_one_rhsa dmar_res_noop 516 #endif 517 518 static void 519 dmar_table_print_dmar_entry(struct acpi_dmar_header *header) 520 { 521 struct acpi_dmar_hardware_unit *drhd; 522 struct acpi_dmar_reserved_memory *rmrr; 523 struct acpi_dmar_atsr *atsr; 524 struct acpi_dmar_rhsa *rhsa; 525 struct acpi_dmar_satc *satc; 526 527 switch (header->type) { 528 case ACPI_DMAR_TYPE_HARDWARE_UNIT: 529 drhd = container_of(header, struct acpi_dmar_hardware_unit, 530 header); 531 pr_info("DRHD base: %#016Lx flags: %#x\n", 532 (unsigned long long)drhd->address, drhd->flags); 533 break; 534 case ACPI_DMAR_TYPE_RESERVED_MEMORY: 535 rmrr = container_of(header, struct acpi_dmar_reserved_memory, 536 header); 537 pr_info("RMRR base: %#016Lx end: %#016Lx\n", 538 (unsigned long long)rmrr->base_address, 539 (unsigned long long)rmrr->end_address); 540 break; 541 case ACPI_DMAR_TYPE_ROOT_ATS: 542 atsr = container_of(header, struct acpi_dmar_atsr, header); 543 pr_info("ATSR flags: %#x\n", atsr->flags); 544 break; 545 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: 546 rhsa = container_of(header, struct acpi_dmar_rhsa, header); 547 pr_info("RHSA base: %#016Lx proximity domain: %#x\n", 548 (unsigned long long)rhsa->base_address, 549 rhsa->proximity_domain); 550 break; 551 case ACPI_DMAR_TYPE_NAMESPACE: 552 /* We don't print this here because we need to sanity-check 553 it first. So print it in dmar_parse_one_andd() instead. */ 554 break; 555 case ACPI_DMAR_TYPE_SATC: 556 satc = container_of(header, struct acpi_dmar_satc, header); 557 pr_info("SATC flags: 0x%x\n", satc->flags); 558 break; 559 } 560 } 561 562 /** 563 * dmar_table_detect - checks to see if the platform supports DMAR devices 564 */ 565 static int __init dmar_table_detect(void) 566 { 567 acpi_status status = AE_OK; 568 569 /* if we could find DMAR table, then there are DMAR devices */ 570 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); 571 572 if (ACPI_SUCCESS(status) && !dmar_tbl) { 573 pr_warn("Unable to map DMAR\n"); 574 status = AE_NOT_FOUND; 575 } 576 577 return ACPI_SUCCESS(status) ? 0 : -ENOENT; 578 } 579 580 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, 581 size_t len, struct dmar_res_callback *cb) 582 { 583 struct acpi_dmar_header *iter, *next; 584 struct acpi_dmar_header *end = ((void *)start) + len; 585 586 for (iter = start; iter < end; iter = next) { 587 next = (void *)iter + iter->length; 588 if (iter->length == 0) { 589 /* Avoid looping forever on bad ACPI tables */ 590 pr_debug(FW_BUG "Invalid 0-length structure\n"); 591 break; 592 } else if (next > end) { 593 /* Avoid passing table end */ 594 pr_warn(FW_BUG "Record passes table end\n"); 595 return -EINVAL; 596 } 597 598 if (cb->print_entry) 599 dmar_table_print_dmar_entry(iter); 600 601 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { 602 /* continue for forward compatibility */ 603 pr_debug("Unknown DMAR structure type %d\n", 604 iter->type); 605 } else if (cb->cb[iter->type]) { 606 int ret; 607 608 ret = cb->cb[iter->type](iter, cb->arg[iter->type]); 609 if (ret) 610 return ret; 611 } else if (!cb->ignore_unhandled) { 612 pr_warn("No handler for DMAR structure type %d\n", 613 iter->type); 614 return -EINVAL; 615 } 616 } 617 618 return 0; 619 } 620 621 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, 622 struct dmar_res_callback *cb) 623 { 624 return dmar_walk_remapping_entries((void *)(dmar + 1), 625 dmar->header.length - sizeof(*dmar), cb); 626 } 627 628 /** 629 * parse_dmar_table - parses the DMA reporting table 630 */ 631 static int __init 632 parse_dmar_table(void) 633 { 634 struct acpi_table_dmar *dmar; 635 int drhd_count = 0; 636 int ret; 637 struct dmar_res_callback cb = { 638 .print_entry = true, 639 .ignore_unhandled = true, 640 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, 641 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, 642 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, 643 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, 644 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, 645 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, 646 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc, 647 }; 648 649 /* 650 * Do it again, earlier dmar_tbl mapping could be mapped with 651 * fixed map. 652 */ 653 dmar_table_detect(); 654 655 /* 656 * ACPI tables may not be DMA protected by tboot, so use DMAR copy 657 * SINIT saved in SinitMleData in TXT heap (which is DMA protected) 658 */ 659 dmar_tbl = tboot_get_dmar_table(dmar_tbl); 660 661 dmar = (struct acpi_table_dmar *)dmar_tbl; 662 if (!dmar) 663 return -ENODEV; 664 665 if (dmar->width < PAGE_SHIFT - 1) { 666 pr_warn("Invalid DMAR haw\n"); 667 return -EINVAL; 668 } 669 670 pr_info("Host address width %d\n", dmar->width + 1); 671 ret = dmar_walk_dmar_table(dmar, &cb); 672 if (ret == 0 && drhd_count == 0) 673 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); 674 675 return ret; 676 } 677 678 static int dmar_pci_device_match(struct dmar_dev_scope devices[], 679 int cnt, struct pci_dev *dev) 680 { 681 int index; 682 struct device *tmp; 683 684 while (dev) { 685 for_each_active_dev_scope(devices, cnt, index, tmp) 686 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) 687 return 1; 688 689 /* Check our parent */ 690 dev = dev->bus->self; 691 } 692 693 return 0; 694 } 695 696 struct dmar_drhd_unit * 697 dmar_find_matched_drhd_unit(struct pci_dev *dev) 698 { 699 struct dmar_drhd_unit *dmaru; 700 struct acpi_dmar_hardware_unit *drhd; 701 702 dev = pci_physfn(dev); 703 704 rcu_read_lock(); 705 for_each_drhd_unit(dmaru) { 706 drhd = container_of(dmaru->hdr, 707 struct acpi_dmar_hardware_unit, 708 header); 709 710 if (dmaru->include_all && 711 drhd->segment == pci_domain_nr(dev->bus)) 712 goto out; 713 714 if (dmar_pci_device_match(dmaru->devices, 715 dmaru->devices_cnt, dev)) 716 goto out; 717 } 718 dmaru = NULL; 719 out: 720 rcu_read_unlock(); 721 722 return dmaru; 723 } 724 725 static void __init dmar_acpi_insert_dev_scope(u8 device_number, 726 struct acpi_device *adev) 727 { 728 struct dmar_drhd_unit *dmaru; 729 struct acpi_dmar_hardware_unit *drhd; 730 struct acpi_dmar_device_scope *scope; 731 struct device *tmp; 732 int i; 733 struct acpi_dmar_pci_path *path; 734 735 for_each_drhd_unit(dmaru) { 736 drhd = container_of(dmaru->hdr, 737 struct acpi_dmar_hardware_unit, 738 header); 739 740 for (scope = (void *)(drhd + 1); 741 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; 742 scope = ((void *)scope) + scope->length) { 743 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) 744 continue; 745 if (scope->enumeration_id != device_number) 746 continue; 747 748 path = (void *)(scope + 1); 749 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", 750 dev_name(&adev->dev), dmaru->reg_base_addr, 751 scope->bus, path->device, path->function); 752 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) 753 if (tmp == NULL) { 754 dmaru->devices[i].bus = scope->bus; 755 dmaru->devices[i].devfn = PCI_DEVFN(path->device, 