1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2006, Intel Corporation. 4 * 5 * Copyright (C) 2006-2008 Intel Corporation 6 * Author: Ashok Raj <ashok.raj@intel.com> 7 * Author: Shaohua Li <shaohua.li@intel.com> 8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * This file implements early detection/parsing of Remapping Devices 11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI 12 * tables. 13 * 14 * These routines are used by both DMA-remapping and Interrupt-remapping 15 */ 16 17 #define pr_fmt(fmt) "DMAR: " fmt 18 19 #include <linux/pci.h> 20 #include <linux/dmar.h> 21 #include <linux/iova.h> 22 #include <linux/intel-iommu.h> 23 #include <linux/timer.h> 24 #include <linux/irq.h> 25 #include <linux/interrupt.h> 26 #include <linux/tboot.h> 27 #include <linux/dmi.h> 28 #include <linux/slab.h> 29 #include <linux/iommu.h> 30 #include <linux/numa.h> 31 #include <linux/limits.h> 32 #include <asm/irq_remapping.h> 33 #include <asm/iommu_table.h> 34 35 #include "../irq_remapping.h" 36 37 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); 38 struct dmar_res_callback { 39 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; 40 void *arg[ACPI_DMAR_TYPE_RESERVED]; 41 bool ignore_unhandled; 42 bool print_entry; 43 }; 44 45 /* 46 * Assumptions: 47 * 1) The hotplug framework guarentees that DMAR unit will be hot-added 48 * before IO devices managed by that unit. 49 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed 50 * after IO devices managed by that unit. 51 * 3) Hotplug events are rare. 52 * 53 * Locking rules for DMA and interrupt remapping related global data structures: 54 * 1) Use dmar_global_lock in process context 55 * 2) Use RCU in interrupt context 56 */ 57 DECLARE_RWSEM(dmar_global_lock); 58 LIST_HEAD(dmar_drhd_units); 59 60 struct acpi_table_header * __initdata dmar_tbl; 61 static int dmar_dev_scope_status = 1; 62 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)]; 63 64 static int alloc_iommu(struct dmar_drhd_unit *drhd); 65 static void free_iommu(struct intel_iommu *iommu); 66 67 extern const struct iommu_ops intel_iommu_ops; 68 69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) 70 { 71 /* 72 * add INCLUDE_ALL at the tail, so scan the list will find it at 73 * the very end. 74 */ 75 if (drhd->include_all) 76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units); 77 else 78 list_add_rcu(&drhd->list, &dmar_drhd_units); 79 } 80 81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) 82 { 83 struct acpi_dmar_device_scope *scope; 84 85 *cnt = 0; 86 while (start < end) { 87 scope = start; 88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || 89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || 90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) 91 (*cnt)++; 92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && 93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { 94 pr_warn("Unsupported device scope\n"); 95 } 96 start += scope->length; 97 } 98 if (*cnt == 0) 99 return NULL; 100 101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); 102 } 103 104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) 105 { 106 int i; 107 struct device *tmp_dev; 108 109 if (*devices && *cnt) { 110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) 111 put_device(tmp_dev); 112 kfree(*devices); 113 } 114 115 *devices = NULL; 116 *cnt = 0; 117 } 118 119 /* Optimize out kzalloc()/kfree() for normal cases */ 120 static char dmar_pci_notify_info_buf[64]; 121 122 static struct dmar_pci_notify_info * 123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) 124 { 125 int level = 0; 126 size_t size; 127 struct pci_dev *tmp; 128 struct dmar_pci_notify_info *info; 129 130 BUG_ON(dev->is_virtfn); 131 132 /* 133 * Ignore devices that have a domain number higher than what can 134 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 135 */ 136 if (pci_domain_nr(dev->bus) > U16_MAX) 137 return NULL; 138 139 /* Only generate path[] for device addition event */ 140 if (event == BUS_NOTIFY_ADD_DEVICE) 141 for (tmp = dev; tmp; tmp = tmp->bus->self) 142 level++; 143 144 size = struct_size(info, path, level); 145 if (size <= sizeof(dmar_pci_notify_info_buf)) { 146 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; 147 } else { 148 info = kzalloc(size, GFP_KERNEL); 149 if (!info) { 150 pr_warn("Out of memory when allocating notify_info " 151 "for %s.\n", pci_name(dev)); 152 if (dmar_dev_scope_status == 0) 153 dmar_dev_scope_status = -ENOMEM; 154 return NULL; 155 } 156 } 157 158 info->event = event; 159 info->dev = dev; 160 info->seg = pci_domain_nr(dev->bus); 161 info->level = level; 162 if (event == BUS_NOTIFY_ADD_DEVICE) { 163 for (tmp = dev; tmp; tmp = tmp->bus->self) { 164 level--; 165 info->path[level].bus = tmp->bus->number; 166 info->path[level].device = PCI_SLOT(tmp->devfn); 167 info->path[level].function = PCI_FUNC(tmp->devfn); 168 if (pci_is_root_bus(tmp->bus)) 169 info->bus = tmp->bus->number; 170 } 171 } 172 173 return info; 174 } 175 176 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) 177 { 178 if ((void *)info != dmar_pci_notify_info_buf) 179 kfree(info); 180 } 181 182 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, 183 struct acpi_dmar_pci_path *path, int count) 184 { 185 int i; 186 187 if (info->bus != bus) 188 goto fallback; 189 if (info->level != count) 190 goto fallback; 191 192 for (i = 0; i < count; i++) { 193 if (path[i].device != info->path[i].device || 194 path[i].function != info->path[i].function) 195 goto fallback; 196 } 197 198 return true; 199 200 fallback: 201 202 if (count != 1) 203 return false; 204 205 i = info->level - 1; 206 if (bus == info->path[i].bus && 207 path[0].device == info->path[i].device && 208 path[0].function == info->path[i].function) { 209 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", 210 bus, path[0].device, path[0].function); 211 return true; 212 } 213 214 return false; 215 } 216 217 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ 218 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, 219 void *start, void*end, u16 segment, 220 struct dmar_dev_scope *devices, 221 int devices_cnt) 222 { 223 int i, level; 224 struct device *tmp, *dev = &info->dev->dev; 225 struct acpi_dmar_device_scope *scope; 226 struct acpi_dmar_pci_path *path; 227 228 if (segment != info->seg) 229 return 0; 230 231 for (; start < end; start += scope->length) { 232 scope = start; 233 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 234 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) 235 continue; 236 237 path = (struct acpi_dmar_pci_path *)(scope + 1); 238 level = (scope->length - sizeof(*scope)) / sizeof(*path); 239 if (!dmar_match_pci_path(info, scope->bus, path, level)) 240 continue; 241 242 /* 243 * We expect devices with endpoint scope to have normal PCI 244 * headers, and devices with bridge scope to have bridge PCI 245 * headers. However PCI NTB devices may be listed in the 246 * DMAR table with bridge scope, even though they have a 247 * normal PCI header. NTB devices are identified by class 248 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch 249 * for this special case. 250 */ 251 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 252 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || 253 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && 254 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 255 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { 256 pr_warn("Device scope type does not match for %s\n", 257 pci_name(info->dev)); 258 return -EINVAL; 259 } 260 261 for_each_dev_scope(devices, devices_cnt, i, tmp) 262 if (tmp == NULL) { 263 devices[i].bus = info->dev->bus->number; 264 devices[i].devfn = info->dev->devfn; 265 rcu_assign_pointer(devices[i].dev, 266 get_device(dev)); 267 return 1; 268 } 269 BUG_ON(i >= devices_cnt); 270 } 271 272 return 0; 273 } 274 275 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, 276 struct dmar_dev_scope *devices, int count) 277 { 278 int index; 279 struct device *tmp; 280 281 if (info->seg != segment) 282 return 0; 283 284 for_each_active_dev_scope(devices, count, index, tmp) 285 if (tmp == &info->dev->dev) { 286 RCU_INIT_POINTER(devices[index].dev, NULL); 287 synchronize_rcu(); 288 put_device(tmp); 289 return 1; 290 } 291 292 return 0; 293 } 294 295 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) 