1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2006, Intel Corporation. 4 * 5 * Copyright (C) 2006-2008 Intel Corporation 6 * Author: Ashok Raj <ashok.raj@intel.com> 7 * Author: Shaohua Li <shaohua.li@intel.com> 8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * This file implements early detection/parsing of Remapping Devices 11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI 12 * tables. 13 * 14 * These routines are used by both DMA-remapping and Interrupt-remapping 15 */ 16 17 #define pr_fmt(fmt) "DMAR: " fmt 18 19 #include <linux/pci.h> 20 #include <linux/dmar.h> 21 #include <linux/iova.h> 22 #include <linux/intel-iommu.h> 23 #include <linux/timer.h> 24 #include <linux/irq.h> 25 #include <linux/interrupt.h> 26 #include <linux/tboot.h> 27 #include <linux/dmi.h> 28 #include <linux/slab.h> 29 #include <linux/iommu.h> 30 #include <linux/numa.h> 31 #include <linux/limits.h> 32 #include <asm/irq_remapping.h> 33 #include <asm/iommu_table.h> 34 35 #include "../irq_remapping.h" 36 37 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); 38 struct dmar_res_callback { 39 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; 40 void *arg[ACPI_DMAR_TYPE_RESERVED]; 41 bool ignore_unhandled; 42 bool print_entry; 43 }; 44 45 /* 46 * Assumptions: 47 * 1) The hotplug framework guarentees that DMAR unit will be hot-added 48 * before IO devices managed by that unit. 49 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed 50 * after IO devices managed by that unit. 51 * 3) Hotplug events are rare. 52 * 53 * Locking rules for DMA and interrupt remapping related global data structures: 54 * 1) Use dmar_global_lock in process context 55 * 2) Use RCU in interrupt context 56 */ 57 DECLARE_RWSEM(dmar_global_lock); 58 LIST_HEAD(dmar_drhd_units); 59 60 struct acpi_table_header * __initdata dmar_tbl; 61 static int dmar_dev_scope_status = 1; 62 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)]; 63 64 static int alloc_iommu(struct dmar_drhd_unit *drhd); 65 static void free_iommu(struct intel_iommu *iommu); 66 67 extern const struct iommu_ops intel_iommu_ops; 68 69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) 70 { 71 /* 72 * add INCLUDE_ALL at the tail, so scan the list will find it at 73 * the very end. 74 */ 75 if (drhd->include_all) 76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units); 77 else 78 list_add_rcu(&drhd->list, &dmar_drhd_units); 79 } 80 81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) 82 { 83 struct acpi_dmar_device_scope *scope; 84 85 *cnt = 0; 86 while (start < end) { 87 scope = start; 88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || 89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || 90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) 91 (*cnt)++; 92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && 93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { 94 pr_warn("Unsupported device scope\n"); 95 } 96 start += scope->length; 97 } 98 if (*cnt == 0) 99 return NULL; 100 101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); 102 } 103 104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) 105 { 106 int i; 107 struct device *tmp_dev; 108 109 if (*devices && *cnt) { 110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) 111 put_device(tmp_dev); 112 kfree(*devices); 113 } 114 115 *devices = NULL; 116 *cnt = 0; 117 } 118 119 /* Optimize out kzalloc()/kfree() for normal cases */ 120 static char dmar_pci_notify_info_buf[64]; 121 122 static struct dmar_pci_notify_info * 123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) 124 { 125 int level = 0; 126 size_t size; 127 struct pci_dev *tmp; 128 struct dmar_pci_notify_info *info; 129 130 BUG_ON(dev->is_virtfn); 131 132 /* 133 * Ignore devices that have a domain number higher than what can 134 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 135 */ 136 if (pci_domain_nr(dev->bus) > U16_MAX) 137 return NULL; 138 139 /* Only generate path[] for device addition event */ 140 if (event == BUS_NOTIFY_ADD_DEVICE) 141 for (tmp = dev; tmp; tmp = tmp->bus->self) 142 level++; 143 144 size = struct_size(info, path, level); 145 if (size <= sizeof(dmar_pci_notify_info_buf)) { 146 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; 147 } else { 148 info = kzalloc(size, GFP_KERNEL); 149 if (!info) { 150 pr_warn("Out of memory when allocating notify_info " 151 "for %s.\n", pci_name(dev)); 152 if (dmar_dev_scope_status == 0) 153 dmar_dev_scope_status = -ENOMEM; 154 return NULL; 155 } 156 } 157 158 info->event = event; 159 info->dev = dev; 160 info->seg = pci_domain_nr(dev->bus); 161 info->level = level; 162 if (event == BUS_NOTIFY_ADD_DEVICE) { 163 for (tmp = dev; tmp; tmp = tmp->bus->self) { 164 level--; 165 info->path[level].bus = tmp->bus->number; 166 info->path[level].device = PCI_SLOT(tmp->devfn); 167 info->path[level].function = PCI_FUNC(tmp->devfn); 168 if (pci_is_root_bus(tmp->bus)) 169 info->bus = tmp->bus->number; 170 } 171 } 172 173 return info; 174 } 175 176 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) 177 { 178 if ((void *)info != dmar_pci_notify_info_buf) 179 kfree(info); 180 } 181 182 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, 183 struct acpi_dmar_pci_path *path, int count) 184 { 185 int i; 186 187 if (info->bus != bus) 188 goto fallback; 189 if (info->level != count) 190 goto fallback; 191 192 for (i = 0; i < count; i++) { 193 if (path[i].device != info->path[i].device || 194 path[i].function != info->path[i].function) 195 goto fallback; 196 } 197 198 return true; 199 200 fallback: 201 202 if (count != 1) 203 return false; 204 205 i = info->level - 1; 206 if (bus == info->path[i].bus && 207 path[0].device == info->path[i].device && 208 path[0].function == info->path[i].function) { 209 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", 210 bus, path[0].device, path[0].function); 211 return true; 212 } 213 214 return false; 215 } 216 217 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ 218 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, 219 void *start, void*end, u16 segment, 220 struct dmar_dev_scope *devices, 221 int devices_cnt) 222 { 223 int i, level; 224 struct device *tmp, *dev = &info->dev->dev; 225 struct acpi_dmar_device_scope *scope; 226 struct acpi_dmar_pci_path *path; 227 228 if (segment != info->seg) 229 return 0; 230 231 for (; start < end; start += scope->length) { 232 scope = start; 233 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 234 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) 235 continue; 236 237 path = (struct acpi_dmar_pci_path *)(scope + 1); 238 level = (scope->length - sizeof(*scope)) / sizeof(*path); 239 if (!dmar_match_pci_path(info, scope->bus, path, level)) 240 continue; 241 242 /* 243 * We expect devices with endpoint scope to have normal PCI 244 * headers, and devices with bridge scope to have bridge PCI 245 * headers. However PCI NTB devices may be listed in the 246 * DMAR table with bridge scope, even though they have a 247 * normal PCI header. NTB devices are identified by class 248 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch 249 * for this special case. 250 */ 251 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 252 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || 253 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && 254 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 255 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { 256 pr_warn("Device scope type does not match for %s\n", 257 pci_name(info->dev)); 258 return -EINVAL; 259 } 260 261 for_each_dev_scope(devices, devices_cnt, i, tmp) 262 if (tmp == NULL) { 263 devices[i].bus = info->dev->bus->number; 264 devices[i].devfn = info->dev->devfn; 265 rcu_assign_pointer(devices[i].dev, 266 get_device(dev)); 267 return 1; 268 } 269 BUG_ON(i >= devices_cnt); 270 } 271 272 return 0; 273 } 274 275 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, 276 struct dmar_dev_scope *devices, int count) 277 { 278 int index; 279 struct device *tmp; 280 281 if (info->seg != segment) 282 return 0; 283 284 for_each_active_dev_scope(devices, count, index, tmp) 