756 path->function); 757 rcu_assign_pointer(dmaru->devices[i].dev, 758 get_device(&adev->dev)); 759 return; 760 } 761 BUG_ON(i >= dmaru->devices_cnt); 762 } 763 } 764 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", 765 device_number, dev_name(&adev->dev)); 766 } 767 768 static int __init dmar_acpi_dev_scope_init(void) 769 { 770 struct acpi_dmar_andd *andd; 771 772 if (dmar_tbl == NULL) 773 return -ENODEV; 774 775 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); 776 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; 777 andd = ((void *)andd) + andd->header.length) { 778 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { 779 acpi_handle h; 780 struct acpi_device *adev; 781 782 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, 783 andd->device_name, 784 &h))) { 785 pr_err("Failed to find handle for ACPI object %s\n", 786 andd->device_name); 787 continue; 788 } 789 adev = acpi_fetch_acpi_dev(h); 790 if (!adev) { 791 pr_err("Failed to get device for ACPI object %s\n", 792 andd->device_name); 793 continue; 794 } 795 dmar_acpi_insert_dev_scope(andd->device_number, adev); 796 } 797 } 798 return 0; 799 } 800 801 int __init dmar_dev_scope_init(void) 802 { 803 struct pci_dev *dev = NULL; 804 struct dmar_pci_notify_info *info; 805 806 if (dmar_dev_scope_status != 1) 807 return dmar_dev_scope_status; 808 809 if (list_empty(&dmar_drhd_units)) { 810 dmar_dev_scope_status = -ENODEV; 811 } else { 812 dmar_dev_scope_status = 0; 813 814 dmar_acpi_dev_scope_init(); 815 816 for_each_pci_dev(dev) { 817 if (dev->is_virtfn) 818 continue; 819 820 info = dmar_alloc_pci_notify_info(dev, 821 BUS_NOTIFY_ADD_DEVICE); 822 if (!info) { 823 pci_dev_put(dev); 824 return dmar_dev_scope_status; 825 } else { 826 dmar_pci_bus_add_dev(info); 827 dmar_free_pci_notify_info(info); 828 } 829 } 830 } 831 832 return dmar_dev_scope_status; 833 } 834 835 void __init dmar_register_bus_notifier(void) 836 { 837 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); 838 } 839 840 841 int __init dmar_table_init(void) 842 { 843 static int dmar_table_initialized; 844 int ret; 845 846 if (dmar_table_initialized == 0) { 847 ret = parse_dmar_table(); 848 if (ret < 0) { 849 if (ret != -ENODEV) 850 pr_info("Parse DMAR table failure.\n"); 851 } else if (list_empty(&dmar_drhd_units)) { 852 pr_info("No DMAR devices found\n"); 853 ret = -ENODEV; 854 } 855 856 if (ret < 0) 857 dmar_table_initialized = ret; 858 else 859 dmar_table_initialized = 1; 860 } 861 862 return dmar_table_initialized < 0 ? dmar_table_initialized : 0; 863 } 864 865 static void warn_invalid_dmar(u64 addr, const char *message) 866 { 867 pr_warn_once(FW_BUG 868 "Your BIOS is broken; DMAR reported at address %llx%s!\n" 869 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 870 addr, message, 871 dmi_get_system_info(DMI_BIOS_VENDOR), 872 dmi_get_system_info(DMI_BIOS_VERSION), 873 dmi_get_system_info(DMI_PRODUCT_VERSION)); 874 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 875 } 876 877 static int __ref 878 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) 879 { 880 struct acpi_dmar_hardware_unit *drhd; 881 void __iomem *addr; 882 u64 cap, ecap; 883 884 drhd = (void *)entry; 885 if (!drhd->address) { 886 warn_invalid_dmar(0, ""); 887 return -EINVAL; 888 } 889 890 if (arg) 891 addr = ioremap(drhd->address, VTD_PAGE_SIZE); 892 else 893 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); 894 if (!addr) { 895 pr_warn("Can't validate DRHD address: %llx\n", drhd->address); 896 return -EINVAL; 897 } 898 899 cap = dmar_readq(addr + DMAR_CAP_REG); 900 ecap = dmar_readq(addr + DMAR_ECAP_REG); 901 902 if (arg) 903 iounmap(addr); 904 else 905 early_iounmap(addr, VTD_PAGE_SIZE); 906 907 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { 908 warn_invalid_dmar(drhd->address, " returns all ones"); 909 return -EINVAL; 910 } 911 912 return 0; 913 } 914 915 void __init detect_intel_iommu(void) 916 { 917 int ret; 918 struct dmar_res_callback validate_drhd_cb = { 919 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, 920 .ignore_unhandled = true, 921 }; 922 923 down_write(&dmar_global_lock); 924 ret = dmar_table_detect(); 925 if (!ret) 926 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, 927 &validate_drhd_cb); 928 if (!ret && !no_iommu && !iommu_detected && 929 (!dmar_disabled || dmar_platform_optin())) { 930 iommu_detected = 1; 931 /* Make sure ACS will be enabled */ 932 pci_request_acs(); 933 } 934 935 #ifdef CONFIG_X86 936 if (!ret) { 937 x86_init.iommu.iommu_init = intel_iommu_init; 938 x86_platform.iommu_shutdown = intel_iommu_shutdown; 939 } 940 941 #endif 942 943 if (dmar_tbl) { 944 acpi_put_table(dmar_tbl); 945 dmar_tbl = NULL; 946 } 947 up_write(&dmar_global_lock); 948 } 949 950 static void unmap_iommu(struct intel_iommu *iommu) 951 { 952 iounmap(iommu->reg); 953 release_mem_region(iommu->reg_phys, iommu->reg_size); 954 } 955 956 /** 957 * map_iommu: map the iommu's registers 958 * @iommu: the iommu to map 959 * @phys_addr: the physical address of the base resgister 960 * 961 * Memory map the iommu's registers. Start w/ a single page, and 962 * possibly expand if that turns out to be insufficent. 963 */ 964 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr) 965 { 966 int map_size, err=0; 967 968 iommu->reg_phys = phys_addr; 969 iommu->reg_size = VTD_PAGE_SIZE; 970 971 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { 972 pr_err("Can't reserve memory\n"); 973 err = -EBUSY; 974 goto out; 975 } 976 977 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 978 if (!iommu->reg) { 979 pr_err("Can't map the region\n"); 980 err = -ENOMEM; 981 goto release; 982 } 983 984 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); 985 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); 986 987 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { 988 err = -EINVAL; 989 warn_invalid_dmar(phys_addr, " returns all ones"); 990 goto unmap; 991 } 992 if (ecap_vcs(iommu->ecap)) 993 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG); 994 995 /* the registers might be more than one page */ 996 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), 997 cap_max_fault_reg_offset(iommu->cap)); 998 map_size = VTD_PAGE_ALIGN(map_size); 999 if (map_size > iommu->reg_size) { 1000 iounmap(iommu->reg); 1001 release_mem_region(iommu->reg_phys, iommu->reg_size); 1002 iommu->reg_size = map_size; 1003 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, 1004 iommu->name)) { 1005 pr_err("Can't reserve memory\n"); 1006 err = -EBUSY; 1007 goto out; 1008 } 1009 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 1010 if (!iommu->reg) { 1011 pr_err("Can't map the region\n"); 1012 err = -ENOMEM; 1013 goto release; 1014 } 1015 } 1016 err = 0; 1017 goto out; 1018 1019 unmap: 1020 iounmap(iommu->reg); 1021 release: 1022 release_mem_region(iommu->reg_phys, iommu->reg_size); 1023 out: 1024 return err; 1025 } 1026 1027 static int alloc_iommu(struct dmar_drhd_unit *drhd) 1028 { 1029 struct intel_iommu *iommu; 1030 u32 ver, sts; 1031 int agaw = -1; 1032 int msagaw = -1; 1033 int err; 1034 1035 if (!drhd->reg_base_addr) { 1036 warn_invalid_dmar(0, ""); 1037 return -EINVAL; 1038 } 1039 1040 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); 1041 if (!iommu) 1042 return -ENOMEM; 1043 1044 iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0, 1045 DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL); 1046 if (iommu->seq_id < 0) { 1047 pr_err("Failed to allocate seq_id\n"); 1048 err = iommu->seq_id; 1049 goto error; 1050 } 1051 sprintf(iommu->name, "dmar%d", iommu->seq_id); 1052 1053 err = map_iommu(iommu, drhd->reg_base_addr); 1054 if (err) { 1055 pr_err("Failed to map %s\n", iommu->name); 1056 goto error_free_seq_id; 1057 } 1058 1059 err = -EINVAL; 1060 if (cap_sagaw(iommu->cap) == 0) { 1061 pr_info("%s: No supported address widths. Not attempting DMA translation.