xref: /openbmc/linux/drivers/iommu/intel/dmar.c (revision 5fb859f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16 
17 #define pr_fmt(fmt)     "DMAR: " fmt
18 
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <linux/limits.h>
32 #include <asm/irq_remapping.h>
33 #include <trace/events/intel_iommu.h>
34 
35 #include "../irq_remapping.h"
36 #include "perf.h"
37 
38 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
39 struct dmar_res_callback {
40 	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
41 	void			*arg[ACPI_DMAR_TYPE_RESERVED];
42 	bool			ignore_unhandled;
43 	bool			print_entry;
44 };
45 
46 /*
47  * Assumptions:
48  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
49  *    before IO devices managed by that unit.
50  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
51  *    after IO devices managed by that unit.
52  * 3) Hotplug events are rare.
53  *
54  * Locking rules for DMA and interrupt remapping related global data structures:
55  * 1) Use dmar_global_lock in process context
56  * 2) Use RCU in interrupt context
57  */
58 DECLARE_RWSEM(dmar_global_lock);
59 LIST_HEAD(dmar_drhd_units);
60 
61 struct acpi_table_header * __initdata dmar_tbl;
62 static int dmar_dev_scope_status = 1;
63 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
64 
65 static int alloc_iommu(struct dmar_drhd_unit *drhd);
66 static void free_iommu(struct intel_iommu *iommu);
67 
68 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69 {
70 	/*
71 	 * add INCLUDE_ALL at the tail, so scan the list will find it at
72 	 * the very end.
73 	 */
74 	if (drhd->include_all)
75 		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76 	else
77 		list_add_rcu(&drhd->list, &dmar_drhd_units);
78 }
79 
80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81 {
82 	struct acpi_dmar_device_scope *scope;
83 
84 	*cnt = 0;
85 	while (start < end) {
86 		scope = start;
87 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
88 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90 			(*cnt)++;
91 		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92 			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93 			pr_warn("Unsupported device scope\n");
94 		}
95 		start += scope->length;
96 	}
97 	if (*cnt == 0)
98 		return NULL;
99 
100 	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101 }
102 
103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104 {
105 	int i;
106 	struct device *tmp_dev;
107 
108 	if (*devices && *cnt) {
109 		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110 			put_device(tmp_dev);
111 		kfree(*devices);
112 	}
113 
114 	*devices = NULL;
115 	*cnt = 0;
116 }
117 
118 /* Optimize out kzalloc()/kfree() for normal cases */
119 static char dmar_pci_notify_info_buf[64];
120 
121 static struct dmar_pci_notify_info *
122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123 {
124 	int level = 0;
125 	size_t size;
126 	struct pci_dev *tmp;
127 	struct dmar_pci_notify_info *info;
128 
129 	BUG_ON(dev->is_virtfn);
130 
131 	/*
132 	 * Ignore devices that have a domain number higher than what can
133 	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
134 	 */
135 	if (pci_domain_nr(dev->bus) > U16_MAX)
136 		return NULL;
137 
138 	/* Only generate path[] for device addition event */
139 	if (event == BUS_NOTIFY_ADD_DEVICE)
140 		for (tmp = dev; tmp; tmp = tmp->bus->self)
141 			level++;
142 
143 	size = struct_size(info, path, level);
144 	if (size <= sizeof(dmar_pci_notify_info_buf)) {
145 		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
146 	} else {
147 		info = kzalloc(size, GFP_KERNEL);
148 		if (!info) {
149 			if (dmar_dev_scope_status == 0)
150 				dmar_dev_scope_status = -ENOMEM;
151 			return NULL;
152 		}
153 	}
154 
155 	info->event = event;
156 	info->dev = dev;
157 	info->seg = pci_domain_nr(dev->bus);
158 	info->level = level;
159 	if (event == BUS_NOTIFY_ADD_DEVICE) {
160 		for (tmp = dev; tmp; tmp = tmp->bus->self) {
161 			level--;
162 			info->path[level].bus = tmp->bus->number;
163 			info->path[level].device = PCI_SLOT(tmp->devfn);
164 			info->path[level].function = PCI_FUNC(tmp->devfn);
165 			if (pci_is_root_bus(tmp->bus))
166 				info->bus = tmp->bus->number;
167 		}
168 	}
169 
170 	return info;
171 }
172 
173 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
174 {
175 	if ((void *)info != dmar_pci_notify_info_buf)
176 		kfree(info);
177 }
178 
179 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
180 				struct acpi_dmar_pci_path *path, int count)
181 {
182 	int i;
183 
184 	if (info->bus != bus)
185 		goto fallback;
186 	if (info->level != count)
187 		goto fallback;
188 
189 	for (i = 0; i < count; i++) {
190 		if (path[i].device != info->path[i].device ||
191 		    path[i].function != info->path[i].function)
192 			goto fallback;
193 	}
194 
195 	return true;
196 
197 fallback:
198 
199 	if (count != 1)
200 		return false;
201 
202 	i = info->level - 1;
203 	if (bus              == info->path[i].bus &&
204 	    path[0].device   == info->path[i].device &&
205 	    path[0].function == info->path[i].function) {
206 		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
207 			bus, path[0].device, path[0].function);
208 		return true;
209 	}
210 
211 	return false;
212 }
213 
214 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
215 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
216 			  void *start, void*end, u16 segment,
217 			  struct dmar_dev_scope *devices,
218 			  int devices_cnt)
219 {
220 	int i, level;
221 	struct device *tmp, *dev = &info->dev->dev;
222 	struct acpi_dmar_device_scope *scope;
223 	struct acpi_dmar_pci_path *path;
224 
225 	if (segment != info->seg)
226 		return 0;
227 
228 	for (; start < end; start += scope->length) {
229 		scope = start;
230 		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
231 		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
232 			continue;
233 
234 		path = (struct acpi_dmar_pci_path *)(scope + 1);
235 		level = (scope->length - sizeof(*scope)) / sizeof(*path);
236 		if (!dmar_match_pci_path(info, scope->bus, path, level))
237 			continue;
238 
239 		/*
240 		 * We expect devices with endpoint scope to have normal PCI
241 		 * headers, and devices with bridge scope to have bridge PCI
242 		 * headers.  However PCI NTB devices may be listed in the
243 		 * DMAR table with bridge scope, even though they have a
244 		 * normal PCI header.  NTB devices are identified by class
245 		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
246 		 * for this special case.
247 		 */
248 		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
249 		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
250 		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
251 		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
252 		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
253 			pr_warn("Device scope type does not match for %s\n",
254 				pci_name(info->dev));
255 			return -EINVAL;
256 		}
257 
258 		for_each_dev_scope(devices, devices_cnt, i, tmp)
259 			if (tmp == NULL) {
260 				devices[i].bus = info->dev->bus->number;
261 				devices[i].devfn = info->dev->devfn;
262 				rcu_assign_pointer(devices[i].dev,
263 						   get_device(dev));
264 				return 1;
265 			}
266 		BUG_ON(i >= devices_cnt);
267 	}
268 
269 	return 0;
270 }
271 
272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
273 			  struct dmar_dev_scope *devices, int count)
274 {
275 	int index;
276 	struct device *tmp;
277 
278 	if (info->seg != segment)
279 		return 0;
280 
281 	for_each_active_dev_scope(devices, count, index, tmp)
282 		if (tmp == &info->dev->dev) {
283 			RCU_INIT_POINTER(devices[index].dev, NULL);
284 			synchronize_rcu();
285 			put_device(tmp);
286 			return 1;
287 		}
288 
289 	return 0;
290 }
291 
292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
293 {
294 	int ret = 0;
295 	struct dmar_drhd_unit *dmaru;
296 	struct acpi_dmar_hardware_unit *drhd;
297 
298 	for_each_drhd_unit(dmaru) {
299 		if (dmaru->include_all)
300 			continue;
301 
302 		drhd = container_of(dmaru->hdr,
303 				    struct acpi_dmar_hardware_unit, header);
304 		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
305 				((void *)drhd) + drhd->header.length,
306 				dmaru->segment,
307 				dmaru->devices, dmaru->devices_cnt);
308 		if (ret)
309 			break;
310 	}
311 	if (ret >= 0)
312 		ret = dmar_iommu_notify_scope_dev(info);
313 	if (ret < 0 && dmar_dev_scope_status == 0)
314 		dmar_dev_scope_status = ret;
315 
316 	if (ret >= 0)
317 		intel_irq_remap_add_device(info);
318 
319 	return ret;
320 }
321 
322 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323 {
324 	struct dmar_drhd_unit *dmaru;
325 
326 	for_each_drhd_unit(dmaru)
327 		if (dmar_remove_dev_scope(info, dmaru->segment,
328 			dmaru->devices, dmaru->devices_cnt))
329 			break;
330 	dmar_iommu_notify_scope_dev(info);
331 }
332 
333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
334 {
335 	struct pci_dev *physfn = pci_physfn(pdev);
336 
337 	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
338 }
339 
340 static int dmar_pci_bus_notifier(struct notifier_block *nb,
341 				 unsigned long action, void *data)
342 {
343 	struct pci_dev *pdev = to_pci_dev(data);
344 	struct dmar_pci_notify_info *info;
345 
346 	/* Only care about add/remove events for physical functions.