296 { 297 int ret = 0; 298 struct dmar_drhd_unit *dmaru; 299 struct acpi_dmar_hardware_unit *drhd; 300 301 for_each_drhd_unit(dmaru) { 302 if (dmaru->include_all) 303 continue; 304 305 drhd = container_of(dmaru->hdr, 306 struct acpi_dmar_hardware_unit, header); 307 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), 308 ((void *)drhd) + drhd->header.length, 309 dmaru->segment, 310 dmaru->devices, dmaru->devices_cnt); 311 if (ret) 312 break; 313 } 314 if (ret >= 0) 315 ret = dmar_iommu_notify_scope_dev(info); 316 if (ret < 0 && dmar_dev_scope_status == 0) 317 dmar_dev_scope_status = ret; 318 319 if (ret >= 0) 320 intel_irq_remap_add_device(info); 321 322 return ret; 323 } 324 325 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) 326 { 327 struct dmar_drhd_unit *dmaru; 328 329 for_each_drhd_unit(dmaru) 330 if (dmar_remove_dev_scope(info, dmaru->segment, 331 dmaru->devices, dmaru->devices_cnt)) 332 break; 333 dmar_iommu_notify_scope_dev(info); 334 } 335 336 static inline void vf_inherit_msi_domain(struct pci_dev *pdev) 337 { 338 struct pci_dev *physfn = pci_physfn(pdev); 339 340 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev)); 341 } 342 343 static int dmar_pci_bus_notifier(struct notifier_block *nb, 344 unsigned long action, void *data) 345 { 346 struct pci_dev *pdev = to_pci_dev(data); 347 struct dmar_pci_notify_info *info; 348 349 /* Only care about add/remove events for physical functions. 350 * For VFs we actually do the lookup based on the corresponding 351 * PF in device_to_iommu() anyway. */ 352 if (pdev->is_virtfn) { 353 /* 354 * Ensure that the VF device inherits the irq domain of the 355 * PF device. Ideally the device would inherit the domain 356 * from the bus, but DMAR can have multiple units per bus 357 * which makes this impossible. The VF 'bus' could inherit 358 * from the PF device, but that's yet another x86'sism to 359 * inflict on everybody else. 360 */ 361 if (action == BUS_NOTIFY_ADD_DEVICE) 362 vf_inherit_msi_domain(pdev); 363 return NOTIFY_DONE; 364 } 365 366 if (action != BUS_NOTIFY_ADD_DEVICE && 367 action != BUS_NOTIFY_REMOVED_DEVICE) 368 return NOTIFY_DONE; 369 370 info = dmar_alloc_pci_notify_info(pdev, action); 371 if (!info) 372 return NOTIFY_DONE; 373 374 down_write(&dmar_global_lock); 375 if (action == BUS_NOTIFY_ADD_DEVICE) 376 dmar_pci_bus_add_dev(info); 377 else if (action == BUS_NOTIFY_REMOVED_DEVICE) 378 dmar_pci_bus_del_dev(info); 379 up_write(&dmar_global_lock); 380 381 dmar_free_pci_notify_info(info); 382 383 return NOTIFY_OK; 384 } 385 386 static struct notifier_block dmar_pci_bus_nb = { 387 .notifier_call = dmar_pci_bus_notifier, 388 .priority = INT_MIN, 389 }; 390 391 static struct dmar_drhd_unit * 392 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) 393 { 394 struct dmar_drhd_unit *dmaru; 395 396 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, 397 dmar_rcu_check()) 398 if (dmaru->segment == drhd->segment && 399 dmaru->reg_base_addr == drhd->address) 400 return dmaru; 401 402 return NULL; 403 } 404 405 /* 406 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition 407 * structure which uniquely represent one DMA remapping hardware unit 408 * present in the platform 409 */ 410 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) 411 { 412 struct acpi_dmar_hardware_unit *drhd; 413 struct dmar_drhd_unit *dmaru; 414 int ret; 415 416 drhd = (struct acpi_dmar_hardware_unit *)header; 417 dmaru = dmar_find_dmaru(drhd); 418 if (dmaru) 419 goto out; 420 421 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); 422 if (!dmaru) 423 return -ENOMEM; 424 425 /* 426 * If header is allocated from slab by ACPI _DSM method, we need to 427 * copy the content because the memory buffer will be freed on return. 428 */ 429 dmaru->hdr = (void *)(dmaru + 1); 430 memcpy(dmaru->hdr, header, header->length); 431 dmaru->reg_base_addr = drhd->address; 432 dmaru->segment = drhd->segment; 433 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ 434 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), 435 ((void *)drhd) + drhd->header.length, 436 &dmaru->devices_cnt); 437 if (dmaru->devices_cnt && dmaru->devices == NULL) { 438 kfree(dmaru); 439 return -ENOMEM; 440 } 441 442 ret = alloc_iommu(dmaru); 443 if (ret) { 444 dmar_free_dev_scope(&dmaru->devices, 445 &dmaru->devices_cnt); 446 kfree(dmaru); 447 return ret; 448 } 449 dmar_register_drhd_unit(dmaru); 450 451 out: 452 if (arg) 453 (*(int *)arg)++; 454 455 return 0; 456 } 457 458 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) 459 { 460 if (dmaru->devices && dmaru->devices_cnt) 461 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); 462 if (dmaru->iommu) 463 free_iommu(dmaru->iommu); 464 kfree(dmaru); 465 } 466 467 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, 468 void *arg) 469 { 470 struct acpi_dmar_andd *andd = (void *)header; 471 472 /* Check for NUL termination within the designated length */ 473 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { 474 pr_warn(FW_BUG 475 "Your BIOS is broken; ANDD object name is not NUL-terminated\n" 476 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 477 dmi_get_system_info(DMI_BIOS_VENDOR), 478 dmi_get_system_info(DMI_BIOS_VERSION), 479 dmi_get_system_info(DMI_PRODUCT_VERSION)); 480 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 481 return -EINVAL; 482 } 483 pr_info("ANDD device: %x name: %s\n", andd->device_number, 484 andd->device_name); 485 486 return 0; 487 } 488 489 #ifdef CONFIG_ACPI_NUMA 490 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) 491 { 492 struct acpi_dmar_rhsa *rhsa; 493 struct dmar_drhd_unit *drhd; 494 495 rhsa = (struct acpi_dmar_rhsa *)header; 496 for_each_drhd_unit(drhd) { 497 if (drhd->reg_base_addr == rhsa->base_address) { 498 int node = pxm_to_node(rhsa->proximity_domain); 499 500 if (!node_online(node)) 501 node = NUMA_NO_NODE; 502 drhd->iommu->node = node; 503 return 0; 504 } 505 } 506 pr_warn(FW_BUG 507 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" 508 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 509 rhsa->base_address, 510 dmi_get_system_info(DMI_BIOS_VENDOR), 511 dmi_get_system_info(DMI_BIOS_VERSION), 512 dmi_get_system_info(DMI_PRODUCT_VERSION)); 513 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 514 515 return 0; 516 } 517 #else 518 #define dmar_parse_one_rhsa dmar_res_noop 519 #endif 520 521 static void 522 dmar_table_print_dmar_entry(struct acpi_dmar_header *header) 523 { 524 struct acpi_dmar_hardware_unit *drhd; 525 struct acpi_dmar_reserved_memory *rmrr; 526 struct acpi_dmar_atsr *atsr; 527 struct acpi_dmar_rhsa *rhsa; 528 529 switch (header->type) { 530 case ACPI_DMAR_TYPE_HARDWARE_UNIT: 531 drhd = container_of(header, struct acpi_dmar_hardware_unit, 532 header); 533 pr_info("DRHD base: %#016Lx flags: %#x\n", 534 (unsigned long long)drhd->address, drhd->flags); 535 break; 536 case ACPI_DMAR_TYPE_RESERVED_MEMORY: 537 rmrr = container_of(header, struct acpi_dmar_reserved_memory, 538 header); 539 pr_info("RMRR base: %#016Lx end: %#016Lx\n", 540 (unsigned long long)rmrr->base_address, 541 (unsigned long long)rmrr->end_address); 542 break; 543 case ACPI_DMAR_TYPE_ROOT_ATS: 544 atsr = container_of(header, struct acpi_dmar_atsr, header); 545 pr_info("ATSR flags: %#x\n", atsr->flags); 546 break; 547 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: 548 rhsa = container_of(header, struct acpi_dmar_rhsa, header); 549 pr_info("RHSA base: %#016Lx proximity domain: %#x\n", 550 (unsigned long long)rhsa->base_address, 551 rhsa->proximity_domain); 552 break; 553 case ACPI_DMAR_TYPE_NAMESPACE: 554 /* We don't print this here because we need to sanity-check 555 it first. So print it in dmar_parse_one_andd() instead. */ 556 break; 557 } 558 } 559 560 /** 561 * dmar_table_detect - checks to see if the platform supports DMAR devices 562 */ 563 static int __init dmar_table_detect(void) 564 { 565 acpi_status status = AE_OK; 566 567 /* if we could find DMAR table, then there are DMAR devices */ 568 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); 569 570 if (ACPI_SUCCESS(status) && !dmar_tbl) { 571 pr_warn("Unable to map DMAR\n"); 572 status = AE_NOT_FOUND; 573 } 574 575 return ACPI_SUCCESS(status) ? 