\n", 1062 iommu->name); 1063 drhd->ignored = 1; 1064 } 1065 1066 if (!drhd->ignored) { 1067 agaw = iommu_calculate_agaw(iommu); 1068 if (agaw < 0) { 1069 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", 1070 iommu->seq_id); 1071 drhd->ignored = 1; 1072 } 1073 } 1074 if (!drhd->ignored) { 1075 msagaw = iommu_calculate_max_sagaw(iommu); 1076 if (msagaw < 0) { 1077 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", 1078 iommu->seq_id); 1079 drhd->ignored = 1; 1080 agaw = -1; 1081 } 1082 } 1083 iommu->agaw = agaw; 1084 iommu->msagaw = msagaw; 1085 iommu->segment = drhd->segment; 1086 1087 iommu->node = NUMA_NO_NODE; 1088 1089 ver = readl(iommu->reg + DMAR_VER_REG); 1090 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", 1091 iommu->name, 1092 (unsigned long long)drhd->reg_base_addr, 1093 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), 1094 (unsigned long long)iommu->cap, 1095 (unsigned long long)iommu->ecap); 1096 1097 /* Reflect status in gcmd */ 1098 sts = readl(iommu->reg + DMAR_GSTS_REG); 1099 if (sts & DMA_GSTS_IRES) 1100 iommu->gcmd |= DMA_GCMD_IRE; 1101 if (sts & DMA_GSTS_TES) 1102 iommu->gcmd |= DMA_GCMD_TE; 1103 if (sts & DMA_GSTS_QIES) 1104 iommu->gcmd |= DMA_GCMD_QIE; 1105 1106 raw_spin_lock_init(&iommu->register_lock); 1107 1108 /* 1109 * A value of N in PSS field of eCap register indicates hardware 1110 * supports PASID field of N+1 bits. 1111 */ 1112 if (pasid_supported(iommu)) 1113 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap); 1114 1115 /* 1116 * This is only for hotplug; at boot time intel_iommu_enabled won't 1117 * be set yet. When intel_iommu_init() runs, it registers the units 1118 * present at boot time, then sets intel_iommu_enabled. 1119 */ 1120 if (intel_iommu_enabled && !drhd->ignored) { 1121 err = iommu_device_sysfs_add(&iommu->iommu, NULL, 1122 intel_iommu_groups, 1123 "%s", iommu->name); 1124 if (err) 1125 goto err_unmap; 1126 1127 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL); 1128 if (err) 1129 goto err_sysfs; 1130 } 1131 1132 drhd->iommu = iommu; 1133 iommu->drhd = drhd; 1134 1135 return 0; 1136 1137 err_sysfs: 1138 iommu_device_sysfs_remove(&iommu->iommu); 1139 err_unmap: 1140 unmap_iommu(iommu); 1141 error_free_seq_id: 1142 ida_free(&dmar_seq_ids, iommu->seq_id); 1143 error: 1144 kfree(iommu); 1145 return err; 1146 } 1147 1148 static void free_iommu(struct intel_iommu *iommu) 1149 { 1150 if (intel_iommu_enabled && !iommu->drhd->ignored) { 1151 iommu_device_unregister(&iommu->iommu); 1152 iommu_device_sysfs_remove(&iommu->iommu); 1153 } 1154 1155 if (iommu->irq) { 1156 if (iommu->pr_irq) { 1157 free_irq(iommu->pr_irq, iommu); 1158 dmar_free_hwirq(iommu->pr_irq); 1159 iommu->pr_irq = 0; 1160 } 1161 free_irq(iommu->irq, iommu); 1162 dmar_free_hwirq(iommu->irq); 1163 iommu->irq = 0; 1164 } 1165 1166 if (iommu->qi) { 1167 free_page((unsigned long)iommu->qi->desc); 1168 kfree(iommu->qi->desc_status); 1169 kfree(iommu->qi); 1170 } 1171 1172 if (iommu->reg) 1173 unmap_iommu(iommu); 1174 1175 ida_free(&dmar_seq_ids, iommu->seq_id); 1176 kfree(iommu); 1177 } 1178 1179 /* 1180 * Reclaim all the submitted descriptors which have completed its work. 1181 */ 1182 static inline void reclaim_free_desc(struct q_inval *qi) 1183 { 1184 while (qi->desc_status[qi->free_tail] == QI_DONE || 1185 qi->desc_status[qi->free_tail] == QI_ABORT) { 1186 qi->desc_status[qi->free_tail] = QI_FREE; 1187 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; 1188 qi->free_cnt++; 1189 } 1190 } 1191 1192 static const char *qi_type_string(u8 type) 1193 { 1194 switch (type) { 1195 case QI_CC_TYPE: 1196 return "Context-cache Invalidation"; 1197 case QI_IOTLB_TYPE: 1198 return "IOTLB Invalidation"; 1199 case QI_DIOTLB_TYPE: 1200 return "Device-TLB Invalidation"; 1201 case QI_IEC_TYPE: 1202 return "Interrupt Entry Cache Invalidation"; 1203 case QI_IWD_TYPE: 1204 return "Invalidation Wait"; 1205 case QI_EIOTLB_TYPE: 1206 return "PASID-based IOTLB Invalidation"; 1207 case QI_PC_TYPE: 1208 return "PASID-cache Invalidation"; 1209 case QI_DEIOTLB_TYPE: 1210 return "PASID-based Device-TLB Invalidation"; 1211 case QI_PGRP_RESP_TYPE: 1212 return "Page Group Response"; 1213 default: 1214 return "UNKNOWN"; 1215 } 1216 } 1217 1218 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault) 1219 { 1220 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG); 1221 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG); 1222 struct qi_desc *desc = iommu->qi->desc + head; 1223 1224 if (fault & DMA_FSTS_IQE) 1225 pr_err("VT-d detected Invalidation Queue Error: Reason %llx", 1226 DMAR_IQER_REG_IQEI(iqe_err)); 1227 if (fault & DMA_FSTS_ITE) 1228 pr_err("VT-d detected Invalidation Time-out Error: SID %llx", 1229 DMAR_IQER_REG_ITESID(iqe_err)); 1230 if (fault & DMA_FSTS_ICE) 1231 pr_err("VT-d detected Invalidation Completion Error: SID %llx", 1232 DMAR_IQER_REG_ICESID(iqe_err)); 1233 1234 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n", 1235 qi_type_string(desc->qw0 & 0xf), 1236 (unsigned long long)desc->qw0, 1237 (unsigned long long)desc->qw1); 1238 1239 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH; 1240 head <<= qi_shift(iommu); 1241 desc = iommu->qi->desc + head; 1242 1243 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n", 1244 qi_type_string(desc->qw0 & 0xf), 1245 (unsigned long long)desc->qw0, 1246 (unsigned long long)desc->qw1); 1247 } 1248 1249 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) 1250 { 1251 u32 fault; 1252 int head, tail; 1253 struct q_inval *qi = iommu->qi; 1254 int shift = qi_shift(iommu); 1255 1256 if (qi->desc_status[wait_index] == QI_ABORT) 1257 return -EAGAIN; 1258 1259 fault = readl(iommu->reg + DMAR_FSTS_REG); 1260 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE)) 1261 qi_dump_fault(iommu, fault); 1262 1263 /* 1264 * If IQE happens, the head points to the descriptor associated 1265 * with the error. No new descriptors are fetched until the IQE 1266 * is cleared. 