347 	 * For VFs we actually do the lookup based on the corresponding
348 	 * PF in device_to_iommu() anyway. */
349 	if (pdev->is_virtfn) {
350 		/*
351 		 * Ensure that the VF device inherits the irq domain of the
352 		 * PF device. Ideally the device would inherit the domain
353 		 * from the bus, but DMAR can have multiple units per bus
354 		 * which makes this impossible. The VF 'bus' could inherit
355 		 * from the PF device, but that's yet another x86'sism to
356 		 * inflict on everybody else.
357 		 */
358 		if (action == BUS_NOTIFY_ADD_DEVICE)
359 			vf_inherit_msi_domain(pdev);
360 		return NOTIFY_DONE;
361 	}
362 
363 	if (action != BUS_NOTIFY_ADD_DEVICE &&
364 	    action != BUS_NOTIFY_REMOVED_DEVICE)
365 		return NOTIFY_DONE;
366 
367 	info = dmar_alloc_pci_notify_info(pdev, action);
368 	if (!info)
369 		return NOTIFY_DONE;
370 
371 	down_write(&dmar_global_lock);
372 	if (action == BUS_NOTIFY_ADD_DEVICE)
373 		dmar_pci_bus_add_dev(info);
374 	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
375 		dmar_pci_bus_del_dev(info);
376 	up_write(&dmar_global_lock);
377 
378 	dmar_free_pci_notify_info(info);
379 
380 	return NOTIFY_OK;
381 }
382 
383 static struct notifier_block dmar_pci_bus_nb = {
384 	.notifier_call = dmar_pci_bus_notifier,
385 	.priority = 1,
386 };
387 
388 static struct dmar_drhd_unit *
389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
390 {
391 	struct dmar_drhd_unit *dmaru;
392 
393 	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
394 				dmar_rcu_check())
395 		if (dmaru->segment == drhd->segment &&
396 		    dmaru->reg_base_addr == drhd->address)
397 			return dmaru;
398 
399 	return NULL;
400 }
401 
402 /*
403  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
404  * structure which uniquely represent one DMA remapping hardware unit
405  * present in the platform
406  */
407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
408 {
409 	struct acpi_dmar_hardware_unit *drhd;
410 	struct dmar_drhd_unit *dmaru;
411 	int ret;
412 
413 	drhd = (struct acpi_dmar_hardware_unit *)header;
414 	dmaru = dmar_find_dmaru(drhd);
415 	if (dmaru)
416 		goto out;
417 
418 	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
419 	if (!dmaru)
420 		return -ENOMEM;
421 
422 	/*
423 	 * If header is allocated from slab by ACPI _DSM method, we need to
424 	 * copy the content because the memory buffer will be freed on return.
425 	 */
426 	dmaru->hdr = (void *)(dmaru + 1);
427 	memcpy(dmaru->hdr, header, header->length);
428 	dmaru->reg_base_addr = drhd->address;
429 	dmaru->segment = drhd->segment;
430 	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
431 	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
432 					      ((void *)drhd) + drhd->header.length,
433 					      &dmaru->devices_cnt);
434 	if (dmaru->devices_cnt && dmaru->devices == NULL) {
435 		kfree(dmaru);
436 		return -ENOMEM;
437 	}
438 
439 	ret = alloc_iommu(dmaru);
440 	if (ret) {
441 		dmar_free_dev_scope(&dmaru->devices,
442 				    &dmaru->devices_cnt);
443 		kfree(dmaru);
444 		return ret;
445 	}
446 	dmar_register_drhd_unit(dmaru);
447 
448 out:
449 	if (arg)
450 		(*(int *)arg)++;
451 
452 	return 0;
453 }
454 
455 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
456 {
457 	if (dmaru->devices && dmaru->devices_cnt)
458 		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
459 	if (dmaru->iommu)
460 		free_iommu(dmaru->iommu);
461 	kfree(dmaru);
462 }
463 
464 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
465 				      void *arg)
466 {
467 	struct acpi_dmar_andd *andd = (void *)header;
468 
469 	/* Check for NUL termination within the designated length */
470 	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
471 		pr_warn(FW_BUG
472 			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
473 			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
474 			   dmi_get_system_info(DMI_BIOS_VENDOR),
475 			   dmi_get_system_info(DMI_BIOS_VERSION),
476 			   dmi_get_system_info(DMI_PRODUCT_VERSION));
477 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
478 		return -EINVAL;
479 	}
480 	pr_info("ANDD device: %x name: %s\n", andd->device_number,
481 		andd->device_name);
482 
483 	return 0;
484 }
485 
486 #ifdef CONFIG_ACPI_NUMA
487 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
488 {
489 	struct acpi_dmar_rhsa *rhsa;
490 	struct dmar_drhd_unit *drhd;
491 
492 	rhsa = (struct acpi_dmar_rhsa *)header;
493 	for_each_drhd_unit(drhd) {
494 		if (drhd->reg_base_addr == rhsa->base_address) {
495 			int node = pxm_to_node(rhsa->proximity_domain);
496 
497 			if (!node_online(node))
498 				node = NUMA_NO_NODE;
499 			drhd->iommu->node = node;
500 			return 0;
501 		}
502 	}
503 	pr_warn(FW_BUG
504 		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
505 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
506 		rhsa->base_address,
507 		dmi_get_system_info(DMI_BIOS_VENDOR),
508 		dmi_get_system_info(DMI_BIOS_VERSION),
509 		dmi_get_system_info(DMI_PRODUCT_VERSION));
510 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
511 
512 	return 0;
513 }
514 #else
515 #define	dmar_parse_one_rhsa		dmar_res_noop
516 #endif
517 
518 static void
519 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
520 {
521 	struct acpi_dmar_hardware_unit *drhd;
522 	struct acpi_dmar_reserved_memory *rmrr;
523 	struct acpi_dmar_atsr *atsr;
524 	struct acpi_dmar_rhsa *rhsa;
525 	struct acpi_dmar_satc *satc;
526 
527 	switch (header->type) {
528 	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
529 		drhd = container_of(header, struct acpi_dmar_hardware_unit,
530 				    header);
531 		pr_info("DRHD base: %#016Lx flags: %#x\n",
532 			(unsigned long long)drhd->address, drhd->flags);
533 		break;
534 	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
535 		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
536 				    header);
537 		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
538 			(unsigned long long)rmrr->base_address,
539 			(unsigned long long)rmrr->end_address);
540 		break;
541 	case ACPI_DMAR_TYPE_ROOT_ATS:
542 		atsr = container_of(header, struct acpi_dmar_atsr, header);
543 		pr_info("ATSR flags: %#x\n", atsr->flags);
544 		break;
545 	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
546 		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
547 		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
548 		       (unsigned long long)rhsa->base_address,
549 		       rhsa->proximity_domain);
550 		break;
551 	case ACPI_DMAR_TYPE_NAMESPACE:
552 		/* We don't print this here because we need to sanity-check
553 		   it first. So print it in dmar_parse_one_andd() instead. */
554 		break;
555 	case ACPI_DMAR_TYPE_SATC:
556 		satc = container_of(header, struct acpi_dmar_satc, header);
557 		pr_info("SATC flags: 0x%x\n", satc->flags);
558 		break;
559 	}
560 }
561 
562 /**
563  * dmar_table_detect - checks to see if the platform supports DMAR devices
564  */
565 static int __init dmar_table_detect(void)
566 {
567 	acpi_status status = AE_OK;
568 
569 	/* if we could find DMAR table, then there are DMAR devices */
570 	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
571 
572 	if (ACPI_SUCCESS(status) && !dmar_tbl) {
573 		pr_warn("Unable to map DMAR\n");
574 		status = AE_NOT_FOUND;
575 	}
576 
577 	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
578 }
579 
580 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
581 				       size_t len, struct dmar_res_callback *cb)
582 {
583 	struct acpi_dmar_header *iter, *next;
584 	struct acpi_dmar_header *end = ((void *)start) + len;
585 
586 	for (iter = start; iter < end; iter = next) {
587 		next = (void *)iter + iter->length;
588 		if (iter->length == 0) {
589 			/* Avoid looping forever on bad ACPI tables */
590 			pr_debug(FW_BUG "Invalid 0-length structure\n");
591 			break;
592 		} else if (next > end) {
593 			/* Avoid passing table end */
594 			pr_warn(FW_BUG "Record passes table end\n");
595 			return -EINVAL;
596 		}
597 
598 		if (cb->print_entry)
599 			dmar_table_print_dmar_entry(iter);
600 
601 		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
602 			/* continue for forward compatibility */
603 			pr_debug("Unknown DMAR structure type %d\n",
604 				 iter->type);
605 		} else if (cb->cb[iter->type]) {
606 			int ret;
607 
608 			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
609 			if (ret)
610 				return ret;
611 		} else if (!cb->ignore_unhandled) {
612 			pr_warn("No handler for DMAR structure type %d\n",
613 				iter->type);
614 			return -EINVAL;
615 		}
616 	}
617 
618 	return 0;
619 }
620 
621 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
622 				       struct dmar_res_callback *cb)
623 {
624 	return dmar_walk_remapping_entries((void *)(dmar + 1),
625 			dmar->header.length - sizeof(*dmar), cb);
626 }
627 
628 /**
629  * parse_dmar_table - parses the DMA reporting table
630  */
631 static int __init
632 parse_dmar_table(void)
633 {
634 	struct acpi_table_dmar *dmar;
635 	int drhd_count = 0;
636 	int ret;
637 	struct dmar_res_callback cb = {
638 		.print_entry = true,
639 		.ignore_unhandled = true,
640 		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
641 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
642 		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
643 		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
644 		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
645 		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
646 		.cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
647 	};
648 
649 	/*
650 	 * Do it again, earlier dmar_tbl mapping could be mapped with
651 	 * fixed map.