0 : -ENOENT; 576 } 577 578 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, 579 size_t len, struct dmar_res_callback *cb) 580 { 581 struct acpi_dmar_header *iter, *next; 582 struct acpi_dmar_header *end = ((void *)start) + len; 583 584 for (iter = start; iter < end; iter = next) { 585 next = (void *)iter + iter->length; 586 if (iter->length == 0) { 587 /* Avoid looping forever on bad ACPI tables */ 588 pr_debug(FW_BUG "Invalid 0-length structure\n"); 589 break; 590 } else if (next > end) { 591 /* Avoid passing table end */ 592 pr_warn(FW_BUG "Record passes table end\n"); 593 return -EINVAL; 594 } 595 596 if (cb->print_entry) 597 dmar_table_print_dmar_entry(iter); 598 599 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { 600 /* continue for forward compatibility */ 601 pr_debug("Unknown DMAR structure type %d\n", 602 iter->type); 603 } else if (cb->cb[iter->type]) { 604 int ret; 605 606 ret = cb->cb[iter->type](iter, cb->arg[iter->type]); 607 if (ret) 608 return ret; 609 } else if (!cb->ignore_unhandled) { 610 pr_warn("No handler for DMAR structure type %d\n", 611 iter->type); 612 return -EINVAL; 613 } 614 } 615 616 return 0; 617 } 618 619 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, 620 struct dmar_res_callback *cb) 621 { 622 return dmar_walk_remapping_entries((void *)(dmar + 1), 623 dmar->header.length - sizeof(*dmar), cb); 624 } 625 626 /** 627 * parse_dmar_table - parses the DMA reporting table 628 */ 629 static int __init 630 parse_dmar_table(void) 631 { 632 struct acpi_table_dmar *dmar; 633 int drhd_count = 0; 634 int ret; 635 struct dmar_res_callback cb = { 636 .print_entry = true, 637 .ignore_unhandled = true, 638 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, 639 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, 640 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, 641 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, 642 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, 643 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, 644 }; 645 646 /* 647 * Do it again, earlier dmar_tbl mapping could be mapped with 648 * fixed map. 649 */ 650 dmar_table_detect(); 651 652 /* 653 * ACPI tables may not be DMA protected by tboot, so use DMAR copy 654 * SINIT saved in SinitMleData in TXT heap (which is DMA protected) 655 */ 656 dmar_tbl = tboot_get_dmar_table(dmar_tbl); 657 658 dmar = (struct acpi_table_dmar *)dmar_tbl; 659 if (!dmar) 660 return -ENODEV; 661 662 if (dmar->width < PAGE_SHIFT - 1) { 663 pr_warn("Invalid DMAR haw\n"); 664 return -EINVAL; 665 } 666 667 pr_info("Host address width %d\n", dmar->width + 1); 668 ret = dmar_walk_dmar_table(dmar, &cb); 669 if (ret == 0 && drhd_count == 0) 670 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); 671 672 return ret; 673 } 674 675 static int dmar_pci_device_match(struct dmar_dev_scope devices[], 676 int cnt, struct pci_dev *dev) 677 { 678 int index; 679 struct device *tmp; 680 681 while (dev) { 682 for_each_active_dev_scope(devices, cnt, index, tmp) 683 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) 684 return 1; 685 686 /* Check our parent */ 687 dev = dev->bus->self; 688 } 689 690 return 0; 691 } 692 693 struct dmar_drhd_unit * 694 dmar_find_matched_drhd_unit(struct pci_dev *dev) 695 { 696 struct dmar_drhd_unit *dmaru; 697 struct acpi_dmar_hardware_unit *drhd; 698 699 dev = pci_physfn(dev); 700 701 rcu_read_lock(); 702 for_each_drhd_unit(dmaru) { 703 drhd = container_of(dmaru->hdr, 704 struct acpi_dmar_hardware_unit, 705 header); 706 707 if (dmaru->include_all && 708 drhd->segment == pci_domain_nr(dev->bus)) 709 goto out; 710 711 if (dmar_pci_device_match(dmaru->devices, 712 dmaru->devices_cnt, dev)) 713 goto out; 714 } 715 dmaru = NULL; 716 out: 717 rcu_read_unlock(); 718 719 return dmaru; 720 } 721 722 static void __init dmar_acpi_insert_dev_scope(u8 device_number, 723 struct acpi_device *adev) 724 { 725 struct dmar_drhd_unit *dmaru; 726 struct acpi_dmar_hardware_unit *drhd; 727 struct acpi_dmar_device_scope *scope; 728 struct device *tmp; 729 int i; 730 struct acpi_dmar_pci_path *path; 731 732 for_each_drhd_unit(dmaru) { 733 drhd = container_of(dmaru->hdr, 734 struct acpi_dmar_hardware_unit, 735 header); 736 737 for (scope = (void *)(drhd + 1); 738 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; 739 scope = ((void *)scope) + scope->length) { 740 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) 741 continue; 742 if (scope->enumeration_id != device_number) 743 continue; 744 745 path = (void *)(scope + 1); 746 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", 747 dev_name(&adev->dev), dmaru->reg_base_addr, 748 scope->bus, path->device, path->function); 749 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) 750 if (tmp == NULL) { 751 dmaru->devices[i].bus = scope->bus; 752 dmaru->devices[i].devfn = PCI_DEVFN(path->device, 753 path->function); 754 rcu_assign_pointer(dmaru->devices[i].dev, 755 get_device(&adev->dev)); 756 return; 757 } 758 BUG_ON(i >= dmaru->devices_cnt); 759 } 760 } 761 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", 762 device_number, dev_name(&adev->dev)); 763 } 764 765 static int __init dmar_acpi_dev_scope_init(void) 766 { 767 struct acpi_dmar_andd *andd; 768 769 if (dmar_tbl == NULL) 770 return -ENODEV; 771 772 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); 773 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; 774 andd = ((void *)andd) + andd->header.length) { 775 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { 776 acpi_handle h; 777 struct acpi_device *adev; 778 779 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, 780 andd->device_name, 781 &h))) { 782 pr_err("Failed to find handle for ACPI object %s\n", 783 andd->device_name); 784 continue; 785 } 786 if (acpi_bus_get_device(h, &adev)) { 787 pr_err("Failed to get device for ACPI object %s\n", 788 andd->device_name); 789 continue; 790 } 791 dmar_acpi_insert_dev_scope(andd->device_number, adev); 792 } 793 } 794 return 0; 795 } 796 797 int __init dmar_dev_scope_init(void) 798 { 799 struct pci_dev *dev = NULL; 800 struct dmar_pci_notify_info *info; 801 802 if (dmar_dev_scope_status != 1) 803 return dmar_dev_scope_status; 804 805 if (list_empty(&dmar_drhd_units)) { 806 dmar_dev_scope_status = -ENODEV; 807 } else { 808 dmar_dev_scope_status = 0; 809 810 dmar_acpi_dev_scope_init(); 811 812 for_each_pci_dev(dev) { 813 if (dev->is_virtfn) 814 continue; 815 816 info = dmar_alloc_pci_notify_info(dev, 817 BUS_NOTIFY_ADD_DEVICE); 818 if (!info) { 819 return dmar_dev_scope_status; 820 } else { 821 dmar_pci_bus_add_dev(info); 822 dmar_free_pci_notify_info(info); 823 } 824 } 825 } 826 827 return dmar_dev_scope_status; 828 } 829 830 void __init dmar_register_bus_notifier(void) 831 { 832 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); 833 } 834 835 836 int __init dmar_table_init(void) 837 { 838 static int dmar_table_initialized; 839 int ret; 840 841 if (dmar_table_initialized == 0) { 842 ret = parse_dmar_table(); 843 if (ret < 0) { 844 if (ret != -ENODEV) 845 pr_info("Parse DMAR table failure.\n"); 846 } else if (list_empty(&dmar_drhd_units)) { 847 pr_info("No DMAR devices found\n"); 848 ret = -ENODEV; 849 } 850 851 if (ret < 0) 852 dmar_table_initialized = ret; 853 else 854 dmar_table_initialized = 1; 855 } 856 857 return dmar_table_initialized < 0 ? dmar_table_initialized : 0; 858 } 859 860 static void warn_invalid_dmar(u64 addr, const char *message) 861 { 862 pr_warn_once(FW_BUG 863 "Your BIOS is broken; DMAR reported at address %llx%s!