285 if (tmp == &info->dev->dev) { 286 RCU_INIT_POINTER(devices[index].dev, NULL); 287 synchronize_rcu(); 288 put_device(tmp); 289 return 1; 290 } 291 292 return 0; 293 } 294 295 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) 296 { 297 int ret = 0; 298 struct dmar_drhd_unit *dmaru; 299 struct acpi_dmar_hardware_unit *drhd; 300 301 for_each_drhd_unit(dmaru) { 302 if (dmaru->include_all) 303 continue; 304 305 drhd = container_of(dmaru->hdr, 306 struct acpi_dmar_hardware_unit, header); 307 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), 308 ((void *)drhd) + drhd->header.length, 309 dmaru->segment, 310 dmaru->devices, dmaru->devices_cnt); 311 if (ret) 312 break; 313 } 314 if (ret >= 0) 315 ret = dmar_iommu_notify_scope_dev(info); 316 if (ret < 0 && dmar_dev_scope_status == 0) 317 dmar_dev_scope_status = ret; 318 319 return ret; 320 } 321 322 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) 323 { 324 struct dmar_drhd_unit *dmaru; 325 326 for_each_drhd_unit(dmaru) 327 if (dmar_remove_dev_scope(info, dmaru->segment, 328 dmaru->devices, dmaru->devices_cnt)) 329 break; 330 dmar_iommu_notify_scope_dev(info); 331 } 332 333 static int dmar_pci_bus_notifier(struct notifier_block *nb, 334 unsigned long action, void *data) 335 { 336 struct pci_dev *pdev = to_pci_dev(data); 337 struct dmar_pci_notify_info *info; 338 339 /* Only care about add/remove events for physical functions. 340 * For VFs we actually do the lookup based on the corresponding 341 * PF in device_to_iommu() anyway. */ 342 if (pdev->is_virtfn) 343 return NOTIFY_DONE; 344 if (action != BUS_NOTIFY_ADD_DEVICE && 345 action != BUS_NOTIFY_REMOVED_DEVICE) 346 return NOTIFY_DONE; 347 348 info = dmar_alloc_pci_notify_info(pdev, action); 349 if (!info) 350 return NOTIFY_DONE; 351 352 down_write(&dmar_global_lock); 353 if (action == BUS_NOTIFY_ADD_DEVICE) 354 dmar_pci_bus_add_dev(info); 355 else if (action == BUS_NOTIFY_REMOVED_DEVICE) 356 dmar_pci_bus_del_dev(info); 357 up_write(&dmar_global_lock); 358 359 dmar_free_pci_notify_info(info); 360 361 return NOTIFY_OK; 362 } 363 364 static struct notifier_block dmar_pci_bus_nb = { 365 .notifier_call = dmar_pci_bus_notifier, 366 .priority = INT_MIN, 367 }; 368 369 static struct dmar_drhd_unit * 370 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) 371 { 372 struct dmar_drhd_unit *dmaru; 373 374 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, 375 dmar_rcu_check()) 376 if (dmaru->segment == drhd->segment && 377 dmaru->reg_base_addr == drhd->address) 378 return dmaru; 379 380 return NULL; 381 } 382 383 /** 384 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition 385 * structure which uniquely represent one DMA remapping hardware unit 386 * present in the platform 387 */ 388 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) 389 { 390 struct acpi_dmar_hardware_unit *drhd; 391 struct dmar_drhd_unit *dmaru; 392 int ret; 393 394 drhd = (struct acpi_dmar_hardware_unit *)header; 395 dmaru = dmar_find_dmaru(drhd); 396 if (dmaru) 397 goto out; 398 399 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); 400 if (!dmaru) 401 return -ENOMEM; 402 403 /* 404 * If header is allocated from slab by ACPI _DSM method, we need to 405 * copy the content because the memory buffer will be freed on return. 406 */ 407 dmaru->hdr = (void *)(dmaru + 1); 408 memcpy(dmaru->hdr, header, header->length); 409 dmaru->reg_base_addr = drhd->address; 410 dmaru->segment = drhd->segment; 411 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ 412 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), 413 ((void *)drhd) + drhd->header.length, 414 &dmaru->devices_cnt); 415 if (dmaru->devices_cnt && dmaru->devices == NULL) { 416 kfree(dmaru); 417 return -ENOMEM; 418 } 419 420 ret = alloc_iommu(dmaru); 421 if (ret) { 422 dmar_free_dev_scope(&dmaru->devices, 423 &dmaru->devices_cnt); 424 kfree(dmaru); 425 return ret; 426 } 427 dmar_register_drhd_unit(dmaru); 428 429 out: 430 if (arg) 431 (*(int *)arg)++; 432 433 return 0; 434 } 435 436 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) 437 { 438 if (dmaru->devices && dmaru->devices_cnt) 439 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); 440 if (dmaru->iommu) 441 free_iommu(dmaru->iommu); 442 kfree(dmaru); 443 } 444 445 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, 446 void *arg) 447 { 448 struct acpi_dmar_andd *andd = (void *)header; 449 450 /* Check for NUL termination within the designated length */ 451 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { 452 pr_warn(FW_BUG 453 "Your BIOS is broken; ANDD object name is not NUL-terminated\n" 454 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 455 dmi_get_system_info(DMI_BIOS_VENDOR), 456 dmi_get_system_info(DMI_BIOS_VERSION), 457 dmi_get_system_info(DMI_PRODUCT_VERSION)); 458 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 459 return -EINVAL; 460 } 461 pr_info("ANDD device: %x name: %s\n", andd->device_number, 462 andd->device_name); 463 464 return 0; 465 } 466 467 #ifdef CONFIG_ACPI_NUMA 468 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) 469 { 470 struct acpi_dmar_rhsa *rhsa; 471 struct dmar_drhd_unit *drhd; 472 473 rhsa = (struct acpi_dmar_rhsa *)header; 474 for_each_drhd_unit(drhd) { 475 if (drhd->reg_base_addr == rhsa->base_address) { 476 int node = acpi_map_pxm_to_node(rhsa->proximity_domain); 477 478 if (!node_online(node)) 479 node = NUMA_NO_NODE; 480 drhd->iommu->node = node; 481 return 0; 482 } 483 } 484 pr_warn(FW_BUG 485 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" 486 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 487 rhsa->base_address, 488 dmi_get_system_info(DMI_BIOS_VENDOR), 489 dmi_get_system_info(DMI_BIOS_VERSION), 490 dmi_get_system_info(DMI_PRODUCT_VERSION)); 491 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 492 493 return 0; 494 } 495 #else 496 #define dmar_parse_one_rhsa dmar_res_noop 497 #endif 498 499 static void 500 dmar_table_print_dmar_entry(struct acpi_dmar_header *header) 501 { 502 struct acpi_dmar_hardware_unit *drhd; 503 struct acpi_dmar_reserved_memory *rmrr; 504 struct acpi_dmar_atsr *atsr; 505 struct acpi_dmar_rhsa *rhsa; 506 507 switch (header->type) { 508 case ACPI_DMAR_TYPE_HARDWARE_UNIT: 509 drhd = container_of(header, struct acpi_dmar_hardware_unit, 510 header); 511 pr_info("DRHD base: %#016Lx flags: %#x\n", 512 (unsigned long long)drhd->address, drhd->flags); 513 break; 514 case ACPI_DMAR_TYPE_RESERVED_MEMORY: 515 rmrr = container_of(header, struct acpi_dmar_reserved_memory, 516 header); 517 pr_info("RMRR base: %#016Lx end: %#016Lx\n", 518 (unsigned long long)rmrr->base_address, 519 (unsigned long long)rmrr->end_address); 520 break; 521 case ACPI_DMAR_TYPE_ROOT_ATS: 522 atsr = container_of(header, struct acpi_dmar_atsr, header); 523 pr_info("ATSR flags: %#x\n", atsr->flags); 524 break; 525 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: 526 rhsa = container_of(header, struct acpi_dmar_rhsa, header); 527 pr_info("RHSA base: %#016Lx proximity domain: %#x\n", 528 (unsigned long long)rhsa->base_address, 529 rhsa->proximity_domain); 530 break; 531 case ACPI_DMAR_TYPE_NAMESPACE: 532 /* We don't print this here because we need to sanity-check 533 it first. So print it in dmar_parse_one_andd() instead. */ 534 break; 535 } 536 } 537 538 /** 539 * dmar_table_detect - checks to see if the platform supports DMAR devices 540 */ 541 static int __init dmar_table_detect(void) 542 { 543 acpi_status status = AE_OK; 544 545 /* if we could find DMAR table, then there are DMAR devices */ 546 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); 547 548 if (ACPI_SUCCESS(status) && !dmar_tbl) { 549 pr_warn("Unable to map DMAR\n"); 550 status = AE_NOT_FOUND; 551 } 552 553 return ACPI_SUCCESS(status) ? 