1267 */ 1268 if (fault & DMA_FSTS_IQE) { 1269 head = readl(iommu->reg + DMAR_IQH_REG); 1270 if ((head >> shift) == index) { 1271 struct qi_desc *desc = qi->desc + head; 1272 1273 /* 1274 * desc->qw2 and desc->qw3 are either reserved or 1275 * used by software as private data. We won't print 1276 * out these two qw's for security consideration. 1277 */ 1278 memcpy(desc, qi->desc + (wait_index << shift), 1279 1 << shift); 1280 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); 1281 pr_info("Invalidation Queue Error (IQE) cleared\n"); 1282 return -EINVAL; 1283 } 1284 } 1285 1286 /* 1287 * If ITE happens, all pending wait_desc commands are aborted. 1288 * No new descriptors are fetched until the ITE is cleared. 1289 */ 1290 if (fault & DMA_FSTS_ITE) { 1291 head = readl(iommu->reg + DMAR_IQH_REG); 1292 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1293 head |= 1; 1294 tail = readl(iommu->reg + DMAR_IQT_REG); 1295 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1296 1297 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); 1298 pr_info("Invalidation Time-out Error (ITE) cleared\n"); 1299 1300 do { 1301 if (qi->desc_status[head] == QI_IN_USE) 1302 qi->desc_status[head] = QI_ABORT; 1303 head = (head - 2 + QI_LENGTH) % QI_LENGTH; 1304 } while (head != tail); 1305 1306 if (qi->desc_status[wait_index] == QI_ABORT) 1307 return -EAGAIN; 1308 } 1309 1310 if (fault & DMA_FSTS_ICE) { 1311 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); 1312 pr_info("Invalidation Completion Error (ICE) cleared\n"); 1313 } 1314 1315 return 0; 1316 } 1317 1318 /* 1319 * Function to submit invalidation descriptors of all types to the queued 1320 * invalidation interface(QI). Multiple descriptors can be submitted at a 1321 * time, a wait descriptor will be appended to each submission to ensure 1322 * hardware has completed the invalidation before return. Wait descriptors 1323 * can be part of the submission but it will not be polled for completion. 1324 */ 1325 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, 1326 unsigned int count, unsigned long options) 1327 { 1328 struct q_inval *qi = iommu->qi; 1329 s64 devtlb_start_ktime = 0; 1330 s64 iotlb_start_ktime = 0; 1331 s64 iec_start_ktime = 0; 1332 struct qi_desc wait_desc; 1333 int wait_index, index; 1334 unsigned long flags; 1335 int offset, shift; 1336 int rc, i; 1337 u64 type; 1338 1339 if (!qi) 1340 return 0; 1341 1342 type = desc->qw0 & GENMASK_ULL(3, 0); 1343 1344 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) && 1345 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB)) 1346 iotlb_start_ktime = ktime_to_ns(ktime_get()); 1347 1348 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) && 1349 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB)) 1350 devtlb_start_ktime = ktime_to_ns(ktime_get()); 1351 1352 if (type == QI_IEC_TYPE && 1353 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC)) 1354 iec_start_ktime = ktime_to_ns(ktime_get()); 1355 1356 restart: 1357 rc = 0; 1358 1359 raw_spin_lock_irqsave(&qi->q_lock, flags); 1360 /* 1361 * Check if we have enough empty slots in the queue to submit, 1362 * the calculation is based on: 1363 * # of desc + 1 wait desc + 1 space between head and tail 1364 */ 1365 while (qi->free_cnt < count + 2) { 1366 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1367 cpu_relax(); 1368 raw_spin_lock_irqsave(&qi->q_lock, flags); 1369 } 1370 1371 index = qi->free_head; 1372 wait_index = (index + count) % QI_LENGTH; 1373 shift = qi_shift(iommu); 1374 1375 for (i = 0; i < count; i++) { 1376 offset = ((index + i) % QI_LENGTH) << shift; 1377 memcpy(qi->desc + offset, &desc[i], 1 << shift); 1378 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; 1379 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1, 1380 desc[i].qw2, desc[i].qw3); 1381 } 1382 qi->desc_status[wait_index] = QI_IN_USE; 1383 1384 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 1385 QI_IWD_STATUS_WRITE | QI_IWD_TYPE; 1386 if (options & QI_OPT_WAIT_DRAIN) 1387 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; 1388 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); 1389 wait_desc.qw2 = 0; 1390 wait_desc.qw3 = 0; 1391 1392 offset = wait_index << shift; 1393 memcpy(qi->desc + offset, &wait_desc, 1 << shift); 1394 1395 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; 1396 qi->free_cnt -= count + 1; 1397 1398 /* 1399 * update the HW tail register indicating the presence of 1400 * new descriptors. 1401 */ 1402 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); 1403 1404 while (qi->desc_status[wait_index] != QI_DONE) { 1405 /* 1406 * We will leave the interrupts disabled, to prevent interrupt 1407 * context to queue another cmd while a cmd is already submitted 1408 * and waiting for completion on this cpu. This is to avoid 1409 * a deadlock where the interrupt context can wait indefinitely 1410 * for free slots in the queue. 1411 */ 1412 rc = qi_check_fault(iommu, index, wait_index); 1413 if (rc) 1414 break; 1415 1416 raw_spin_unlock(&qi->q_lock); 1417 cpu_relax(); 1418 raw_spin_lock(&qi->q_lock); 1419 } 1420 1421 for (i = 0; i < count; i++) 1422 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; 1423 1424 reclaim_free_desc(qi); 1425 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1426 1427 if (rc == -EAGAIN) 1428 goto restart; 1429 1430 if (iotlb_start_ktime) 1431 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB, 1432 ktime_to_ns(ktime_get()) - iotlb_start_ktime); 1433 1434 if (devtlb_start_ktime) 1435 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB, 1436 ktime_to_ns(ktime_get()) - devtlb_start_ktime); 1437 1438 if (iec_start_ktime) 1439 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC, 1440 ktime_to_ns(ktime_get()) - iec_start_ktime); 1441 1442 return rc; 1443 } 1444 1445 /* 1446 * Flush the global interrupt entry cache. 1447 */ 1448 void qi_global_iec(struct intel_iommu *iommu) 1449 { 1450 struct qi_desc desc; 1451 1452 desc.qw0 = QI_IEC_TYPE; 1453 desc.qw1 = 0; 1454 desc.qw2 = 0; 1455 desc.qw3 = 0; 1456 1457 /* should never fail */ 1458 qi_submit_sync(iommu, &desc, 1, 0); 1459 } 1460 1461 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, 1462 u64 type) 1463 { 1464 struct qi_desc desc; 1465 1466 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) 1467 | QI_CC_GRAN(type) | QI_CC_TYPE; 1468 desc.qw1 = 0; 1469 desc.qw2 = 0; 1470 desc.qw3 = 0; 1471 1472 qi_submit_sync(iommu, &desc, 1, 0); 1473 } 1474 1475 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, 1476 unsigned int size_order, u64 type) 1477 { 1478 u8 dw = 0, dr = 0; 1479 1480 struct qi_desc desc; 1481 int ih = 0; 1482 1483 if (cap_write_drain(iommu->cap)) 1484 dw = 1; 1485 1486 if (cap_read_drain(iommu->cap)) 1487 dr = 1; 1488 1489 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) 1490 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; 1491 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) 1492 | QI_IOTLB_AM(size_order); 1493 desc.qw2 = 0; 1494 desc.qw3 = 0; 1495 1496 qi_submit_sync(iommu, &desc, 1, 0); 1497 } 1498 1499 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1500 u16 qdep, u64 addr, unsigned mask) 1501 { 1502 struct qi_desc desc; 1503 1504 if (mask) { 1505 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; 1506 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; 1507 } else 1508 desc.qw1 = QI_DEV_IOTLB_ADDR(addr); 1509 1510 if (qdep >= QI_DEV_IOTLB_MAX_INVS) 1511 qdep = 0; 1512 1513 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | 1514 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); 1515 desc.qw2 = 0; 1516 desc.qw3 = 0; 1517 1518 qi_submit_sync(iommu, &desc, 1, 0); 1519 } 1520 1521 /* PASID-based IOTLB invalidation */ 1522 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, 1523 unsigned long npages, bool ih) 1524 { 1525 struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; 1526 1527 /* 1528 * npages == -1 means a PASID-selective invalidation, otherwise, 1529 * a positive value for Page-selective-within-PASID invalidation. 