\n" 864 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 865 addr, message, 866 dmi_get_system_info(DMI_BIOS_VENDOR), 867 dmi_get_system_info(DMI_BIOS_VERSION), 868 dmi_get_system_info(DMI_PRODUCT_VERSION)); 869 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 870 } 871 872 static int __ref 873 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) 874 { 875 struct acpi_dmar_hardware_unit *drhd; 876 void __iomem *addr; 877 u64 cap, ecap; 878 879 drhd = (void *)entry; 880 if (!drhd->address) { 881 warn_invalid_dmar(0, ""); 882 return -EINVAL; 883 } 884 885 if (arg) 886 addr = ioremap(drhd->address, VTD_PAGE_SIZE); 887 else 888 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); 889 if (!addr) { 890 pr_warn("Can't validate DRHD address: %llx\n", drhd->address); 891 return -EINVAL; 892 } 893 894 cap = dmar_readq(addr + DMAR_CAP_REG); 895 ecap = dmar_readq(addr + DMAR_ECAP_REG); 896 897 if (arg) 898 iounmap(addr); 899 else 900 early_iounmap(addr, VTD_PAGE_SIZE); 901 902 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { 903 warn_invalid_dmar(drhd->address, " returns all ones"); 904 return -EINVAL; 905 } 906 907 return 0; 908 } 909 910 int __init detect_intel_iommu(void) 911 { 912 int ret; 913 struct dmar_res_callback validate_drhd_cb = { 914 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, 915 .ignore_unhandled = true, 916 }; 917 918 down_write(&dmar_global_lock); 919 ret = dmar_table_detect(); 920 if (!ret) 921 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, 922 &validate_drhd_cb); 923 if (!ret && !no_iommu && !iommu_detected && 924 (!dmar_disabled || dmar_platform_optin())) { 925 iommu_detected = 1; 926 /* Make sure ACS will be enabled */ 927 pci_request_acs(); 928 } 929 930 #ifdef CONFIG_X86 931 if (!ret) { 932 x86_init.iommu.iommu_init = intel_iommu_init; 933 x86_platform.iommu_shutdown = intel_iommu_shutdown; 934 } 935 936 #endif 937 938 if (dmar_tbl) { 939 acpi_put_table(dmar_tbl); 940 dmar_tbl = NULL; 941 } 942 up_write(&dmar_global_lock); 943 944 return ret ? ret : 1; 945 } 946 947 static void unmap_iommu(struct intel_iommu *iommu) 948 { 949 iounmap(iommu->reg); 950 release_mem_region(iommu->reg_phys, iommu->reg_size); 951 } 952 953 /** 954 * map_iommu: map the iommu's registers 955 * @iommu: the iommu to map 956 * @phys_addr: the physical address of the base resgister 957 * 958 * Memory map the iommu's registers. Start w/ a single page, and 959 * possibly expand if that turns out to be insufficent. 960 */ 961 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr) 962 { 963 int map_size, err=0; 964 965 iommu->reg_phys = phys_addr; 966 iommu->reg_size = VTD_PAGE_SIZE; 967 968 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { 969 pr_err("Can't reserve memory\n"); 970 err = -EBUSY; 971 goto out; 972 } 973 974 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 975 if (!iommu->reg) { 976 pr_err("Can't map the region\n"); 977 err = -ENOMEM; 978 goto release; 979 } 980 981 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); 982 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); 983 984 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { 985 err = -EINVAL; 986 warn_invalid_dmar(phys_addr, " returns all ones"); 987 goto unmap; 988 } 989 if (ecap_vcs(iommu->ecap)) 990 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG); 991 992 /* the registers might be more than one page */ 993 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), 994 cap_max_fault_reg_offset(iommu->cap)); 995 map_size = VTD_PAGE_ALIGN(map_size); 996 if (map_size > iommu->reg_size) { 997 iounmap(iommu->reg); 998 release_mem_region(iommu->reg_phys, iommu->reg_size); 999 iommu->reg_size = map_size; 1000 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, 1001 iommu->name)) { 1002 pr_err("Can't reserve memory\n"); 1003 err = -EBUSY; 1004 goto out; 1005 } 1006 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 1007 if (!iommu->reg) { 1008 pr_err("Can't map the region\n"); 1009 err = -ENOMEM; 1010 goto release; 1011 } 1012 } 1013 err = 0; 1014 goto out; 1015 1016 unmap: 1017 iounmap(iommu->reg); 1018 release: 1019 release_mem_region(iommu->reg_phys, iommu->reg_size); 1020 out: 1021 return err; 1022 } 1023 1024 static int dmar_alloc_seq_id(struct intel_iommu *iommu) 1025 { 1026 iommu->seq_id = find_first_zero_bit(dmar_seq_ids, 1027 DMAR_UNITS_SUPPORTED); 1028 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) { 1029 iommu->seq_id = -1; 1030 } else { 1031 set_bit(iommu->seq_id, dmar_seq_ids); 1032 sprintf(iommu->name, "dmar%d", iommu->seq_id); 1033 } 1034 1035 return iommu->seq_id; 1036 } 1037 1038 static void dmar_free_seq_id(struct intel_iommu *iommu) 1039 { 1040 if (iommu->seq_id >= 0) { 1041 clear_bit(iommu->seq_id, dmar_seq_ids); 1042 iommu->seq_id = -1; 1043 } 1044 } 1045 1046 static int alloc_iommu(struct dmar_drhd_unit *drhd) 1047 { 1048 struct intel_iommu *iommu; 1049 u32 ver, sts; 1050 int agaw = -1; 1051 int msagaw = -1; 1052 int err; 1053 1054 if (!drhd->reg_base_addr) { 1055 warn_invalid_dmar(0, ""); 1056 return -EINVAL; 1057 } 1058 1059 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); 1060 if (!iommu) 1061 return -ENOMEM; 1062 1063 if (dmar_alloc_seq_id(iommu) < 0) { 1064 pr_err("Failed to allocate seq_id\n"); 1065 err = -ENOSPC; 1066 goto error; 1067 } 1068 1069 err = map_iommu(iommu, drhd->reg_base_addr); 1070 if (err) { 1071 pr_err("Failed to map %s\n", iommu->name); 1072 goto error_free_seq_id; 1073 } 1074 1075 err = -EINVAL; 1076 if (cap_sagaw(iommu->cap) == 0) { 1077 pr_info("%s: No supported address widths. Not attempting DMA translation.\n", 1078 iommu->name); 1079 drhd->ignored = 1; 1080 } 1081 1082 if (!drhd->ignored) { 1083 agaw = iommu_calculate_agaw(iommu); 1084 if (agaw < 0) { 1085 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", 1086 iommu->seq_id); 1087 drhd->ignored = 1; 1088 } 1089 } 1090 if (!drhd->ignored) { 1091 msagaw = iommu_calculate_max_sagaw(iommu); 1092 if (msagaw < 0) { 1093 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", 1094 iommu->seq_id); 1095 drhd->ignored = 1; 1096 agaw = -1; 1097 } 1098 } 1099 iommu->agaw = agaw; 1100 iommu->msagaw = msagaw; 1101 iommu->segment = drhd->segment; 1102 1103 iommu->node = NUMA_NO_NODE; 1104 1105 ver = readl(iommu->reg + DMAR_VER_REG); 1106 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", 1107 iommu->name, 1108 (unsigned long long)drhd->reg_base_addr, 1109 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), 1110 (unsigned long long)iommu->cap, 1111 (unsigned long long)iommu->ecap); 1112 1113 /* Reflect status in gcmd */ 1114 sts = readl(iommu->reg + DMAR_GSTS_REG); 1115 if (sts & DMA_GSTS_IRES) 1116 iommu->gcmd |= DMA_GCMD_IRE; 1117 if (sts & DMA_GSTS_TES) 1118 iommu->gcmd |= DMA_GCMD_TE; 1119 if (sts & DMA_GSTS_QIES) 1120 iommu->gcmd |= DMA_GCMD_QIE; 1121 1122 raw_spin_lock_init(&iommu->register_lock); 1123 1124 /* 1125 * This is only for hotplug; at boot time intel_iommu_enabled won't 1126 * be set yet. When intel_iommu_init() runs, it registers the units 1127 * present at boot time, then sets intel_iommu_enabled. 1128 */ 1129 if (intel_iommu_enabled && !drhd->ignored) { 1130 err = iommu_device_sysfs_add(&iommu->iommu, NULL, 1131 intel_iommu_groups, 1132 "%s", iommu->name); 1133 if (err) 1134 goto err_unmap; 1135 1136 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops); 1137 1138 err = iommu_device_register(&iommu->iommu); 1139 if (err) 1140 goto err_unmap; 1141 } 1142 1143 drhd->iommu = iommu; 1144 iommu->drhd = drhd; 1145 1146 return 0; 1147 1148 err_unmap: 1149 unmap_iommu(iommu); 1150 error_free_seq_id: 1151 dmar_free_seq_id(iommu); 1152 error: 1153 kfree(iommu); 1154 return err; 1155 } 1156 1157 static void free_iommu(struct intel_iommu *iommu) 1158 { 1159 if (intel_iommu_enabled && !iommu->drhd->ignored) { 1160 iommu_device_unregister(&iommu->iommu); 1161 iommu_device_sysfs_remove(&iommu->iommu); 1162 } 1163 1164 if (iommu->irq) { 1165 if (iommu->pr_irq) { 1166 free_irq(iommu->pr_irq, iommu); 1167 dmar_free_hwirq(iommu->pr_irq); 1168 iommu->pr_irq = 0; 1169 } 1170 free_irq(iommu->irq, iommu); 1171 dmar_free_hwirq(iommu->irq); 1172 iommu->irq = 0; 1173 } 1174 1175 if (iommu->qi) { 1176 free_page((unsigned long)iommu->qi->desc); 1177 kfree(iommu->qi->desc_status); 1178 kfree(iommu->qi); 1179 } 1180 1181 if (iommu->reg) 1182 unmap_iommu(iommu); 1183 1184 dmar_free_seq_id(iommu); 1185 kfree(iommu); 1186 } 1187 1188 /* 1189 * Reclaim all the submitted descriptors which have completed its work. 1190 */ 1191 static inline void reclaim_free_desc(struct q_inval *qi) 1192 { 1193 while (qi->desc_status[qi->free_tail] == QI_DONE || 1194 qi->desc_status[qi->free_tail] == QI_ABORT) { 1195 qi->desc_status[qi->free_tail] = QI_FREE; 1196 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; 1197 qi->free_cnt++; 1198 } 1199 } 1200 1201 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) 1202 { 1203 u32 fault; 1204 int head, tail; 1205 struct q_inval *qi = iommu->qi; 1206 int shift = qi_shift(iommu); 1207 1208 if (qi->desc_status[wait_index] == QI_ABORT) 1209 return -EAGAIN; 1210 1211 fault = readl(iommu->reg + DMAR_FSTS_REG); 1212 1213 /* 1214 * If IQE happens, the head points to the descriptor associated 1215 * with the error. No new descriptors are fetched until the IQE 1216 * is cleared. 