xref: /openbmc/linux/drivers/iommu/intel/dmar.c (revision 52cf89f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16 
17 #define pr_fmt(fmt)     "DMAR: " fmt
18 
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/timer.h>
23 #include <linux/irq.h>
24 #include <linux/interrupt.h>
25 #include <linux/tboot.h>
26 #include <linux/dmi.h>
27 #include <linux/slab.h>
28 #include <linux/iommu.h>
29 #include <linux/numa.h>
30 #include <linux/limits.h>
31 #include <asm/irq_remapping.h>
32 
33 #include "iommu.h"
34 #include "../irq_remapping.h"
35 #include "perf.h"
36 #include "trace.h"
37 
38 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
39 struct dmar_res_callback {
40 	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
41 	void			*arg[ACPI_DMAR_TYPE_RESERVED];
42 	bool			ignore_unhandled;
43 	bool			print_entry;
44 };
45 
46 /*
47  * Assumptions:
48  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
49  *    before IO devices managed by that unit.
50  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
51  *    after IO devices managed by that unit.
52  * 3) Hotplug events are rare.
53  *
54  * Locking rules for DMA and interrupt remapping related global data structures:
55  * 1) Use dmar_global_lock in process context
56  * 2) Use RCU in interrupt context
57  */
58 DECLARE_RWSEM(dmar_global_lock);
59 LIST_HEAD(dmar_drhd_units);
60 
61 struct acpi_table_header * __initdata dmar_tbl;
62 static int dmar_dev_scope_status = 1;
63 static DEFINE_IDA(dmar_seq_ids);
64 
65 static int alloc_iommu(struct dmar_drhd_unit *drhd);
66 static void free_iommu(struct intel_iommu *iommu);
67 
68 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
69 {
70 	/*
71 	 * add INCLUDE_ALL at the tail, so scan the list will find it at
72 	 * the very end.
73 	 */
74 	if (drhd->include_all)
75 		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76 	else
77 		list_add_rcu(&drhd->list, &dmar_drhd_units);
78 }
79 
80 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81 {
82 	struct acpi_dmar_device_scope *scope;
83 
84 	*cnt = 0;
85 	while (start < end) {
86 		scope = start;
87 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
88 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
90 			(*cnt)++;
91 		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
92 			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93 			pr_warn("Unsupported device scope\n");
94 		}
95 		start += scope->length;
96 	}
97 	if (*cnt == 0)
98 		return NULL;
99 
100 	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
101 }
102 
103 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
104 {
105 	int i;
106 	struct device *tmp_dev;
107 
108 	if (*devices && *cnt) {
109 		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
110 			put_device(tmp_dev);
111 		kfree(*devices);
112 	}
113 
114 	*devices = NULL;
115 	*cnt = 0;
116 }
117 
118 /* Optimize out kzalloc()/kfree() for normal cases */
119 static char dmar_pci_notify_info_buf[64];
120 
121 static struct dmar_pci_notify_info *
122 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
123 {
124 	int level = 0;
125 	size_t size;
126 	struct pci_dev *tmp;
127 	struct dmar_pci_notify_info *info;
128 
129 	BUG_ON(dev->is_virtfn);
130 
131 	/*
132 	 * Ignore devices that have a domain number higher than what can
133 	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
134 	 */
135 	if (pci_domain_nr(dev->bus) > U16_MAX)
136 		return NULL;
137 
138 	/* Only generate path[] for device addition event */
139 	if (event == BUS_NOTIFY_ADD_DEVICE)
140 		for (tmp = dev; tmp; tmp = tmp->bus->self)
141 			level++;
142 
143 	size = struct_size(info, path, level);
144 	if (size <= sizeof(dmar_pci_notify_info_buf)) {
145 		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
146 	} else {
147 		info = kzalloc(size, GFP_KERNEL);
148 		if (!info) {
149 			if (dmar_dev_scope_status == 0)
150 				dmar_dev_scope_status = -ENOMEM;
151 			return NULL;
152 		}
153 	}
154 
155 	info->event = event;
156 	info->dev = dev;
157 	info->seg = pci_domain_nr(dev->bus);
158 	info->level = level;
159 	if (event == BUS_NOTIFY_ADD_DEVICE) {
160 		for (tmp = dev; tmp; tmp = tmp->bus->self) {
161 			level--;
162 			info->path[level].bus = tmp->bus->number;
163 			info->path[level].device = PCI_SLOT(tmp->devfn);
164 			info->path[level].function = PCI_FUNC(tmp->devfn);
165 			if (pci_is_root_bus(tmp->bus))
166 				info->bus = tmp->bus->number;
167 		}
168 	}
169 
170 	return info;
171 }
172 
173 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
174 {
175 	if ((void *)info != dmar_pci_notify_info_buf)
176 		kfree(info);
177 }
178 
179 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
180 				struct acpi_dmar_pci_path *path, int count)
181 {
182 	int i;
183 
184 	if (info->bus != bus)