0 : -ENOENT; 554 } 555 556 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, 557 size_t len, struct dmar_res_callback *cb) 558 { 559 struct acpi_dmar_header *iter, *next; 560 struct acpi_dmar_header *end = ((void *)start) + len; 561 562 for (iter = start; iter < end; iter = next) { 563 next = (void *)iter + iter->length; 564 if (iter->length == 0) { 565 /* Avoid looping forever on bad ACPI tables */ 566 pr_debug(FW_BUG "Invalid 0-length structure\n"); 567 break; 568 } else if (next > end) { 569 /* Avoid passing table end */ 570 pr_warn(FW_BUG "Record passes table end\n"); 571 return -EINVAL; 572 } 573 574 if (cb->print_entry) 575 dmar_table_print_dmar_entry(iter); 576 577 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { 578 /* continue for forward compatibility */ 579 pr_debug("Unknown DMAR structure type %d\n", 580 iter->type); 581 } else if (cb->cb[iter->type]) { 582 int ret; 583 584 ret = cb->cb[iter->type](iter, cb->arg[iter->type]); 585 if (ret) 586 return ret; 587 } else if (!cb->ignore_unhandled) { 588 pr_warn("No handler for DMAR structure type %d\n", 589 iter->type); 590 return -EINVAL; 591 } 592 } 593 594 return 0; 595 } 596 597 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, 598 struct dmar_res_callback *cb) 599 { 600 return dmar_walk_remapping_entries((void *)(dmar + 1), 601 dmar->header.length - sizeof(*dmar), cb); 602 } 603 604 /** 605 * parse_dmar_table - parses the DMA reporting table 606 */ 607 static int __init 608 parse_dmar_table(void) 609 { 610 struct acpi_table_dmar *dmar; 611 int drhd_count = 0; 612 int ret; 613 struct dmar_res_callback cb = { 614 .print_entry = true, 615 .ignore_unhandled = true, 616 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, 617 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, 618 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, 619 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, 620 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, 621 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, 622 }; 623 624 /* 625 * Do it again, earlier dmar_tbl mapping could be mapped with 626 * fixed map. 627 */ 628 dmar_table_detect(); 629 630 /* 631 * ACPI tables may not be DMA protected by tboot, so use DMAR copy 632 * SINIT saved in SinitMleData in TXT heap (which is DMA protected) 633 */ 634 dmar_tbl = tboot_get_dmar_table(dmar_tbl); 635 636 dmar = (struct acpi_table_dmar *)dmar_tbl; 637 if (!dmar) 638 return -ENODEV; 639 640 if (dmar->width < PAGE_SHIFT - 1) { 641 pr_warn("Invalid DMAR haw\n"); 642 return -EINVAL; 643 } 644 645 pr_info("Host address width %d\n", dmar->width + 1); 646 ret = dmar_walk_dmar_table(dmar, &cb); 647 if (ret == 0 && drhd_count == 0) 648 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); 649 650 return ret; 651 } 652 653 static int dmar_pci_device_match(struct dmar_dev_scope devices[], 654 int cnt, struct pci_dev *dev) 655 { 656 int index; 657 struct device *tmp; 658 659 while (dev) { 660 for_each_active_dev_scope(devices, cnt, index, tmp) 661 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) 662 return 1; 663 664 /* Check our parent */ 665 dev = dev->bus->self; 666 } 667 668 return 0; 669 } 670 671 struct dmar_drhd_unit * 672 dmar_find_matched_drhd_unit(struct pci_dev *dev) 673 { 674 struct dmar_drhd_unit *dmaru; 675 struct acpi_dmar_hardware_unit *drhd; 676 677 dev = pci_physfn(dev); 678 679 rcu_read_lock(); 680 for_each_drhd_unit(dmaru) { 681 drhd = container_of(dmaru->hdr, 682 struct acpi_dmar_hardware_unit, 683 header); 684 685 if (dmaru->include_all && 686 drhd->segment == pci_domain_nr(dev->bus)) 687 goto out; 688 689 if (dmar_pci_device_match(dmaru->devices, 690 dmaru->devices_cnt, dev)) 691 goto out; 692 } 693 dmaru = NULL; 694 out: 695 rcu_read_unlock(); 696 697 return dmaru; 698 } 699 700 static void __init dmar_acpi_insert_dev_scope(u8 device_number, 701 struct acpi_device *adev) 702 { 703 struct dmar_drhd_unit *dmaru; 704 struct acpi_dmar_hardware_unit *drhd; 705 struct acpi_dmar_device_scope *scope; 706 struct device *tmp; 707 int i; 708 struct acpi_dmar_pci_path *path; 709 710 for_each_drhd_unit(dmaru) { 711 drhd = container_of(dmaru->hdr, 712 struct acpi_dmar_hardware_unit, 713 header); 714 715 for (scope = (void *)(drhd + 1); 716 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; 717 scope = ((void *)scope) + scope->length) { 718 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) 719 continue; 720 if (scope->enumeration_id != device_number) 721 continue; 722 723 path = (void *)(scope + 1); 724 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", 725 dev_name(&adev->dev), dmaru->reg_base_addr, 726 scope->bus, path->device, path->function); 727 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) 728 if (tmp == NULL) { 729 dmaru->devices[i].bus = scope->bus; 730 dmaru->devices[i].devfn = PCI_DEVFN(path->device, 731 path->function); 732 rcu_assign_pointer(dmaru->devices[i].dev, 733 get_device(&adev->dev)); 734 return; 735 } 736 BUG_ON(i >= dmaru->devices_cnt); 737 } 738 } 739 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", 740 device_number, dev_name(&adev->dev)); 741 } 742 743 static int __init dmar_acpi_dev_scope_init(void) 744 { 745 struct acpi_dmar_andd *andd; 746 747 if (dmar_tbl == NULL) 748 return -ENODEV; 749 750 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); 751 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; 752 andd = ((void *)andd) + andd->header.length) { 753 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { 754 acpi_handle h; 755 struct acpi_device *adev; 756 757 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, 758 andd->device_name, 759 &h))) { 760 pr_err("Failed to find handle for ACPI object %s\n", 761 andd->device_name); 762 continue; 763 } 764 if (acpi_bus_get_device(h, &adev)) { 765 pr_err("Failed to get device for ACPI object %s\n", 766 andd->device_name); 767 continue; 768 } 769 dmar_acpi_insert_dev_scope(andd->device_number, adev); 770 } 771 } 772 return 0; 773 } 774 775 int __init dmar_dev_scope_init(void) 776 { 777 struct pci_dev *dev = NULL; 778 struct dmar_pci_notify_info *info; 779 780 if (dmar_dev_scope_status != 1) 781 return dmar_dev_scope_status; 782 783 if (list_empty(&dmar_drhd_units)) { 784 dmar_dev_scope_status = -ENODEV; 785 } else { 786 dmar_dev_scope_status = 0; 787 788 dmar_acpi_dev_scope_init(); 789 790 for_each_pci_dev(dev) { 791 if (dev->is_virtfn) 792 continue; 793 794 info = dmar_alloc_pci_notify_info(dev, 795 BUS_NOTIFY_ADD_DEVICE); 796 if (!info) { 797 return dmar_dev_scope_status; 798 } else { 799 dmar_pci_bus_add_dev(info); 800 dmar_free_pci_notify_info(info); 801 } 802 } 803 } 804 805 return dmar_dev_scope_status; 806 } 807 808 void __init dmar_register_bus_notifier(void) 809 { 810 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); 811 } 812 813 814 int __init dmar_table_init(void) 815 { 816 static int dmar_table_initialized; 817 int ret; 818 819 if (dmar_table_initialized == 0) { 820 ret = parse_dmar_table(); 821 if (ret < 0) { 822 if (ret != -ENODEV) 823 pr_info("Parse DMAR table failure.\n"); 824 } else if (list_empty(&dmar_drhd_units)) { 825 pr_info("No DMAR devices found\n"); 826 ret = -ENODEV; 827 } 828 829 if (ret < 0) 830 dmar_table_initialized = ret; 831 else 832 dmar_table_initialized = 1; 833 } 834 835 return dmar_table_initialized < 0 ? dmar_table_initialized : 0; 836 } 837 838 static void warn_invalid_dmar(u64 addr, const char *message) 839 { 840 pr_warn_once(FW_BUG 841 "Your BIOS is broken; DMAR reported at address %llx%s!