652 	 */
653 	dmar_table_detect();
654 
655 	/*
656 	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
657 	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
658 	 */
659 	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
660 
661 	dmar = (struct acpi_table_dmar *)dmar_tbl;
662 	if (!dmar)
663 		return -ENODEV;
664 
665 	if (dmar->width < PAGE_SHIFT - 1) {
666 		pr_warn("Invalid DMAR haw\n");
667 		return -EINVAL;
668 	}
669 
670 	pr_info("Host address width %d\n", dmar->width + 1);
671 	ret = dmar_walk_dmar_table(dmar, &cb);
672 	if (ret == 0 && drhd_count == 0)
673 		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
674 
675 	return ret;
676 }
677 
678 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
679 				 int cnt, struct pci_dev *dev)
680 {
681 	int index;
682 	struct device *tmp;
683 
684 	while (dev) {
685 		for_each_active_dev_scope(devices, cnt, index, tmp)
686 			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
687 				return 1;
688 
689 		/* Check our parent */
690 		dev = dev->bus->self;
691 	}
692 
693 	return 0;
694 }
695 
696 struct dmar_drhd_unit *
697 dmar_find_matched_drhd_unit(struct pci_dev *dev)
698 {
699 	struct dmar_drhd_unit *dmaru;
700 	struct acpi_dmar_hardware_unit *drhd;
701 
702 	dev = pci_physfn(dev);
703 
704 	rcu_read_lock();
705 	for_each_drhd_unit(dmaru) {
706 		drhd = container_of(dmaru->hdr,
707 				    struct acpi_dmar_hardware_unit,
708 				    header);
709 
710 		if (dmaru->include_all &&
711 		    drhd->segment == pci_domain_nr(dev->bus))
712 			goto out;
713 
714 		if (dmar_pci_device_match(dmaru->devices,
715 					  dmaru->devices_cnt, dev))
716 			goto out;
717 	}
718 	dmaru = NULL;
719 out:
720 	rcu_read_unlock();
721 
722 	return dmaru;
723 }
724 
725 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
726 					      struct acpi_device *adev)
727 {
728 	struct dmar_drhd_unit *dmaru;
729 	struct acpi_dmar_hardware_unit *drhd;
730 	struct acpi_dmar_device_scope *scope;
731 	struct device *tmp;
732 	int i;
733 	struct acpi_dmar_pci_path *path;
734 
735 	for_each_drhd_unit(dmaru) {
736 		drhd = container_of(dmaru->hdr,
737 				    struct acpi_dmar_hardware_unit,
738 				    header);
739 
740 		for (scope = (void *)(drhd + 1);
741 		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
742 		     scope = ((void *)scope) + scope->length) {
743 			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
744 				continue;
745 			if (scope->enumeration_id != device_number)
746 				continue;
747 
748 			path = (void *)(scope + 1);
749 			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
750 				dev_name(&adev->dev), dmaru->reg_base_addr,
751 				scope->bus, path->device, path->function);
752 			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
753 				if (tmp == NULL) {
754 					dmaru->devices[i].bus = scope->bus;
755 					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
756 									    path->function);
757 					rcu_assign_pointer(dmaru->devices[i].dev,
758 							   get_device(&adev->dev));
759 					return;
760 				}
761 			BUG_ON(i >= dmaru->devices_cnt);
762 		}
763 	}
764 	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
765 		device_number, dev_name(&adev->dev));
766 }
767 
768 static int __init dmar_acpi_dev_scope_init(void)
769 {
770 	struct acpi_dmar_andd *andd;
771 
772 	if (dmar_tbl == NULL)
773 		return -ENODEV;
774 
775 	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
776 	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
777 	     andd = ((void *)andd) + andd->header.length) {
778 		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
779 			acpi_handle h;
780 			struct acpi_device *adev;
781 
782 			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
783 							  andd->device_name,
784 							  &h))) {
785 				pr_err("Failed to find handle for ACPI object %s\n",
786 				       andd->device_name);
787 				continue;
788 			}
789 			adev = acpi_fetch_acpi_dev(h);
790 			if (!adev) {
791 				pr_err("Failed to get device for ACPI object %s\n",
792 				       andd->device_name);
793 				continue;
794 			}
795 			dmar_acpi_insert_dev_scope(andd->device_number, adev);
796 		}
797 	}
798 	return 0;
799 }
800 
801 int __init dmar_dev_scope_init(void)
802 {
803 	struct pci_dev *dev = NULL;
804 	struct dmar_pci_notify_info *info;
805 
806 	if (dmar_dev_scope_status != 1)
807 		return dmar_dev_scope_status;
808 
809 	if (list_empty(&dmar_drhd_units)) {
810 		dmar_dev_scope_status = -ENODEV;
811 	} else {
812 		dmar_dev_scope_status = 0;
813 
814 		dmar_acpi_dev_scope_init();
815 
816 		for_each_pci_dev(dev) {
817 			if (dev->is_virtfn)
818 				continue;
819 
820 			info = dmar_alloc_pci_notify_info(dev,
821 					BUS_NOTIFY_ADD_DEVICE);
822 			if (!info) {
823 				return dmar_dev_scope_status;
824 			} else {
825 				dmar_pci_bus_add_dev(info);
826 				dmar_free_pci_notify_info(info);
827 			}
828 		}
829 	}
830 
831 	return dmar_dev_scope_status;
832 }
833 
834 void __init dmar_register_bus_notifier(void)
835 {
836 	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
837 }
838 
839 
840 int __init dmar_table_init(void)
841 {
842 	static int dmar_table_initialized;
843 	int ret;
844 
845 	if (dmar_table_initialized == 0) {
846 		ret = parse_dmar_table();
847 		if (ret < 0) {
848 			if (ret != -ENODEV)
849 				pr_info("Parse DMAR table failure.\n");
850 		} else  if (list_empty(&dmar_drhd_units)) {
851 			pr_info("No DMAR devices found\n");
852 			ret = -ENODEV;
853 		}
854 
855 		if (ret < 0)
856 			dmar_table_initialized = ret;
857 		else
858 			dmar_table_initialized = 1;
859 	}
860 
861 	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
862 }
863 
864 static void warn_invalid_dmar(u64 addr, const char *message)
865 {
866 	pr_warn_once(FW_BUG
867 		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
868 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
869 		addr, message,
870 		dmi_get_system_info(DMI_BIOS_VENDOR),
871 		dmi_get_system_info(DMI_BIOS_VERSION),
872 		dmi_get_system_info(DMI_PRODUCT_VERSION));
873 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
874 }
875 
876 static int __ref
877 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
878 {
879 	struct acpi_dmar_hardware_unit *drhd;
880 	void __iomem *addr;
881 	u64 cap, ecap;
882 
883 	drhd = (void *)entry;
884 	if (!drhd->address) {
885 		warn_invalid_dmar(0, "");
886 		return -EINVAL;
887 	}
888 
889 	if (arg)
890 		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
891 	else
892 		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
893 	if (!addr) {
894 		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
895 		return -EINVAL;
896 	}
897 
898 	cap = dmar_readq(addr + DMAR_CAP_REG);
899 	ecap = dmar_readq(addr + DMAR_ECAP_REG);
900 
901 	if (arg)
902 		iounmap(addr);
903 	else
904 		early_iounmap(addr, VTD_PAGE_SIZE);
905 
906 	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
907 		warn_invalid_dmar(drhd->address, " returns all ones");
908 		return -EINVAL;
909 	}
910 
911 	return 0;
912 }
913 
914 void __init detect_intel_iommu(void)
915 {
916 	int ret;
917 	struct dmar_res_callback validate_drhd_cb = {
918 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
919 		.ignore_unhandled = true,
920 	};
921 
922 	down_write(&dmar_global_lock);
923 	ret = dmar_table_detect();
924 	if (!ret)
925 		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
926 					   &validate_drhd_cb);
927 	if (!ret && !no_iommu && !iommu_detected &&
928 	    (!dmar_disabled || dmar_platform_optin())) {
929 		iommu_detected = 1;
930 		/* Make sure ACS will be enabled */
931 		pci_request_acs();
932 	}
933 
934 #ifdef CONFIG_X86
935 	if (!ret) {
936 		x86_init.iommu.iommu_init = intel_iommu_init;
937 		x86_platform.iommu_shutdown = intel_iommu_shutdown;
938 	}
939 
940 #endif
941 
942 	if (dmar_tbl) {
943 		acpi_put_table(dmar_tbl);
944 		dmar_tbl = NULL;
945 	}
946 	up_write(&dmar_global_lock);
947 }
948 
949 static void unmap_iommu(struct intel_iommu *iommu)
950 {
951 	iounmap(iommu->reg);
952 	release_mem_region(iommu->reg_phys, iommu->reg_size);
953 }
954 
955 /**
956  * map_iommu: map the iommu's registers
957  * @iommu: the iommu to map
958  * @phys_addr: the physical address of the base resgister
959  *
960  * Memory map the iommu's registers.  Start w/ a single page, and
961  * possibly expand if that turns out to be insufficent.
