xref: /openbmc/linux/drivers/iommu/intel/dmar.c (revision 842ed298)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16 
17 #define pr_fmt(fmt)     "DMAR: " fmt
18 
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <linux/limits.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/iommu_table.h>
34 
35 #include "../irq_remapping.h"
36 
37 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
38 struct dmar_res_callback {
39 	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
40 	void			*arg[ACPI_DMAR_TYPE_RESERVED];
41 	bool			ignore_unhandled;
42 	bool			print_entry;
43 };
44 
45 /*
46  * Assumptions:
47  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
48  *    before IO devices managed by that unit.
49  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
50  *    after IO devices managed by that unit.
51  * 3) Hotplug events are rare.
52  *
53  * Locking rules for DMA and interrupt remapping related global data structures:
54  * 1) Use dmar_global_lock in process context
55  * 2) Use RCU in interrupt context
56  */
57 DECLARE_RWSEM(dmar_global_lock);
58 LIST_HEAD(dmar_drhd_units);
59 
60 struct acpi_table_header * __initdata dmar_tbl;
61 static int dmar_dev_scope_status = 1;
62 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
63 
64 static int alloc_iommu(struct dmar_drhd_unit *drhd);
65 static void free_iommu(struct intel_iommu *iommu);
66 
67 extern const struct iommu_ops intel_iommu_ops;
68 
69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70 {
71 	/*
72 	 * add INCLUDE_ALL at the tail, so scan the list will find it at
73 	 * the very end.
74 	 */
75 	if (drhd->include_all)
76 		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77 	else
78 		list_add_rcu(&drhd->list, &dmar_drhd_units);
79 }
80 
81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82 {
83 	struct acpi_dmar_device_scope *scope;
84 
85 	*cnt = 0;
86 	while (start < end) {
87 		scope = start;
88 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
91 			(*cnt)++;
92 		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93 			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94 			pr_warn("Unsupported device scope\n");
95 		}
96 		start += scope->length;
97 	}
98 	if (*cnt == 0)
99 		return NULL;
100 
101 	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102 }
103 
104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105 {
106 	int i;
107 	struct device *tmp_dev;
108 
109 	if (*devices && *cnt) {
110 		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111 			put_device(tmp_dev);
112 		kfree(*devices);
113 	}
114 
115 	*devices = NULL;
116 	*cnt = 0;
117 }
118 
119 /* Optimize out kzalloc()/kfree() for normal cases */
120 static char dmar_pci_notify_info_buf[64];
121 
122 static struct dmar_pci_notify_info *
123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
124 {
125 	int level = 0;
126 	size_t size;
127 	struct pci_dev *tmp;
128 	struct dmar_pci_notify_info *info;
129 
130 	BUG_ON(dev->is_virtfn);
131 
132 	/*
133 	 * Ignore devices that have a domain number higher than what can
134 	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
135 	 */
136 	if (pci_domain_nr(dev->bus) > U16_MAX)
137 		return NULL;
138 
139 	/* Only generate path[] for device addition event */
140 	if (event == BUS_NOTIFY_ADD_DEVICE)
141 		for (tmp = dev; tmp; tmp = tmp->bus->self)
142 			level++;
143 
144 	size = struct_size(info, path, level);
145 	if (size <= sizeof(dmar_pci_notify_info_buf)) {
146 		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
147 	} else {
148 		info = kzalloc(size, GFP_KERNEL);
149 		if (!info) {
150 			pr_warn("Out of memory when allocating notify_info "
151 				"for %s.\n", pci_name(dev));
152 			if (dmar_dev_scope_status == 0)
153 				dmar_dev_scope_status = -ENOMEM;
154 			return NULL;
155 		}
156 	}
157 
158 	info->event = event;
159 	info->dev = dev;
160 	info->seg = pci_domain_nr(dev->bus);
161 	info->level = level;
162 	if (event == BUS_NOTIFY_ADD_DEVICE) {
163 		for (tmp = dev; tmp; tmp = tmp->bus->self) {
164 			level--;
165 			info->path[level].bus = tmp->bus->number;
166 			info->path[level].device = PCI_SLOT(tmp->devfn);
167 			info->path[level].function = PCI_FUNC(tmp->devfn);
168 			if (pci_is_root_bus(tmp->bus))
169 				info->bus = tmp->bus->number;
170 		}
171 	}
172 
173 	return info;
174 }
175 
176 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
177 {
178 	if ((void *)info != dmar_pci_notify_info_buf)
179 		kfree(info);
180 }
181 
182 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
183 				struct acpi_dmar_pci_path *path, int count)
184 {
185 	int i;
186 
187 	if (info->bus != bus)
188 		goto fallback;
189 	if (info->level != count)
190 		goto fallback;
191 
192 	for (i = 0; i < count; i++) {
193 		if (path[i].device != info->path[i].device ||
194 		    path[i].function != info->path[i].function)
195 			goto fallback;
196 	}
197 
198 	return true;
199 
200 fallback:
201 
202 	if (count != 1)
203 		return false;
204 
205 	i = info->level - 1;
206 	if (bus              == info->path[i].bus &&
207 	    path[0].device   == info->path[i].device &&
208 	    path[0].function == info->path[i].function) {
209 		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
210 			bus, path[0].device, path[0].function);
211 		return true;
212 	}
213 
214 	return false;
215 }
216 
217 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
218 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
219 			  void *start, void*end, u16 segment,
220 			  struct dmar_dev_scope *devices,
221 			  int devices_cnt)
222 {
223 	int i, level;
224 	struct device *tmp, *dev = &info->dev->dev;
225 	struct acpi_dmar_device_scope *scope;
226 	struct acpi_dmar_pci_path *path;
227 
228 	if (segment != info->seg)
229 		return 0;
230 
231 	for (; start < end; start += scope->length) {
232 		scope = start;
233 		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
234 		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
235 			continue;
236 
237 		path = (struct acpi_dmar_pci_path *)(scope + 1);
238 		level = (scope->length - sizeof(*scope)) / sizeof(*path);
239 		if (!dmar_match_pci_path(info, scope->bus, path, level))
240 			continue;
241 
242 		/*
243 		 * We expect devices with endpoint scope to have normal PCI
244 		 * headers, and devices with bridge scope to have bridge PCI
245 		 * headers.  However PCI NTB devices may be listed in the
246 		 * DMAR table with bridge scope, even though they have a
247 		 * normal PCI header.  NTB devices are identified by class
248 		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
249 		 * for this special case.
250 		 */
251 		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
252 		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
253 		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
254 		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
255 		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
256 			pr_warn("Device scope type does not match for %s\n",
257 				pci_name(info->dev));
258 			return -EINVAL;
259 		}
260 
261 		for_each_dev_scope(devices, devices_cnt, i, tmp)
262 			if (tmp == NULL) {
263 				devices[i].bus = info->dev->bus->number;
264 				devices[i].devfn = info->dev->devfn;
265 				rcu_assign_pointer(devices[i].dev,
266 						   get_device(dev));
267 				return 1;
268 			}
269 		BUG_ON(i >= devices_cnt);
270 	}
271 
272 	return 0;
273 }
274 
275 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
276 			  struct dmar_dev_scope *devices, int count)
277 {
278 	int index;
279 	struct device *tmp;
280 
281 	if (info->seg != segment)
282 		return 0;
283 
284 	for_each_active_dev_scope(devices, count, index, tmp)
285 		if (tmp == &info->dev->dev) {
286 			RCU_INIT_POINTER(devices[index].dev, NULL);
287 			synchronize_rcu();
288 			put_device(tmp);
289 			return 1;
290 		}
291 
292 	return 0;
293 }
294 
295 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
296 {
297 	int ret = 0;
298 	struct dmar_drhd_unit *dmaru;
299 	struct acpi_dmar_hardware_unit *drhd;
300 
301 	for_each_drhd_unit(dmaru) {
302 		if (dmaru->include_all)
303 			continue;
304 
305 		drhd = container_of(dmaru->hdr,
306 				    struct acpi_dmar_hardware_unit, header);
307 		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
308 				((void *)drhd) + drhd->header.length,
309 				dmaru->segment,
310 				dmaru->devices, dmaru->devices_cnt);
311 		if (ret)
312 			break;
313 	}
314 	if (ret >= 0)
315 		ret = dmar_iommu_notify_scope_dev(info);
316 	if (ret < 0 && dmar_dev_scope_status == 0)
317 		dmar_dev_scope_status = ret;
318 
319 	if (ret >= 0)
320 		intel_irq_remap_add_device(info);
321 
322 	return ret;
323 }
324 
325 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
326 {
327 	struct dmar_drhd_unit *dmaru;
328 
329 	for_each_drhd_unit(dmaru)
330 		if (dmar_remove_dev_scope(info, dmaru->segment,
331 			dmaru->devices, dmaru->devices_cnt))
332 			break;
333 	dmar_iommu_notify_scope_dev(info);
334 }
335 
336 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
337 {
338 	struct pci_dev *physfn = pci_physfn(pdev);
339 
340 	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
341 }
342 
343 static int dmar_pci_bus_notifier(struct notifier_block *nb,
344 				 unsigned long action, void *data)
345 {
346 	struct pci_dev *pdev = to_pci_dev(data);
347 	struct dmar_pci_notify_info *info;
348 
349 	/* Only care about add/remove events for physical functions.