\n" 842 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 843 addr, message, 844 dmi_get_system_info(DMI_BIOS_VENDOR), 845 dmi_get_system_info(DMI_BIOS_VERSION), 846 dmi_get_system_info(DMI_PRODUCT_VERSION)); 847 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 848 } 849 850 static int __ref 851 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) 852 { 853 struct acpi_dmar_hardware_unit *drhd; 854 void __iomem *addr; 855 u64 cap, ecap; 856 857 drhd = (void *)entry; 858 if (!drhd->address) { 859 warn_invalid_dmar(0, ""); 860 return -EINVAL; 861 } 862 863 if (arg) 864 addr = ioremap(drhd->address, VTD_PAGE_SIZE); 865 else 866 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); 867 if (!addr) { 868 pr_warn("Can't validate DRHD address: %llx\n", drhd->address); 869 return -EINVAL; 870 } 871 872 cap = dmar_readq(addr + DMAR_CAP_REG); 873 ecap = dmar_readq(addr + DMAR_ECAP_REG); 874 875 if (arg) 876 iounmap(addr); 877 else 878 early_iounmap(addr, VTD_PAGE_SIZE); 879 880 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { 881 warn_invalid_dmar(drhd->address, " returns all ones"); 882 return -EINVAL; 883 } 884 885 return 0; 886 } 887 888 int __init detect_intel_iommu(void) 889 { 890 int ret; 891 struct dmar_res_callback validate_drhd_cb = { 892 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, 893 .ignore_unhandled = true, 894 }; 895 896 down_write(&dmar_global_lock); 897 ret = dmar_table_detect(); 898 if (!ret) 899 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, 900 &validate_drhd_cb); 901 if (!ret && !no_iommu && !iommu_detected && 902 (!dmar_disabled || dmar_platform_optin())) { 903 iommu_detected = 1; 904 /* Make sure ACS will be enabled */ 905 pci_request_acs(); 906 } 907 908 #ifdef CONFIG_X86 909 if (!ret) { 910 x86_init.iommu.iommu_init = intel_iommu_init; 911 x86_platform.iommu_shutdown = intel_iommu_shutdown; 912 } 913 914 #endif 915 916 if (dmar_tbl) { 917 acpi_put_table(dmar_tbl); 918 dmar_tbl = NULL; 919 } 920 up_write(&dmar_global_lock); 921 922 return ret ? ret : 1; 923 } 924 925 static void unmap_iommu(struct intel_iommu *iommu) 926 { 927 iounmap(iommu->reg); 928 release_mem_region(iommu->reg_phys, iommu->reg_size); 929 } 930 931 /** 932 * map_iommu: map the iommu's registers 933 * @iommu: the iommu to map 934 * @phys_addr: the physical address of the base resgister 935 * 936 * Memory map the iommu's registers. Start w/ a single page, and 937 * possibly expand if that turns out to be insufficent. 938 */ 939 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr) 940 { 941 int map_size, err=0; 942 943 iommu->reg_phys = phys_addr; 944 iommu->reg_size = VTD_PAGE_SIZE; 945 946 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { 947 pr_err("Can't reserve memory\n"); 948 err = -EBUSY; 949 goto out; 950 } 951 952 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 953 if (!iommu->reg) { 954 pr_err("Can't map the region\n"); 955 err = -ENOMEM; 956 goto release; 957 } 958 959 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); 960 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); 961 962 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { 963 err = -EINVAL; 964 warn_invalid_dmar(phys_addr, " returns all ones"); 965 goto unmap; 966 } 967 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG); 968 969 /* the registers might be more than one page */ 970 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), 971 cap_max_fault_reg_offset(iommu->cap)); 972 map_size = VTD_PAGE_ALIGN(map_size); 973 if (map_size > iommu->reg_size) { 974 iounmap(iommu->reg); 975 release_mem_region(iommu->reg_phys, iommu->reg_size); 976 iommu->reg_size = map_size; 977 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, 978 iommu->name)) { 979 pr_err("Can't reserve memory\n"); 980 err = -EBUSY; 981 goto out; 982 } 983 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 984 if (!iommu->reg) { 985 pr_err("Can't map the region\n"); 986 err = -ENOMEM; 987 goto release; 988 } 989 } 990 err = 0; 991 goto out; 992 993 unmap: 994 iounmap(iommu->reg); 995 release: 996 release_mem_region(iommu->reg_phys, iommu->reg_size); 997 out: 998 return err; 999 } 1000 1001 static int dmar_alloc_seq_id(struct intel_iommu *iommu) 1002 { 1003 iommu->seq_id = find_first_zero_bit(dmar_seq_ids, 1004 DMAR_UNITS_SUPPORTED); 1005 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) { 1006 iommu->seq_id = -1; 1007 } else { 1008 set_bit(iommu->seq_id, dmar_seq_ids); 1009 sprintf(iommu->name, "dmar%d", iommu->seq_id); 1010 } 1011 1012 return iommu->seq_id; 1013 } 1014 1015 static void dmar_free_seq_id(struct intel_iommu *iommu) 1016 { 1017 if (iommu->seq_id >= 0) { 1018 clear_bit(iommu->seq_id, dmar_seq_ids); 1019 iommu->seq_id = -1; 1020 } 1021 } 1022 1023 static int alloc_iommu(struct dmar_drhd_unit *drhd) 1024 { 1025 struct intel_iommu *iommu; 1026 u32 ver, sts; 1027 int agaw = 0; 1028 int msagaw = 0; 1029 int err; 1030 1031 if (!drhd->reg_base_addr) { 1032 warn_invalid_dmar(0, ""); 1033 return -EINVAL; 1034 } 1035 1036 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); 1037 if (!iommu) 1038 return -ENOMEM; 1039 1040 if (dmar_alloc_seq_id(iommu) < 0) { 1041 pr_err("Failed to allocate seq_id\n"); 1042 err = -ENOSPC; 1043 goto error; 1044 } 1045 1046 err = map_iommu(iommu, drhd->reg_base_addr); 1047 if (err) { 1048 pr_err("Failed to map %s\n", iommu->name); 1049 goto error_free_seq_id; 1050 } 1051 1052 err = -EINVAL; 1053 agaw = iommu_calculate_agaw(iommu); 1054 if (agaw < 0) { 1055 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", 1056 iommu->seq_id); 1057 goto err_unmap; 1058 } 1059 msagaw = iommu_calculate_max_sagaw(iommu); 1060 if (msagaw < 0) { 1061 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", 1062 iommu->seq_id); 1063 goto err_unmap; 1064 } 1065 iommu->agaw = agaw; 1066 iommu->msagaw = msagaw; 1067 iommu->segment = drhd->segment; 1068 1069 iommu->node = NUMA_NO_NODE; 1070 1071 ver = readl(iommu->reg + DMAR_VER_REG); 1072 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", 1073 iommu->name, 1074 (unsigned long long)drhd->reg_base_addr, 1075 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), 1076 (unsigned long long)iommu->cap, 1077 (unsigned long long)iommu->ecap); 1078 1079 /* Reflect status in gcmd */ 1080 sts = readl(iommu->reg + DMAR_GSTS_REG); 1081 if (sts & DMA_GSTS_IRES) 1082 iommu->gcmd |= DMA_GCMD_IRE; 1083 if (sts & DMA_GSTS_TES) 1084 iommu->gcmd |= DMA_GCMD_TE; 1085 if (sts & DMA_GSTS_QIES) 1086 iommu->gcmd |= DMA_GCMD_QIE; 1087 1088 raw_spin_lock_init(&iommu->register_lock); 1089 1090 if (intel_iommu_enabled) { 1091 err = iommu_device_sysfs_add(&iommu->iommu, NULL, 1092 intel_iommu_groups, 1093 "%s", iommu->name); 1094 if (err) 1095 goto err_unmap; 1096 1097 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops); 1098 1099 err = iommu_device_register(&iommu->iommu); 1100 if (err) 1101 goto err_unmap; 1102 } 1103 1104 drhd->iommu = iommu; 1105 1106 return 0; 1107 1108 err_unmap: 1109 unmap_iommu(iommu); 1110 error_free_seq_id: 1111 dmar_free_seq_id(iommu); 1112 error: 1113 kfree(iommu); 1114 return err; 1115 } 1116 1117 static void free_iommu(struct intel_iommu *iommu) 1118 { 1119 if (intel_iommu_enabled) { 1120 iommu_device_unregister(&iommu->iommu); 1121 iommu_device_sysfs_remove(&iommu->iommu); 1122 } 1123 1124 if (iommu->irq) { 1125 if (iommu->pr_irq) { 1126 free_irq(iommu->pr_irq, iommu); 1127 dmar_free_hwirq(iommu->pr_irq); 1128 iommu->pr_irq = 0; 1129 } 1130 free_irq(iommu->irq, iommu); 1131 dmar_free_hwirq(iommu->irq); 1132 iommu->irq = 0; 1133 } 1134 1135 if (iommu->qi) { 1136 free_page((unsigned long)iommu->qi->desc); 1137 kfree(iommu->qi->desc_status); 1138 kfree(iommu->qi); 1139 } 1140 1141 if (iommu->reg) 1142 unmap_iommu(iommu); 1143 1144 dmar_free_seq_id(iommu); 1145 kfree(iommu); 1146 } 1147 1148 /* 1149 * Reclaim all the submitted descriptors which have completed its work. 1150 */ 1151 static inline void reclaim_free_desc(struct q_inval *qi) 1152 { 1153 while (qi->desc_status[qi->free_tail] == QI_DONE || 1154 qi->desc_status[qi->free_tail] == QI_ABORT) { 1155 qi->desc_status[qi->free_tail] = QI_FREE; 1156 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; 1157 qi->free_cnt++; 1158 } 1159 } 1160 1161 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) 1162 { 1163 u32 fault; 1164 int head, tail; 1165 struct q_inval *qi = iommu->qi; 1166 int shift = qi_shift(iommu); 1167 1168 if (qi->desc_status[wait_index] == QI_ABORT) 1169 return -EAGAIN; 1170 1171 fault = readl(iommu->reg + DMAR_FSTS_REG); 1172 1173 /* 1174 * If IQE happens, the head points to the descriptor associated 1175 * with the error. No new descriptors are fetched until the IQE 1176 * is cleared. 1177 */ 1178 if (fault & DMA_FSTS_IQE) { 1179 head = readl(iommu->reg + DMAR_IQH_REG); 1180 if ((head >> shift) == index) { 1181 struct qi_desc *desc = qi->desc + head; 1182 1183 /* 1184 * desc->qw2 and desc->qw3 are either reserved or 1185 * used by software as private data. We won't print 1186 * out these two qw's for security consideration. 