185 		goto fallback;
186 	if (info->level != count)
187 		goto fallback;
188 
189 	for (i = 0; i < count; i++) {
190 		if (path[i].device != info->path[i].device ||
191 		    path[i].function != info->path[i].function)
192 			goto fallback;
193 	}
194 
195 	return true;
196 
197 fallback:
198 
199 	if (count != 1)
200 		return false;
201 
202 	i = info->level - 1;
203 	if (bus              == info->path[i].bus &&
204 	    path[0].device   == info->path[i].device &&
205 	    path[0].function == info->path[i].function) {
206 		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
207 			bus, path[0].device, path[0].function);
208 		return true;
209 	}
210 
211 	return false;
212 }
213 
214 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
215 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
216 			  void *start, void*end, u16 segment,
217 			  struct dmar_dev_scope *devices,
218 			  int devices_cnt)
219 {
220 	int i, level;
221 	struct device *tmp, *dev = &info->dev->dev;
222 	struct acpi_dmar_device_scope *scope;
223 	struct acpi_dmar_pci_path *path;
224 
225 	if (segment != info->seg)
226 		return 0;
227 
228 	for (; start < end; start += scope->length) {
229 		scope = start;
230 		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
231 		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
232 			continue;
233 
234 		path = (struct acpi_dmar_pci_path *)(scope + 1);
235 		level = (scope->length - sizeof(*scope)) / sizeof(*path);
236 		if (!dmar_match_pci_path(info, scope->bus, path, level))
237 			continue;
238 
239 		/*
240 		 * We expect devices with endpoint scope to have normal PCI
241 		 * headers, and devices with bridge scope to have bridge PCI
242 		 * headers.  However PCI NTB devices may be listed in the
243 		 * DMAR table with bridge scope, even though they have a
244 		 * normal PCI header.  NTB devices are identified by class
245 		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
246 		 * for this special case.
247 		 */
248 		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
249 		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
250 		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
251 		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
252 		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
253 			pr_warn("Device scope type does not match for %s\n",
254 				pci_name(info->dev));
255 			return -EINVAL;
256 		}
257 
258 		for_each_dev_scope(devices, devices_cnt, i, tmp)
259 			if (tmp == NULL) {
260 				devices[i].bus = info->dev->bus->number;
261 				devices[i].devfn = info->dev->devfn;
262 				rcu_assign_pointer(devices[i].dev,
263 						   get_device(dev));
264 				return 1;
265 			}
266 		BUG_ON(i >= devices_cnt);
267 	}
268 
269 	return 0;
270 }
271 
272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
273 			  struct dmar_dev_scope *devices, int count)
274 {
275 	int index;
276 	struct device *tmp;
277 
278 	if (info->seg != segment)
279 		return 0;
280 
281 	for_each_active_dev_scope(devices, count, index, tmp)
282 		if (tmp == &info->dev->dev) {
283 			RCU_INIT_POINTER(devices[index].dev, NULL);
284 			synchronize_rcu();
285 			put_device(tmp);
286 			return 1;
287 		}
288 
289 	return 0;
290 }
291 
292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
293 {
294 	int ret = 0;
295 	struct dmar_drhd_unit *dmaru;
296 	struct acpi_dmar_hardware_unit *drhd;
297 
298 	for_each_drhd_unit(dmaru) {
299 		if (dmaru->include_all)
300 			continue;
301 
302 		drhd = container_of(dmaru->hdr,
303 				    struct acpi_dmar_hardware_unit, header);
304 		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
305 				((void *)drhd) + drhd->header.length,
306 				dmaru->segment,
307 				dmaru->devices, dmaru->devices_cnt);
308 		if (ret)
309 			break;
310 	}
311 	if (ret >= 0)
312 		ret = dmar_iommu_notify_scope_dev(info);
313 	if (ret < 0 && dmar_dev_scope_status == 0)
314 		dmar_dev_scope_status = ret;
315 
316 	if (ret >= 0)
317 		intel_irq_remap_add_device(info);
318 
319 	return ret;
320 }
321 
322 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
323 {
324 	struct dmar_drhd_unit *dmaru;
325 
326 	for_each_drhd_unit(dmaru)
327 		if (dmar_remove_dev_scope(info, dmaru->segment,
328 			dmaru->devices, dmaru->devices_cnt))
329 			break;
330 	dmar_iommu_notify_scope_dev(info);
331 }
332 
333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
334 {
335 	struct pci_dev *physfn = pci_physfn(pdev);
336 
337 	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
338 }
339 
340 static int dmar_pci_bus_notifier(struct notifier_block *nb,
341 				 unsigned long action, void *data)
342 {
343 	struct pci_dev *pdev = to_pci_dev(data);
344 	struct dmar_pci_notify_info *info;
345 
346 	/* Only care about add/remove events for physical functions.