350 	 * For VFs we actually do the lookup based on the corresponding
351 	 * PF in device_to_iommu() anyway. */
352 	if (pdev->is_virtfn) {
353 		/*
354 		 * Ensure that the VF device inherits the irq domain of the
355 		 * PF device. Ideally the device would inherit the domain
356 		 * from the bus, but DMAR can have multiple units per bus
357 		 * which makes this impossible. The VF 'bus' could inherit
358 		 * from the PF device, but that's yet another x86'sism to
359 		 * inflict on everybody else.
360 		 */
361 		if (action == BUS_NOTIFY_ADD_DEVICE)
362 			vf_inherit_msi_domain(pdev);
363 		return NOTIFY_DONE;
364 	}
365 
366 	if (action != BUS_NOTIFY_ADD_DEVICE &&
367 	    action != BUS_NOTIFY_REMOVED_DEVICE)
368 		return NOTIFY_DONE;
369 
370 	info = dmar_alloc_pci_notify_info(pdev, action);
371 	if (!info)
372 		return NOTIFY_DONE;
373 
374 	down_write(&dmar_global_lock);
375 	if (action == BUS_NOTIFY_ADD_DEVICE)
376 		dmar_pci_bus_add_dev(info);
377 	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
378 		dmar_pci_bus_del_dev(info);
379 	up_write(&dmar_global_lock);
380 
381 	dmar_free_pci_notify_info(info);
382 
383 	return NOTIFY_OK;
384 }
385 
386 static struct notifier_block dmar_pci_bus_nb = {
387 	.notifier_call = dmar_pci_bus_notifier,
388 	.priority = INT_MIN,
389 };
390 
391 static struct dmar_drhd_unit *
392 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
393 {
394 	struct dmar_drhd_unit *dmaru;
395 
396 	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
397 				dmar_rcu_check())
398 		if (dmaru->segment == drhd->segment &&
399 		    dmaru->reg_base_addr == drhd->address)
400 			return dmaru;
401 
402 	return NULL;
403 }
404 
405 /*
406  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
407  * structure which uniquely represent one DMA remapping hardware unit
408  * present in the platform
409  */
410 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
411 {
412 	struct acpi_dmar_hardware_unit *drhd;
413 	struct dmar_drhd_unit *dmaru;
414 	int ret;
415 
416 	drhd = (struct acpi_dmar_hardware_unit *)header;
417 	dmaru = dmar_find_dmaru(drhd);
418 	if (dmaru)
419 		goto out;
420 
421 	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
422 	if (!dmaru)
423 		return -ENOMEM;
424 
425 	/*
426 	 * If header is allocated from slab by ACPI _DSM method, we need to
427 	 * copy the content because the memory buffer will be freed on return.
428 	 */
429 	dmaru->hdr = (void *)(dmaru + 1);
430 	memcpy(dmaru->hdr, header, header->length);
431 	dmaru->reg_base_addr = drhd->address;
432 	dmaru->segment = drhd->segment;
433 	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
434 	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
435 					      ((void *)drhd) + drhd->header.length,
436 					      &dmaru->devices_cnt);
437 	if (dmaru->devices_cnt && dmaru->devices == NULL) {
438 		kfree(dmaru);
439 		return -ENOMEM;
440 	}
441 
442 	ret = alloc_iommu(dmaru);
443 	if (ret) {
444 		dmar_free_dev_scope(&dmaru->devices,
445 				    &dmaru->devices_cnt);
446 		kfree(dmaru);
447 		return ret;
448 	}
449 	dmar_register_drhd_unit(dmaru);
450 
451 out:
452 	if (arg)
453 		(*(int *)arg)++;
454 
455 	return 0;
456 }
457 
458 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
459 {
460 	if (dmaru->devices && dmaru->devices_cnt)
461 		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
462 	if (dmaru->iommu)
463 		free_iommu(dmaru->iommu);
464 	kfree(dmaru);
465 }
466 
467 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
468 				      void *arg)
469 {
470 	struct acpi_dmar_andd *andd = (void *)header;
471 
472 	/* Check for NUL termination within the designated length */
473 	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
474 		pr_warn(FW_BUG
475 			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
476 			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
477 			   dmi_get_system_info(DMI_BIOS_VENDOR),
478 			   dmi_get_system_info(DMI_BIOS_VERSION),
479 			   dmi_get_system_info(DMI_PRODUCT_VERSION));
480 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
481 		return -EINVAL;
482 	}
483 	pr_info("ANDD device: %x name: %s\n", andd->device_number,
484 		andd->device_name);
485 
486 	return 0;
487 }
488 
489 #ifdef CONFIG_ACPI_NUMA
490 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
491 {
492 	struct acpi_dmar_rhsa *rhsa;
493 	struct dmar_drhd_unit *drhd;
494 
495 	rhsa = (struct acpi_dmar_rhsa *)header;
496 	for_each_drhd_unit(drhd) {
497 		if (drhd->reg_base_addr == rhsa->base_address) {
498 			int node = pxm_to_node(rhsa->proximity_domain);
499 
500 			if (!node_online(node))
501 				node = NUMA_NO_NODE;
502 			drhd->iommu->node = node;
503 			return 0;
504 		}
505 	}
506 	pr_warn(FW_BUG
507 		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
508 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
509 		rhsa->base_address,
510 		dmi_get_system_info(DMI_BIOS_VENDOR),
511 		dmi_get_system_info(DMI_BIOS_VERSION),
512 		dmi_get_system_info(DMI_PRODUCT_VERSION));
513 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
514 
515 	return 0;
516 }
517 #else
518 #define	dmar_parse_one_rhsa		dmar_res_noop
519 #endif
520 
521 static void
522 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
523 {
524 	struct acpi_dmar_hardware_unit *drhd;
525 	struct acpi_dmar_reserved_memory *rmrr;
526 	struct acpi_dmar_atsr *atsr;
527 	struct acpi_dmar_rhsa *rhsa;
528 
529 	switch (header->type) {
530 	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
531 		drhd = container_of(header, struct acpi_dmar_hardware_unit,
532 				    header);
533 		pr_info("DRHD base: %#016Lx flags: %#x\n",
534 			(unsigned long long)drhd->address, drhd->flags);
535 		break;
536 	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
537 		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
538 				    header);
539 		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
540 			(unsigned long long)rmrr->base_address,
541 			(unsigned long long)rmrr->end_address);
542 		break;
543 	case ACPI_DMAR_TYPE_ROOT_ATS:
544 		atsr = container_of(header, struct acpi_dmar_atsr, header);
545 		pr_info("ATSR flags: %#x\n", atsr->flags);
546 		break;
547 	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
548 		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
549 		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
550 		       (unsigned long long)rhsa->base_address,
551 		       rhsa->proximity_domain);
552 		break;
553 	case ACPI_DMAR_TYPE_NAMESPACE:
554 		/* We don't print this here because we need to sanity-check
555 		   it first. So print it in dmar_parse_one_andd() instead. */
556 		break;
557 	}
558 }
559 
560 /**
561  * dmar_table_detect - checks to see if the platform supports DMAR devices
562  */
563 static int __init dmar_table_detect(void)
564 {
565 	acpi_status status = AE_OK;
566 
567 	/* if we could find DMAR table, then there are DMAR devices */
568 	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
569 
570 	if (ACPI_SUCCESS(status) && !dmar_tbl) {
571 		pr_warn("Unable to map DMAR\n");
572 		status = AE_NOT_FOUND;
573 	}
574 
575 	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
576 }
577 
578 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
579 				       size_t len, struct dmar_res_callback *cb)
580 {
581 	struct acpi_dmar_header *iter, *next;
582 	struct acpi_dmar_header *end = ((void *)start) + len;
583 
584 	for (iter = start; iter < end; iter = next) {
585 		next = (void *)iter + iter->length;
586 		if (iter->length == 0) {
587 			/* Avoid looping forever on bad ACPI tables */
588 			pr_debug(FW_BUG "Invalid 0-length structure\n");
589 			break;
590 		} else if (next > end) {
591 			/* Avoid passing table end */
592 			pr_warn(FW_BUG "Record passes table end\n");
593 			return -EINVAL;
594 		}
595 
596 		if (cb->print_entry)
597 			dmar_table_print_dmar_entry(iter);
598 
599 		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
600 			/* continue for forward compatibility */
601 			pr_debug("Unknown DMAR structure type %d\n",
602 				 iter->type);
603 		} else if (cb->cb[iter->type]) {
604 			int ret;
605 
606 			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
607 			if (ret)
608 				return ret;
609 		} else if (!cb->ignore_unhandled) {
610 			pr_warn("No handler for DMAR structure type %d\n",
611 				iter->type);
612 			return -EINVAL;
613 		}
614 	}
615 
616 	return 0;
617 }
618 
619 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
620 				       struct dmar_res_callback *cb)
621 {
622 	return dmar_walk_remapping_entries((void *)(dmar + 1),
623 			dmar->header.length - sizeof(*dmar), cb);
624 }
625 
626 /**
627  * parse_dmar_table - parses the DMA reporting table
628  */
629 static int __init
630 parse_dmar_table(void)
631 {
632 	struct acpi_table_dmar *dmar;
633 	int drhd_count = 0;
634 	int ret;
635 	struct dmar_res_callback cb = {
636 		.print_entry = true,
637 		.ignore_unhandled = true,
638 		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
639 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
640 		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
641 		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
642 		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
643 		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
644 	};
645 
646 	/*
647 	 * Do it again, earlier dmar_tbl mapping could be mapped with
648 	 * fixed map.