1187 */ 1188 pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n", 1189 (unsigned long long)desc->qw0, 1190 (unsigned long long)desc->qw1); 1191 memcpy(desc, qi->desc + (wait_index << shift), 1192 1 << shift); 1193 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); 1194 return -EINVAL; 1195 } 1196 } 1197 1198 /* 1199 * If ITE happens, all pending wait_desc commands are aborted. 1200 * No new descriptors are fetched until the ITE is cleared. 1201 */ 1202 if (fault & DMA_FSTS_ITE) { 1203 head = readl(iommu->reg + DMAR_IQH_REG); 1204 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1205 head |= 1; 1206 tail = readl(iommu->reg + DMAR_IQT_REG); 1207 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1208 1209 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); 1210 1211 do { 1212 if (qi->desc_status[head] == QI_IN_USE) 1213 qi->desc_status[head] = QI_ABORT; 1214 head = (head - 2 + QI_LENGTH) % QI_LENGTH; 1215 } while (head != tail); 1216 1217 if (qi->desc_status[wait_index] == QI_ABORT) 1218 return -EAGAIN; 1219 } 1220 1221 if (fault & DMA_FSTS_ICE) 1222 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); 1223 1224 return 0; 1225 } 1226 1227 /* 1228 * Function to submit invalidation descriptors of all types to the queued 1229 * invalidation interface(QI). Multiple descriptors can be submitted at a 1230 * time, a wait descriptor will be appended to each submission to ensure 1231 * hardware has completed the invalidation before return. Wait descriptors 1232 * can be part of the submission but it will not be polled for completion. 1233 */ 1234 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, 1235 unsigned int count, unsigned long options) 1236 { 1237 struct q_inval *qi = iommu->qi; 1238 struct qi_desc wait_desc; 1239 int wait_index, index; 1240 unsigned long flags; 1241 int offset, shift; 1242 int rc, i; 1243 1244 if (!qi) 1245 return 0; 1246 1247 restart: 1248 rc = 0; 1249 1250 raw_spin_lock_irqsave(&qi->q_lock, flags); 1251 /* 1252 * Check if we have enough empty slots in the queue to submit, 1253 * the calculation is based on: 1254 * # of desc + 1 wait desc + 1 space between head and tail 1255 */ 1256 while (qi->free_cnt < count + 2) { 1257 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1258 cpu_relax(); 1259 raw_spin_lock_irqsave(&qi->q_lock, flags); 1260 } 1261 1262 index = qi->free_head; 1263 wait_index = (index + count) % QI_LENGTH; 1264 shift = qi_shift(iommu); 1265 1266 for (i = 0; i < count; i++) { 1267 offset = ((index + i) % QI_LENGTH) << shift; 1268 memcpy(qi->desc + offset, &desc[i], 1 << shift); 1269 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; 1270 } 1271 qi->desc_status[wait_index] = QI_IN_USE; 1272 1273 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 1274 QI_IWD_STATUS_WRITE | QI_IWD_TYPE; 1275 if (options & QI_OPT_WAIT_DRAIN) 1276 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; 1277 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); 1278 wait_desc.qw2 = 0; 1279 wait_desc.qw3 = 0; 1280 1281 offset = wait_index << shift; 1282 memcpy(qi->desc + offset, &wait_desc, 1 << shift); 1283 1284 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; 1285 qi->free_cnt -= count + 1; 1286 1287 /* 1288 * update the HW tail register indicating the presence of 1289 * new descriptors. 1290 */ 1291 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); 1292 1293 while (qi->desc_status[wait_index] != QI_DONE) { 1294 /* 1295 * We will leave the interrupts disabled, to prevent interrupt 1296 * context to queue another cmd while a cmd is already submitted 1297 * and waiting for completion on this cpu. This is to avoid 1298 * a deadlock where the interrupt context can wait indefinitely 1299 * for free slots in the queue. 1300 */ 1301 rc = qi_check_fault(iommu, index, wait_index); 1302 if (rc) 1303 break; 1304 1305 raw_spin_unlock(&qi->q_lock); 1306 cpu_relax(); 1307 raw_spin_lock(&qi->q_lock); 1308 } 1309 1310 for (i = 0; i < count; i++) 1311 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; 1312 1313 reclaim_free_desc(qi); 1314 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1315 1316 if (rc == -EAGAIN) 1317 goto restart; 1318 1319 return rc; 1320 } 1321 1322 /* 1323 * Flush the global interrupt entry cache. 1324 */ 1325 void qi_global_iec(struct intel_iommu *iommu) 1326 { 1327 struct qi_desc desc; 1328 1329 desc.qw0 = QI_IEC_TYPE; 1330 desc.qw1 = 0; 1331 desc.qw2 = 0; 1332 desc.qw3 = 0; 1333 1334 /* should never fail */ 1335 qi_submit_sync(iommu, &desc, 1, 0); 1336 } 1337 1338 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, 1339 u64 type) 1340 { 1341 struct qi_desc desc; 1342 1343 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) 1344 | QI_CC_GRAN(type) | QI_CC_TYPE; 1345 desc.qw1 = 0; 1346 desc.qw2 = 0; 1347 desc.qw3 = 0; 1348 1349 qi_submit_sync(iommu, &desc, 1, 0); 1350 } 1351 1352 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, 1353 unsigned int size_order, u64 type) 1354 { 1355 u8 dw = 0, dr = 0; 1356 1357 struct qi_desc desc; 1358 int ih = 0; 1359 1360 if (cap_write_drain(iommu->cap)) 1361 dw = 1; 1362 1363 if (cap_read_drain(iommu->cap)) 1364 dr = 1; 1365 1366 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) 1367 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; 1368 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) 1369 | QI_IOTLB_AM(size_order); 1370 desc.qw2 = 0; 1371 desc.qw3 = 0; 1372 1373 qi_submit_sync(iommu, &desc, 1, 0); 1374 } 1375 1376 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1377 u16 qdep, u64 addr, unsigned mask) 1378 { 1379 struct qi_desc desc; 1380 1381 if (mask) { 1382 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; 1383 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; 1384 } else 1385 desc.qw1 = QI_DEV_IOTLB_ADDR(addr); 1386 1387 if (qdep >= QI_DEV_IOTLB_MAX_INVS) 1388 qdep = 0; 1389 1390 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | 1391 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); 1392 desc.qw2 = 0; 1393 desc.qw3 = 0; 1394 1395 qi_submit_sync(iommu, &desc, 1, 0); 1396 } 1397 1398 /* PASID-based IOTLB invalidation */ 1399 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, 1400 unsigned long npages, bool ih) 1401 { 1402 struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; 1403 1404 /* 1405 * npages == -1 means a PASID-selective invalidation, otherwise, 1406 * a positive value for Page-selective-within-PASID invalidation. 1407 * 0 is not a valid input. 1408 */ 1409 if (WARN_ON(!npages)) { 1410 pr_err("Invalid input npages = %ld\n", npages); 1411 return; 1412 } 1413 1414 if (npages == -1) { 1415 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1416 QI_EIOTLB_DID(did) | 1417 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 1418 QI_EIOTLB_TYPE; 1419 desc.qw1 = 0; 1420 } else { 1421 int mask = ilog2(__roundup_pow_of_two(npages)); 1422 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); 1423 1424 if (WARN_ON_ONCE(!ALIGN(addr, align))) 1425 addr &= ~(align - 1); 1426 1427 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1428 QI_EIOTLB_DID(did) | 1429 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | 1430 QI_EIOTLB_TYPE; 1431 desc.qw1 = QI_EIOTLB_ADDR(addr) | 1432 QI_EIOTLB_IH(ih) | 1433 QI_EIOTLB_AM(mask); 1434 } 1435 1436 qi_submit_sync(iommu, &desc, 1, 0); 1437 } 1438 1439 /* PASID-based device IOTLB Invalidate */ 1440 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1441 u32 pasid, u16 qdep, u64 addr, 1442 unsigned int size_order, u64 granu) 1443 { 1444 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); 1445 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1446 1447 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | 1448 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | 1449 QI_DEV_IOTLB_PFSID(pfsid); 1450 desc.qw1 = QI_DEV_EIOTLB_GLOB(granu); 1451 1452 /* 1453 * If S bit is 0, we only flush a single page. If S bit is set, 1454 * The least significant zero bit indicates the invalidation address 1455 * range. VT-d spec 6.5.2.6. 1456 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. 