347 	 * For VFs we actually do the lookup based on the corresponding
348 	 * PF in device_to_iommu() anyway. */
349 	if (pdev->is_virtfn) {
350 		/*
351 		 * Ensure that the VF device inherits the irq domain of the
352 		 * PF device. Ideally the device would inherit the domain
353 		 * from the bus, but DMAR can have multiple units per bus
354 		 * which makes this impossible. The VF 'bus' could inherit
355 		 * from the PF device, but that's yet another x86'sism to
356 		 * inflict on everybody else.
357 		 */
358 		if (action == BUS_NOTIFY_ADD_DEVICE)
359 			vf_inherit_msi_domain(pdev);
360 		return NOTIFY_DONE;
361 	}
362 
363 	if (action != BUS_NOTIFY_ADD_DEVICE &&
364 	    action != BUS_NOTIFY_REMOVED_DEVICE)
365 		return NOTIFY_DONE;
366 
367 	info = dmar_alloc_pci_notify_info(pdev, action);
368 	if (!info)
369 		return NOTIFY_DONE;
370 
371 	down_write(&dmar_global_lock);
372 	if (action == BUS_NOTIFY_ADD_DEVICE)
373 		dmar_pci_bus_add_dev(info);
374 	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
375 		dmar_pci_bus_del_dev(info);
376 	up_write(&dmar_global_lock);
377 
378 	dmar_free_pci_notify_info(info);
379 
380 	return NOTIFY_OK;
381 }
382 
383 static struct notifier_block dmar_pci_bus_nb = {
384 	.notifier_call = dmar_pci_bus_notifier,
385 	.priority = 1,
386 };
387 
388 static struct dmar_drhd_unit *
389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
390 {
391 	struct dmar_drhd_unit *dmaru;
392 
393 	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
394 				dmar_rcu_check())
395 		if (dmaru->segment == drhd->segment &&
396 		    dmaru->reg_base_addr == drhd->address)
397 			return dmaru;
398 
399 	return NULL;
400 }
401 
402 /*
403  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
404  * structure which uniquely represent one DMA remapping hardware unit
405  * present in the platform
406  */
407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
408 {
409 	struct acpi_dmar_hardware_unit *drhd;
410 	struct dmar_drhd_unit *dmaru;
411 	int ret;
412 
413 	drhd = (struct acpi_dmar_hardware_unit *)header;
414 	dmaru = dmar_find_dmaru(drhd);
415 	if (dmaru)
416 		goto out;
417 
418 	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
419 	if (!dmaru)
420 		return -ENOMEM;
421 
422 	/*
423 	 * If header is allocated from slab by ACPI _DSM method, we need to
424 	 * copy the content because the memory buffer will be freed on return.
425 	 */
426 	dmaru->hdr = (void *)(dmaru + 1);
427 	memcpy(dmaru->hdr, header, header->length);
428 	dmaru->reg_base_addr = drhd->address;
429 	dmaru->segment = drhd->segment;
430 	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
431 	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
432 					      ((void *)drhd) + drhd->header.length,
433 					      &dmaru->devices_cnt);
434 	if (dmaru->devices_cnt && dmaru->devices == NULL) {
435 		kfree(dmaru);
436 		return -ENOMEM;
437 	}
438 
439 	ret = alloc_iommu(dmaru);
440 	if (ret) {
441 		dmar_free_dev_scope(&dmaru->devices,
442 				    &dmaru->devices_cnt);
443 		kfree(dmaru);
444 		return ret;
445 	}
446 	dmar_register_drhd_unit(dmaru);
447 
448 out:
449 	if (arg)
450 		(*(int *)arg)++;
451 
452 	return 0;
453 }
454 
455 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
456 {
457 	if (dmaru->devices && dmaru->devices_cnt)
458 		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
459 	if (dmaru->iommu)
460 		free_iommu(dmaru->iommu);
461 	kfree(dmaru);
462 }
463 
464 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
465 				      void *arg)
466 {
467 	struct acpi_dmar_andd *andd = (void *)header;
468 
469 	/* Check for NUL termination within the designated length */
470 	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
471 		pr_warn(FW_BUG
472 			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
473 			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
474 			   dmi_get_system_info(DMI_BIOS_VENDOR),
475 			   dmi_get_system_info(DMI_BIOS_VERSION),
476 			   dmi_get_system_info(DMI_PRODUCT_VERSION));
477 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
478 		return -EINVAL;
479 	}
480 	pr_info("ANDD device: %x name: %s\n", andd->device_number,
481 		andd->device_name);
482 
483 	return 0;
484 }
485 
486 #ifdef CONFIG_ACPI_NUMA
487 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
488 {
489 	struct acpi_dmar_rhsa *rhsa;
490 	struct dmar_drhd_unit *drhd;
491 
492 	rhsa = (struct acpi_dmar_rhsa *)header;
493 	for_each_drhd_unit(drhd) {
494 		if (drhd->reg_base_addr == rhsa->base_address) {
495 			int node = pxm_to_node(rhsa->proximity_domain);
496 
497 			if (node != NUMA_NO_NODE && !node_online(node))
498 				node = NUMA_NO_NODE;
499 			drhd->iommu->node = node;
500 			return 0;
501 		}
502 	}
503 	pr_warn(FW_BUG
504 		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
505 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