649 	 */
650 	dmar_table_detect();
651 
652 	/*
653 	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
654 	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
655 	 */
656 	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
657 
658 	dmar = (struct acpi_table_dmar *)dmar_tbl;
659 	if (!dmar)
660 		return -ENODEV;
661 
662 	if (dmar->width < PAGE_SHIFT - 1) {
663 		pr_warn("Invalid DMAR haw\n");
664 		return -EINVAL;
665 	}
666 
667 	pr_info("Host address width %d\n", dmar->width + 1);
668 	ret = dmar_walk_dmar_table(dmar, &cb);
669 	if (ret == 0 && drhd_count == 0)
670 		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
671 
672 	return ret;
673 }
674 
675 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
676 				 int cnt, struct pci_dev *dev)
677 {
678 	int index;
679 	struct device *tmp;
680 
681 	while (dev) {
682 		for_each_active_dev_scope(devices, cnt, index, tmp)
683 			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
684 				return 1;
685 
686 		/* Check our parent */
687 		dev = dev->bus->self;
688 	}
689 
690 	return 0;
691 }
692 
693 struct dmar_drhd_unit *
694 dmar_find_matched_drhd_unit(struct pci_dev *dev)
695 {
696 	struct dmar_drhd_unit *dmaru;
697 	struct acpi_dmar_hardware_unit *drhd;
698 
699 	dev = pci_physfn(dev);
700 
701 	rcu_read_lock();
702 	for_each_drhd_unit(dmaru) {
703 		drhd = container_of(dmaru->hdr,
704 				    struct acpi_dmar_hardware_unit,
705 				    header);
706 
707 		if (dmaru->include_all &&
708 		    drhd->segment == pci_domain_nr(dev->bus))
709 			goto out;
710 
711 		if (dmar_pci_device_match(dmaru->devices,
712 					  dmaru->devices_cnt, dev))
713 			goto out;
714 	}
715 	dmaru = NULL;
716 out:
717 	rcu_read_unlock();
718 
719 	return dmaru;
720 }
721 
722 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
723 					      struct acpi_device *adev)
724 {
725 	struct dmar_drhd_unit *dmaru;
726 	struct acpi_dmar_hardware_unit *drhd;
727 	struct acpi_dmar_device_scope *scope;
728 	struct device *tmp;
729 	int i;
730 	struct acpi_dmar_pci_path *path;
731 
732 	for_each_drhd_unit(dmaru) {
733 		drhd = container_of(dmaru->hdr,
734 				    struct acpi_dmar_hardware_unit,
735 				    header);
736 
737 		for (scope = (void *)(drhd + 1);
738 		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
739 		     scope = ((void *)scope) + scope->length) {
740 			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
741 				continue;
742 			if (scope->enumeration_id != device_number)
743 				continue;
744 
745 			path = (void *)(scope + 1);
746 			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
747 				dev_name(&adev->dev), dmaru->reg_base_addr,
748 				scope->bus, path->device, path->function);
749 			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
750 				if (tmp == NULL) {
751 					dmaru->devices[i].bus = scope->bus;
752 					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
753 									    path->function);
754 					rcu_assign_pointer(dmaru->devices[i].dev,
755 							   get_device(&adev->dev));
756 					return;
757 				}
758 			BUG_ON(i >= dmaru->devices_cnt);
759 		}
760 	}
761 	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
762 		device_number, dev_name(&adev->dev));
763 }
764 
765 static int __init dmar_acpi_dev_scope_init(void)
766 {
767 	struct acpi_dmar_andd *andd;
768 
769 	if (dmar_tbl == NULL)
770 		return -ENODEV;
771 
772 	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
773 	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
774 	     andd = ((void *)andd) + andd->header.length) {
775 		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
776 			acpi_handle h;
777 			struct acpi_device *adev;
778 
779 			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
780 							  andd->device_name,
781 							  &h))) {
782 				pr_err("Failed to find handle for ACPI object %s\n",
783 				       andd->device_name);
784 				continue;
785 			}
786 			if (acpi_bus_get_device(h, &adev)) {
787 				pr_err("Failed to get device for ACPI object %s\n",
788 				       andd->device_name);
789 				continue;
790 			}
791 			dmar_acpi_insert_dev_scope(andd->device_number, adev);
792 		}
793 	}
794 	return 0;
795 }
796 
797 int __init dmar_dev_scope_init(void)
798 {
799 	struct pci_dev *dev = NULL;
800 	struct dmar_pci_notify_info *info;
801 
802 	if (dmar_dev_scope_status != 1)
803 		return dmar_dev_scope_status;
804 
805 	if (list_empty(&dmar_drhd_units)) {
806 		dmar_dev_scope_status = -ENODEV;
807 	} else {
808 		dmar_dev_scope_status = 0;
809 
810 		dmar_acpi_dev_scope_init();
811 
812 		for_each_pci_dev(dev) {
813 			if (dev->is_virtfn)
814 				continue;
815 
816 			info = dmar_alloc_pci_notify_info(dev,
817 					BUS_NOTIFY_ADD_DEVICE);
818 			if (!info) {
819 				return dmar_dev_scope_status;
820 			} else {
821 				dmar_pci_bus_add_dev(info);
822 				dmar_free_pci_notify_info(info);
823 			}
824 		}
825 	}
826 
827 	return dmar_dev_scope_status;
828 }
829 
830 void __init dmar_register_bus_notifier(void)
831 {
832 	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
833 }
834 
835 
836 int __init dmar_table_init(void)
837 {
838 	static int dmar_table_initialized;
839 	int ret;
840 
841 	if (dmar_table_initialized == 0) {
842 		ret = parse_dmar_table();
843 		if (ret < 0) {
844 			if (ret != -ENODEV)
845 				pr_info("Parse DMAR table failure.\n");
846 		} else  if (list_empty(&dmar_drhd_units)) {
847 			pr_info("No DMAR devices found\n");
848 			ret = -ENODEV;
849 		}
850 
851 		if (ret < 0)
852 			dmar_table_initialized = ret;
853 		else
854 			dmar_table_initialized = 1;
855 	}
856 
857 	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
858 }
859 
860 static void warn_invalid_dmar(u64 addr, const char *message)
861 {
862 	pr_warn_once(FW_BUG
863 		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
864 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
865 		addr, message,
866 		dmi_get_system_info(DMI_BIOS_VENDOR),
867 		dmi_get_system_info(DMI_BIOS_VERSION),
868 		dmi_get_system_info(DMI_PRODUCT_VERSION));
869 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
870 }
871 
872 static int __ref
873 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
874 {
875 	struct acpi_dmar_hardware_unit *drhd;
876 	void __iomem *addr;
877 	u64 cap, ecap;
878 
879 	drhd = (void *)entry;
880 	if (!drhd->address) {
881 		warn_invalid_dmar(0, "");
882 		return -EINVAL;
883 	}
884 
885 	if (arg)
886 		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
887 	else
888 		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
889 	if (!addr) {
890 		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
891 		return -EINVAL;
892 	}
893 
894 	cap = dmar_readq(addr + DMAR_CAP_REG);
895 	ecap = dmar_readq(addr + DMAR_ECAP_REG);
896 
897 	if (arg)
898 		iounmap(addr);
899 	else
900 		early_iounmap(addr, VTD_PAGE_SIZE);
901 
902 	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
903 		warn_invalid_dmar(drhd->address, " returns all ones");
904 		return -EINVAL;
905 	}
906 
907 	return 0;
908 }
909 
910 int __init detect_intel_iommu(void)
911 {
912 	int ret;
913 	struct dmar_res_callback validate_drhd_cb = {
914 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
915 		.ignore_unhandled = true,
916 	};
917 
918 	down_write(&dmar_global_lock);
919 	ret = dmar_table_detect();
920 	if (!ret)
921 		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
922 					   &validate_drhd_cb);
923 	if (!ret && !no_iommu && !iommu_detected &&
924 	    (!dmar_disabled || dmar_platform_optin())) {
925 		iommu_detected = 1;
926 		/* Make sure ACS will be enabled */
927 		pci_request_acs();
928 	}
929 
930 #ifdef CONFIG_X86
931 	if (!ret) {
932 		x86_init.iommu.iommu_init = intel_iommu_init;
933 		x86_platform.iommu_shutdown = intel_iommu_shutdown;
934 	}
935 
936 #endif
937 
938 	if (dmar_tbl) {
939 		acpi_put_table(dmar_tbl);
940 		dmar_tbl = NULL;
941 	}
942 	up_write(&dmar_global_lock);
943 
944 	return ret ? ret : 1;
945 }
946 
947 static void unmap_iommu(struct intel_iommu *iommu)
948 {
949 	iounmap(iommu->reg);
950 	release_mem_region(iommu->reg_phys, iommu->reg_size);
951 }
952 
953 /**
954  * map_iommu: map the iommu's registers
955  * @iommu: the iommu to map
956  * @phys_addr: the physical address of the base resgister
957  *
958  * Memory map the iommu's registers.  Start w/ a single page, and
959  * possibly expand if that turns out to be insufficent.