962  */
963 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
964 {
965 	int map_size, err=0;
966 
967 	iommu->reg_phys = phys_addr;
968 	iommu->reg_size = VTD_PAGE_SIZE;
969 
970 	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
971 		pr_err("Can't reserve memory\n");
972 		err = -EBUSY;
973 		goto out;
974 	}
975 
976 	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
977 	if (!iommu->reg) {
978 		pr_err("Can't map the region\n");
979 		err = -ENOMEM;
980 		goto release;
981 	}
982 
983 	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
984 	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
985 
986 	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
987 		err = -EINVAL;
988 		warn_invalid_dmar(phys_addr, " returns all ones");
989 		goto unmap;
990 	}
991 	if (ecap_vcs(iommu->ecap))
992 		iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
993 
994 	/* the registers might be more than one page */
995 	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
996 			 cap_max_fault_reg_offset(iommu->cap));
997 	map_size = VTD_PAGE_ALIGN(map_size);
998 	if (map_size > iommu->reg_size) {
999 		iounmap(iommu->reg);
1000 		release_mem_region(iommu->reg_phys, iommu->reg_size);
1001 		iommu->reg_size = map_size;
1002 		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1003 					iommu->name)) {
1004 			pr_err("Can't reserve memory\n");
1005 			err = -EBUSY;
1006 			goto out;
1007 		}
1008 		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1009 		if (!iommu->reg) {
1010 			pr_err("Can't map the region\n");
1011 			err = -ENOMEM;
1012 			goto release;
1013 		}
1014 	}
1015 	err = 0;
1016 	goto out;
1017 
1018 unmap:
1019 	iounmap(iommu->reg);
1020 release:
1021 	release_mem_region(iommu->reg_phys, iommu->reg_size);
1022 out:
1023 	return err;
1024 }
1025 
1026 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1027 {
1028 	iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1029 					    DMAR_UNITS_SUPPORTED);
1030 	if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1031 		iommu->seq_id = -1;
1032 	} else {
1033 		set_bit(iommu->seq_id, dmar_seq_ids);
1034 		sprintf(iommu->name, "dmar%d", iommu->seq_id);
1035 	}
1036 
1037 	return iommu->seq_id;
1038 }
1039 
1040 static void dmar_free_seq_id(struct intel_iommu *iommu)
1041 {
1042 	if (iommu->seq_id >= 0) {
1043 		clear_bit(iommu->seq_id, dmar_seq_ids);
1044 		iommu->seq_id = -1;
1045 	}
1046 }
1047 
1048 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1049 {
1050 	struct intel_iommu *iommu;
1051 	u32 ver, sts;
1052 	int agaw = -1;
1053 	int msagaw = -1;
1054 	int err;
1055 
1056 	if (!drhd->reg_base_addr) {
1057 		warn_invalid_dmar(0, "");
1058 		return -EINVAL;
1059 	}
1060 
1061 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1062 	if (!iommu)
1063 		return -ENOMEM;
1064 
1065 	if (dmar_alloc_seq_id(iommu) < 0) {
1066 		pr_err("Failed to allocate seq_id\n");
1067 		err = -ENOSPC;
1068 		goto error;
1069 	}
1070 
1071 	err = map_iommu(iommu, drhd->reg_base_addr);
1072 	if (err) {
1073 		pr_err("Failed to map %s\n", iommu->name);
1074 		goto error_free_seq_id;
1075 	}
1076 
1077 	err = -EINVAL;
1078 	if (cap_sagaw(iommu->cap) == 0) {
1079 		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1080 			iommu->name);
1081 		drhd->ignored = 1;
1082 	}
1083 
1084 	if (!drhd->ignored) {
1085 		agaw = iommu_calculate_agaw(iommu);
1086 		if (agaw < 0) {
1087 			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1088 			       iommu->seq_id);
1089 			drhd->ignored = 1;
1090 		}
1091 	}
1092 	if (!drhd->ignored) {
1093 		msagaw = iommu_calculate_max_sagaw(iommu);
1094 		if (msagaw < 0) {
1095 			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1096 			       iommu->seq_id);
1097 			drhd->ignored = 1;
1098 			agaw = -1;
1099 		}
1100 	}
1101 	iommu->agaw = agaw;
1102 	iommu->msagaw = msagaw;
1103 	iommu->segment = drhd->segment;
1104 
1105 	iommu->node = NUMA_NO_NODE;
1106 
1107 	ver = readl(iommu->reg + DMAR_VER_REG);
1108 	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1109 		iommu->name,
1110 		(unsigned long long)drhd->reg_base_addr,
1111 		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1112 		(unsigned long long)iommu->cap,
1113 		(unsigned long long)iommu->ecap);
1114 
1115 	/* Reflect status in gcmd */
1116 	sts = readl(iommu->reg + DMAR_GSTS_REG);
1117 	if (sts & DMA_GSTS_IRES)
1118 		iommu->gcmd |= DMA_GCMD_IRE;
1119 	if (sts & DMA_GSTS_TES)
1120 		iommu->gcmd |= DMA_GCMD_TE;
1121 	if (sts & DMA_GSTS_QIES)
1122 		iommu->gcmd |= DMA_GCMD_QIE;
1123 
1124 	raw_spin_lock_init(&iommu->register_lock);
1125 
1126 	/*
1127 	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1128 	 * be set yet. When intel_iommu_init() runs, it registers the units
1129 	 * present at boot time, then sets intel_iommu_enabled.
1130 	 */
1131 	if (intel_iommu_enabled && !drhd->ignored) {
1132 		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1133 					     intel_iommu_groups,
1134 					     "%s", iommu->name);
1135 		if (err)
1136 			goto err_unmap;
1137 
1138 		err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1139 		if (err)
1140 			goto err_sysfs;
1141 	}
1142 
1143 	drhd->iommu = iommu;
1144 	iommu->drhd = drhd;
1145 
1146 	return 0;
1147 
1148 err_sysfs:
1149 	iommu_device_sysfs_remove(&iommu->iommu);
1150 err_unmap:
1151 	unmap_iommu(iommu);
1152 error_free_seq_id:
1153 	dmar_free_seq_id(iommu);
1154 error:
1155 	kfree(iommu);
1156 	return err;
1157 }
1158 
1159 static void free_iommu(struct intel_iommu *iommu)
1160 {
1161 	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1162 		iommu_device_unregister(&iommu->iommu);
1163 		iommu_device_sysfs_remove(&iommu->iommu);
1164 	}
1165 
1166 	if (iommu->irq) {
1167 		if (iommu->pr_irq) {
1168 			free_irq(iommu->pr_irq, iommu);
1169 			dmar_free_hwirq(iommu->pr_irq);
1170 			iommu->pr_irq = 0;
1171 		}
1172 		free_irq(iommu->irq, iommu);
1173 		dmar_free_hwirq(iommu->irq);
1174 		iommu->irq = 0;
1175 	}
1176 
1177 	if (iommu->qi) {
1178 		free_page((unsigned long)iommu->qi->desc);
1179 		kfree(iommu->qi->desc_status);
1180 		kfree(iommu->qi);
1181 	}
1182 
1183 	if (iommu->reg)
1184 		unmap_iommu(iommu);
1185 
1186 	dmar_free_seq_id(iommu);
1187 	kfree(iommu);
1188 }
1189 
1190 /*
1191  * Reclaim all the submitted descriptors which have completed its work.
1192  */
1193 static inline void reclaim_free_desc(struct q_inval *qi)
1194 {
1195 	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1196 	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1197 		qi->desc_status[qi->free_tail] = QI_FREE;
1198 		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1199 		qi->free_cnt++;
1200 	}
1201 }
1202 
1203 static const char *qi_type_string(u8 type)
1204 {
1205 	switch (type) {
1206 	case QI_CC_TYPE:
1207 		return "Context-cache Invalidation";
1208 	case QI_IOTLB_TYPE:
1209 		return "IOTLB Invalidation";
1210 	case QI_DIOTLB_TYPE:
1211 		return "Device-TLB Invalidation";
1212 	case QI_IEC_TYPE:
1213 		return "Interrupt Entry Cache Invalidation";
1214 	case QI_IWD_TYPE:
1215 		return "Invalidation Wait";
1216 	case QI_EIOTLB_TYPE:
1217 		return "PASID-based IOTLB Invalidation";
1218 	case QI_PC_TYPE:
1219 		return "PASID-cache Invalidation";
1220 	case QI_DEIOTLB_TYPE:
1221 		return "PASID-based Device-TLB Invalidation";
1222 	case QI_PGRP_RESP_TYPE:
1223 		return "Page Group Response";
1224 	default:
1225 		return "UNKNOWN";
1226 	}
1227 }
1228 
1229 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1230 {
1231 	unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1232 	u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1233 	struct qi_desc *desc = iommu->qi->desc + head;
1234 
1235 	if (fault & DMA_FSTS_IQE)
1236 		pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1237 		       DMAR_IQER_REG_IQEI(iqe_err));
1238 	if (fault & DMA_FSTS_ITE)
1239 		pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1240 		       DMAR_IQER_REG_ITESID(iqe_err));
1241 	if (fault & DMA_FSTS_ICE)
1242 		pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1243 		       DMAR_IQER_REG_ICESID(iqe_err));
1244 
1245 	pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1246 	       qi_type_string(desc->qw0 & 0xf),
1247 	       (unsigned long long)desc->qw0,
1248 	       (unsigned long long)desc->qw1);
1249 
1250 	head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1251 	head <<= qi_shift(iommu);
1252 	desc = iommu->qi->desc + head;
1253 
1254 	pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1255 	       qi_type_string(desc->qw0 & 0xf),
1256 	       (unsigned long long)desc->qw0,
1257 	       (unsigned long long)desc->qw1);
1258 }
1259 
1260 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1261 {
1262 	u32 fault;
1263 	int head, tail;
1264 	struct q_inval *qi = iommu->qi;
1265 	int shift = qi_shift(iommu);
1266 
1267 	if (qi->desc_status[wait_index] == QI_ABORT)
1268 		return -EAGAIN;
1269 
1270 	fault = readl(iommu->reg + DMAR_FSTS_REG);
1271 	if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1272 		qi_dump_fault(iommu, fault);
1273 
1274 	/*
1275 	 * If IQE happens, the head points to the descriptor associated
1276 	 * with the error. No new descriptors are fetched until the IQE
1277 	 * is cleared.