1530 * 0 is not a valid input. 1531 */ 1532 if (WARN_ON(!npages)) { 1533 pr_err("Invalid input npages = %ld\n", npages); 1534 return; 1535 } 1536 1537 if (npages == -1) { 1538 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1539 QI_EIOTLB_DID(did) | 1540 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 1541 QI_EIOTLB_TYPE; 1542 desc.qw1 = 0; 1543 } else { 1544 int mask = ilog2(__roundup_pow_of_two(npages)); 1545 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); 1546 1547 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align))) 1548 addr = ALIGN_DOWN(addr, align); 1549 1550 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1551 QI_EIOTLB_DID(did) | 1552 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | 1553 QI_EIOTLB_TYPE; 1554 desc.qw1 = QI_EIOTLB_ADDR(addr) | 1555 QI_EIOTLB_IH(ih) | 1556 QI_EIOTLB_AM(mask); 1557 } 1558 1559 qi_submit_sync(iommu, &desc, 1, 0); 1560 } 1561 1562 /* PASID-based device IOTLB Invalidate */ 1563 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1564 u32 pasid, u16 qdep, u64 addr, unsigned int size_order) 1565 { 1566 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); 1567 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1568 1569 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | 1570 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | 1571 QI_DEV_IOTLB_PFSID(pfsid); 1572 1573 /* 1574 * If S bit is 0, we only flush a single page. If S bit is set, 1575 * The least significant zero bit indicates the invalidation address 1576 * range. VT-d spec 6.5.2.6. 1577 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. 1578 * size order = 0 is PAGE_SIZE 4KB 1579 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in 1580 * ECAP. 1581 */ 1582 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order)) 1583 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n", 1584 addr, size_order); 1585 1586 /* Take page address */ 1587 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr); 1588 1589 if (size_order) { 1590 /* 1591 * Existing 0s in address below size_order may be the least 1592 * significant bit, we must set them to 1s to avoid having 1593 * smaller size than desired. 1594 */ 1595 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1, 1596 VTD_PAGE_SHIFT); 1597 /* Clear size_order bit to indicate size */ 1598 desc.qw1 &= ~mask; 1599 /* Set the S bit to indicate flushing more than 1 page */ 1600 desc.qw1 |= QI_DEV_EIOTLB_SIZE; 1601 } 1602 1603 qi_submit_sync(iommu, &desc, 1, 0); 1604 } 1605 1606 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, 1607 u64 granu, u32 pasid) 1608 { 1609 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1610 1611 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | 1612 QI_PC_GRAN(granu) | QI_PC_TYPE; 1613 qi_submit_sync(iommu, &desc, 1, 0); 1614 } 1615 1616 /* 1617 * Disable Queued Invalidation interface. 1618 */ 1619 void dmar_disable_qi(struct intel_iommu *iommu) 1620 { 1621 unsigned long flags; 1622 u32 sts; 1623 cycles_t start_time = get_cycles(); 1624 1625 if (!ecap_qis(iommu->ecap)) 1626 return; 1627 1628 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1629 1630 sts = readl(iommu->reg + DMAR_GSTS_REG); 1631 if (!(sts & DMA_GSTS_QIES)) 1632 goto end; 1633 1634 /* 1635 * Give a chance to HW to complete the pending invalidation requests. 1636 */ 1637 while ((readl(iommu->reg + DMAR_IQT_REG) != 1638 readl(iommu->reg + DMAR_IQH_REG)) && 1639 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) 1640 cpu_relax(); 1641 1642 iommu->gcmd &= ~DMA_GCMD_QIE; 1643 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1644 1645 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, 1646 !(sts & DMA_GSTS_QIES), sts); 1647 end: 1648 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1649 } 1650 1651 /* 1652 * Enable queued invalidation. 1653 */ 1654 static void __dmar_enable_qi(struct intel_iommu *iommu) 1655 { 1656 u32 sts; 1657 unsigned long flags; 1658 struct q_inval *qi = iommu->qi; 1659 u64 val = virt_to_phys(qi->desc); 1660 1661 qi->free_head = qi->free_tail = 0; 1662 qi->free_cnt = QI_LENGTH; 1663 1664 /* 1665 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability 1666 * is present. 1667 */ 1668 if (ecap_smts(iommu->ecap)) 1669 val |= (1 << 11) | 1; 1670 1671 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1672 1673 /* write zero to the tail reg */ 1674 writel(0, iommu->reg + DMAR_IQT_REG); 1675 1676 dmar_writeq(iommu->reg + DMAR_IQA_REG, val); 1677 1678 iommu->gcmd |= DMA_GCMD_QIE; 1679 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1680 1681 /* Make sure hardware complete it */ 1682 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); 1683 1684 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1685 } 1686 1687 /* 1688 * Enable Queued Invalidation interface. This is a must to support 1689 * interrupt-remapping. Also used by DMA-remapping, which replaces 1690 * register based IOTLB invalidation. 1691 */ 1692 int dmar_enable_qi(struct intel_iommu *iommu) 1693 { 1694 struct q_inval *qi; 1695 struct page *desc_page; 1696 1697 if (!ecap_qis(iommu->ecap)) 1698 return -ENOENT; 1699 1700 /* 1701 * queued invalidation is already setup and enabled. 1702 */ 1703 if (iommu->qi) 1704 return 0; 1705 1706 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); 1707 if (!iommu->qi) 1708 return -ENOMEM; 1709 1710 qi = iommu->qi; 1711 1712 /* 1713 * Need two pages to accommodate 256 descriptors of 256 bits each 1714 * if the remapping hardware supports scalable mode translation. 