506 		rhsa->base_address,
507 		dmi_get_system_info(DMI_BIOS_VENDOR),
508 		dmi_get_system_info(DMI_BIOS_VERSION),
509 		dmi_get_system_info(DMI_PRODUCT_VERSION));
510 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
511 
512 	return 0;
513 }
514 #else
515 #define	dmar_parse_one_rhsa		dmar_res_noop
516 #endif
517 
518 static void
519 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
520 {
521 	struct acpi_dmar_hardware_unit *drhd;
522 	struct acpi_dmar_reserved_memory *rmrr;
523 	struct acpi_dmar_atsr *atsr;
524 	struct acpi_dmar_rhsa *rhsa;
525 	struct acpi_dmar_satc *satc;
526 
527 	switch (header->type) {
528 	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
529 		drhd = container_of(header, struct acpi_dmar_hardware_unit,
530 				    header);
531 		pr_info("DRHD base: %#016Lx flags: %#x\n",
532 			(unsigned long long)drhd->address, drhd->flags);
533 		break;
534 	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
535 		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
536 				    header);
537 		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
538 			(unsigned long long)rmrr->base_address,
539 			(unsigned long long)rmrr->end_address);
540 		break;
541 	case ACPI_DMAR_TYPE_ROOT_ATS:
542 		atsr = container_of(header, struct acpi_dmar_atsr, header);
543 		pr_info("ATSR flags: %#x\n", atsr->flags);
544 		break;
545 	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
546 		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
547 		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
548 		       (unsigned long long)rhsa->base_address,
549 		       rhsa->proximity_domain);
550 		break;
551 	case ACPI_DMAR_TYPE_NAMESPACE:
552 		/* We don't print this here because we need to sanity-check
553 		   it first. So print it in dmar_parse_one_andd() instead. */
554 		break;
555 	case ACPI_DMAR_TYPE_SATC:
556 		satc = container_of(header, struct acpi_dmar_satc, header);
557 		pr_info("SATC flags: 0x%x\n", satc->flags);
558 		break;
559 	}
560 }
561 
562 /**
563  * dmar_table_detect - checks to see if the platform supports DMAR devices
564  */
565 static int __init dmar_table_detect(void)
566 {
567 	acpi_status status = AE_OK;
568 
569 	/* if we could find DMAR table, then there are DMAR devices */
570 	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
571 
572 	if (ACPI_SUCCESS(status) && !dmar_tbl) {
573 		pr_warn("Unable to map DMAR\n");
574 		status = AE_NOT_FOUND;
575 	}
576 
577 	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
578 }
579 
580 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
581 				       size_t len, struct dmar_res_callback *cb)
582 {
583 	struct acpi_dmar_header *iter, *next;
584 	struct acpi_dmar_header *end = ((void *)start) + len;
585 
586 	for (iter = start; iter < end; iter = next) {
587 		next = (void *)iter + iter->length;
588 		if (iter->length == 0) {
589 			/* Avoid looping forever on bad ACPI tables */
590 			pr_debug(FW_BUG "Invalid 0-length structure\n");
591 			break;
592 		} else if (next > end) {
593 			/* Avoid passing table end */
594 			pr_warn(FW_BUG "Record passes table end\n");
595 			return -EINVAL;
596 		}
597 
598 		if (cb->print_entry)
599 			dmar_table_print_dmar_entry(iter);
600 
601 		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
602 			/* continue for forward compatibility */
603 			pr_debug("Unknown DMAR structure type %d\n",
604 				 iter->type);
605 		} else if (cb->cb[iter->type]) {
606 			int ret;
607 
608 			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
609 			if (ret)
610 				return ret;
611 		} else if (!cb->ignore_unhandled) {
612 			pr_warn("No handler for DMAR structure type %d\n",
613 				iter->type);
614 			return -EINVAL;
615 		}
616 	}
617 
618 	return 0;
619 }
620 
621 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
622 				       struct dmar_res_callback *cb)
623 {
624 	return dmar_walk_remapping_entries((void *)(dmar + 1),
625 			dmar->header.length - sizeof(*dmar), cb);
626 }
627 
628 /**
629  * parse_dmar_table - parses the DMA reporting table
630  */
631 static int __init
632 parse_dmar_table(void)
633 {
634 	struct acpi_table_dmar *dmar;
635 	int drhd_count = 0;
636 	int ret;
637 	struct dmar_res_callback cb = {
638 		.print_entry = true,
639 		.ignore_unhandled = true,
640 		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
641 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
642 		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
643 		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
644 		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
645 		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
646 		.cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
647 	};
648 
649 	/*
650 	 * Do it again, earlier dmar_tbl mapping could be mapped with
651 	 * fixed map.