1278 	 */
1279 	if (fault & DMA_FSTS_IQE) {
1280 		head = readl(iommu->reg + DMAR_IQH_REG);
1281 		if ((head >> shift) == index) {
1282 			struct qi_desc *desc = qi->desc + head;
1283 
1284 			/*
1285 			 * desc->qw2 and desc->qw3 are either reserved or
1286 			 * used by software as private data. We won't print
1287 			 * out these two qw's for security consideration.
1288 			 */
1289 			memcpy(desc, qi->desc + (wait_index << shift),
1290 			       1 << shift);
1291 			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1292 			pr_info("Invalidation Queue Error (IQE) cleared\n");
1293 			return -EINVAL;
1294 		}
1295 	}
1296 
1297 	/*
1298 	 * If ITE happens, all pending wait_desc commands are aborted.
1299 	 * No new descriptors are fetched until the ITE is cleared.
1300 	 */
1301 	if (fault & DMA_FSTS_ITE) {
1302 		head = readl(iommu->reg + DMAR_IQH_REG);
1303 		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1304 		head |= 1;
1305 		tail = readl(iommu->reg + DMAR_IQT_REG);
1306 		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1307 
1308 		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1309 		pr_info("Invalidation Time-out Error (ITE) cleared\n");
1310 
1311 		do {
1312 			if (qi->desc_status[head] == QI_IN_USE)
1313 				qi->desc_status[head] = QI_ABORT;
1314 			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1315 		} while (head != tail);
1316 
1317 		if (qi->desc_status[wait_index] == QI_ABORT)
1318 			return -EAGAIN;
1319 	}
1320 
1321 	if (fault & DMA_FSTS_ICE) {
1322 		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1323 		pr_info("Invalidation Completion Error (ICE) cleared\n");
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /*
1330  * Function to submit invalidation descriptors of all types to the queued
1331  * invalidation interface(QI). Multiple descriptors can be submitted at a
1332  * time, a wait descriptor will be appended to each submission to ensure
1333  * hardware has completed the invalidation before return. Wait descriptors
1334  * can be part of the submission but it will not be polled for completion.
1335  */
1336 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1337 		   unsigned int count, unsigned long options)
1338 {
1339 	struct q_inval *qi = iommu->qi;
1340 	s64 devtlb_start_ktime = 0;
1341 	s64 iotlb_start_ktime = 0;
1342 	s64 iec_start_ktime = 0;
1343 	struct qi_desc wait_desc;
1344 	int wait_index, index;
1345 	unsigned long flags;
1346 	int offset, shift;
1347 	int rc, i;
1348 	u64 type;
1349 
1350 	if (!qi)
1351 		return 0;
1352 
1353 	type = desc->qw0 & GENMASK_ULL(3, 0);
1354 
1355 	if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1356 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1357 		iotlb_start_ktime = ktime_to_ns(ktime_get());
1358 
1359 	if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1360 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1361 		devtlb_start_ktime = ktime_to_ns(ktime_get());
1362 
1363 	if (type == QI_IEC_TYPE &&
1364 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1365 		iec_start_ktime = ktime_to_ns(ktime_get());
1366 
1367 restart:
1368 	rc = 0;
1369 
1370 	raw_spin_lock_irqsave(&qi->q_lock, flags);
1371 	/*
1372 	 * Check if we have enough empty slots in the queue to submit,
1373 	 * the calculation is based on:
1374 	 * # of desc + 1 wait desc + 1 space between head and tail
1375 	 */
1376 	while (qi->free_cnt < count + 2) {
1377 		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1378 		cpu_relax();
1379 		raw_spin_lock_irqsave(&qi->q_lock, flags);
1380 	}
1381 
1382 	index = qi->free_head;
1383 	wait_index = (index + count) % QI_LENGTH;
1384 	shift = qi_shift(iommu);
1385 
1386 	for (i = 0; i < count; i++) {
1387 		offset = ((index + i) % QI_LENGTH) << shift;
1388 		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1389 		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1390 		trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1391 				desc[i].qw2, desc[i].qw3);
1392 	}
1393 	qi->desc_status[wait_index] = QI_IN_USE;
1394 
1395 	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1396 			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1397 	if (options & QI_OPT_WAIT_DRAIN)
1398 		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1399 	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1400 	wait_desc.qw2 = 0;
1401 	wait_desc.qw3 = 0;
1402 
1403 	offset = wait_index << shift;
1404 	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1405 
1406 	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1407 	qi->free_cnt -= count + 1;
1408 
1409 	/*
1410 	 * update the HW tail register indicating the presence of
1411 	 * new descriptors.
1412 	 */
1413 	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1414 
1415 	while (qi->desc_status[wait_index] != QI_DONE) {
1416 		/*
1417 		 * We will leave the interrupts disabled, to prevent interrupt
1418 		 * context to queue another cmd while a cmd is already submitted
1419 		 * and waiting for completion on this cpu. This is to avoid
1420 		 * a deadlock where the interrupt context can wait indefinitely
1421 		 * for free slots in the queue.
1422 		 */
1423 		rc = qi_check_fault(iommu, index, wait_index);
1424 		if (rc)
1425 			break;
1426 
1427 		raw_spin_unlock(&qi->q_lock);
1428 		cpu_relax();
1429 		raw_spin_lock(&qi->q_lock);
1430 	}
1431 
1432 	for (i = 0; i < count; i++)
1433 		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1434 
1435 	reclaim_free_desc(qi);
1436 	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1437 
1438 	if (rc == -EAGAIN)
1439 		goto restart;
1440 
1441 	if (iotlb_start_ktime)
1442 		dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1443 				ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1444 
1445 	if (devtlb_start_ktime)
1446 		dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1447 				ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1448 
1449 	if (iec_start_ktime)
1450 		dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1451 				ktime_to_ns(ktime_get()) - iec_start_ktime);
1452 
1453 	return rc;
1454 }
1455 
1456 /*
1457  * Flush the global interrupt entry cache.
1458  */
1459 void qi_global_iec(struct intel_iommu *iommu)
1460 {
1461 	struct qi_desc desc;
1462 
1463 	desc.qw0 = QI_IEC_TYPE;
1464 	desc.qw1 = 0;
1465 	desc.qw2 = 0;
1466 	desc.qw3 = 0;
1467 
1468 	/* should never fail */
1469 	qi_submit_sync(iommu, &desc, 1, 0);
1470 }
1471 
1472 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1473 		      u64 type)
1474 {
1475 	struct qi_desc desc;
1476 
1477 	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1478 			| QI_CC_GRAN(type) | QI_CC_TYPE;
1479 	desc.qw1 = 0;
1480 	desc.qw2 = 0;
1481 	desc.qw3 = 0;
1482 
1483 	qi_submit_sync(iommu, &desc, 1, 0);
1484 }
1485 
1486 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1487 		    unsigned int size_order, u64 type)
1488 {
1489 	u8 dw = 0, dr = 0;
1490 
1491 	struct qi_desc desc;
1492 	int ih = 0;
1493 
1494 	if (cap_write_drain(iommu->cap))
1495 		dw = 1;
1496 
1497 	if (cap_read_drain(iommu->cap))
1498 		dr = 1;
1499 
1500 	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1501 		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1502 	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1503 		| QI_IOTLB_AM(size_order);
1504 	desc.qw2 = 0;
1505 	desc.qw3 = 0;
1506 
1507 	qi_submit_sync(iommu, &desc, 1, 0);
1508 }
1509 
1510 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1511 			u16 qdep, u64 addr, unsigned mask)
1512 {
1513 	struct qi_desc desc;
1514 
1515 	if (mask) {
1516 		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1517 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1518 	} else
1519 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1520 
1521 	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1522 		qdep = 0;
1523 
1524 	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1525 		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1526 	desc.qw2 = 0;
1527 	desc.qw3 = 0;
1528 
1529 	qi_submit_sync(iommu, &desc, 1, 0);
1530 }
1531 
1532 /* PASID-based IOTLB invalidation */
1533 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1534 		     unsigned long npages, bool ih)
1535 {
1536 	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1537 
1538 	/*
1539 	 * npages == -1 means a PASID-selective invalidation, otherwise,
1540 	 * a positive value for Page-selective-within-PASID invalidation.