1715 */ 1716 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 1717 !!ecap_smts(iommu->ecap)); 1718 if (!desc_page) { 1719 kfree(qi); 1720 iommu->qi = NULL; 1721 return -ENOMEM; 1722 } 1723 1724 qi->desc = page_address(desc_page); 1725 1726 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); 1727 if (!qi->desc_status) { 1728 free_page((unsigned long) qi->desc); 1729 kfree(qi); 1730 iommu->qi = NULL; 1731 return -ENOMEM; 1732 } 1733 1734 raw_spin_lock_init(&qi->q_lock); 1735 1736 __dmar_enable_qi(iommu); 1737 1738 return 0; 1739 } 1740 1741 /* iommu interrupt handling. Most stuff are MSI-like. */ 1742 1743 enum faulttype { 1744 DMA_REMAP, 1745 INTR_REMAP, 1746 UNKNOWN, 1747 }; 1748 1749 static const char *dma_remap_fault_reasons[] = 1750 { 1751 "Software", 1752 "Present bit in root entry is clear", 1753 "Present bit in context entry is clear", 1754 "Invalid context entry", 1755 "Access beyond MGAW", 1756 "PTE Write access is not set", 1757 "PTE Read access is not set", 1758 "Next page table ptr is invalid", 1759 "Root table address invalid", 1760 "Context table ptr is invalid", 1761 "non-zero reserved fields in RTP", 1762 "non-zero reserved fields in CTP", 1763 "non-zero reserved fields in PTE", 1764 "PCE for translation request specifies blocking", 1765 }; 1766 1767 static const char * const dma_remap_sm_fault_reasons[] = { 1768 "SM: Invalid Root Table Address", 1769 "SM: TTM 0 for request with PASID", 1770 "SM: TTM 0 for page group request", 1771 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ 1772 "SM: Error attempting to access Root Entry", 1773 "SM: Present bit in Root Entry is clear", 1774 "SM: Non-zero reserved field set in Root Entry", 1775 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ 1776 "SM: Error attempting to access Context Entry", 1777 "SM: Present bit in Context Entry is clear", 1778 "SM: Non-zero reserved field set in the Context Entry", 1779 "SM: Invalid Context Entry", 1780 "SM: DTE field in Context Entry is clear", 1781 "SM: PASID Enable field in Context Entry is clear", 1782 "SM: PASID is larger than the max in Context Entry", 1783 "SM: PRE field in Context-Entry is clear", 1784 "SM: RID_PASID field error in Context-Entry", 1785 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ 1786 "SM: Error attempting to access the PASID Directory Entry", 1787 "SM: Present bit in Directory Entry is clear", 1788 "SM: Non-zero reserved field set in PASID Directory Entry", 1789 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ 1790 "SM: Error attempting to access PASID Table Entry", 1791 "SM: Present bit in PASID Table Entry is clear", 1792 "SM: Non-zero reserved field set in PASID Table Entry", 1793 "SM: Invalid Scalable-Mode PASID Table Entry", 1794 "SM: ERE field is clear in PASID Table Entry", 1795 "SM: SRE field is clear in PASID Table Entry", 1796 "Unknown", "Unknown",/* 0x5E-0x5F */ 1797 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ 1798 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ 1799 "SM: Error attempting to access first-level paging entry", 1800 "SM: Present bit in first-level paging entry is clear", 1801 "SM: Non-zero reserved field set in first-level paging entry", 1802 "SM: Error attempting to access FL-PML4 entry", 1803 "SM: First-level entry address beyond MGAW in Nested translation", 1804 "SM: Read permission error in FL-PML4 entry in Nested translation", 1805 "SM: Read permission error in first-level paging entry in Nested translation", 1806 "SM: Write permission error in first-level paging entry in Nested translation", 1807 "SM: Error attempting to access second-level paging entry", 1808 "SM: Read/Write permission error in second-level paging entry", 1809 "SM: Non-zero reserved field set in second-level paging entry", 1810 "SM: Invalid second-level page table pointer", 1811 "SM: A/D bit update needed in second-level entry when set up in no snoop", 1812 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ 1813 "SM: Address in first-level translation is not canonical", 1814 "SM: U/S set 0 for first-level translation with user privilege", 1815 "SM: No execute permission for request with PASID and ER=1", 1816 "SM: Address beyond the DMA hardware max", 1817 "SM: Second-level entry address beyond the max", 1818 "SM: No write permission for Write/AtomicOp request", 1819 "SM: No read permission for Read/AtomicOp request", 1820 "SM: Invalid address-interrupt address", 1821 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ 1822 "SM: A/D bit update needed in first-level entry when set up in no snoop", 1823 }; 1824 1825 static const char *irq_remap_fault_reasons[] = 1826 { 1827 "Detected reserved fields in the decoded interrupt-remapped request", 1828 "Interrupt index exceeded the interrupt-remapping table size", 1829 "Present field in the IRTE entry is clear", 1830 "Error accessing interrupt-remapping table pointed by IRTA_REG", 1831 "Detected reserved fields in the IRTE entry", 1832 "Blocked a compatibility format interrupt request", 1833 "Blocked an interrupt request due to source-id verification failure", 1834 }; 1835 1836 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) 1837 { 1838 if (fault_reason >= 0x20 && (fault_reason - 0x20 < 1839 ARRAY_SIZE(irq_remap_fault_reasons))) { 1840 *fault_type = INTR_REMAP; 1841 return irq_remap_fault_reasons[fault_reason - 0x20]; 1842 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < 1843 ARRAY_SIZE(dma_remap_sm_fault_reasons))) { 1844 *fault_type = DMA_REMAP; 1845 return dma_remap_sm_fault_reasons[fault_reason - 0x30]; 1846 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { 1847 *fault_type = DMA_REMAP; 1848 return dma_remap_fault_reasons[fault_reason]; 1849 } else { 1850 *fault_type = UNKNOWN; 1851 return "Unknown"; 1852 } 1853 } 1854 1855 1856 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) 1857 { 1858 if (iommu->irq == irq) 1859 return DMAR_FECTL_REG; 1860 else if (iommu->pr_irq == irq) 1861 return DMAR_PECTL_REG; 1862 else 1863 BUG(); 1864 } 1865 1866 void dmar_msi_unmask(struct irq_data *data) 1867 { 1868 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1869 int reg = dmar_msi_reg(iommu, data->irq); 1870 unsigned long flag; 1871 1872 /* unmask it */ 1873 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1874 writel(0, iommu->reg + reg); 1875 /* Read a reg to force flush the post write */ 1876 readl(iommu->reg + reg); 1877 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1878 } 1879 1880 void dmar_msi_mask(struct irq_data *data) 1881 { 1882 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1883 int reg = dmar_msi_reg(iommu, data->irq); 1884 unsigned long flag; 1885 1886 /* mask it */ 1887 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1888 writel(DMA_FECTL_IM, iommu->reg + reg); 1889 /* Read a reg to force flush the post write */ 1890 readl(iommu->reg + reg); 1891 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1892 } 1893 1894 void dmar_msi_write(int irq, struct msi_msg *msg) 1895 { 1896 struct intel_iommu *iommu = irq_get_handler_data(irq); 1897 int reg = dmar_msi_reg(iommu, irq); 1898 unsigned long flag; 1899 1900 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1901 writel(msg->data, iommu->reg + reg + 4); 1902 writel(msg->address_lo, iommu->reg + reg + 8); 1903 writel(msg->address_hi, iommu->reg + reg + 12); 1904 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1905 } 1906 1907 void dmar_msi_read(int irq, struct msi_msg *msg) 1908 { 1909 struct intel_iommu *iommu = irq_get_handler_data(irq); 1910 int reg = dmar_msi_reg(iommu, irq); 1911 unsigned long flag; 1912 1913 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1914 msg->data = readl(iommu->reg + reg + 4); 1915 msg->address_lo = readl(iommu->reg + reg + 8); 1916 msg->address_hi = readl(iommu->reg + reg + 12); 1917 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1918 } 1919 1920 static int dmar_fault_do_one(struct intel_iommu *iommu, int type, 1921 u8 fault_reason, u32 pasid, u16 source_id, 1922 unsigned long long addr) 1923 { 1924 const char *reason; 1925 int fault_type; 1926 1927 reason = dmar_get_fault_reason(fault_reason, &fault_type); 1928 1929 if (fault_type == INTR_REMAP) { 1930 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n", 1931 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1932 PCI_FUNC(source_id & 0xFF), addr >> 48, 1933 fault_reason, reason); 1934 1935 return 0; 1936 } 1937 1938 if (pasid == INVALID_IOASID) 1939 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n", 1940 type ? "DMA Read" : "DMA Write", 1941 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1942 PCI_FUNC(source_id & 0xFF), addr, 1943 fault_reason, reason); 1944 else 1945 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n", 1946 type ? "DMA Read" : "DMA Write", pasid, 1947 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1948 PCI_FUNC(source_id & 0xFF), addr, 1949 fault_reason, reason); 1950 1951 dmar_fault_dump_ptes(iommu, source_id, addr, pasid); 1952 1953 return 0; 1954 } 1955 1956 #define PRIMARY_FAULT_REG_LEN (16) 1957 irqreturn_t dmar_fault(int irq, void *dev_id) 1958 { 1959 struct intel_iommu *iommu = dev_id; 1960 int reg, fault_index; 1961 u32 fault_status; 1962 unsigned long flag; 1963 static DEFINE_RATELIMIT_STATE(rs, 1964 DEFAULT_RATELIMIT_INTERVAL, 1965 DEFAULT_RATELIMIT_BURST); 1966 1967 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1968 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1969 if (fault_status && __ratelimit(&rs)) 1970 pr_err("DRHD: handling fault status reg %x\n", fault_status); 1971 1972 /* TBD: ignore advanced fault log currently */ 1973 if (!(fault_status & DMA_FSTS_PPF)) 1974 goto unlock_exit; 1975 1976 fault_index = dma_fsts_fault_record_index(fault_status); 1977 reg = cap_fault_reg_offset(iommu->cap); 1978 while (1) { 1979 /* Disable printing, simply clear the fault when ratelimited */ 1980 bool ratelimited = !__ratelimit(&rs); 1981 u8 fault_reason; 1982 u16 source_id; 1983 u64 guest_addr; 1984 u32 pasid; 1985 int type; 1986 u32 data; 1987 bool pasid_present; 1988 1989 /* highest 32 bits */ 1990 data = readl(iommu->reg + reg + 1991 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1992 if (!(data & DMA_FRCD_F)) 1993 break; 1994 1995 if (!ratelimited) { 1996 fault_reason = dma_frcd_fault_reason(data); 1997 type = dma_frcd_type(data); 1998 1999 pasid = dma_frcd_pasid_value(data); 2000 data = readl(iommu->reg + reg + 2001 fault_index * PRIMARY_FAULT_REG_LEN + 8); 2002 source_id = dma_frcd_source_id(data); 2003 2004 pasid_present = dma_frcd_pasid_present(data); 2005 guest_addr = dmar_readq(iommu->reg + reg + 2006 fault_index * PRIMARY_FAULT_REG_LEN); 2007 guest_addr = dma_frcd_page_addr(guest_addr); 2008 } 2009 2010 /* clear the fault */ 2011 writel(DMA_FRCD_F, iommu->reg + reg + 2012 fault_index * PRIMARY_FAULT_REG_LEN + 12); 2013 2014 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 2015 2016 if (!ratelimited) 2017 /* Using pasid -1 if pasid is not present */ 2018 dmar_fault_do_one(iommu, type, fault_reason, 2019 pasid_present ? pasid : INVALID_IOASID, 2020 source_id, guest_addr); 2021 2022 fault_index++; 2023 if (fault_index >= cap_num_fault_regs(iommu->cap)) 2024 fault_index = 0; 2025 raw_spin_lock_irqsave(&iommu->register_lock, flag); 2026 } 2027 2028 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, 2029 iommu->reg + DMAR_FSTS_REG); 2030 2031 unlock_exit: 2032 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 2033 return IRQ_HANDLED; 2034 } 2035 2036 int dmar_set_interrupt(struct intel_iommu *iommu) 2037 { 2038 int irq, ret; 2039 2040 /* 2041 * Check if the fault interrupt is already initialized. 2042 */ 2043 if (iommu->irq) 2044 return 0; 2045 2046 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); 2047 if (irq > 0) { 2048 iommu->irq = irq; 2049 } else { 2050 pr_err("No free IRQ vectors\n"); 2051 return -EINVAL; 2052 } 2053 2054 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); 2055 if (ret) 2056 pr_err("Can't request irq\n"); 2057 return ret; 2058 } 2059 2060 int __init enable_drhd_fault_handling(void) 2061 { 2062 struct dmar_drhd_unit *drhd; 2063 struct intel_iommu *iommu; 2064 2065 /* 2066 * Enable fault control interrupt. 2067 */ 2068 for_each_iommu(iommu, drhd) { 2069 u32 fault_status; 2070 int ret = dmar_set_interrupt(iommu); 2071 2072 if (ret) { 2073 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", 2074 (unsigned long long)drhd->reg_base_addr, ret); 2075 return -1; 2076 } 2077 2078 /* 2079 * Clear any previous faults. 2080 */ 2081 dmar_fault(iommu->irq, iommu); 2082 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 2083 writel(fault_status, iommu->reg + DMAR_FSTS_REG); 2084 } 2085 2086 return 0; 2087 } 2088 2089 /* 2090 * Re-enable Queued Invalidation interface. 2091 */ 2092 int dmar_reenable_qi(struct intel_iommu *iommu) 2093 { 2094 if (!ecap_qis(iommu->ecap)) 2095 return -ENOENT; 2096 2097 if (!iommu->qi) 2098 return -ENOENT; 2099 2100 /* 2101 * First disable queued invalidation. 2102 */ 2103 dmar_disable_qi(iommu); 2104 /* 2105 * Then enable queued invalidation again. Since there is no pending 2106 * invalidation requests now, it's safe to re-enable queued 2107 * invalidation. 2108 */ 2109 __dmar_enable_qi(iommu); 2110 2111 return 0; 2112 } 2113 2114 /* 2115 * Check interrupt remapping support in DMAR table description. 2116 */ 2117 int __init dmar_ir_support(void) 2118 { 2119 struct acpi_table_dmar *dmar; 2120 dmar = (struct acpi_table_dmar *)dmar_tbl; 2121 if (!dmar) 2122 return 0; 2123 return dmar->flags & 0x1; 2124 } 2125 2126 /* Check whether DMAR units are in use */ 2127 static inline bool dmar_in_use(void) 2128 { 2129 return irq_remapping_enabled || intel_iommu_enabled; 2130 } 2131 2132 static int __init dmar_free_unused_resources(void) 2133 { 2134 struct dmar_drhd_unit *dmaru, *dmaru_n; 2135 2136 if (dmar_in_use()) 2137 return 0; 2138 2139 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) 2140 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); 2141 2142 down_write(&dmar_global_lock); 2143 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { 2144 list_del(&dmaru->list); 2145 dmar_free_drhd(dmaru); 2146 } 2147 up_write(&dmar_global_lock); 2148 2149 return 0; 2150 } 2151 2152 late_initcall(dmar_free_unused_resources); 2153 2154 /* 2155 * DMAR Hotplug Support 2156 * For more details, please refer to Intel(R) Virtualization Technology 2157 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 2158 * "Remapping Hardware Unit Hot Plug". 