652 	 */
653 	dmar_table_detect();
654 
655 	/*
656 	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
657 	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
658 	 */
659 	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
660 
661 	dmar = (struct acpi_table_dmar *)dmar_tbl;
662 	if (!dmar)
663 		return -ENODEV;
664 
665 	if (dmar->width < PAGE_SHIFT - 1) {
666 		pr_warn("Invalid DMAR haw\n");
667 		return -EINVAL;
668 	}
669 
670 	pr_info("Host address width %d\n", dmar->width + 1);
671 	ret = dmar_walk_dmar_table(dmar, &cb);
672 	if (ret == 0 && drhd_count == 0)
673 		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
674 
675 	return ret;
676 }
677 
678 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
679 				 int cnt, struct pci_dev *dev)
680 {
681 	int index;
682 	struct device *tmp;
683 
684 	while (dev) {
685 		for_each_active_dev_scope(devices, cnt, index, tmp)
686 			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
687 				return 1;
688 
689 		/* Check our parent */
690 		dev = dev->bus->self;
691 	}
692 
693 	return 0;
694 }
695 
696 struct dmar_drhd_unit *
697 dmar_find_matched_drhd_unit(struct pci_dev *dev)
698 {
699 	struct dmar_drhd_unit *dmaru;
700 	struct acpi_dmar_hardware_unit *drhd;
701 
702 	dev = pci_physfn(dev);
703 
704 	rcu_read_lock();
705 	for_each_drhd_unit(dmaru) {
706 		drhd = container_of(dmaru->hdr,
707 				    struct acpi_dmar_hardware_unit,
708 				    header);
709 
710 		if (dmaru->include_all &&
711 		    drhd->segment == pci_domain_nr(dev->bus))
712 			goto out;
713 
714 		if (dmar_pci_device_match(dmaru->devices,
715 					  dmaru->devices_cnt, dev))
716 			goto out;
717 	}
718 	dmaru = NULL;
719 out:
720 	rcu_read_unlock();
721 
722 	return dmaru;
723 }
724 
725 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
726 					      struct acpi_device *adev)
727 {
728 	struct dmar_drhd_unit *dmaru;
729 	struct acpi_dmar_hardware_unit *drhd;
730 	struct acpi_dmar_device_scope *scope;
731 	struct device *tmp;
732 	int i;
733 	struct acpi_dmar_pci_path *path;
734 
735 	for_each_drhd_unit(dmaru) {
736 		drhd = container_of(dmaru->hdr,
737 				    struct acpi_dmar_hardware_unit,
738 				    header);
739 
740 		for (scope = (void *)(drhd + 1);
741 		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
742 		     scope = ((void *)scope) + scope->length) {
743 			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
744 				continue;
745 			if (scope->enumeration_id != device_number)
746 				continue;
747 
748 			path = (void *)(scope + 1);
749 			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
750 				dev_name(&adev->dev), dmaru->reg_base_addr,
751 				scope->bus, path->device, path->function);
752 			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
753 				if (tmp == NULL) {
754 					dmaru->devices[i].bus = scope->bus;
755 					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
756 									    path->function);
757 					rcu_assign_pointer(dmaru->devices[i].dev,
758 							   get_device(&adev->dev));
759 					return;
760 				}
761 			BUG_ON(i >= dmaru->devices_cnt);
762 		}
763 	}
764 	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
765 		device_number, dev_name(&adev->dev));
766 }
767 
768 static int __init dmar_acpi_dev_scope_init(void)
769 {
770 	struct acpi_dmar_andd *andd;
771 
772 	if (dmar_tbl == NULL)
773 		return -ENODEV;
774 
775 	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
776 	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
777 	     andd = ((void *)andd) + andd->header.length) {
778 		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
779 			acpi_handle h;
780 			struct acpi_device *adev;
781 
782 			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
783 							  andd->device_name,
784 							  &h))) {
785 				pr_err("Failed to find handle for ACPI object %s\n",
786 				       andd->device_name);
787 				continue;
788 			}
789 			adev = acpi_fetch_acpi_dev(h);
790 			if (!adev) {
791 				pr_err("Failed to get device for ACPI object %s\n",
792 				       andd->device_name);
793 				continue;
794 			}
795 			dmar_acpi_insert_dev_scope(andd->device_number, adev);
796 		}
797 	}
798 	return 0;
799 }
800 