960  */
961 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
962 {
963 	int map_size, err=0;
964 
965 	iommu->reg_phys = phys_addr;
966 	iommu->reg_size = VTD_PAGE_SIZE;
967 
968 	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
969 		pr_err("Can't reserve memory\n");
970 		err = -EBUSY;
971 		goto out;
972 	}
973 
974 	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
975 	if (!iommu->reg) {
976 		pr_err("Can't map the region\n");
977 		err = -ENOMEM;
978 		goto release;
979 	}
980 
981 	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
982 	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
983 
984 	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
985 		err = -EINVAL;
986 		warn_invalid_dmar(phys_addr, " returns all ones");
987 		goto unmap;
988 	}
989 	if (ecap_vcs(iommu->ecap))
990 		iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
991 
992 	/* the registers might be more than one page */
993 	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
994 			 cap_max_fault_reg_offset(iommu->cap));
995 	map_size = VTD_PAGE_ALIGN(map_size);
996 	if (map_size > iommu->reg_size) {
997 		iounmap(iommu->reg);
998 		release_mem_region(iommu->reg_phys, iommu->reg_size);
999 		iommu->reg_size = map_size;
1000 		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1001 					iommu->name)) {
1002 			pr_err("Can't reserve memory\n");
1003 			err = -EBUSY;
1004 			goto out;
1005 		}
1006 		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1007 		if (!iommu->reg) {
1008 			pr_err("Can't map the region\n");
1009 			err = -ENOMEM;
1010 			goto release;
1011 		}
1012 	}
1013 	err = 0;
1014 	goto out;
1015 
1016 unmap:
1017 	iounmap(iommu->reg);
1018 release:
1019 	release_mem_region(iommu->reg_phys, iommu->reg_size);
1020 out:
1021 	return err;
1022 }
1023 
1024 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1025 {
1026 	iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1027 					    DMAR_UNITS_SUPPORTED);
1028 	if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1029 		iommu->seq_id = -1;
1030 	} else {
1031 		set_bit(iommu->seq_id, dmar_seq_ids);
1032 		sprintf(iommu->name, "dmar%d", iommu->seq_id);
1033 	}
1034 
1035 	return iommu->seq_id;
1036 }
1037 
1038 static void dmar_free_seq_id(struct intel_iommu *iommu)
1039 {
1040 	if (iommu->seq_id >= 0) {
1041 		clear_bit(iommu->seq_id, dmar_seq_ids);
1042 		iommu->seq_id = -1;
1043 	}
1044 }
1045 
1046 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1047 {
1048 	struct intel_iommu *iommu;
1049 	u32 ver, sts;
1050 	int agaw = -1;
1051 	int msagaw = -1;
1052 	int err;
1053 
1054 	if (!drhd->reg_base_addr) {
1055 		warn_invalid_dmar(0, "");
1056 		return -EINVAL;
1057 	}
1058 
1059 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1060 	if (!iommu)
1061 		return -ENOMEM;
1062 
1063 	if (dmar_alloc_seq_id(iommu) < 0) {
1064 		pr_err("Failed to allocate seq_id\n");
1065 		err = -ENOSPC;
1066 		goto error;
1067 	}
1068 
1069 	err = map_iommu(iommu, drhd->reg_base_addr);
1070 	if (err) {
1071 		pr_err("Failed to map %s\n", iommu->name);
1072 		goto error_free_seq_id;
1073 	}
1074 
1075 	err = -EINVAL;
1076 	if (cap_sagaw(iommu->cap) == 0) {
1077 		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1078 			iommu->name);
1079 		drhd->ignored = 1;
1080 	}
1081 
1082 	if (!drhd->ignored) {
1083 		agaw = iommu_calculate_agaw(iommu);
1084 		if (agaw < 0) {
1085 			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1086 			       iommu->seq_id);
1087 			drhd->ignored = 1;
1088 		}
1089 	}
1090 	if (!drhd->ignored) {
1091 		msagaw = iommu_calculate_max_sagaw(iommu);
1092 		if (msagaw < 0) {
1093 			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1094 			       iommu->seq_id);
1095 			drhd->ignored = 1;
1096 			agaw = -1;
1097 		}
1098 	}
1099 	iommu->agaw = agaw;
1100 	iommu->msagaw = msagaw;
1101 	iommu->segment = drhd->segment;
1102 
1103 	iommu->node = NUMA_NO_NODE;
1104 
1105 	ver = readl(iommu->reg + DMAR_VER_REG);
1106 	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1107 		iommu->name,
1108 		(unsigned long long)drhd->reg_base_addr,
1109 		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1110 		(unsigned long long)iommu->cap,
1111 		(unsigned long long)iommu->ecap);
1112 
1113 	/* Reflect status in gcmd */
1114 	sts = readl(iommu->reg + DMAR_GSTS_REG);
1115 	if (sts & DMA_GSTS_IRES)
1116 		iommu->gcmd |= DMA_GCMD_IRE;
1117 	if (sts & DMA_GSTS_TES)
1118 		iommu->gcmd |= DMA_GCMD_TE;
1119 	if (sts & DMA_GSTS_QIES)
1120 		iommu->gcmd |= DMA_GCMD_QIE;
1121 
1122 	raw_spin_lock_init(&iommu->register_lock);
1123 
1124 	/*
1125 	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1126 	 * be set yet. When intel_iommu_init() runs, it registers the units
1127 	 * present at boot time, then sets intel_iommu_enabled.
1128 	 */
1129 	if (intel_iommu_enabled && !drhd->ignored) {
1130 		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1131 					     intel_iommu_groups,
1132 					     "%s", iommu->name);
1133 		if (err)
1134 			goto err_unmap;
1135 
1136 		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
1137 
1138 		err = iommu_device_register(&iommu->iommu);
1139 		if (err)
1140 			goto err_unmap;
1141 	}
1142 
1143 	drhd->iommu = iommu;
1144 	iommu->drhd = drhd;
1145 
1146 	return 0;
1147 
1148 err_unmap:
1149 	unmap_iommu(iommu);
1150 error_free_seq_id:
1151 	dmar_free_seq_id(iommu);
1152 error:
1153 	kfree(iommu);
1154 	return err;
1155 }
1156 
1157 static void free_iommu(struct intel_iommu *iommu)
1158 {
1159 	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1160 		iommu_device_unregister(&iommu->iommu);
1161 		iommu_device_sysfs_remove(&iommu->iommu);
1162 	}
1163 
1164 	if (iommu->irq) {
1165 		if (iommu->pr_irq) {
1166 			free_irq(iommu->pr_irq, iommu);
1167 			dmar_free_hwirq(iommu->pr_irq);
1168 			iommu->pr_irq = 0;
1169 		}
1170 		free_irq(iommu->irq, iommu);
1171 		dmar_free_hwirq(iommu->irq);
1172 		iommu->irq = 0;
1173 	}
1174 
1175 	if (iommu->qi) {
1176 		free_page((unsigned long)iommu->qi->desc);
1177 		kfree(iommu->qi->desc_status);
1178 		kfree(iommu->qi);
1179 	}
1180 
1181 	if (iommu->reg)
1182 		unmap_iommu(iommu);
1183 
1184 	dmar_free_seq_id(iommu);
1185 	kfree(iommu);
1186 }
1187 
1188 /*
1189  * Reclaim all the submitted descriptors which have completed its work.