1541 	 * 0 is not a valid input.
1542 	 */
1543 	if (WARN_ON(!npages)) {
1544 		pr_err("Invalid input npages = %ld\n", npages);
1545 		return;
1546 	}
1547 
1548 	if (npages == -1) {
1549 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1550 				QI_EIOTLB_DID(did) |
1551 				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1552 				QI_EIOTLB_TYPE;
1553 		desc.qw1 = 0;
1554 	} else {
1555 		int mask = ilog2(__roundup_pow_of_two(npages));
1556 		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1557 
1558 		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1559 			addr = ALIGN_DOWN(addr, align);
1560 
1561 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1562 				QI_EIOTLB_DID(did) |
1563 				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1564 				QI_EIOTLB_TYPE;
1565 		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1566 				QI_EIOTLB_IH(ih) |
1567 				QI_EIOTLB_AM(mask);
1568 	}
1569 
1570 	qi_submit_sync(iommu, &desc, 1, 0);
1571 }
1572 
1573 /* PASID-based device IOTLB Invalidate */
1574 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1575 			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1576 {
1577 	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1578 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1579 
1580 	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1581 		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1582 		QI_DEV_IOTLB_PFSID(pfsid);
1583 
1584 	/*
1585 	 * If S bit is 0, we only flush a single page. If S bit is set,
1586 	 * The least significant zero bit indicates the invalidation address
1587 	 * range. VT-d spec 6.5.2.6.
1588 	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1589 	 * size order = 0 is PAGE_SIZE 4KB
1590 	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1591 	 * ECAP.
1592 	 */
1593 	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1594 		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1595 				    addr, size_order);
1596 
1597 	/* Take page address */
1598 	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1599 
1600 	if (size_order) {
1601 		/*
1602 		 * Existing 0s in address below size_order may be the least
1603 		 * significant bit, we must set them to 1s to avoid having
1604 		 * smaller size than desired.
1605 		 */
1606 		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1607 					VTD_PAGE_SHIFT);
1608 		/* Clear size_order bit to indicate size */
1609 		desc.qw1 &= ~mask;
1610 		/* Set the S bit to indicate flushing more than 1 page */
1611 		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1612 	}
1613 
1614 	qi_submit_sync(iommu, &desc, 1, 0);
1615 }
1616 
1617 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1618 			  u64 granu, u32 pasid)
1619 {
1620 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1621 
1622 	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1623 			QI_PC_GRAN(granu) | QI_PC_TYPE;
1624 	qi_submit_sync(iommu, &desc, 1, 0);
1625 }
1626 
1627 /*
1628  * Disable Queued Invalidation interface.
1629  */
1630 void dmar_disable_qi(struct intel_iommu *iommu)
1631 {
1632 	unsigned long flags;
1633 	u32 sts;
1634 	cycles_t start_time = get_cycles();
1635 
1636 	if (!ecap_qis(iommu->ecap))
1637 		return;
1638 
1639 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1640 
1641 	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1642 	if (!(sts & DMA_GSTS_QIES))
1643 		goto end;
1644 
1645 	/*
1646 	 * Give a chance to HW to complete the pending invalidation requests.
1647 	 */
1648 	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1649 		readl(iommu->reg + DMAR_IQH_REG)) &&
1650 		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1651 		cpu_relax();
1652 
1653 	iommu->gcmd &= ~DMA_GCMD_QIE;
1654 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1655 
1656 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1657 		      !(sts & DMA_GSTS_QIES), sts);
1658 end:
1659 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1660 }
1661 
1662 /*
1663  * Enable queued invalidation.
1664  */
1665 static void __dmar_enable_qi(struct intel_iommu *iommu)
1666 {
1667 	u32 sts;
1668 	unsigned long flags;
1669 	struct q_inval *qi = iommu->qi;
1670 	u64 val = virt_to_phys(qi->desc);
1671 
1672 	qi->free_head = qi->free_tail = 0;
1673 	qi->free_cnt = QI_LENGTH;
1674 
1675 	/*
1676 	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1677 	 * is present.
1678 	 */
1679 	if (ecap_smts(iommu->ecap))
1680 		val |= (1 << 11) | 1;
1681 
1682 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1683 
1684 	/* write zero to the tail reg */
1685 	writel(0, iommu->reg + DMAR_IQT_REG);
1686 
1687 	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1688 
1689 	iommu->gcmd |= DMA_GCMD_QIE;
1690 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1691 
1692 	/* Make sure hardware complete it */
1693 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1694 
1695 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1696 }
1697 
1698 /*
1699  * Enable Queued Invalidation interface. This is a must to support
1700  * interrupt-remapping. Also used by DMA-remapping, which replaces
1701  * register based IOTLB invalidation.
1702  */
1703 int dmar_enable_qi(struct intel_iommu *iommu)
1704 {
1705 	struct q_inval *qi;
1706 	struct page *desc_page;
1707 
1708 	if (!ecap_qis(iommu->ecap))
1709 		return -ENOENT;
1710 
1711 	/*
1712 	 * queued invalidation is already setup and enabled.
1713 	 */
1714 	if (iommu->qi)
1715 		return 0;
1716 
1717 	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1718 	if (!iommu->qi)
1719 		return -ENOMEM;
1720 
1721 	qi = iommu->qi;
1722 
1723 	/*
1724 	 * Need two pages to accommodate 256 descriptors of 256 bits each
1725 	 * if the remapping hardware supports scalable mode translation.
1726 	 */
1727 	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1728 				     !!ecap_smts(iommu->ecap));
1729 	if (!desc_page) {
1730 		kfree(qi);
1731 		iommu->qi = NULL;
1732 		return -ENOMEM;
1733 	}
1734 
1735 	qi->desc = page_address(desc_page);
1736 
1737 	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1738 	if (!qi->desc_status) {
1739 		free_page((unsigned long) qi->desc);
1740 		kfree(qi);
1741 		iommu->qi = NULL;
1742 		return -ENOMEM;
1743 	}
1744 
1745 	raw_spin_lock_init(&qi->q_lock);
1746 
1747 	__dmar_enable_qi(iommu);
1748 
1749 	return 0;
1750 }
1751 
1752 /* iommu interrupt handling. Most stuff are MSI-like. */
1753 
1754 enum faulttype {
1755 	DMA_REMAP,
1756 	INTR_REMAP,
1757 	UNKNOWN,
1758 };
1759 
1760 static const char *dma_remap_fault_reasons[] =
1761 {
1762 	"Software",
1763 	"Present bit in root entry is clear",
1764 	"Present bit in context entry is clear",
1765 	"Invalid context entry",
1766 	"Access beyond MGAW",
1767 	"PTE Write access is not set",
1768 	"PTE Read access is not set",
1769 	"Next page table ptr is invalid",
1770 	"Root table address invalid",
1771 	"Context table ptr is invalid",
1772 	"non-zero reserved fields in RTP",
1773 	"non-zero reserved fields in CTP",
1774 	"non-zero reserved fields in PTE",
1775 	"PCE for translation request specifies blocking",
1776 };
1777 
1778 static const char * const dma_remap_sm_fault_reasons[] = {
1779 	"SM: Invalid Root Table Address",
1780 	"SM: TTM 0 for request with PASID",
1781 	"SM: TTM 0 for page group request",
1782 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1783 	"SM: Error attempting to access Root Entry",
1784 	"SM: Present bit in Root Entry is clear",
1785 	"SM: Non-zero reserved field set in Root Entry",
1786 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1787 	"SM: Error attempting to access Context Entry",
1788 	"SM: Present bit in Context Entry is clear",
1789 	"SM: Non-zero reserved field set in the Context Entry",
1790 	"SM: Invalid Context Entry",
1791 	"SM: DTE field in Context Entry is clear",
1792 	"SM: PASID Enable field in Context Entry is clear",
1793 	"SM: PASID is larger than the max in Context Entry",
1794 	"SM: PRE field in Context-Entry is clear",
1795 	"SM: RID_PASID field error in Context-Entry",
1796 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1797 	"SM: Error attempting to access the PASID Directory Entry",
1798 	"SM: Present bit in Directory Entry is clear",
1799 	"SM: Non-zero reserved field set in PASID Directory Entry",
1800 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1801 	"SM: Error attempting to access PASID Table Entry",
1802 	"SM: Present bit in PASID Table Entry is clear",
1803 	"SM: Non-zero reserved field set in PASID Table Entry",
1804 	"SM: Invalid Scalable-Mode PASID Table Entry",
1805 	"SM: ERE field is clear in PASID Table Entry",
1806 	"SM: SRE field is clear in PASID Table Entry",
1807 	"Unknown", "Unknown",/* 0x5E-0x5F */
1808 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1809 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1810 	"SM: Error attempting to access first-level paging entry",
1811 	"SM: Present bit in first-level paging entry is clear",
1812 	"SM: Non-zero reserved field set in first-level paging entry",
1813 	"SM: Error attempting to access FL-PML4 entry",
1814 	"SM: First-level entry address beyond MGAW in Nested translation",
1815 	"SM: Read permission error in FL-PML4 entry in Nested translation",
1816 	"SM: Read permission error in first-level paging entry in Nested translation",
1817 	"SM: Write permission error in first-level paging entry in Nested translation",
1818 	"SM: Error attempting to access second-level paging entry",