801 int __init dmar_dev_scope_init(void)
802 {
803 	struct pci_dev *dev = NULL;
804 	struct dmar_pci_notify_info *info;
805 
806 	if (dmar_dev_scope_status != 1)
807 		return dmar_dev_scope_status;
808 
809 	if (list_empty(&dmar_drhd_units)) {
810 		dmar_dev_scope_status = -ENODEV;
811 	} else {
812 		dmar_dev_scope_status = 0;
813 
814 		dmar_acpi_dev_scope_init();
815 
816 		for_each_pci_dev(dev) {
817 			if (dev->is_virtfn)
818 				continue;
819 
820 			info = dmar_alloc_pci_notify_info(dev,
821 					BUS_NOTIFY_ADD_DEVICE);
822 			if (!info) {
823 				pci_dev_put(dev);
824 				return dmar_dev_scope_status;
825 			} else {
826 				dmar_pci_bus_add_dev(info);
827 				dmar_free_pci_notify_info(info);
828 			}
829 		}
830 	}
831 
832 	return dmar_dev_scope_status;
833 }
834 
835 void __init dmar_register_bus_notifier(void)
836 {
837 	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
838 }
839 
840 
841 int __init dmar_table_init(void)
842 {
843 	static int dmar_table_initialized;
844 	int ret;
845 
846 	if (dmar_table_initialized == 0) {
847 		ret = parse_dmar_table();
848 		if (ret < 0) {
849 			if (ret != -ENODEV)
850 				pr_info("Parse DMAR table failure.\n");
851 		} else  if (list_empty(&dmar_drhd_units)) {
852 			pr_info("No DMAR devices found\n");
853 			ret = -ENODEV;
854 		}
855 
856 		if (ret < 0)
857 			dmar_table_initialized = ret;
858 		else
859 			dmar_table_initialized = 1;
860 	}
861 
862 	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
863 }
864 
865 static void warn_invalid_dmar(u64 addr, const char *message)
866 {
867 	pr_warn_once(FW_BUG
868 		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
869 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
870 		addr, message,
871 		dmi_get_system_info(DMI_BIOS_VENDOR),
872 		dmi_get_system_info(DMI_BIOS_VERSION),
873 		dmi_get_system_info(DMI_PRODUCT_VERSION));
874 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
875 }
876 
877 static int __ref
878 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
879 {
880 	struct acpi_dmar_hardware_unit *drhd;
881 	void __iomem *addr;
882 	u64 cap, ecap;
883 
884 	drhd = (void *)entry;
885 	if (!drhd->address) {
886 		warn_invalid_dmar(0, "");
887 		return -EINVAL;
888 	}
889 
890 	if (arg)
891 		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
892 	else
893 		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
894 	if (!addr) {
895 		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
896 		return -EINVAL;
897 	}
898 
899 	cap = dmar_readq(addr + DMAR_CAP_REG);
900 	ecap = dmar_readq(addr + DMAR_ECAP_REG);
901 
902 	if (arg)
903 		iounmap(addr);
904 	else
905 		early_iounmap(addr, VTD_PAGE_SIZE);
906 
907 	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
908 		warn_invalid_dmar(drhd->address, " returns all ones");
909 		return -EINVAL;
910 	}
911 
912 	return 0;
913 }
914 
915 void __init detect_intel_iommu(void)
916 {
917 	int ret;
918 	struct dmar_res_callback validate_drhd_cb = {
919 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
920 		.ignore_unhandled = true,
921 	};
922 
923 	down_write(&dmar_global_lock);
924 	ret = dmar_table_detect();
925 	if (!ret)
926 		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
927 					   &validate_drhd_cb);
928 	if (!ret && !no_iommu && !iommu_detected &&
929 	    (!dmar_disabled || dmar_platform_optin())) {
930 		iommu_detected = 1;
931 		/* Make sure ACS will be enabled */
932 		pci_request_acs();
933 	}
934 
935 #ifdef CONFIG_X86
936 	if (!ret) {
937 		x86_init.iommu.iommu_init = intel_iommu_init;
938 		x86_platform.iommu_shutdown = intel_iommu_shutdown;
939 	}
940 
941 #endif
942 
943 	if (dmar_tbl) {
944 		acpi_put_table(dmar_tbl);
945 		dmar_tbl = NULL;
946 	}
947 	up_write(&dmar_global_lock);
948 }
949 
950 static void unmap_iommu(struct intel_iommu *iommu)
951 {
952 	iounmap(iommu->reg);
953 	release_mem_region(iommu->reg_phys, iommu->reg_size);
954 }
955 
956 /**
957  * map_iommu: map the iommu's registers
958  * @iommu: the iommu to map
959  * @phys_addr: the physical address of the base resgister
960  *
961  * Memory map the iommu's registers.  Start w/ a single page, and
962  * possibly expand if that turns out to be insufficent.