1190  */
1191 static inline void reclaim_free_desc(struct q_inval *qi)
1192 {
1193 	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1194 	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1195 		qi->desc_status[qi->free_tail] = QI_FREE;
1196 		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1197 		qi->free_cnt++;
1198 	}
1199 }
1200 
1201 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1202 {
1203 	u32 fault;
1204 	int head, tail;
1205 	struct q_inval *qi = iommu->qi;
1206 	int shift = qi_shift(iommu);
1207 
1208 	if (qi->desc_status[wait_index] == QI_ABORT)
1209 		return -EAGAIN;
1210 
1211 	fault = readl(iommu->reg + DMAR_FSTS_REG);
1212 
1213 	/*
1214 	 * If IQE happens, the head points to the descriptor associated
1215 	 * with the error. No new descriptors are fetched until the IQE
1216 	 * is cleared.
1217 	 */
1218 	if (fault & DMA_FSTS_IQE) {
1219 		head = readl(iommu->reg + DMAR_IQH_REG);
1220 		if ((head >> shift) == index) {
1221 			struct qi_desc *desc = qi->desc + head;
1222 
1223 			/*
1224 			 * desc->qw2 and desc->qw3 are either reserved or
1225 			 * used by software as private data. We won't print
1226 			 * out these two qw's for security consideration.
1227 			 */
1228 			pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
1229 			       (unsigned long long)desc->qw0,
1230 			       (unsigned long long)desc->qw1);
1231 			memcpy(desc, qi->desc + (wait_index << shift),
1232 			       1 << shift);
1233 			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1234 			return -EINVAL;
1235 		}
1236 	}
1237 
1238 	/*
1239 	 * If ITE happens, all pending wait_desc commands are aborted.
1240 	 * No new descriptors are fetched until the ITE is cleared.
1241 	 */
1242 	if (fault & DMA_FSTS_ITE) {
1243 		head = readl(iommu->reg + DMAR_IQH_REG);
1244 		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1245 		head |= 1;
1246 		tail = readl(iommu->reg + DMAR_IQT_REG);
1247 		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1248 
1249 		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1250 
1251 		do {
1252 			if (qi->desc_status[head] == QI_IN_USE)
1253 				qi->desc_status[head] = QI_ABORT;
1254 			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1255 		} while (head != tail);
1256 
1257 		if (qi->desc_status[wait_index] == QI_ABORT)
1258 			return -EAGAIN;
1259 	}
1260 
1261 	if (fault & DMA_FSTS_ICE)
1262 		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1263 
1264 	return 0;
1265 }
1266 
1267 /*
1268  * Function to submit invalidation descriptors of all types to the queued
1269  * invalidation interface(QI). Multiple descriptors can be submitted at a
1270  * time, a wait descriptor will be appended to each submission to ensure
1271  * hardware has completed the invalidation before return. Wait descriptors
1272  * can be part of the submission but it will not be polled for completion.
1273  */
1274 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1275 		   unsigned int count, unsigned long options)
1276 {
1277 	struct q_inval *qi = iommu->qi;
1278 	struct qi_desc wait_desc;
1279 	int wait_index, index;
1280 	unsigned long flags;
1281 	int offset, shift;
1282 	int rc, i;
1283 
1284 	if (!qi)
1285 		return 0;
1286 
1287 restart:
1288 	rc = 0;
1289 
1290 	raw_spin_lock_irqsave(&qi->q_lock, flags);
1291 	/*
1292 	 * Check if we have enough empty slots in the queue to submit,
1293 	 * the calculation is based on:
1294 	 * # of desc + 1 wait desc + 1 space between head and tail
1295 	 */
1296 	while (qi->free_cnt < count + 2) {
1297 		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1298 		cpu_relax();
1299 		raw_spin_lock_irqsave(&qi->q_lock, flags);
1300 	}
1301 
1302 	index = qi->free_head;
1303 	wait_index = (index + count) % QI_LENGTH;
1304 	shift = qi_shift(iommu);
1305 
1306 	for (i = 0; i < count; i++) {
1307 		offset = ((index + i) % QI_LENGTH) << shift;
1308 		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1309 		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1310 	}
1311 	qi->desc_status[wait_index] = QI_IN_USE;
1312 
1313 	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1314 			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1315 	if (options & QI_OPT_WAIT_DRAIN)
1316 		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1317 	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1318 	wait_desc.qw2 = 0;
1319 	wait_desc.qw3 = 0;
1320 
1321 	offset = wait_index << shift;
1322 	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1323 
1324 	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1325 	qi->free_cnt -= count + 1;
1326 
1327 	/*
1328 	 * update the HW tail register indicating the presence of
1329 	 * new descriptors.
1330 	 */
1331 	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1332 
1333 	while (qi->desc_status[wait_index] != QI_DONE) {
1334 		/*
1335 		 * We will leave the interrupts disabled, to prevent interrupt
1336 		 * context to queue another cmd while a cmd is already submitted
1337 		 * and waiting for completion on this cpu. This is to avoid
1338 		 * a deadlock where the interrupt context can wait indefinitely
1339 		 * for free slots in the queue.
1340 		 */
1341 		rc = qi_check_fault(iommu, index, wait_index);
1342 		if (rc)
1343 			break;
1344 
1345 		raw_spin_unlock(&qi->q_lock);
1346 		cpu_relax();
1347 		raw_spin_lock(&qi->q_lock);
1348 	}
1349 
1350 	for (i = 0; i < count; i++)
1351 		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1352 
1353 	reclaim_free_desc(qi);
1354 	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1355 
1356 	if (rc == -EAGAIN)
1357 		goto restart;
1358 
1359 	return rc;
1360 }
1361 
1362 /*
1363  * Flush the global interrupt entry cache.
1364  */
1365 void qi_global_iec(struct intel_iommu *iommu)
1366 {
1367 	struct qi_desc desc;
1368 
1369 	desc.qw0 = QI_IEC_TYPE;
1370 	desc.qw1 = 0;
1371 	desc.qw2 = 0;
1372 	desc.qw3 = 0;
1373 
1374 	/* should never fail */
1375 	qi_submit_sync(iommu, &desc, 1, 0);
1376 }
1377 
1378 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1379 		      u64 type)
1380 {
1381 	struct qi_desc desc;
1382 
1383 	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1384 			| QI_CC_GRAN(type) | QI_CC_TYPE;
1385 	desc.qw1 = 0;
1386 	desc.qw2 = 0;
1387 	desc.qw3 = 0;
1388 
1389 	qi_submit_sync(iommu, &desc, 1, 0);
1390 }
1391 
1392 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1393 		    unsigned int size_order, u64 type)
1394 {
1395 	u8 dw = 0, dr = 0;
1396 
1397 	struct qi_desc desc;
1398 	int ih = 0;
1399 
1400 	if (cap_write_drain(iommu->cap))
1401 		dw = 1;
1402 
1403 	if (cap_read_drain(iommu->cap))
1404 		dr = 1;
1405 
1406 	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1407 		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1408 	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1409 		| QI_IOTLB_AM(size_order);
1410 	desc.qw2 = 0;
1411 	desc.qw3 = 0;
1412 
1413 	qi_submit_sync(iommu, &desc, 1, 0);
1414 }
1415 
1416 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1417 			u16 qdep, u64 addr, unsigned mask)
1418 {
1419 	struct qi_desc desc;
1420 
1421 	if (mask) {
1422 		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1423 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1424 	} else
1425 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1426 
1427 	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1428 		qdep = 0;
1429 
1430 	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1431 		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1432 	desc.qw2 = 0;
1433 	desc.qw3 = 0;
1434 
1435 	qi_submit_sync(iommu, &desc, 1, 0);
1436 }
1437 
1438 /* PASID-based IOTLB invalidation */
1439 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1440 		     unsigned long npages, bool ih)
1441 {
1442 	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1443 
1444 	/*
1445 	 * npages == -1 means a PASID-selective invalidation, otherwise,
1446 	 * a positive value for Page-selective-within-PASID invalidation.
1447 	 * 0 is not a valid input.
1448 	 */
1449 	if (WARN_ON(!npages)) {
1450 		pr_err("Invalid input npages = %ld\n", npages);
1451 		return;
1452 	}
1453 
1454 	if (npages == -1) {
1455 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1456 				QI_EIOTLB_DID(did) |
1457 				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1458 				QI_EIOTLB_TYPE;
1459 		desc.qw1 = 0;
1460 	} else {
1461 		int mask = ilog2(__roundup_pow_of_two(npages));
1462 		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1463 
1464 		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1465 			addr = ALIGN_DOWN(addr, align);
1466 
1467 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1468 				QI_EIOTLB_DID(did) |
1469 				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1470 				QI_EIOTLB_TYPE;
1471 		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1472 				QI_EIOTLB_IH(ih) |
1473 				QI_EIOTLB_AM(mask);
1474 	}
1475 
1476 	qi_submit_sync(iommu, &desc, 1, 0);
1477 }
1478 
1479 /* PASID-based device IOTLB Invalidate */
1480 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1481 			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1482 {
1483 	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1484 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1485 
1486 	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1487 		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1488 		QI_DEV_IOTLB_PFSID(pfsid);
1489 
1490 	/*
1491 	 * If S bit is 0, we only flush a single page. If S bit is set,
1492 	 * The least significant zero bit indicates the invalidation address
1493 	 * range. VT-d spec 6.5.2.6.