1457 * size order = 0 is PAGE_SIZE 4KB 1458 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in 1459 * ECAP. 1460 */ 1461 desc.qw1 |= addr & ~mask; 1462 if (size_order) 1463 desc.qw1 |= QI_DEV_EIOTLB_SIZE; 1464 1465 qi_submit_sync(iommu, &desc, 1, 0); 1466 } 1467 1468 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, 1469 u64 granu, int pasid) 1470 { 1471 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1472 1473 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | 1474 QI_PC_GRAN(granu) | QI_PC_TYPE; 1475 qi_submit_sync(iommu, &desc, 1, 0); 1476 } 1477 1478 /* 1479 * Disable Queued Invalidation interface. 1480 */ 1481 void dmar_disable_qi(struct intel_iommu *iommu) 1482 { 1483 unsigned long flags; 1484 u32 sts; 1485 cycles_t start_time = get_cycles(); 1486 1487 if (!ecap_qis(iommu->ecap)) 1488 return; 1489 1490 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1491 1492 sts = readl(iommu->reg + DMAR_GSTS_REG); 1493 if (!(sts & DMA_GSTS_QIES)) 1494 goto end; 1495 1496 /* 1497 * Give a chance to HW to complete the pending invalidation requests. 1498 */ 1499 while ((readl(iommu->reg + DMAR_IQT_REG) != 1500 readl(iommu->reg + DMAR_IQH_REG)) && 1501 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) 1502 cpu_relax(); 1503 1504 iommu->gcmd &= ~DMA_GCMD_QIE; 1505 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1506 1507 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, 1508 !(sts & DMA_GSTS_QIES), sts); 1509 end: 1510 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1511 } 1512 1513 /* 1514 * Enable queued invalidation. 1515 */ 1516 static void __dmar_enable_qi(struct intel_iommu *iommu) 1517 { 1518 u32 sts; 1519 unsigned long flags; 1520 struct q_inval *qi = iommu->qi; 1521 u64 val = virt_to_phys(qi->desc); 1522 1523 qi->free_head = qi->free_tail = 0; 1524 qi->free_cnt = QI_LENGTH; 1525 1526 /* 1527 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability 1528 * is present. 1529 */ 1530 if (ecap_smts(iommu->ecap)) 1531 val |= (1 << 11) | 1; 1532 1533 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1534 1535 /* write zero to the tail reg */ 1536 writel(0, iommu->reg + DMAR_IQT_REG); 1537 1538 dmar_writeq(iommu->reg + DMAR_IQA_REG, val); 1539 1540 iommu->gcmd |= DMA_GCMD_QIE; 1541 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1542 1543 /* Make sure hardware complete it */ 1544 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); 1545 1546 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1547 } 1548 1549 /* 1550 * Enable Queued Invalidation interface. This is a must to support 1551 * interrupt-remapping. Also used by DMA-remapping, which replaces 1552 * register based IOTLB invalidation. 1553 */ 1554 int dmar_enable_qi(struct intel_iommu *iommu) 1555 { 1556 struct q_inval *qi; 1557 struct page *desc_page; 1558 1559 if (!ecap_qis(iommu->ecap)) 1560 return -ENOENT; 1561 1562 /* 1563 * queued invalidation is already setup and enabled. 1564 */ 1565 if (iommu->qi) 1566 return 0; 1567 1568 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); 1569 if (!iommu->qi) 1570 return -ENOMEM; 1571 1572 qi = iommu->qi; 1573 1574 /* 1575 * Need two pages to accommodate 256 descriptors of 256 bits each 1576 * if the remapping hardware supports scalable mode translation. 1577 */ 1578 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 1579 !!ecap_smts(iommu->ecap)); 1580 if (!desc_page) { 1581 kfree(qi); 1582 iommu->qi = NULL; 1583 return -ENOMEM; 1584 } 1585 1586 qi->desc = page_address(desc_page); 1587 1588 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); 1589 if (!qi->desc_status) { 1590 free_page((unsigned long) qi->desc); 1591 kfree(qi); 1592 iommu->qi = NULL; 1593 return -ENOMEM; 1594 } 1595 1596 raw_spin_lock_init(&qi->q_lock); 1597 1598 __dmar_enable_qi(iommu); 1599 1600 return 0; 1601 } 1602 1603 /* iommu interrupt handling. Most stuff are MSI-like. */ 1604 1605 enum faulttype { 1606 DMA_REMAP, 1607 INTR_REMAP, 1608 UNKNOWN, 1609 }; 1610 1611 static const char *dma_remap_fault_reasons[] = 1612 { 1613 "Software", 1614 "Present bit in root entry is clear", 1615 "Present bit in context entry is clear", 1616 "Invalid context entry", 1617 "Access beyond MGAW", 1618 "PTE Write access is not set", 1619 "PTE Read access is not set", 1620 "Next page table ptr is invalid", 1621 "Root table address invalid", 1622 "Context table ptr is invalid", 1623 "non-zero reserved fields in RTP", 1624 "non-zero reserved fields in CTP", 1625 "non-zero reserved fields in PTE", 1626 "PCE for translation request specifies blocking", 1627 }; 1628 1629 static const char * const dma_remap_sm_fault_reasons[] = { 1630 "SM: Invalid Root Table Address", 1631 "SM: TTM 0 for request with PASID", 1632 "SM: TTM 0 for page group request", 1633 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ 1634 "SM: Error attempting to access Root Entry", 1635 "SM: Present bit in Root Entry is clear", 1636 "SM: Non-zero reserved field set in Root Entry", 1637 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ 1638 "SM: Error attempting to access Context Entry", 1639 "SM: Present bit in Context Entry is clear", 1640 "SM: Non-zero reserved field set in the Context Entry", 1641 "SM: Invalid Context Entry", 1642 "SM: DTE field in Context Entry is clear", 1643 "SM: PASID Enable field in Context Entry is clear", 1644 "SM: PASID is larger than the max in Context Entry", 1645 "SM: PRE field in Context-Entry is clear", 1646 "SM: RID_PASID field error in Context-Entry", 1647 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ 1648 "SM: Error attempting to access the PASID Directory Entry", 1649 "SM: Present bit in Directory Entry is clear", 1650 "SM: Non-zero reserved field set in PASID Directory Entry", 1651 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ 1652 "SM: Error attempting to access PASID Table Entry", 1653 "SM: Present bit in PASID Table Entry is clear", 1654 "SM: Non-zero reserved field set in PASID Table Entry", 1655 "SM: Invalid Scalable-Mode PASID Table Entry", 1656 "SM: ERE field is clear in PASID Table Entry", 1657 "SM: SRE field is clear in PASID Table Entry", 1658 "Unknown", "Unknown",/* 0x5E-0x5F */ 1659 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ 1660 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ 1661 "SM: Error attempting to access first-level paging entry", 1662 "SM: Present bit in first-level paging entry is clear", 1663 "SM: Non-zero reserved field set in first-level paging entry", 1664 "SM: Error attempting to access FL-PML4 entry", 1665 "SM: First-level entry address beyond MGAW in Nested translation", 1666 "SM: Read permission error in FL-PML4 entry in Nested translation", 1667 "SM: Read permission error in first-level paging entry in Nested translation", 1668 "SM: Write permission error in first-level paging entry in Nested translation", 1669 "SM: Error attempting to access second-level paging entry", 1670 "SM: Read/Write permission error in second-level paging entry", 1671 "SM: Non-zero reserved field set in second-level paging entry", 1672 "SM: Invalid second-level page table pointer", 1673 "SM: A/D bit update needed in second-level entry when set up in no snoop", 1674 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ 1675 "SM: Address in first-level translation is not canonical", 1676 "SM: U/S set 0 for first-level translation with user privilege", 1677 "SM: No execute permission for request with PASID and ER=1", 1678 "SM: Address beyond the DMA hardware max", 1679 "SM: Second-level entry address beyond the max", 1680 "SM: No write permission for Write/AtomicOp request", 1681 "SM: No read permission for Read/AtomicOp request", 1682 "SM: Invalid address-interrupt address", 1683 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ 1684 "SM: A/D bit update needed in first-level entry when set up in no snoop", 1685 }; 1686 1687 static const char *irq_remap_fault_reasons[] = 1688 { 1689 "Detected reserved fields in the decoded interrupt-remapped request", 1690 "Interrupt index exceeded the interrupt-remapping table size", 1691 "Present field in the IRTE entry is clear", 