1217 */ 1218 if (fault & DMA_FSTS_IQE) { 1219 head = readl(iommu->reg + DMAR_IQH_REG); 1220 if ((head >> shift) == index) { 1221 struct qi_desc *desc = qi->desc + head; 1222 1223 /* 1224 * desc->qw2 and desc->qw3 are either reserved or 1225 * used by software as private data. We won't print 1226 * out these two qw's for security consideration. 1227 */ 1228 pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n", 1229 (unsigned long long)desc->qw0, 1230 (unsigned long long)desc->qw1); 1231 memcpy(desc, qi->desc + (wait_index << shift), 1232 1 << shift); 1233 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); 1234 return -EINVAL; 1235 } 1236 } 1237 1238 /* 1239 * If ITE happens, all pending wait_desc commands are aborted. 1240 * No new descriptors are fetched until the ITE is cleared. 1241 */ 1242 if (fault & DMA_FSTS_ITE) { 1243 head = readl(iommu->reg + DMAR_IQH_REG); 1244 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1245 head |= 1; 1246 tail = readl(iommu->reg + DMAR_IQT_REG); 1247 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1248 1249 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); 1250 1251 do { 1252 if (qi->desc_status[head] == QI_IN_USE) 1253 qi->desc_status[head] = QI_ABORT; 1254 head = (head - 2 + QI_LENGTH) % QI_LENGTH; 1255 } while (head != tail); 1256 1257 if (qi->desc_status[wait_index] == QI_ABORT) 1258 return -EAGAIN; 1259 } 1260 1261 if (fault & DMA_FSTS_ICE) 1262 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); 1263 1264 return 0; 1265 } 1266 1267 /* 1268 * Function to submit invalidation descriptors of all types to the queued 1269 * invalidation interface(QI). Multiple descriptors can be submitted at a 1270 * time, a wait descriptor will be appended to each submission to ensure 1271 * hardware has completed the invalidation before return. Wait descriptors 1272 * can be part of the submission but it will not be polled for completion. 1273 */ 1274 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, 1275 unsigned int count, unsigned long options) 1276 { 1277 struct q_inval *qi = iommu->qi; 1278 struct qi_desc wait_desc; 1279 int wait_index, index; 1280 unsigned long flags; 1281 int offset, shift; 1282 int rc, i; 1283 1284 if (!qi) 1285 return 0; 1286 1287 restart: 1288 rc = 0; 1289 1290 raw_spin_lock_irqsave(&qi->q_lock, flags); 1291 /* 1292 * Check if we have enough empty slots in the queue to submit, 1293 * the calculation is based on: 1294 * # of desc + 1 wait desc + 1 space between head and tail 1295 */ 1296 while (qi->free_cnt < count + 2) { 1297 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1298 cpu_relax(); 1299 raw_spin_lock_irqsave(&qi->q_lock, flags); 1300 } 1301 1302 index = qi->free_head; 1303 wait_index = (index + count) % QI_LENGTH; 1304 shift = qi_shift(iommu); 1305 1306 for (i = 0; i < count; i++) { 1307 offset = ((index + i) % QI_LENGTH) << shift; 1308 memcpy(qi->desc + offset, &desc[i], 1 << shift); 1309 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; 1310 } 1311 qi->desc_status[wait_index] = QI_IN_USE; 1312 1313 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 1314 QI_IWD_STATUS_WRITE | QI_IWD_TYPE; 1315 if (options & QI_OPT_WAIT_DRAIN) 1316 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; 1317 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); 1318 wait_desc.qw2 = 0; 1319 wait_desc.qw3 = 0; 1320 1321 offset = wait_index << shift; 1322 memcpy(qi->desc + offset, &wait_desc, 1 << shift); 1323 1324 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; 1325 qi->free_cnt -= count + 1; 1326 1327 /* 1328 * update the HW tail register indicating the presence of 1329 * new descriptors. 1330 */ 1331 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); 1332 1333 while (qi->desc_status[wait_index] != QI_DONE) { 1334 /* 1335 * We will leave the interrupts disabled, to prevent interrupt 1336 * context to queue another cmd while a cmd is already submitted 1337 * and waiting for completion on this cpu. This is to avoid 1338 * a deadlock where the interrupt context can wait indefinitely 1339 * for free slots in the queue. 1340 */ 1341 rc = qi_check_fault(iommu, index, wait_index); 1342 if (rc) 1343 break; 1344 1345 raw_spin_unlock(&qi->q_lock); 1346 cpu_relax(); 1347 raw_spin_lock(&qi->q_lock); 1348 } 1349 1350 for (i = 0; i < count; i++) 1351 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; 1352 1353 reclaim_free_desc(qi); 1354 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1355 1356 if (rc == -EAGAIN) 1357 goto restart; 1358 1359 return rc; 1360 } 1361 1362 /* 1363 * Flush the global interrupt entry cache. 1364 */ 1365 void qi_global_iec(struct intel_iommu *iommu) 1366 { 1367 struct qi_desc desc; 1368 1369 desc.qw0 = QI_IEC_TYPE; 1370 desc.qw1 = 0; 1371 desc.qw2 = 0; 1372 desc.qw3 = 0; 1373 1374 /* should never fail */ 1375 qi_submit_sync(iommu, &desc, 1, 0); 1376 } 1377 1378 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, 1379 u64 type) 1380 { 1381 struct qi_desc desc; 1382 1383 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) 1384 | QI_CC_GRAN(type) | QI_CC_TYPE; 1385 desc.qw1 = 0; 1386 desc.qw2 = 0; 1387 desc.qw3 = 0; 1388 1389 qi_submit_sync(iommu, &desc, 1, 0); 1390 } 1391 1392 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, 1393 unsigned int size_order, u64 type) 1394 { 1395 u8 dw = 0, dr = 0; 1396 1397 struct qi_desc desc; 1398 int ih = 0; 1399 1400 if (cap_write_drain(iommu->cap)) 1401 dw = 1; 1402 1403 if (cap_read_drain(iommu->cap)) 1404 dr = 1; 1405 1406 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) 1407 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; 1408 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) 1409 | QI_IOTLB_AM(size_order); 1410 desc.qw2 = 0; 1411 desc.qw3 = 0; 1412 1413 qi_submit_sync(iommu, &desc, 1, 0); 1414 } 1415 1416 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1417 u16 qdep, u64 addr, unsigned mask) 1418 { 1419 struct qi_desc desc; 1420 1421 if (mask) { 1422 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; 1423 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; 1424 } else 1425 desc.qw1 = QI_DEV_IOTLB_ADDR(addr); 1426 1427 if (qdep >= QI_DEV_IOTLB_MAX_INVS) 1428 qdep = 0; 1429 1430 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | 1431 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); 1432 desc.qw2 = 0; 1433 desc.qw3 = 0; 1434 1435 qi_submit_sync(iommu, &desc, 1, 0); 1436 } 1437 1438 /* PASID-based IOTLB invalidation */ 1439 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, 1440 unsigned long npages, bool ih) 1441 { 1442 struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; 1443 1444 /* 1445 * npages == -1 means a PASID-selective invalidation, otherwise, 1446 * a positive value for Page-selective-within-PASID invalidation. 1447 * 0 is not a valid input. 1448 */ 1449 if (WARN_ON(!npages)) { 1450 pr_err("Invalid input npages = %ld\n", npages); 1451 return; 1452 } 1453 1454 if (npages == -1) { 1455 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1456 QI_EIOTLB_DID(did) | 1457 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 1458 QI_EIOTLB_TYPE; 1459 desc.qw1 = 0; 1460 } else { 1461 int mask = ilog2(__roundup_pow_of_two(npages)); 1462 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); 1463 1464 if (WARN_ON_ONCE(!ALIGN(addr, align))) 1465 addr &= ~(align - 1); 1466 1467 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1468 QI_EIOTLB_DID(did) | 1469 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | 1470 QI_EIOTLB_TYPE; 1471 desc.qw1 = QI_EIOTLB_ADDR(addr) | 1472 QI_EIOTLB_IH(ih) | 1473 QI_EIOTLB_AM(mask); 1474 } 1475 1476 qi_submit_sync(iommu, &desc, 1, 0); 1477 } 1478 1479 /* PASID-based device IOTLB Invalidate */ 1480 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1481 u32 pasid, u16 qdep, u64 addr, unsigned int size_order) 1482 { 1483 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); 1484 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1485 1486 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | 1487 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | 1488 QI_DEV_IOTLB_PFSID(pfsid); 1489 1490 /* 1491 * If S bit is 0, we only flush a single page. If S bit is set, 1492 * The least significant zero bit indicates the invalidation address 1493 * range. VT-d spec 6.5.2.6. 