1494 	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1495 	 * size order = 0 is PAGE_SIZE 4KB
1496 	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1497 	 * ECAP.
1498 	 */
1499 	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1500 		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1501 				    addr, size_order);
1502 
1503 	/* Take page address */
1504 	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1505 
1506 	if (size_order) {
1507 		/*
1508 		 * Existing 0s in address below size_order may be the least
1509 		 * significant bit, we must set them to 1s to avoid having
1510 		 * smaller size than desired.
1511 		 */
1512 		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1513 					VTD_PAGE_SHIFT);
1514 		/* Clear size_order bit to indicate size */
1515 		desc.qw1 &= ~mask;
1516 		/* Set the S bit to indicate flushing more than 1 page */
1517 		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1518 	}
1519 
1520 	qi_submit_sync(iommu, &desc, 1, 0);
1521 }
1522 
1523 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1524 			  u64 granu, u32 pasid)
1525 {
1526 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1527 
1528 	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1529 			QI_PC_GRAN(granu) | QI_PC_TYPE;
1530 	qi_submit_sync(iommu, &desc, 1, 0);
1531 }
1532 
1533 /*
1534  * Disable Queued Invalidation interface.
1535  */
1536 void dmar_disable_qi(struct intel_iommu *iommu)
1537 {
1538 	unsigned long flags;
1539 	u32 sts;
1540 	cycles_t start_time = get_cycles();
1541 
1542 	if (!ecap_qis(iommu->ecap))
1543 		return;
1544 
1545 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1546 
1547 	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1548 	if (!(sts & DMA_GSTS_QIES))
1549 		goto end;
1550 
1551 	/*
1552 	 * Give a chance to HW to complete the pending invalidation requests.
1553 	 */
1554 	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1555 		readl(iommu->reg + DMAR_IQH_REG)) &&
1556 		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1557 		cpu_relax();
1558 
1559 	iommu->gcmd &= ~DMA_GCMD_QIE;
1560 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1561 
1562 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1563 		      !(sts & DMA_GSTS_QIES), sts);
1564 end:
1565 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1566 }
1567 
1568 /*
1569  * Enable queued invalidation.
1570  */
1571 static void __dmar_enable_qi(struct intel_iommu *iommu)
1572 {
1573 	u32 sts;
1574 	unsigned long flags;
1575 	struct q_inval *qi = iommu->qi;
1576 	u64 val = virt_to_phys(qi->desc);
1577 
1578 	qi->free_head = qi->free_tail = 0;
1579 	qi->free_cnt = QI_LENGTH;
1580 
1581 	/*
1582 	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1583 	 * is present.
1584 	 */
1585 	if (ecap_smts(iommu->ecap))
1586 		val |= (1 << 11) | 1;
1587 
1588 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1589 
1590 	/* write zero to the tail reg */
1591 	writel(0, iommu->reg + DMAR_IQT_REG);
1592 
1593 	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1594 
1595 	iommu->gcmd |= DMA_GCMD_QIE;
1596 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1597 
1598 	/* Make sure hardware complete it */
1599 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1600 
1601 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1602 }
1603 
1604 /*
1605  * Enable Queued Invalidation interface. This is a must to support
1606  * interrupt-remapping. Also used by DMA-remapping, which replaces
1607  * register based IOTLB invalidation.
1608  */
1609 int dmar_enable_qi(struct intel_iommu *iommu)
1610 {
1611 	struct q_inval *qi;
1612 	struct page *desc_page;
1613 
1614 	if (!ecap_qis(iommu->ecap))
1615 		return -ENOENT;
1616 
1617 	/*
1618 	 * queued invalidation is already setup and enabled.
1619 	 */
1620 	if (iommu->qi)
1621 		return 0;
1622 
1623 	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1624 	if (!iommu->qi)
1625 		return -ENOMEM;
1626 
1627 	qi = iommu->qi;
1628 
1629 	/*
1630 	 * Need two pages to accommodate 256 descriptors of 256 bits each
1631 	 * if the remapping hardware supports scalable mode translation.
1632 	 */
1633 	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1634 				     !!ecap_smts(iommu->ecap));
1635 	if (!desc_page) {
1636 		kfree(qi);
1637 		iommu->qi = NULL;
1638 		return -ENOMEM;
1639 	}
1640 
1641 	qi->desc = page_address(desc_page);
1642 
1643 	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1644 	if (!qi->desc_status) {
1645 		free_page((unsigned long) qi->desc);
1646 		kfree(qi);
1647 		iommu->qi = NULL;
1648 		return -ENOMEM;
1649 	}
1650 
1651 	raw_spin_lock_init(&qi->q_lock);
1652 
1653 	__dmar_enable_qi(iommu);
1654 
1655 	return 0;
1656 }
1657 
1658 /* iommu interrupt handling. Most stuff are MSI-like. */
1659 
1660 enum faulttype {
1661 	DMA_REMAP,
1662 	INTR_REMAP,
1663 	UNKNOWN,
1664 };
1665 
1666 static const char *dma_remap_fault_reasons[] =
1667 {
1668 	"Software",
1669 	"Present bit in root entry is clear",
1670 	"Present bit in context entry is clear",
1671 	"Invalid context entry",
1672 	"Access beyond MGAW",
1673 	"PTE Write access is not set",
1674 	"PTE Read access is not set",
1675 	"Next page table ptr is invalid",
1676 	"Root table address invalid",
1677 	"Context table ptr is invalid",
1678 	"non-zero reserved fields in RTP",
1679 	"non-zero reserved fields in CTP",
1680 	"non-zero reserved fields in PTE",
1681 	"PCE for translation request specifies blocking",
1682 };
1683 
1684 static const char * const dma_remap_sm_fault_reasons[] = {
1685 	"SM: Invalid Root Table Address",
1686 	"SM: TTM 0 for request with PASID",
1687 	"SM: TTM 0 for page group request",
1688 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1689 	"SM: Error attempting to access Root Entry",
1690 	"SM: Present bit in Root Entry is clear",
1691 	"SM: Non-zero reserved field set in Root Entry",
1692 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1693 	"SM: Error attempting to access Context Entry",
1694 	"SM: Present bit in Context Entry is clear",
1695 	"SM: Non-zero reserved field set in the Context Entry",
1696 	"SM: Invalid Context Entry",
1697 	"SM: DTE field in Context Entry is clear",
1698 	"SM: PASID Enable field in Context Entry is clear",
1699 	"SM: PASID is larger than the max in Context Entry",
1700 	"SM: PRE field in Context-Entry is clear",
1701 	"SM: RID_PASID field error in Context-Entry",
1702 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1703 	"SM: Error attempting to access the PASID Directory Entry",
1704 	"SM: Present bit in Directory Entry is clear",
1705 	"SM: Non-zero reserved field set in PASID Directory Entry",
1706 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1707 	"SM: Error attempting to access PASID Table Entry",
1708 	"SM: Present bit in PASID Table Entry is clear",
1709 	"SM: Non-zero reserved field set in PASID Table Entry",
1710 	"SM: Invalid Scalable-Mode PASID Table Entry",
1711 	"SM: ERE field is clear in PASID Table Entry",
1712 	"SM: SRE field is clear in PASID Table Entry",
1713 	"Unknown", "Unknown",/* 0x5E-0x5F */
1714 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1715 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1716 	"SM: Error attempting to access first-level paging entry",
1717 	"SM: Present bit in first-level paging entry is clear",
1718 	"SM: Non-zero reserved field set in first-level paging entry",
1719 	"SM: Error attempting to access FL-PML4 entry",
1720 	"SM: First-level entry address beyond MGAW in Nested translation",
1721 	"SM: Read permission error in FL-PML4 entry in Nested translation",
1722 	"SM: Read permission error in first-level paging entry in Nested translation",
1723 	"SM: Write permission error in first-level paging entry in Nested translation",
1724 	"SM: Error attempting to access second-level paging entry",
1725 	"SM: Read/Write permission error in second-level paging entry",
1726 	"SM: Non-zero reserved field set in second-level paging entry",
1727 	"SM: Invalid second-level page table pointer",
1728 	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1729 	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1730 	"SM: Address in first-level translation is not canonical",
1731 	"SM: U/S set 0 for first-level translation with user privilege",
1732 	"SM: No execute permission for request with PASID and ER=1",
1733 	"SM: Address beyond the DMA hardware max",
1734 	"SM: Second-level entry address beyond the max",
1735 	"SM: No write permission for Write/AtomicOp request",