1692 "Error accessing interrupt-remapping table pointed by IRTA_REG", 1693 "Detected reserved fields in the IRTE entry", 1694 "Blocked a compatibility format interrupt request", 1695 "Blocked an interrupt request due to source-id verification failure", 1696 }; 1697 1698 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) 1699 { 1700 if (fault_reason >= 0x20 && (fault_reason - 0x20 < 1701 ARRAY_SIZE(irq_remap_fault_reasons))) { 1702 *fault_type = INTR_REMAP; 1703 return irq_remap_fault_reasons[fault_reason - 0x20]; 1704 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < 1705 ARRAY_SIZE(dma_remap_sm_fault_reasons))) { 1706 *fault_type = DMA_REMAP; 1707 return dma_remap_sm_fault_reasons[fault_reason - 0x30]; 1708 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { 1709 *fault_type = DMA_REMAP; 1710 return dma_remap_fault_reasons[fault_reason]; 1711 } else { 1712 *fault_type = UNKNOWN; 1713 return "Unknown"; 1714 } 1715 } 1716 1717 1718 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) 1719 { 1720 if (iommu->irq == irq) 1721 return DMAR_FECTL_REG; 1722 else if (iommu->pr_irq == irq) 1723 return DMAR_PECTL_REG; 1724 else 1725 BUG(); 1726 } 1727 1728 void dmar_msi_unmask(struct irq_data *data) 1729 { 1730 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1731 int reg = dmar_msi_reg(iommu, data->irq); 1732 unsigned long flag; 1733 1734 /* unmask it */ 1735 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1736 writel(0, iommu->reg + reg); 1737 /* Read a reg to force flush the post write */ 1738 readl(iommu->reg + reg); 1739 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1740 } 1741 1742 void dmar_msi_mask(struct irq_data *data) 1743 { 1744 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1745 int reg = dmar_msi_reg(iommu, data->irq); 1746 unsigned long flag; 1747 1748 /* mask it */ 1749 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1750 writel(DMA_FECTL_IM, iommu->reg + reg); 1751 /* Read a reg to force flush the post write */ 1752 readl(iommu->reg + reg); 1753 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1754 } 1755 1756 void dmar_msi_write(int irq, struct msi_msg *msg) 1757 { 1758 struct intel_iommu *iommu = irq_get_handler_data(irq); 1759 int reg = dmar_msi_reg(iommu, irq); 1760 unsigned long flag; 1761 1762 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1763 writel(msg->data, iommu->reg + reg + 4); 1764 writel(msg->address_lo, iommu->reg + reg + 8); 1765 writel(msg->address_hi, iommu->reg + reg + 12); 1766 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1767 } 1768 1769 void dmar_msi_read(int irq, struct msi_msg *msg) 1770 { 1771 struct intel_iommu *iommu = irq_get_handler_data(irq); 1772 int reg = dmar_msi_reg(iommu, irq); 1773 unsigned long flag; 1774 1775 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1776 msg->data = readl(iommu->reg + reg + 4); 1777 msg->address_lo = readl(iommu->reg + reg + 8); 1778 msg->address_hi = readl(iommu->reg + reg + 12); 1779 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1780 } 1781 1782 static int dmar_fault_do_one(struct intel_iommu *iommu, int type, 1783 u8 fault_reason, int pasid, u16 source_id, 1784 unsigned long long addr) 1785 { 1786 const char *reason; 1787 int fault_type; 1788 1789 reason = dmar_get_fault_reason(fault_reason, &fault_type); 1790 1791 if (fault_type == INTR_REMAP) 1792 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n", 1793 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1794 PCI_FUNC(source_id & 0xFF), addr >> 48, 1795 fault_reason, reason); 1796 else 1797 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n", 1798 type ? "DMA Read" : "DMA Write", 1799 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1800 PCI_FUNC(source_id & 0xFF), pasid, addr, 1801 fault_reason, reason); 1802 return 0; 1803 } 1804 1805 #define PRIMARY_FAULT_REG_LEN (16) 1806 irqreturn_t dmar_fault(int irq, void *dev_id) 1807 { 1808 struct intel_iommu *iommu = dev_id; 1809 int reg, fault_index; 1810 u32 fault_status; 1811 unsigned long flag; 1812 static DEFINE_RATELIMIT_STATE(rs, 1813 DEFAULT_RATELIMIT_INTERVAL, 1814 DEFAULT_RATELIMIT_BURST); 1815 1816 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1817 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1818 if (fault_status && __ratelimit(&rs)) 1819 pr_err("DRHD: handling fault status reg %x\n", fault_status); 1820 1821 /* TBD: ignore advanced fault log currently */ 1822 if (!(fault_status & DMA_FSTS_PPF)) 1823 goto unlock_exit; 1824 1825 fault_index = dma_fsts_fault_record_index(fault_status); 1826 reg = cap_fault_reg_offset(iommu->cap); 1827 while (1) { 1828 /* Disable printing, simply clear the fault when ratelimited */ 1829 bool ratelimited = !__ratelimit(&rs); 1830 u8 fault_reason; 1831 u16 source_id; 1832 u64 guest_addr; 1833 int type, pasid; 1834 u32 data; 1835 bool pasid_present; 1836 1837 /* highest 32 bits */ 1838 data = readl(iommu->reg + reg + 1839 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1840 if (!(data & DMA_FRCD_F)) 1841 break; 1842 1843 if (!ratelimited) { 1844 fault_reason = dma_frcd_fault_reason(data); 1845 type = dma_frcd_type(data); 1846 1847 pasid = dma_frcd_pasid_value(data); 1848 data = readl(iommu->reg + reg + 1849 fault_index * PRIMARY_FAULT_REG_LEN + 8); 1850 source_id = dma_frcd_source_id(data); 1851 1852 pasid_present = dma_frcd_pasid_present(data); 1853 guest_addr = dmar_readq(iommu->reg + reg + 1854 fault_index * PRIMARY_FAULT_REG_LEN); 1855 guest_addr = dma_frcd_page_addr(guest_addr); 1856 } 1857 1858 /* clear the fault */ 1859 writel(DMA_FRCD_F, iommu->reg + reg + 1860 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1861 1862 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1863 1864 if (!ratelimited) 1865 /* Using pasid -1 if pasid is not present */ 1866 dmar_fault_do_one(iommu, type, fault_reason, 1867 pasid_present ? pasid : -1, 1868 source_id, guest_addr); 1869 1870 fault_index++; 1871 if (fault_index >= cap_num_fault_regs(iommu->cap)) 1872 fault_index = 0; 1873 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1874 } 1875 1876 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, 1877 iommu->reg + DMAR_FSTS_REG); 1878 1879 unlock_exit: 1880 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1881 return IRQ_HANDLED; 1882 } 1883 1884 int dmar_set_interrupt(struct intel_iommu *iommu) 1885 { 1886 int irq, ret; 1887 1888 /* 1889 * Check if the fault interrupt is already initialized. 1890 */ 1891 if (iommu->irq) 1892 return 0; 1893 1894 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); 1895 if (irq > 0) { 1896 iommu->irq = irq; 1897 } else { 1898 pr_err("No free IRQ vectors\n"); 1899 return -EINVAL; 1900 } 1901 1902 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); 1903 if (ret) 1904 pr_err("Can't request irq\n"); 1905 return ret; 1906 } 1907 1908 int __init enable_drhd_fault_handling(void) 1909 { 1910 struct dmar_drhd_unit *drhd; 1911 struct intel_iommu *iommu; 1912 1913 /* 1914 * Enable fault control interrupt. 1915 */ 1916 for_each_iommu(iommu, drhd) { 1917 u32 fault_status; 1918 int ret = dmar_set_interrupt(iommu); 1919 1920 if (ret) { 1921 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", 1922 (unsigned long long)drhd->reg_base_addr, ret); 1923 return -1; 1924 } 1925 1926 /* 1927 * Clear any previous faults. 1928 */ 1929 dmar_fault(iommu->irq, iommu); 1930 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1931 writel(fault_status, iommu->reg + DMAR_FSTS_REG); 1932 } 1933 1934 return 0; 1935 } 1936 1937 /* 1938 * Re-enable Queued Invalidation interface. 1939 */ 1940 int dmar_reenable_qi(struct intel_iommu *iommu) 1941 { 1942 if (!ecap_qis(iommu->ecap)) 1943 return -ENOENT; 1944 1945 if (!iommu->qi) 1946 return -ENOENT; 1947 1948 /* 1949 * First disable queued invalidation. 1950 */ 1951 dmar_disable_qi(iommu); 1952 /* 1953 * Then enable queued invalidation again. Since there is no pending 1954 * invalidation requests now, it's safe to re-enable queued 1955 * invalidation. 1956 */ 1957 __dmar_enable_qi(iommu); 1958 1959 return 0; 1960 } 1961 1962 /* 1963 * Check interrupt remapping support in DMAR table description. 