1494 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. 1495 * size order = 0 is PAGE_SIZE 4KB 1496 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in 1497 * ECAP. 1498 */ 1499 if (addr & GENMASK_ULL(size_order + VTD_PAGE_SHIFT, 0)) 1500 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n", 1501 addr, size_order); 1502 1503 /* Take page address */ 1504 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr); 1505 1506 if (size_order) { 1507 /* 1508 * Existing 0s in address below size_order may be the least 1509 * significant bit, we must set them to 1s to avoid having 1510 * smaller size than desired. 1511 */ 1512 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1, 1513 VTD_PAGE_SHIFT); 1514 /* Clear size_order bit to indicate size */ 1515 desc.qw1 &= ~mask; 1516 /* Set the S bit to indicate flushing more than 1 page */ 1517 desc.qw1 |= QI_DEV_EIOTLB_SIZE; 1518 } 1519 1520 qi_submit_sync(iommu, &desc, 1, 0); 1521 } 1522 1523 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, 1524 u64 granu, u32 pasid) 1525 { 1526 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1527 1528 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | 1529 QI_PC_GRAN(granu) | QI_PC_TYPE; 1530 qi_submit_sync(iommu, &desc, 1, 0); 1531 } 1532 1533 /* 1534 * Disable Queued Invalidation interface. 1535 */ 1536 void dmar_disable_qi(struct intel_iommu *iommu) 1537 { 1538 unsigned long flags; 1539 u32 sts; 1540 cycles_t start_time = get_cycles(); 1541 1542 if (!ecap_qis(iommu->ecap)) 1543 return; 1544 1545 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1546 1547 sts = readl(iommu->reg + DMAR_GSTS_REG); 1548 if (!(sts & DMA_GSTS_QIES)) 1549 goto end; 1550 1551 /* 1552 * Give a chance to HW to complete the pending invalidation requests. 1553 */ 1554 while ((readl(iommu->reg + DMAR_IQT_REG) != 1555 readl(iommu->reg + DMAR_IQH_REG)) && 1556 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) 1557 cpu_relax(); 1558 1559 iommu->gcmd &= ~DMA_GCMD_QIE; 1560 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1561 1562 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, 1563 !(sts & DMA_GSTS_QIES), sts); 1564 end: 1565 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1566 } 1567 1568 /* 1569 * Enable queued invalidation. 1570 */ 1571 static void __dmar_enable_qi(struct intel_iommu *iommu) 1572 { 1573 u32 sts; 1574 unsigned long flags; 1575 struct q_inval *qi = iommu->qi; 1576 u64 val = virt_to_phys(qi->desc); 1577 1578 qi->free_head = qi->free_tail = 0; 1579 qi->free_cnt = QI_LENGTH; 1580 1581 /* 1582 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability 1583 * is present. 1584 */ 1585 if (ecap_smts(iommu->ecap)) 1586 val |= (1 << 11) | 1; 1587 1588 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1589 1590 /* write zero to the tail reg */ 1591 writel(0, iommu->reg + DMAR_IQT_REG); 1592 1593 dmar_writeq(iommu->reg + DMAR_IQA_REG, val); 1594 1595 iommu->gcmd |= DMA_GCMD_QIE; 1596 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1597 1598 /* Make sure hardware complete it */ 1599 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); 1600 1601 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1602 } 1603 1604 /* 1605 * Enable Queued Invalidation interface. This is a must to support 1606 * interrupt-remapping. Also used by DMA-remapping, which replaces 1607 * register based IOTLB invalidation. 1608 */ 1609 int dmar_enable_qi(struct intel_iommu *iommu) 1610 { 1611 struct q_inval *qi; 1612 struct page *desc_page; 1613 1614 if (!ecap_qis(iommu->ecap)) 1615 return -ENOENT; 1616 1617 /* 1618 * queued invalidation is already setup and enabled. 1619 */ 1620 if (iommu->qi) 1621 return 0; 1622 1623 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); 1624 if (!iommu->qi) 1625 return -ENOMEM; 1626 1627 qi = iommu->qi; 1628 1629 /* 1630 * Need two pages to accommodate 256 descriptors of 256 bits each 1631 * if the remapping hardware supports scalable mode translation. 1632 */ 1633 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 1634 !!ecap_smts(iommu->ecap)); 1635 if (!desc_page) { 1636 kfree(qi); 1637 iommu->qi = NULL; 1638 return -ENOMEM; 1639 } 1640 1641 qi->desc = page_address(desc_page); 1642 1643 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); 1644 if (!qi->desc_status) { 1645 free_page((unsigned long) qi->desc); 1646 kfree(qi); 1647 iommu->qi = NULL; 1648 return -ENOMEM; 1649 } 1650 1651 raw_spin_lock_init(&qi->q_lock); 1652 1653 __dmar_enable_qi(iommu); 1654 1655 return 0; 1656 } 1657 1658 /* iommu interrupt handling. Most stuff are MSI-like. */ 1659 1660 enum faulttype { 1661 DMA_REMAP, 1662 INTR_REMAP, 1663 UNKNOWN, 1664 }; 1665 1666 static const char *dma_remap_fault_reasons[] = 1667 { 1668 "Software", 1669 "Present bit in root entry is clear", 1670 "Present bit in context entry is clear", 1671 "Invalid context entry", 1672 "Access beyond MGAW", 1673 "PTE Write access is not set", 1674 "PTE Read access is not set", 1675 "Next page table ptr is invalid", 1676 "Root table address invalid", 1677 "Context table ptr is invalid", 1678 "non-zero reserved fields in RTP", 1679 "non-zero reserved fields in CTP", 1680 "non-zero reserved fields in PTE", 1681 "PCE for translation request specifies blocking", 1682 }; 1683 1684 static const char * const dma_remap_sm_fault_reasons[] = { 1685 "SM: Invalid Root Table Address", 1686 "SM: TTM 0 for request with PASID", 1687 "SM: TTM 0 for page group request", 1688 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ 1689 "SM: Error attempting to access Root Entry", 1690 "SM: Present bit in Root Entry is clear", 1691 "SM: Non-zero reserved field set in Root Entry", 1692 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ 1693 "SM: Error attempting to access Context Entry", 1694 "SM: Present bit in Context Entry is clear", 1695 "SM: Non-zero reserved field set in the Context Entry", 1696 "SM: Invalid Context Entry", 1697 "SM: DTE field in Context Entry is clear", 1698 "SM: PASID Enable field in Context Entry is clear", 1699 "SM: PASID is larger than the max in Context Entry", 1700 "SM: PRE field in Context-Entry is clear", 1701 "SM: RID_PASID field error in Context-Entry", 1702 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ 1703 "SM: Error attempting to access the PASID Directory Entry", 1704 "SM: Present bit in Directory Entry is clear", 1705 "SM: Non-zero reserved field set in PASID Directory Entry", 1706 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ 1707 "SM: Error attempting to access PASID Table Entry", 1708 "SM: Present bit in PASID Table Entry is clear", 1709 "SM: Non-zero reserved field set in PASID Table Entry", 1710 "SM: Invalid Scalable-Mode PASID Table Entry", 1711 "SM: ERE field is clear in PASID Table Entry", 1712 "SM: SRE field is clear in PASID Table Entry", 1713 "Unknown", "Unknown",/* 0x5E-0x5F */ 1714 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ 1715 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ 1716 "SM: Error attempting to access first-level paging entry", 1717 "SM: Present bit in first-level paging entry is clear", 1718 "SM: Non-zero reserved field set in first-level paging entry", 1719 "SM: Error attempting to access FL-PML4 entry", 1720 "SM: First-level entry address beyond MGAW in Nested translation", 1721 "SM: Read permission error in FL-PML4 entry in Nested translation", 1722 "SM: Read permission error in first-level paging entry in Nested translation", 1723 "SM: Write permission error in first-level paging entry in Nested translation", 1724 "SM: Error attempting to access second-level paging entry", 1725 "SM: Read/Write permission error in second-level paging entry", 1726 "SM: Non-zero reserved field set in second-level paging entry", 1727 "SM: Invalid second-level page table pointer", 1728 "SM: A/D bit update needed in second-level entry when set up in no snoop", 1729 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ 1730 "SM: Address in first-level translation is not canonical", 1731 "SM: U/S set 0 for first-level translation with user privilege", 1732 "SM: No execute permission for request with PASID and ER=1", 1733 "SM: Address beyond the DMA hardware max", 1734 "SM: Second-level entry address beyond the max", 1735 "SM: No write permission for Write/AtomicOp request", 1736 "SM: No read permission for Read/AtomicOp