1736 	"SM: No read permission for Read/AtomicOp request",
1737 	"SM: Invalid address-interrupt address",
1738 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1739 	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1740 };
1741 
1742 static const char *irq_remap_fault_reasons[] =
1743 {
1744 	"Detected reserved fields in the decoded interrupt-remapped request",
1745 	"Interrupt index exceeded the interrupt-remapping table size",
1746 	"Present field in the IRTE entry is clear",
1747 	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1748 	"Detected reserved fields in the IRTE entry",
1749 	"Blocked a compatibility format interrupt request",
1750 	"Blocked an interrupt request due to source-id verification failure",
1751 };
1752 
1753 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1754 {
1755 	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1756 					ARRAY_SIZE(irq_remap_fault_reasons))) {
1757 		*fault_type = INTR_REMAP;
1758 		return irq_remap_fault_reasons[fault_reason - 0x20];
1759 	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1760 			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1761 		*fault_type = DMA_REMAP;
1762 		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1763 	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1764 		*fault_type = DMA_REMAP;
1765 		return dma_remap_fault_reasons[fault_reason];
1766 	} else {
1767 		*fault_type = UNKNOWN;
1768 		return "Unknown";
1769 	}
1770 }
1771 
1772 
1773 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1774 {
1775 	if (iommu->irq == irq)
1776 		return DMAR_FECTL_REG;
1777 	else if (iommu->pr_irq == irq)
1778 		return DMAR_PECTL_REG;
1779 	else
1780 		BUG();
1781 }
1782 
1783 void dmar_msi_unmask(struct irq_data *data)
1784 {
1785 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1786 	int reg = dmar_msi_reg(iommu, data->irq);
1787 	unsigned long flag;
1788 
1789 	/* unmask it */
1790 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1791 	writel(0, iommu->reg + reg);
1792 	/* Read a reg to force flush the post write */
1793 	readl(iommu->reg + reg);
1794 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1795 }
1796 
1797 void dmar_msi_mask(struct irq_data *data)
1798 {
1799 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1800 	int reg = dmar_msi_reg(iommu, data->irq);
1801 	unsigned long flag;
1802 
1803 	/* mask it */
1804 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1805 	writel(DMA_FECTL_IM, iommu->reg + reg);
1806 	/* Read a reg to force flush the post write */
1807 	readl(iommu->reg + reg);
1808 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1809 }
1810 
1811 void dmar_msi_write(int irq, struct msi_msg *msg)
1812 {
1813 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1814 	int reg = dmar_msi_reg(iommu, irq);
1815 	unsigned long flag;
1816 
1817 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1818 	writel(msg->data, iommu->reg + reg + 4);
1819 	writel(msg->address_lo, iommu->reg + reg + 8);
1820 	writel(msg->address_hi, iommu->reg + reg + 12);
1821 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1822 }
1823 
1824 void dmar_msi_read(int irq, struct msi_msg *msg)
1825 {
1826 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1827 	int reg = dmar_msi_reg(iommu, irq);
1828 	unsigned long flag;
1829 
1830 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1831 	msg->data = readl(iommu->reg + reg + 4);
1832 	msg->address_lo = readl(iommu->reg + reg + 8);
1833 	msg->address_hi = readl(iommu->reg + reg + 12);
1834 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1835 }
1836 
1837 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1838 		u8 fault_reason, u32 pasid, u16 source_id,
1839 		unsigned long long addr)
1840 {
1841 	const char *reason;
1842 	int fault_type;
1843 
1844 	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1845 
1846 	if (fault_type == INTR_REMAP)
1847 		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1848 			source_id >> 8, PCI_SLOT(source_id & 0xFF),
1849 			PCI_FUNC(source_id & 0xFF), addr >> 48,
1850 			fault_reason, reason);
1851 	else
1852 		pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1853 		       type ? "DMA Read" : "DMA Write",
1854 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1855 		       PCI_FUNC(source_id & 0xFF), pasid, addr,
1856 		       fault_reason, reason);
1857 	return 0;
1858 }
1859 
1860 #define PRIMARY_FAULT_REG_LEN (16)
1861 irqreturn_t dmar_fault(int irq, void *dev_id)
1862 {
1863 	struct intel_iommu *iommu = dev_id;
1864 	int reg, fault_index;
1865 	u32 fault_status;
1866 	unsigned long flag;
1867 	static DEFINE_RATELIMIT_STATE(rs,
1868 				      DEFAULT_RATELIMIT_INTERVAL,
1869 				      DEFAULT_RATELIMIT_BURST);
1870 
1871 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1872 	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1873 	if (fault_status && __ratelimit(&rs))
1874 		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1875 
1876 	/* TBD: ignore advanced fault log currently */
1877 	if (!(fault_status & DMA_FSTS_PPF))
1878 		goto unlock_exit;
1879 
1880 	fault_index = dma_fsts_fault_record_index(fault_status);
1881 	reg = cap_fault_reg_offset(iommu->cap);
1882 	while (1) {
1883 		/* Disable printing, simply clear the fault when ratelimited */
1884 		bool ratelimited = !__ratelimit(&rs);
1885 		u8 fault_reason;
1886 		u16 source_id;
1887 		u64 guest_addr;
1888 		u32 pasid;
1889 		int type;
1890 		u32 data;
1891 		bool pasid_present;
1892 
1893 		/* highest 32 bits */
1894 		data = readl(iommu->reg + reg +
1895 				fault_index * PRIMARY_FAULT_REG_LEN + 12);
1896 		if (!(data & DMA_FRCD_F))
1897 			break;
1898 
1899 		if (!ratelimited) {
1900 			fault_reason = dma_frcd_fault_reason(data);
1901 			type = dma_frcd_type(data);
1902 
1903 			pasid = dma_frcd_pasid_value(data);
1904 			data = readl(iommu->reg + reg +
1905 				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
1906 			source_id = dma_frcd_source_id(data);
1907 
1908 			pasid_present = dma_frcd_pasid_present(data);
1909 			guest_addr = dmar_readq(iommu->reg + reg +
1910 					fault_index * PRIMARY_FAULT_REG_LEN);
1911 			guest_addr = dma_frcd_page_addr(guest_addr);
1912 		}
1913 
1914 		/* clear the fault */
1915 		writel(DMA_FRCD_F, iommu->reg + reg +
1916 			fault_index * PRIMARY_FAULT_REG_LEN + 12);
1917 
1918 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1919 
1920 		if (!ratelimited)
1921 			/* Using pasid -1 if pasid is not present */
1922 			dmar_fault_do_one(iommu, type, fault_reason,
1923 					  pasid_present ? pasid : -1,
1924 					  source_id, guest_addr);
1925 
1926 		fault_index++;
1927 		if (fault_index >= cap_num_fault_regs(iommu->cap))
1928 			fault_index = 0;
1929 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1930 	}
1931 
1932 	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
1933 	       iommu->reg + DMAR_FSTS_REG);
1934 
1935 unlock_exit:
1936 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1937 	return IRQ_HANDLED;
1938 }
1939 
1940 int dmar_set_interrupt(struct intel_iommu *iommu)
1941 {
1942 	int irq, ret;
1943 
1944 	/*
1945 	 * Check if the fault interrupt is already initialized.
1946 	 */
1947 	if (iommu->irq)
1948 		return 0;
1949 
1950 	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
1951 	if (irq > 0) {
1952 		iommu->irq = irq;
1953 	} else {
1954 		pr_err("No free IRQ vectors\n");
1955 		return -EINVAL;
1956 	}
1957 
1958 	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1959 	if (ret)
1960 		pr_err("Can't request irq\n");
1961 	return ret;
1962 }
1963 
1964 int __init enable_drhd_fault_handling(void)
1965 {
1966 	struct dmar_drhd_unit *drhd;
1967 	struct intel_iommu *iommu;
1968 
1969 	/*
1970 	 * Enable fault control interrupt.
1971 	 */
1972 	for_each_iommu(iommu, drhd) {
1973 		u32 fault_status;
1974 		int ret = dmar_set_interrupt(iommu);
1975 
1976 		if (ret) {
1977 			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1978 			       (unsigned long long)drhd->reg_base_addr, ret);
1979 			return -1;
1980 		}
1981 
1982 		/*
1983 		 * Clear any previous faults.
1984 		 */
1985 		dmar_fault(iommu->irq, iommu);
1986 		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1987 		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 /*
1994  * Re-enable Queued Invalidation interface.
1995  */
1996 int dmar_reenable_qi(struct intel_iommu *iommu)
1997 {
1998 	if (!ecap_qis(iommu->ecap))
1999 		return -ENOENT;
2000 
2001 	if (!iommu->qi)
2002 		return -ENOENT;
2003 
2004 	/*
2005 	 * First disable queued invalidation.