963  */
964 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
965 {
966 	int map_size, err=0;
967 
968 	iommu->reg_phys = phys_addr;
969 	iommu->reg_size = VTD_PAGE_SIZE;
970 
971 	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
972 		pr_err("Can't reserve memory\n");
973 		err = -EBUSY;
974 		goto out;
975 	}
976 
977 	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
978 	if (!iommu->reg) {
979 		pr_err("Can't map the region\n");
980 		err = -ENOMEM;
981 		goto release;
982 	}
983 
984 	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
985 	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
986 
987 	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
988 		err = -EINVAL;
989 		warn_invalid_dmar(phys_addr, " returns all ones");
990 		goto unmap;
991 	}
992 	if (ecap_vcs(iommu->ecap))
993 		iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
994 
995 	/* the registers might be more than one page */
996 	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
997 			 cap_max_fault_reg_offset(iommu->cap));
998 	map_size = VTD_PAGE_ALIGN(map_size);
999 	if (map_size > iommu->reg_size) {
1000 		iounmap(iommu->reg);
1001 		release_mem_region(iommu->reg_phys, iommu->reg_size);
1002 		iommu->reg_size = map_size;
1003 		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1004 					iommu->name)) {
1005 			pr_err("Can't reserve memory\n");
1006 			err = -EBUSY;
1007 			goto out;
1008 		}
1009 		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1010 		if (!iommu->reg) {
1011 			pr_err("Can't map the region\n");
1012 			err = -ENOMEM;
1013 			goto release;
1014 		}
1015 	}
1016 	err = 0;
1017 	goto out;
1018 
1019 unmap:
1020 	iounmap(iommu->reg);
1021 release:
1022 	release_mem_region(iommu->reg_phys, iommu->reg_size);
1023 out:
1024 	return err;
1025 }
1026 
1027 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1028 {
1029 	struct intel_iommu *iommu;
1030 	u32 ver, sts;
1031 	int agaw = -1;
1032 	int msagaw = -1;
1033 	int err;
1034 
1035 	if (!drhd->reg_base_addr) {
1036 		warn_invalid_dmar(0, "");
1037 		return -EINVAL;
1038 	}
1039 
1040 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1041 	if (!iommu)
1042 		return -ENOMEM;
1043 
1044 	iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1045 					DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1046 	if (iommu->seq_id < 0) {
1047 		pr_err("Failed to allocate seq_id\n");
1048 		err = iommu->seq_id;
1049 		goto error;
1050 	}
1051 	sprintf(iommu->name, "dmar%d", iommu->seq_id);
1052 
1053 	err = map_iommu(iommu, drhd->reg_base_addr);
1054 	if (err) {
1055 		pr_err("Failed to map %s\n", iommu->name);
1056 		goto error_free_seq_id;
1057 	}
1058 
1059 	err = -EINVAL;
1060 	if (cap_sagaw(iommu->cap) == 0) {
1061 		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1062 			iommu->name);
1063 		drhd->ignored = 1;
1064 	}
1065 
1066 	if (!drhd->ignored) {
1067 		agaw = iommu_calculate_agaw(iommu);
1068 		if (agaw < 0) {
1069 			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1070 			       iommu->seq_id);
1071 			drhd->ignored = 1;
1072 		}
1073 	}
1074 	if (!drhd->ignored) {
1075 		msagaw = iommu_calculate_max_sagaw(iommu);
1076 		if (msagaw < 0) {
1077 			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1078 			       iommu->seq_id);
1079 			drhd->ignored = 1;
1080 			agaw = -1;
1081 		}
1082 	}
1083 	iommu->agaw = agaw;
1084 	iommu->msagaw = msagaw;
1085 	iommu->segment = drhd->segment;
1086 
1087 	iommu->node = NUMA_NO_NODE;
1088 
1089 	ver = readl(iommu->reg + DMAR_VER_REG);
1090 	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1091 		iommu->name,
1092 		(unsigned long long)drhd->reg_base_addr,
1093 		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1094 		(unsigned long long)iommu->cap,
1095 		(unsigned long long)iommu->ecap);
1096 
1097 	/* Reflect status in gcmd */
1098 	sts = readl(iommu->reg + DMAR_GSTS_REG);
1099 	if (sts & DMA_GSTS_IRES)
1100 		iommu->gcmd |= DMA_GCMD_IRE;
1101 	if (sts & DMA_GSTS_TES)
1102 		iommu->gcmd |= DMA_GCMD_TE;
1103 	if (sts & DMA_GSTS_QIES)
1104 		iommu->gcmd |= DMA_GCMD_QIE;
1105 
1106 	raw_spin_lock_init(&iommu->register_lock);
1107 
1108 	/*
1109 	 * A value of N in PSS field of eCap register indicates hardware
1110 	 * supports PASID field of N+1 bits.