1964 */ 1965 int __init dmar_ir_support(void) 1966 { 1967 struct acpi_table_dmar *dmar; 1968 dmar = (struct acpi_table_dmar *)dmar_tbl; 1969 if (!dmar) 1970 return 0; 1971 return dmar->flags & 0x1; 1972 } 1973 1974 /* Check whether DMAR units are in use */ 1975 static inline bool dmar_in_use(void) 1976 { 1977 return irq_remapping_enabled || intel_iommu_enabled; 1978 } 1979 1980 static int __init dmar_free_unused_resources(void) 1981 { 1982 struct dmar_drhd_unit *dmaru, *dmaru_n; 1983 1984 if (dmar_in_use()) 1985 return 0; 1986 1987 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) 1988 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); 1989 1990 down_write(&dmar_global_lock); 1991 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { 1992 list_del(&dmaru->list); 1993 dmar_free_drhd(dmaru); 1994 } 1995 up_write(&dmar_global_lock); 1996 1997 return 0; 1998 } 1999 2000 late_initcall(dmar_free_unused_resources); 2001 IOMMU_INIT_POST(detect_intel_iommu); 2002 2003 /* 2004 * DMAR Hotplug Support 2005 * For more details, please refer to Intel(R) Virtualization Technology 2006 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 2007 * "Remapping Hardware Unit Hot Plug". 2008 */ 2009 static guid_t dmar_hp_guid = 2010 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, 2011 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); 2012 2013 /* 2014 * Currently there's only one revision and BIOS will not check the revision id, 2015 * so use 0 for safety. 2016 */ 2017 #define DMAR_DSM_REV_ID 0 2018 #define DMAR_DSM_FUNC_DRHD 1 2019 #define DMAR_DSM_FUNC_ATSR 2 2020 #define DMAR_DSM_FUNC_RHSA 3 2021 2022 static inline bool dmar_detect_dsm(acpi_handle handle, int func) 2023 { 2024 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); 2025 } 2026 2027 static int dmar_walk_dsm_resource(acpi_handle handle, int func, 2028 dmar_res_handler_t handler, void *arg) 2029 { 2030 int ret = -ENODEV; 2031 union acpi_object *obj; 2032 struct acpi_dmar_header *start; 2033 struct dmar_res_callback callback; 2034 static int res_type[] = { 2035 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, 2036 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, 2037 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, 2038 }; 2039 2040 if (!dmar_detect_dsm(handle, func)) 2041 return 0; 2042 2043 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 2044 func, NULL, ACPI_TYPE_BUFFER); 2045 if (!obj) 2046 return -ENODEV; 2047 2048 memset(&callback, 0, sizeof(callback)); 2049 callback.cb[res_type[func]] = handler; 2050 callback.arg[res_type[func]] = arg; 2051 start = (struct acpi_dmar_header *)obj->buffer.pointer; 2052 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); 2053 2054 ACPI_FREE(obj); 2055 2056 return ret; 2057 } 2058 2059 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) 2060 { 2061 int ret; 2062 struct dmar_drhd_unit *dmaru; 2063 2064 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2065 if (!dmaru) 2066 return -ENODEV; 2067 2068 ret = dmar_ir_hotplug(dmaru, true); 2069 if (ret == 0) 2070 ret = dmar_iommu_hotplug(dmaru, true); 2071 2072 return ret; 2073 } 2074 2075 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) 2076 { 2077 int i, ret; 2078 struct device *dev; 2079 struct dmar_drhd_unit *dmaru; 2080 2081 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2082 if (!dmaru) 2083 return 0; 2084 2085 /* 2086 * All PCI devices managed by this unit should have been destroyed. 2087 */ 2088 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { 2089 for_each_active_dev_scope(dmaru->devices, 2090 dmaru->devices_cnt, i, dev) 2091 return -EBUSY; 2092 } 2093 2094 ret = dmar_ir_hotplug(dmaru, false); 2095 if (ret == 0) 2096 ret = dmar_iommu_hotplug(dmaru, false); 2097 2098 return ret; 2099 } 2100 2101 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) 2102 { 2103 struct dmar_drhd_unit *dmaru; 2104 2105 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2106 if (dmaru) { 2107 list_del_rcu(&dmaru->list); 2108 synchronize_rcu(); 2109 dmar_free_drhd(dmaru); 2110 } 2111 2112 return 0; 2113 } 2114 2115 static int dmar_hotplug_insert(acpi_handle handle) 2116 { 2117 int ret; 2118 int drhd_count = 0; 2119 2120 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2121 &dmar_validate_one_drhd, (void *)1); 2122 if (ret) 2123 goto out; 2124 2125 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2126 &dmar_parse_one_drhd, (void *)&drhd_count); 2127 if (ret == 0 && drhd_count == 0) { 2128 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); 2129 goto out; 2130 } else if (ret) { 2131 goto release_drhd; 2132 } 2133 2134 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, 2135 &dmar_parse_one_rhsa, NULL); 2136 if (ret) 2137 goto release_drhd; 2138 2139 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2140 &dmar_parse_one_atsr, NULL); 2141 if (ret) 2142 goto release_atsr; 2143 2144 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2145 &dmar_hp_add_drhd, NULL); 2146 if (!ret) 2147 return 0; 2148 2149 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2150 &dmar_hp_remove_drhd, NULL); 2151 release_atsr: 2152 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2153 &dmar_release_one_atsr, NULL); 2154 release_drhd: 2155 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2156 &dmar_hp_release_drhd, NULL); 2157 out: 2158 return ret; 2159 } 2160 2161 static int dmar_hotplug_remove(acpi_handle handle) 2162 { 2163 int ret; 2164 2165 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2166 &dmar_check_one_atsr, NULL); 2167 if (ret) 2168 return ret; 2169 2170 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2171 &dmar_hp_remove_drhd, NULL); 2172 if (ret == 0) { 2173 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2174 &dmar_release_one_atsr, NULL)); 2175 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2176 &dmar_hp_release_drhd, NULL)); 2177 } else { 2178 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2179 &dmar_hp_add_drhd, NULL); 2180 } 2181 2182 return ret; 2183 } 2184 2185 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, 2186 void *context, void **retval) 2187 { 2188 acpi_handle *phdl = retval; 2189 2190 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2191 *phdl = handle; 2192 return AE_CTRL_TERMINATE; 2193 } 2194 2195 return AE_OK; 2196 } 2197 2198 static int dmar_device_hotplug(acpi_handle handle, bool insert) 2199 { 2200 int ret; 2201 acpi_handle tmp = NULL; 2202 acpi_status status; 2203 2204 if (!dmar_in_use()) 2205 return 0; 2206 2207 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2208 tmp = handle; 2209 } else { 2210 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2211 ACPI_UINT32_MAX, 2212 dmar_get_dsm_handle, 2213 NULL, NULL, &tmp); 2214 if (ACPI_FAILURE(status)) { 2215 pr_warn("Failed to locate _DSM method.\n"); 2216 return -ENXIO; 2217 } 2218 } 2219 if (tmp == NULL) 2220 return 0; 2221 2222 down_write(&dmar_global_lock); 2223 if (insert) 2224 ret = dmar_hotplug_insert(tmp); 2225 else 2226 ret = dmar_hotplug_remove(tmp); 2227 up_write(&dmar_global_lock); 2228 2229 return ret; 2230 } 2231 2232 int dmar_device_add(acpi_handle handle) 2233 { 2234 return dmar_device_hotplug(handle, true); 2235 } 2236 2237 int dmar_device_remove(acpi_handle handle) 2238 { 2239 return dmar_device_hotplug(handle, false); 2240 } 2241 2242 /* 2243 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table 2244 * 2245 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in 2246 * the ACPI DMAR table. This means that the platform boot firmware has made 2247 * sure no device can issue DMA outside of RMRR regions. 2248 */ 2249 bool dmar_platform_optin(void) 2250 { 2251 struct acpi_table_dmar *dmar; 2252 acpi_status status; 2253 bool ret; 2254 2255 status = acpi_get_table(ACPI_SIG_DMAR, 0, 2256 (struct acpi_table_header **)&dmar); 2257 if (ACPI_FAILURE(status)) 2258 return false; 2259 2260 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); 2261 acpi_put_table((struct acpi_table_header *)dmar); 2262 2263 return ret; 2264 } 2265 EXPORT_SYMBOL_GPL(dmar_platform_optin); 2266