2006 	 */
2007 	dmar_disable_qi(iommu);
2008 	/*
2009 	 * Then enable queued invalidation again. Since there is no pending
2010 	 * invalidation requests now, it's safe to re-enable queued
2011 	 * invalidation.
2012 	 */
2013 	__dmar_enable_qi(iommu);
2014 
2015 	return 0;
2016 }
2017 
2018 /*
2019  * Check interrupt remapping support in DMAR table description.
2020  */
2021 int __init dmar_ir_support(void)
2022 {
2023 	struct acpi_table_dmar *dmar;
2024 	dmar = (struct acpi_table_dmar *)dmar_tbl;
2025 	if (!dmar)
2026 		return 0;
2027 	return dmar->flags & 0x1;
2028 }
2029 
2030 /* Check whether DMAR units are in use */
2031 static inline bool dmar_in_use(void)
2032 {
2033 	return irq_remapping_enabled || intel_iommu_enabled;
2034 }
2035 
2036 static int __init dmar_free_unused_resources(void)
2037 {
2038 	struct dmar_drhd_unit *dmaru, *dmaru_n;
2039 
2040 	if (dmar_in_use())
2041 		return 0;
2042 
2043 	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2044 		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2045 
2046 	down_write(&dmar_global_lock);
2047 	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2048 		list_del(&dmaru->list);
2049 		dmar_free_drhd(dmaru);
2050 	}
2051 	up_write(&dmar_global_lock);
2052 
2053 	return 0;
2054 }
2055 
2056 late_initcall(dmar_free_unused_resources);
2057 IOMMU_INIT_POST(detect_intel_iommu);
2058 
2059 /*
2060  * DMAR Hotplug Support
2061  * For more details, please refer to Intel(R) Virtualization Technology
2062  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2063  * "Remapping Hardware Unit Hot Plug".
2064  */
2065 static guid_t dmar_hp_guid =
2066 	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2067 		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2068 
2069 /*
2070  * Currently there's only one revision and BIOS will not check the revision id,
2071  * so use 0 for safety.
2072  */
2073 #define	DMAR_DSM_REV_ID			0
2074 #define	DMAR_DSM_FUNC_DRHD		1
2075 #define	DMAR_DSM_FUNC_ATSR		2
2076 #define	DMAR_DSM_FUNC_RHSA		3
2077 
2078 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2079 {
2080 	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2081 }
2082 
2083 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2084 				  dmar_res_handler_t handler, void *arg)
2085 {
2086 	int ret = -ENODEV;
2087 	union acpi_object *obj;
2088 	struct acpi_dmar_header *start;
2089 	struct dmar_res_callback callback;
2090 	static int res_type[] = {
2091 		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2092 		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2093 		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2094 	};
2095 
2096 	if (!dmar_detect_dsm(handle, func))
2097 		return 0;
2098 
2099 	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2100 				      func, NULL, ACPI_TYPE_BUFFER);
2101 	if (!obj)
2102 		return -ENODEV;
2103 
2104 	memset(&callback, 0, sizeof(callback));
2105 	callback.cb[res_type[func]] = handler;
2106 	callback.arg[res_type[func]] = arg;
2107 	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2108 	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2109 
2110 	ACPI_FREE(obj);
2111 
2112 	return ret;
2113 }
2114 
2115 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2116 {
2117 	int ret;
2118 	struct dmar_drhd_unit *dmaru;
2119 
2120 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2121 	if (!dmaru)
2122 		return -ENODEV;
2123 
2124 	ret = dmar_ir_hotplug(dmaru, true);
2125 	if (ret == 0)
2126 		ret = dmar_iommu_hotplug(dmaru, true);
2127 
2128 	return ret;
2129 }
2130 
2131 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2132 {
2133 	int i, ret;
2134 	struct device *dev;
2135 	struct dmar_drhd_unit *dmaru;
2136 
2137 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2138 	if (!dmaru)
2139 		return 0;
2140 
2141 	/*
2142 	 * All PCI devices managed by this unit should have been destroyed.
2143 	 */
2144 	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2145 		for_each_active_dev_scope(dmaru->devices,
2146 					  dmaru->devices_cnt, i, dev)
2147 			return -EBUSY;
2148 	}
2149 
2150 	ret = dmar_ir_hotplug(dmaru, false);
2151 	if (ret == 0)
2152 		ret = dmar_iommu_hotplug(dmaru, false);
2153 
2154 	return ret;
2155 }
2156 
2157 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2158 {
2159 	struct dmar_drhd_unit *dmaru;
2160 
2161 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2162 	if (dmaru) {
2163 		list_del_rcu(&dmaru->list);
2164 		synchronize_rcu();
2165 		dmar_free_drhd(dmaru);
2166 	}
2167 
2168 	return 0;
2169 }
2170 
2171 static int dmar_hotplug_insert(acpi_handle handle)
2172 {
2173 	int ret;
2174 	int drhd_count = 0;
2175 
2176 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2177 				     &dmar_validate_one_drhd, (void *)1);
2178 	if (ret)
2179 		goto out;
2180 
2181 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2182 				     &dmar_parse_one_drhd, (void *)&drhd_count);
2183 	if (ret == 0 && drhd_count == 0) {
2184 		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2185 		goto out;
2186 	} else if (ret) {
2187 		goto release_drhd;
2188 	}
2189 
2190 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2191 				     &dmar_parse_one_rhsa, NULL);
2192 	if (ret)
2193 		goto release_drhd;
2194 
2195 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2196 				     &dmar_parse_one_atsr, NULL);
2197 	if (ret)
2198 		goto release_atsr;
2199 
2200 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2201 				     &dmar_hp_add_drhd, NULL);
2202 	if (!ret)
2203 		return 0;
2204 
2205 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2206 			       &dmar_hp_remove_drhd, NULL);
2207 release_atsr:
2208 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2209 			       &dmar_release_one_atsr, NULL);
2210 release_drhd:
2211 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2212 			       &dmar_hp_release_drhd, NULL);
2213 out:
2214 	return ret;
2215 }
2216 
2217 static int dmar_hotplug_remove(acpi_handle handle)
2218 {
2219 	int ret;
2220 
2221 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2222 				     &dmar_check_one_atsr, NULL);
2223 	if (ret)
2224 		return ret;
2225 
2226 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2227 				     &dmar_hp_remove_drhd, NULL);
2228 	if (ret == 0) {
2229 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2230 					       &dmar_release_one_atsr, NULL));
2231 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2232 					       &dmar_hp_release_drhd, NULL));
2233 	} else {
2234 		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2235 				       &dmar_hp_add_drhd, NULL);
2236 	}
2237 
2238 	return ret;
2239 }
2240 
2241 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2242 				       void *context, void **retval)
2243 {
2244 	acpi_handle *phdl = retval;
2245 
2246 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2247 		*phdl = handle;
2248 		return AE_CTRL_TERMINATE;
2249 	}
2250 
2251 	return AE_OK;
2252 }
2253 
2254 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2255 {
2256 	int ret;
2257 	acpi_handle tmp = NULL;
2258 	acpi_status status;
2259 
2260 	if (!dmar_in_use())
2261 		return 0;
2262 
2263 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2264 		tmp = handle;
2265 	} else {
2266 		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2267 					     ACPI_UINT32_MAX,
2268 					     dmar_get_dsm_handle,
2269 					     NULL, NULL, &tmp);
2270 		if (ACPI_FAILURE(status)) {
2271 			pr_warn("Failed to locate _DSM method.\n");
2272 			return -ENXIO;
2273 		}
2274 	}
2275 	if (tmp == NULL)
2276 		return 0;
2277 
2278 	down_write(&dmar_global_lock);
2279 	if (insert)
2280 		ret = dmar_hotplug_insert(tmp);
2281 	else
2282 		ret = dmar_hotplug_remove(tmp);
2283 	up_write(&dmar_global_lock);
2284 
2285 	return ret;
2286 }
2287 
2288 int dmar_device_add(acpi_handle handle)
2289 {
2290 	return dmar_device_hotplug(handle, true);
2291 }
2292 
2293 int dmar_device_remove(acpi_handle handle)
2294 {
2295 	return dmar_device_hotplug(handle, false);
2296 }
2297 
2298 /*
2299  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2300  *
2301  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2302  * the ACPI DMAR table. This means that the platform boot firmware has made
2303  * sure no device can issue DMA outside of RMRR regions.
2304  */
2305 bool dmar_platform_optin(void)
2306 {
2307 	struct acpi_table_dmar *dmar;
2308 	acpi_status status;
2309 	bool ret;
2310 
2311 	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2312 				(struct acpi_table_header **)&dmar);
2313 	if (ACPI_FAILURE(status))
2314 		return false;
2315 
2316 	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2317 	acpi_put_table((struct acpi_table_header *)dmar);
2318 
2319 	return ret;
2320 }
2321 EXPORT_SYMBOL_GPL(dmar_platform_optin);
2322