request", 1737 "SM: Invalid address-interrupt address", 1738 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ 1739 "SM: A/D bit update needed in first-level entry when set up in no snoop", 1740 }; 1741 1742 static const char *irq_remap_fault_reasons[] = 1743 { 1744 "Detected reserved fields in the decoded interrupt-remapped request", 1745 "Interrupt index exceeded the interrupt-remapping table size", 1746 "Present field in the IRTE entry is clear", 1747 "Error accessing interrupt-remapping table pointed by IRTA_REG", 1748 "Detected reserved fields in the IRTE entry", 1749 "Blocked a compatibility format interrupt request", 1750 "Blocked an interrupt request due to source-id verification failure", 1751 }; 1752 1753 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) 1754 { 1755 if (fault_reason >= 0x20 && (fault_reason - 0x20 < 1756 ARRAY_SIZE(irq_remap_fault_reasons))) { 1757 *fault_type = INTR_REMAP; 1758 return irq_remap_fault_reasons[fault_reason - 0x20]; 1759 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < 1760 ARRAY_SIZE(dma_remap_sm_fault_reasons))) { 1761 *fault_type = DMA_REMAP; 1762 return dma_remap_sm_fault_reasons[fault_reason - 0x30]; 1763 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { 1764 *fault_type = DMA_REMAP; 1765 return dma_remap_fault_reasons[fault_reason]; 1766 } else { 1767 *fault_type = UNKNOWN; 1768 return "Unknown"; 1769 } 1770 } 1771 1772 1773 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) 1774 { 1775 if (iommu->irq == irq) 1776 return DMAR_FECTL_REG; 1777 else if (iommu->pr_irq == irq) 1778 return DMAR_PECTL_REG; 1779 else 1780 BUG(); 1781 } 1782 1783 void dmar_msi_unmask(struct irq_data *data) 1784 { 1785 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1786 int reg = dmar_msi_reg(iommu, data->irq); 1787 unsigned long flag; 1788 1789 /* unmask it */ 1790 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1791 writel(0, iommu->reg + reg); 1792 /* Read a reg to force flush the post write */ 1793 readl(iommu->reg + reg); 1794 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1795 } 1796 1797 void dmar_msi_mask(struct irq_data *data) 1798 { 1799 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1800 int reg = dmar_msi_reg(iommu, data->irq); 1801 unsigned long flag; 1802 1803 /* mask it */ 1804 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1805 writel(DMA_FECTL_IM, iommu->reg + reg); 1806 /* Read a reg to force flush the post write */ 1807 readl(iommu->reg + reg); 1808 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1809 } 1810 1811 void dmar_msi_write(int irq, struct msi_msg *msg) 1812 { 1813 struct intel_iommu *iommu = irq_get_handler_data(irq); 1814 int reg = dmar_msi_reg(iommu, irq); 1815 unsigned long flag; 1816 1817 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1818 writel(msg->data, iommu->reg + reg + 4); 1819 writel(msg->address_lo, iommu->reg + reg + 8); 1820 writel(msg->address_hi, iommu->reg + reg + 12); 1821 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1822 } 1823 1824 void dmar_msi_read(int irq, struct msi_msg *msg) 1825 { 1826 struct intel_iommu *iommu = irq_get_handler_data(irq); 1827 int reg = dmar_msi_reg(iommu, irq); 1828 unsigned long flag; 1829 1830 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1831 msg->data = readl(iommu->reg + reg + 4); 1832 msg->address_lo = readl(iommu->reg + reg + 8); 1833 msg->address_hi = readl(iommu->reg + reg + 12); 1834 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1835 } 1836 1837 static int dmar_fault_do_one(struct intel_iommu *iommu, int type, 1838 u8 fault_reason, u32 pasid, u16 source_id, 1839 unsigned long long addr) 1840 { 1841 const char *reason; 1842 int fault_type; 1843 1844 reason = dmar_get_fault_reason(fault_reason, &fault_type); 1845 1846 if (fault_type == INTR_REMAP) 1847 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n", 1848 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1849 PCI_FUNC(source_id & 0xFF), addr >> 48, 1850 fault_reason, reason); 1851 else 1852 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n", 1853 type ? "DMA Read" : "DMA Write", 1854 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1855 PCI_FUNC(source_id & 0xFF), pasid, addr, 1856 fault_reason, reason); 1857 return 0; 1858 } 1859 1860 #define PRIMARY_FAULT_REG_LEN (16) 1861 irqreturn_t dmar_fault(int irq, void *dev_id) 1862 { 1863 struct intel_iommu *iommu = dev_id; 1864 int reg, fault_index; 1865 u32 fault_status; 1866 unsigned long flag; 1867 static DEFINE_RATELIMIT_STATE(rs, 1868 DEFAULT_RATELIMIT_INTERVAL, 1869 DEFAULT_RATELIMIT_BURST); 1870 1871 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1872 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1873 if (fault_status && __ratelimit(&rs)) 1874 pr_err("DRHD: handling fault status reg %x\n", fault_status); 1875 1876 /* TBD: ignore advanced fault log currently */ 1877 if (!(fault_status & DMA_FSTS_PPF)) 1878 goto unlock_exit; 1879 1880 fault_index = dma_fsts_fault_record_index(fault_status); 1881 reg = cap_fault_reg_offset(iommu->cap); 1882 while (1) { 1883 /* Disable printing, simply clear the fault when ratelimited */ 1884 bool ratelimited = !__ratelimit(&rs); 1885 u8 fault_reason; 1886 u16 source_id; 1887 u64 guest_addr; 1888 u32 pasid; 1889 int type; 1890 u32 data; 1891 bool pasid_present; 1892 1893 /* highest 32 bits */ 1894 data = readl(iommu->reg + reg + 1895 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1896 if (!(data & DMA_FRCD_F)) 1897 break; 1898 1899 if (!ratelimited) { 1900 fault_reason = dma_frcd_fault_reason(data); 1901 type = dma_frcd_type(data); 1902 1903 pasid = dma_frcd_pasid_value(data); 1904 data = readl(iommu->reg + reg + 1905 fault_index * PRIMARY_FAULT_REG_LEN + 8); 1906 source_id = dma_frcd_source_id(data); 1907 1908 pasid_present = dma_frcd_pasid_present(data); 1909 guest_addr = dmar_readq(iommu->reg + reg + 1910 fault_index * PRIMARY_FAULT_REG_LEN); 1911 guest_addr = dma_frcd_page_addr(guest_addr); 1912 } 1913 1914 /* clear the fault */ 1915 writel(DMA_FRCD_F, iommu->reg + reg + 1916 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1917 1918 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1919 1920 if (!ratelimited) 1921 /* Using pasid -1 if pasid is not present */ 1922 dmar_fault_do_one(iommu, type, fault_reason, 1923 pasid_present ? pasid : -1, 1924 source_id, guest_addr); 1925 1926 fault_index++; 1927 if (fault_index >= cap_num_fault_regs(iommu->cap)) 1928 fault_index = 0; 1929 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1930 } 1931 1932 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, 1933 iommu->reg + DMAR_FSTS_REG); 1934 1935 unlock_exit: 1936 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1937 return IRQ_HANDLED; 1938 } 1939 1940 int dmar_set_interrupt(struct intel_iommu *iommu) 1941 { 1942 int irq, ret; 1943 1944 /* 1945 * Check if the fault interrupt is already initialized. 1946 */ 1947 if (iommu->irq) 1948 return 0; 1949 1950 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); 1951 if (irq > 0) { 1952 iommu->irq = irq; 1953 } else { 1954 pr_err("No free IRQ vectors\n"); 1955 return -EINVAL; 1956 } 1957 1958 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); 1959 if (ret) 1960 pr_err("Can't request irq\n"); 1961 return ret; 1962 } 1963 1964 int __init enable_drhd_fault_handling(void) 1965 { 1966 struct dmar_drhd_unit *drhd; 1967 struct intel_iommu *iommu; 1968 1969 /* 1970 * Enable fault control interrupt. 1971 */ 1972 for_each_iommu(iommu, drhd) { 1973 u32 fault_status; 1974 int ret = dmar_set_interrupt(iommu); 1975 1976 if (ret) { 1977 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", 1978 (unsigned long long)drhd->reg_base_addr, ret); 1979 return -1; 1980 } 1981 1982 /* 1983 * Clear any previous faults. 1984 */ 1985 dmar_fault(iommu->irq, iommu); 1986 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1987 writel(fault_status, iommu->reg + DMAR_FSTS_REG); 1988 } 1989 1990 return 0; 1991 } 1992 1993 /* 1994 * Re-enable Queued Invalidation interface. 1995 */ 1996 int dmar_reenable_qi(struct intel_iommu *iommu) 1997 { 1998 if (!ecap_qis(iommu->ecap)) 1999 return -ENOENT; 2000 2001 if (!iommu->qi) 2002 return -ENOENT; 2003 2004 /* 2005 * First disable queued invalidation. 