1819 	"SM: Read/Write permission error in second-level paging entry",
1820 	"SM: Non-zero reserved field set in second-level paging entry",
1821 	"SM: Invalid second-level page table pointer",
1822 	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1823 	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1824 	"SM: Address in first-level translation is not canonical",
1825 	"SM: U/S set 0 for first-level translation with user privilege",
1826 	"SM: No execute permission for request with PASID and ER=1",
1827 	"SM: Address beyond the DMA hardware max",
1828 	"SM: Second-level entry address beyond the max",
1829 	"SM: No write permission for Write/AtomicOp request",
1830 	"SM: No read permission for Read/AtomicOp request",
1831 	"SM: Invalid address-interrupt address",
1832 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1833 	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1834 };
1835 
1836 static const char *irq_remap_fault_reasons[] =
1837 {
1838 	"Detected reserved fields in the decoded interrupt-remapped request",
1839 	"Interrupt index exceeded the interrupt-remapping table size",
1840 	"Present field in the IRTE entry is clear",
1841 	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1842 	"Detected reserved fields in the IRTE entry",
1843 	"Blocked a compatibility format interrupt request",
1844 	"Blocked an interrupt request due to source-id verification failure",
1845 };
1846 
1847 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1848 {
1849 	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1850 					ARRAY_SIZE(irq_remap_fault_reasons))) {
1851 		*fault_type = INTR_REMAP;
1852 		return irq_remap_fault_reasons[fault_reason - 0x20];
1853 	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1854 			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1855 		*fault_type = DMA_REMAP;
1856 		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1857 	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1858 		*fault_type = DMA_REMAP;
1859 		return dma_remap_fault_reasons[fault_reason];
1860 	} else {
1861 		*fault_type = UNKNOWN;
1862 		return "Unknown";
1863 	}
1864 }
1865 
1866 
1867 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1868 {
1869 	if (iommu->irq == irq)
1870 		return DMAR_FECTL_REG;
1871 	else if (iommu->pr_irq == irq)
1872 		return DMAR_PECTL_REG;
1873 	else
1874 		BUG();
1875 }
1876 
1877 void dmar_msi_unmask(struct irq_data *data)
1878 {
1879 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1880 	int reg = dmar_msi_reg(iommu, data->irq);
1881 	unsigned long flag;
1882 
1883 	/* unmask it */
1884 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1885 	writel(0, iommu->reg + reg);
1886 	/* Read a reg to force flush the post write */
1887 	readl(iommu->reg + reg);
1888 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1889 }
1890 
1891 void dmar_msi_mask(struct irq_data *data)
1892 {
1893 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1894 	int reg = dmar_msi_reg(iommu, data->irq);
1895 	unsigned long flag;
1896 
1897 	/* mask it */
1898 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1899 	writel(DMA_FECTL_IM, iommu->reg + reg);
1900 	/* Read a reg to force flush the post write */
1901 	readl(iommu->reg + reg);
1902 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1903 }
1904 
1905 void dmar_msi_write(int irq, struct msi_msg *msg)
1906 {
1907 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1908 	int reg = dmar_msi_reg(iommu, irq);
1909 	unsigned long flag;
1910 
1911 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1912 	writel(msg->data, iommu->reg + reg + 4);
1913 	writel(msg->address_lo, iommu->reg + reg + 8);
1914 	writel(msg->address_hi, iommu->reg + reg + 12);
1915 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1916 }
1917 
1918 void dmar_msi_read(int irq, struct msi_msg *msg)
1919 {
1920 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1921 	int reg = dmar_msi_reg(iommu, irq);
1922 	unsigned long flag;
1923 
1924 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1925 	msg->data = readl(iommu->reg + reg + 4);
1926 	msg->address_lo = readl(iommu->reg + reg + 8);
1927 	msg->address_hi = readl(iommu->reg + reg + 12);
1928 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1929 }
1930 
1931 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1932 		u8 fault_reason, u32 pasid, u16 source_id,
1933 		unsigned long long addr)
1934 {
1935 	const char *reason;
1936 	int fault_type;
1937 
1938 	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1939 
1940 	if (fault_type == INTR_REMAP) {
1941 		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1942 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1943 		       PCI_FUNC(source_id & 0xFF), addr >> 48,
1944 		       fault_reason, reason);
1945 
1946 		return 0;
1947 	}
1948 
1949 	if (pasid == INVALID_IOASID)
1950 		pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1951 		       type ? "DMA Read" : "DMA Write",
1952 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1953 		       PCI_FUNC(source_id & 0xFF), addr,
1954 		       fault_reason, reason);
1955 	else
1956 		pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1957 		       type ? "DMA Read" : "DMA Write", pasid,
1958 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1959 		       PCI_FUNC(source_id & 0xFF), addr,
1960 		       fault_reason, reason);
1961 
1962 	dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1963 
1964 	return 0;
1965 }
1966 
1967 #define PRIMARY_FAULT_REG_LEN (16)
1968 irqreturn_t dmar_fault(int irq, void *dev_id)
1969 {
1970 	struct intel_iommu *iommu = dev_id;
1971 	int reg, fault_index;
1972 	u32 fault_status;
1973 	unsigned long flag;
1974 	static DEFINE_RATELIMIT_STATE(rs,
1975 				      DEFAULT_RATELIMIT_INTERVAL,
1976 				      DEFAULT_RATELIMIT_BURST);
1977 
1978 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1979 	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1980 	if (fault_status && __ratelimit(&rs))
1981 		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1982 
1983 	/* TBD: ignore advanced fault log currently */
1984 	if (!(fault_status & DMA_FSTS_PPF))
1985 		goto unlock_exit;
1986 
1987 	fault_index = dma_fsts_fault_record_index(fault_status);
1988 	reg = cap_fault_reg_offset(iommu->cap);
1989 	while (1) {
1990 		/* Disable printing, simply clear the fault when ratelimited */
1991 		bool ratelimited = !__ratelimit(&rs);
1992 		u8 fault_reason;
1993 		u16 source_id;
1994 		u64 guest_addr;
1995 		u32 pasid;
1996 		int type;
1997 		u32 data;
1998 		bool pasid_present;
1999 
2000 		/* highest 32 bits */
2001 		data = readl(iommu->reg + reg +
2002 				fault_index * PRIMARY_FAULT_REG_LEN + 12);
2003 		if (!(data & DMA_FRCD_F))
2004 			break;
2005 
2006 		if (!ratelimited) {
2007 			fault_reason = dma_frcd_fault_reason(data);
2008 			type = dma_frcd_type(data);
2009 
2010 			pasid = dma_frcd_pasid_value(data);
2011 			data = readl(iommu->reg + reg +
2012 				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
2013 			source_id = dma_frcd_source_id(data);
2014 
2015 			pasid_present = dma_frcd_pasid_present(data);
2016 			guest_addr = dmar_readq(iommu->reg + reg +
2017 					fault_index * PRIMARY_FAULT_REG_LEN);
2018 			guest_addr = dma_frcd_page_addr(guest_addr);
2019 		}
2020 
2021 		/* clear the fault */
2022 		writel(DMA_FRCD_F, iommu->reg + reg +
2023 			fault_index * PRIMARY_FAULT_REG_LEN + 12);
2024 
2025 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2026 
2027 		if (!ratelimited)
2028 			/* Using pasid -1 if pasid is not present */
2029 			dmar_fault_do_one(iommu, type, fault_reason,
2030 					  pasid_present ? pasid : INVALID_IOASID,
2031 					  source_id, guest_addr);
2032 
2033 		fault_index++;
2034 		if (fault_index >= cap_num_fault_regs(iommu->cap))
2035 			fault_index = 0;
2036 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2037 	}
2038 
2039 	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2040 	       iommu->reg + DMAR_FSTS_REG);
2041 
2042 unlock_exit:
2043 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2044 	return IRQ_HANDLED;
2045 }
2046 
2047 int dmar_set_interrupt(struct intel_iommu *iommu)
2048 {
2049 	int irq, ret;
2050 
2051 	/*
2052 	 * Check if the fault interrupt is already initialized.
2053 	 */
2054 	if (iommu->irq)
2055 		return 0;
2056 
2057 	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2058 	if (irq > 0) {
2059 		iommu->irq = irq;
2060 	} else {
2061 		pr_err("No free IRQ vectors\n");
2062 		return -EINVAL;
2063 	}
2064 
2065 	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2066 	if (ret)
2067 		pr_err("Can't request irq\n");
2068 	return ret;
2069 }
2070 
2071 int __init enable_drhd_fault_handling(void)
2072 {
2073 	struct dmar_drhd_unit *drhd;
2074 	struct intel_iommu *iommu;
2075 
2076 	/*
2077 	 * Enable fault control interrupt.
2078 	 */
2079 	for_each_iommu(iommu, drhd) {
2080 		u32 fault_status;
2081 		int ret = dmar_set_interrupt(iommu);
2082 
2083 		if (ret) {
2084 			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2085 			       (unsigned long long)drhd->reg_base_addr, ret);
2086 			return -1;
2087 		}
2088 
2089 		/*
2090 		 * Clear any previous faults.
2091 		 */
2092 		dmar_fault(iommu->irq, iommu);
2093 		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2094 		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2095 	}
2096 
2097 	return 0;
2098 }
2099 
2100 /*
2101  * Re-enable Queued Invalidation interface.