2159 */ 2160 static guid_t dmar_hp_guid = 2161 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, 2162 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); 2163 2164 /* 2165 * Currently there's only one revision and BIOS will not check the revision id, 2166 * so use 0 for safety. 2167 */ 2168 #define DMAR_DSM_REV_ID 0 2169 #define DMAR_DSM_FUNC_DRHD 1 2170 #define DMAR_DSM_FUNC_ATSR 2 2171 #define DMAR_DSM_FUNC_RHSA 3 2172 #define DMAR_DSM_FUNC_SATC 4 2173 2174 static inline bool dmar_detect_dsm(acpi_handle handle, int func) 2175 { 2176 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); 2177 } 2178 2179 static int dmar_walk_dsm_resource(acpi_handle handle, int func, 2180 dmar_res_handler_t handler, void *arg) 2181 { 2182 int ret = -ENODEV; 2183 union acpi_object *obj; 2184 struct acpi_dmar_header *start; 2185 struct dmar_res_callback callback; 2186 static int res_type[] = { 2187 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, 2188 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, 2189 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, 2190 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC, 2191 }; 2192 2193 if (!dmar_detect_dsm(handle, func)) 2194 return 0; 2195 2196 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 2197 func, NULL, ACPI_TYPE_BUFFER); 2198 if (!obj) 2199 return -ENODEV; 2200 2201 memset(&callback, 0, sizeof(callback)); 2202 callback.cb[res_type[func]] = handler; 2203 callback.arg[res_type[func]] = arg; 2204 start = (struct acpi_dmar_header *)obj->buffer.pointer; 2205 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); 2206 2207 ACPI_FREE(obj); 2208 2209 return ret; 2210 } 2211 2212 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) 2213 { 2214 int ret; 2215 struct dmar_drhd_unit *dmaru; 2216 2217 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2218 if (!dmaru) 2219 return -ENODEV; 2220 2221 ret = dmar_ir_hotplug(dmaru, true); 2222 if (ret == 0) 2223 ret = dmar_iommu_hotplug(dmaru, true); 2224 2225 return ret; 2226 } 2227 2228 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) 2229 { 2230 int i, ret; 2231 struct device *dev; 2232 struct dmar_drhd_unit *dmaru; 2233 2234 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2235 if (!dmaru) 2236 return 0; 2237 2238 /* 2239 * All PCI devices managed by this unit should have been destroyed. 2240 */ 2241 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { 2242 for_each_active_dev_scope(dmaru->devices, 2243 dmaru->devices_cnt, i, dev) 2244 return -EBUSY; 2245 } 2246 2247 ret = dmar_ir_hotplug(dmaru, false); 2248 if (ret == 0) 2249 ret = dmar_iommu_hotplug(dmaru, false); 2250 2251 return ret; 2252 } 2253 2254 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) 2255 { 2256 struct dmar_drhd_unit *dmaru; 2257 2258 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2259 if (dmaru) { 2260 list_del_rcu(&dmaru->list); 2261 synchronize_rcu(); 2262 dmar_free_drhd(dmaru); 2263 } 2264 2265 return 0; 2266 } 2267 2268 static int dmar_hotplug_insert(acpi_handle handle) 2269 { 2270 int ret; 2271 int drhd_count = 0; 2272 2273 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2274 &dmar_validate_one_drhd, (void *)1); 2275 if (ret) 2276 goto out; 2277 2278 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2279 &dmar_parse_one_drhd, (void *)&drhd_count); 2280 if (ret == 0 && drhd_count == 0) { 2281 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); 2282 goto out; 2283 } else if (ret) { 2284 goto release_drhd; 2285 } 2286 2287 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, 2288 &dmar_parse_one_rhsa, NULL); 2289 if (ret) 2290 goto release_drhd; 2291 2292 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2293 &dmar_parse_one_atsr, NULL); 2294 if (ret) 2295 goto release_atsr; 2296 2297 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2298 &dmar_hp_add_drhd, NULL); 2299 if (!ret) 2300 return 0; 2301 2302 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2303 &dmar_hp_remove_drhd, NULL); 2304 release_atsr: 2305 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2306 &dmar_release_one_atsr, NULL); 2307 release_drhd: 2308 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2309 &dmar_hp_release_drhd, NULL); 2310 out: 2311 return ret; 2312 } 2313 2314 static int dmar_hotplug_remove(acpi_handle handle) 2315 { 2316 int ret; 2317 2318 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2319 &dmar_check_one_atsr, NULL); 2320 if (ret) 2321 return ret; 2322 2323 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2324 &dmar_hp_remove_drhd, NULL); 2325 if (ret == 0) { 2326 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2327 &dmar_release_one_atsr, NULL)); 2328 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2329 &dmar_hp_release_drhd, NULL)); 2330 } else { 2331 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2332 &dmar_hp_add_drhd, NULL); 2333 } 2334 2335 return ret; 2336 } 2337 2338 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, 2339 void *context, void **retval) 2340 { 2341 acpi_handle *phdl = retval; 2342 2343 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2344 *phdl = handle; 2345 return AE_CTRL_TERMINATE; 2346 } 2347 2348 return AE_OK; 2349 } 2350 2351 static int dmar_device_hotplug(acpi_handle handle, bool insert) 2352 { 2353 int ret; 2354 acpi_handle tmp = NULL; 2355 acpi_status status; 2356 2357 if (!dmar_in_use()) 2358 return 0; 2359 2360 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2361 tmp = handle; 2362 } else { 2363 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2364 ACPI_UINT32_MAX, 2365 dmar_get_dsm_handle, 2366 NULL, NULL, &tmp); 2367 if (ACPI_FAILURE(status)) { 2368 pr_warn("Failed to locate _DSM method.\n"); 2369 return -ENXIO; 2370 } 2371 } 2372 if (tmp == NULL) 2373 return 0; 2374 2375 down_write(&dmar_global_lock); 2376 if (insert) 2377 ret = dmar_hotplug_insert(tmp); 2378 else 2379 ret = dmar_hotplug_remove(tmp); 2380 up_write(&dmar_global_lock); 2381 2382 return ret; 2383 } 2384 2385 int dmar_device_add(acpi_handle handle) 2386 { 2387 return dmar_device_hotplug(handle, true); 2388 } 2389 2390 int dmar_device_remove(acpi_handle handle) 2391 { 2392 return dmar_device_hotplug(handle, false); 2393 } 2394 2395 /* 2396 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table 2397 * 2398 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in 2399 * the ACPI DMAR table. This means that the platform boot firmware has made 2400 * sure no device can issue DMA outside of RMRR regions. 2401 */ 2402 bool dmar_platform_optin(void) 2403 { 2404 struct acpi_table_dmar *dmar; 2405 acpi_status status; 2406 bool ret; 2407 2408 status = acpi_get_table(ACPI_SIG_DMAR, 0, 2409 (struct acpi_table_header **)&dmar); 2410 if (ACPI_FAILURE(status)) 2411 return false; 2412 2413 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); 2414 acpi_put_table((struct acpi_table_header *)dmar); 2415 2416 return ret; 2417 } 2418 EXPORT_SYMBOL_GPL(dmar_platform_optin); 2419