2006 */ 2007 dmar_disable_qi(iommu); 2008 /* 2009 * Then enable queued invalidation again. Since there is no pending 2010 * invalidation requests now, it's safe to re-enable queued 2011 * invalidation. 2012 */ 2013 __dmar_enable_qi(iommu); 2014 2015 return 0; 2016 } 2017 2018 /* 2019 * Check interrupt remapping support in DMAR table description. 2020 */ 2021 int __init dmar_ir_support(void) 2022 { 2023 struct acpi_table_dmar *dmar; 2024 dmar = (struct acpi_table_dmar *)dmar_tbl; 2025 if (!dmar) 2026 return 0; 2027 return dmar->flags & 0x1; 2028 } 2029 2030 /* Check whether DMAR units are in use */ 2031 static inline bool dmar_in_use(void) 2032 { 2033 return irq_remapping_enabled || intel_iommu_enabled; 2034 } 2035 2036 static int __init dmar_free_unused_resources(void) 2037 { 2038 struct dmar_drhd_unit *dmaru, *dmaru_n; 2039 2040 if (dmar_in_use()) 2041 return 0; 2042 2043 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) 2044 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); 2045 2046 down_write(&dmar_global_lock); 2047 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { 2048 list_del(&dmaru->list); 2049 dmar_free_drhd(dmaru); 2050 } 2051 up_write(&dmar_global_lock); 2052 2053 return 0; 2054 } 2055 2056 late_initcall(dmar_free_unused_resources); 2057 IOMMU_INIT_POST(detect_intel_iommu); 2058 2059 /* 2060 * DMAR Hotplug Support 2061 * For more details, please refer to Intel(R) Virtualization Technology 2062 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 2063 * "Remapping Hardware Unit Hot Plug". 2064 */ 2065 static guid_t dmar_hp_guid = 2066 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, 2067 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); 2068 2069 /* 2070 * Currently there's only one revision and BIOS will not check the revision id, 2071 * so use 0 for safety. 2072 */ 2073 #define DMAR_DSM_REV_ID 0 2074 #define DMAR_DSM_FUNC_DRHD 1 2075 #define DMAR_DSM_FUNC_ATSR 2 2076 #define DMAR_DSM_FUNC_RHSA 3 2077 2078 static inline bool dmar_detect_dsm(acpi_handle handle, int func) 2079 { 2080 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); 2081 } 2082 2083 static int dmar_walk_dsm_resource(acpi_handle handle, int func, 2084 dmar_res_handler_t handler, void *arg) 2085 { 2086 int ret = -ENODEV; 2087 union acpi_object *obj; 2088 struct acpi_dmar_header *start; 2089 struct dmar_res_callback callback; 2090 static int res_type[] = { 2091 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, 2092 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, 2093 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, 2094 }; 2095 2096 if (!dmar_detect_dsm(handle, func)) 2097 return 0; 2098 2099 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 2100 func, NULL, ACPI_TYPE_BUFFER); 2101 if (!obj) 2102 return -ENODEV; 2103 2104 memset(&callback, 0, sizeof(callback)); 2105 callback.cb[res_type[func]] = handler; 2106 callback.arg[res_type[func]] = arg; 2107 start = (struct acpi_dmar_header *)obj->buffer.pointer; 2108 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); 2109 2110 ACPI_FREE(obj); 2111 2112 return ret; 2113 } 2114 2115 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) 2116 { 2117 int ret; 2118 struct dmar_drhd_unit *dmaru; 2119 2120 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2121 if (!dmaru) 2122 return -ENODEV; 2123 2124 ret = dmar_ir_hotplug(dmaru, true); 2125 if (ret == 0) 2126 ret = dmar_iommu_hotplug(dmaru, true); 2127 2128 return ret; 2129 } 2130 2131 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) 2132 { 2133 int i, ret; 2134 struct device *dev; 2135 struct dmar_drhd_unit *dmaru; 2136 2137 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2138 if (!dmaru) 2139 return 0; 2140 2141 /* 2142 * All PCI devices managed by this unit should have been destroyed. 2143 */ 2144 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { 2145 for_each_active_dev_scope(dmaru->devices, 2146 dmaru->devices_cnt, i, dev) 2147 return -EBUSY; 2148 } 2149 2150 ret = dmar_ir_hotplug(dmaru, false); 2151 if (ret == 0) 2152 ret = dmar_iommu_hotplug(dmaru, false); 2153 2154 return ret; 2155 } 2156 2157 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) 2158 { 2159 struct dmar_drhd_unit *dmaru; 2160 2161 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2162 if (dmaru) { 2163 list_del_rcu(&dmaru->list); 2164 synchronize_rcu(); 2165 dmar_free_drhd(dmaru); 2166 } 2167 2168 return 0; 2169 } 2170 2171 static int dmar_hotplug_insert(acpi_handle handle) 2172 { 2173 int ret; 2174 int drhd_count = 0; 2175 2176 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2177 &dmar_validate_one_drhd, (void *)1); 2178 if (ret) 2179 goto out; 2180 2181 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2182 &dmar_parse_one_drhd, (void *)&drhd_count); 2183 if (ret == 0 && drhd_count == 0) { 2184 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); 2185 goto out; 2186 } else if (ret) { 2187 goto release_drhd; 2188 } 2189 2190 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, 2191 &dmar_parse_one_rhsa, NULL); 2192 if (ret) 2193 goto release_drhd; 2194 2195 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2196 &dmar_parse_one_atsr, NULL); 2197 if (ret) 2198 goto release_atsr; 2199 2200 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2201 &dmar_hp_add_drhd, NULL); 2202 if (!ret) 2203 return 0; 2204 2205 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2206 &dmar_hp_remove_drhd, NULL); 2207 release_atsr: 2208 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2209 &dmar_release_one_atsr, NULL); 2210 release_drhd: 2211 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2212 &dmar_hp_release_drhd, NULL); 2213 out: 2214 return ret; 2215 } 2216 2217 static int dmar_hotplug_remove(acpi_handle handle) 2218 { 2219 int ret; 2220 2221 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2222 &dmar_check_one_atsr, NULL); 2223 if (ret) 2224 return ret; 2225 2226 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2227 &dmar_hp_remove_drhd, NULL); 2228 if (ret == 0) { 2229 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2230 &dmar_release_one_atsr, NULL)); 2231 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2232 &dmar_hp_release_drhd, NULL)); 2233 } else { 2234 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2235 &dmar_hp_add_drhd, NULL); 2236 } 2237 2238 return ret; 2239 } 2240 2241 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, 2242 void *context, void **retval) 2243 { 2244 acpi_handle *phdl = retval; 2245 2246 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2247 *phdl = handle; 2248 return AE_CTRL_TERMINATE; 2249 } 2250 2251 return AE_OK; 2252 } 2253 2254 static int dmar_device_hotplug(acpi_handle handle, bool insert) 2255 { 2256 int ret; 2257 acpi_handle tmp = NULL; 2258 acpi_status status; 2259 2260 if (!dmar_in_use()) 2261 return 0; 2262 2263 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2264 tmp = handle; 2265 } else { 2266 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2267 ACPI_UINT32_MAX, 2268 dmar_get_dsm_handle, 2269 NULL, NULL, &tmp); 2270 if (ACPI_FAILURE(status)) { 2271 pr_warn("Failed to locate _DSM method.\n"); 2272 return -ENXIO; 2273 } 2274 } 2275 if (tmp == NULL) 2276 return 0; 2277 2278 down_write(&dmar_global_lock); 2279 if (insert) 2280 ret = dmar_hotplug_insert(tmp); 2281 else 2282 ret = dmar_hotplug_remove(tmp); 2283 up_write(&dmar_global_lock); 2284 2285 return ret; 2286 } 2287 2288 int dmar_device_add(acpi_handle handle) 2289 { 2290 return dmar_device_hotplug(handle, true); 2291 } 2292 2293 int dmar_device_remove(acpi_handle handle) 2294 { 2295 return dmar_device_hotplug(handle, false); 2296 } 2297 2298 /* 2299 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table 2300 * 2301 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in 2302 * the ACPI DMAR table. This means that the platform boot firmware has made 2303 * sure no device can issue DMA outside of RMRR regions. 2304 */ 2305 bool dmar_platform_optin(void) 2306 { 2307 struct acpi_table_dmar *dmar; 2308 acpi_status status; 2309 bool ret; 2310 2311 status = acpi_get_table(ACPI_SIG_DMAR, 0, 2312 (struct acpi_table_header **)&dmar); 2313 if (ACPI_FAILURE(status)) 2314 return false; 2315 2316 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); 2317 acpi_put_table((struct acpi_table_header *)dmar); 2318 2319 return ret; 2320 } 2321 EXPORT_SYMBOL_GPL(dmar_platform_optin); 2322