2102  */
2103 int dmar_reenable_qi(struct intel_iommu *iommu)
2104 {
2105 	if (!ecap_qis(iommu->ecap))
2106 		return -ENOENT;
2107 
2108 	if (!iommu->qi)
2109 		return -ENOENT;
2110 
2111 	/*
2112 	 * First disable queued invalidation.
2113 	 */
2114 	dmar_disable_qi(iommu);
2115 	/*
2116 	 * Then enable queued invalidation again. Since there is no pending
2117 	 * invalidation requests now, it's safe to re-enable queued
2118 	 * invalidation.
2119 	 */
2120 	__dmar_enable_qi(iommu);
2121 
2122 	return 0;
2123 }
2124 
2125 /*
2126  * Check interrupt remapping support in DMAR table description.
2127  */
2128 int __init dmar_ir_support(void)
2129 {
2130 	struct acpi_table_dmar *dmar;
2131 	dmar = (struct acpi_table_dmar *)dmar_tbl;
2132 	if (!dmar)
2133 		return 0;
2134 	return dmar->flags & 0x1;
2135 }
2136 
2137 /* Check whether DMAR units are in use */
2138 static inline bool dmar_in_use(void)
2139 {
2140 	return irq_remapping_enabled || intel_iommu_enabled;
2141 }
2142 
2143 static int __init dmar_free_unused_resources(void)
2144 {
2145 	struct dmar_drhd_unit *dmaru, *dmaru_n;
2146 
2147 	if (dmar_in_use())
2148 		return 0;
2149 
2150 	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2151 		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2152 
2153 	down_write(&dmar_global_lock);
2154 	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2155 		list_del(&dmaru->list);
2156 		dmar_free_drhd(dmaru);
2157 	}
2158 	up_write(&dmar_global_lock);
2159 
2160 	return 0;
2161 }
2162 
2163 late_initcall(dmar_free_unused_resources);
2164 
2165 /*
2166  * DMAR Hotplug Support
2167  * For more details, please refer to Intel(R) Virtualization Technology
2168  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2169  * "Remapping Hardware Unit Hot Plug".
2170  */
2171 static guid_t dmar_hp_guid =
2172 	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2173 		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2174 
2175 /*
2176  * Currently there's only one revision and BIOS will not check the revision id,
2177  * so use 0 for safety.
2178  */
2179 #define	DMAR_DSM_REV_ID			0
2180 #define	DMAR_DSM_FUNC_DRHD		1
2181 #define	DMAR_DSM_FUNC_ATSR		2
2182 #define	DMAR_DSM_FUNC_RHSA		3
2183 #define	DMAR_DSM_FUNC_SATC		4
2184 
2185 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2186 {
2187 	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2188 }
2189 
2190 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2191 				  dmar_res_handler_t handler, void *arg)
2192 {
2193 	int ret = -ENODEV;
2194 	union acpi_object *obj;
2195 	struct acpi_dmar_header *start;
2196 	struct dmar_res_callback callback;
2197 	static int res_type[] = {
2198 		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2199 		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2200 		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2201 		[DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2202 	};
2203 
2204 	if (!dmar_detect_dsm(handle, func))
2205 		return 0;
2206 
2207 	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2208 				      func, NULL, ACPI_TYPE_BUFFER);
2209 	if (!obj)
2210 		return -ENODEV;
2211 
2212 	memset(&callback, 0, sizeof(callback));
2213 	callback.cb[res_type[func]] = handler;
2214 	callback.arg[res_type[func]] = arg;
2215 	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2216 	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2217 
2218 	ACPI_FREE(obj);
2219 
2220 	return ret;
2221 }
2222 
2223 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2224 {
2225 	int ret;
2226 	struct dmar_drhd_unit *dmaru;
2227 
2228 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2229 	if (!dmaru)
2230 		return -ENODEV;
2231 
2232 	ret = dmar_ir_hotplug(dmaru, true);
2233 	if (ret == 0)
2234 		ret = dmar_iommu_hotplug(dmaru, true);
2235 
2236 	return ret;
2237 }
2238 
2239 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2240 {
2241 	int i, ret;
2242 	struct device *dev;
2243 	struct dmar_drhd_unit *dmaru;
2244 
2245 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2246 	if (!dmaru)
2247 		return 0;
2248 
2249 	/*
2250 	 * All PCI devices managed by this unit should have been destroyed.
2251 	 */
2252 	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2253 		for_each_active_dev_scope(dmaru->devices,
2254 					  dmaru->devices_cnt, i, dev)
2255 			return -EBUSY;
2256 	}
2257 
2258 	ret = dmar_ir_hotplug(dmaru, false);
2259 	if (ret == 0)
2260 		ret = dmar_iommu_hotplug(dmaru, false);
2261 
2262 	return ret;
2263 }
2264 
2265 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2266 {
2267 	struct dmar_drhd_unit *dmaru;
2268 
2269 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2270 	if (dmaru) {
2271 		list_del_rcu(&dmaru->list);
2272 		synchronize_rcu();
2273 		dmar_free_drhd(dmaru);
2274 	}
2275 
2276 	return 0;
2277 }
2278 
2279 static int dmar_hotplug_insert(acpi_handle handle)
2280 {
2281 	int ret;
2282 	int drhd_count = 0;
2283 
2284 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2285 				     &dmar_validate_one_drhd, (void *)1);
2286 	if (ret)
2287 		goto out;
2288 
2289 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2290 				     &dmar_parse_one_drhd, (void *)&drhd_count);
2291 	if (ret == 0 && drhd_count == 0) {
2292 		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2293 		goto out;
2294 	} else if (ret) {
2295 		goto release_drhd;
2296 	}
2297 
2298 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2299 				     &dmar_parse_one_rhsa, NULL);
2300 	if (ret)
2301 		goto release_drhd;
2302 
2303 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2304 				     &dmar_parse_one_atsr, NULL);
2305 	if (ret)
2306 		goto release_atsr;
2307 
2308 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2309 				     &dmar_hp_add_drhd, NULL);
2310 	if (!ret)
2311 		return 0;
2312 
2313 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2314 			       &dmar_hp_remove_drhd, NULL);
2315 release_atsr:
2316 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2317 			       &dmar_release_one_atsr, NULL);
2318 release_drhd:
2319 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2320 			       &dmar_hp_release_drhd, NULL);
2321 out:
2322 	return ret;
2323 }
2324 
2325 static int dmar_hotplug_remove(acpi_handle handle)
2326 {
2327 	int ret;
2328 
2329 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2330 				     &dmar_check_one_atsr, NULL);
2331 	if (ret)
2332 		return ret;
2333 
2334 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2335 				     &dmar_hp_remove_drhd, NULL);
2336 	if (ret == 0) {
2337 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2338 					       &dmar_release_one_atsr, NULL));
2339 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2340 					       &dmar_hp_release_drhd, NULL));
2341 	} else {
2342 		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2343 				       &dmar_hp_add_drhd, NULL);
2344 	}
2345 
2346 	return ret;
2347 }
2348 
2349 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2350 				       void *context, void **retval)
2351 {
2352 	acpi_handle *phdl = retval;
2353 
2354 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2355 		*phdl = handle;
2356 		return AE_CTRL_TERMINATE;
2357 	}
2358 
2359 	return AE_OK;
2360 }
2361 
2362 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2363 {
2364 	int ret;
2365 	acpi_handle tmp = NULL;
2366 	acpi_status status;
2367 
2368 	if (!dmar_in_use())
2369 		return 0;
2370 
2371 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2372 		tmp = handle;
2373 	} else {
2374 		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2375 					     ACPI_UINT32_MAX,
2376 					     dmar_get_dsm_handle,
2377 					     NULL, NULL, &tmp);
2378 		if (ACPI_FAILURE(status)) {
2379 			pr_warn("Failed to locate _DSM method.\n");
2380 			return -ENXIO;
2381 		}
2382 	}
2383 	if (tmp == NULL)
2384 		return 0;
2385 
2386 	down_write(&dmar_global_lock);
2387 	if (insert)
2388 		ret = dmar_hotplug_insert(tmp);
2389 	else
2390 		ret = dmar_hotplug_remove(tmp);
2391 	up_write(&dmar_global_lock);
2392 
2393 	return ret;
2394 }
2395 
2396 int dmar_device_add(acpi_handle handle)
2397 {
2398 	return dmar_device_hotplug(handle, true);
2399 }
2400 
2401 int dmar_device_remove(acpi_handle handle)
2402 {
2403 	return dmar_device_hotplug(handle, false);
2404 }
2405 
2406 /*
2407  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2408  *
2409  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2410  * the ACPI DMAR table. This means that the platform boot firmware has made
2411  * sure no device can issue DMA outside of RMRR regions.
2412  */
2413 bool dmar_platform_optin(void)
2414 {
2415 	struct acpi_table_dmar *dmar;
2416 	acpi_status status;
2417 	bool ret;
2418 
2419 	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2420 				(struct acpi_table_header **)&dmar);
2421 	if (ACPI_FAILURE(status))
2422 		return false;
2423 
2424 	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2425 	acpi_put_table((struct acpi_table_header *)dmar);
2426 
2427 	return ret;
2428 }
2429 EXPORT_SYMBOL_GPL(dmar_platform_optin);
2430