1111 	 */
1112 	if (pasid_supported(iommu))
1113 		iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1114 
1115 	/*
1116 	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1117 	 * be set yet. When intel_iommu_init() runs, it registers the units
1118 	 * present at boot time, then sets intel_iommu_enabled.
1119 	 */
1120 	if (intel_iommu_enabled && !drhd->ignored) {
1121 		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1122 					     intel_iommu_groups,
1123 					     "%s", iommu->name);
1124 		if (err)
1125 			goto err_unmap;
1126 
1127 		err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1128 		if (err)
1129 			goto err_sysfs;
1130 	}
1131 
1132 	drhd->iommu = iommu;
1133 	iommu->drhd = drhd;
1134 
1135 	return 0;
1136 
1137 err_sysfs:
1138 	iommu_device_sysfs_remove(&iommu->iommu);
1139 err_unmap:
1140 	unmap_iommu(iommu);
1141 error_free_seq_id:
1142 	ida_free(&dmar_seq_ids, iommu->seq_id);
1143 error:
1144 	kfree(iommu);
1145 	return err;
1146 }
1147 
1148 static void free_iommu(struct intel_iommu *iommu)
1149 {
1150 	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1151 		iommu_device_unregister(&iommu->iommu);
1152 		iommu_device_sysfs_remove(&iommu->iommu);
1153 	}
1154 
1155 	if (iommu->irq) {
1156 		if (iommu->pr_irq) {
1157 			free_irq(iommu->pr_irq, iommu);
1158 			dmar_free_hwirq(iommu->pr_irq);
1159 			iommu->pr_irq = 0;
1160 		}
1161 		free_irq(iommu->irq, iommu);
1162 		dmar_free_hwirq(iommu->irq);
1163 		iommu->irq = 0;
1164 	}
1165 
1166 	if (iommu->qi) {
1167 		free_page((unsigned long)iommu->qi->desc);
1168 		kfree(iommu->qi->desc_status);
1169 		kfree(iommu->qi);
1170 	}
1171 
1172 	if (iommu->reg)
1173 		unmap_iommu(iommu);
1174 
1175 	ida_free(&dmar_seq_ids, iommu->seq_id);
1176 	kfree(iommu);
1177 }
1178 
1179 /*
1180  * Reclaim all the submitted descriptors which have completed its work.
1181  */
1182 static inline void reclaim_free_desc(struct q_inval *qi)
1183 {
1184 	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1185 	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1186 		qi->desc_status[qi->free_tail] = QI_FREE;
1187 		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1188 		qi->free_cnt++;
1189 	}
1190 }
1191 
1192 static const char *qi_type_string(u8 type)
1193 {
1194 	switch (type) {
1195 	case QI_CC_TYPE:
1196 		return "Context-cache Invalidation";
1197 	case QI_IOTLB_TYPE:
1198 		return "IOTLB Invalidation";
1199 	case QI_DIOTLB_TYPE:
1200 		return "Device-TLB Invalidation";
1201 	case QI_IEC_TYPE:
1202 		return "Interrupt Entry Cache Invalidation";
1203 	case QI_IWD_TYPE:
1204 		return "Invalidation Wait";
1205 	case QI_EIOTLB_TYPE:
1206 		return "PASID-based IOTLB Invalidation";
1207 	case QI_PC_TYPE:
1208 		return "PASID-cache Invalidation";
1209 	case QI_DEIOTLB_TYPE:
1210 		return "PASID-based Device-TLB Invalidation";
1211 	case QI_PGRP_RESP_TYPE:
1212 		return "Page Group Response";
1213 	default:
1214 		return "UNKNOWN";
1215 	}
1216 }
1217 
1218 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1219 {
1220 	unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1221 	u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1222 	struct qi_desc *desc = iommu->qi->desc + head;
1223 
1224 	if (fault & DMA_FSTS_IQE)
1225 		pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1226 		       DMAR_IQER_REG_IQEI(iqe_err));
1227 	if (fault & DMA_FSTS_ITE)
1228 		pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1229 		       DMAR_IQER_REG_ITESID(iqe_err));
1230 	if (fault & DMA_FSTS_ICE)
1231 		pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1232 		       DMAR_IQER_REG_ICESID(iqe_err));
1233 
1234 	pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1235 	       qi_type_string(desc->qw0 & 0xf),
1236 	       (unsigned long long)desc->qw0,
1237 	       (unsigned long long)desc->qw1);
1238 
1239 	head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1240 	head <<= qi_shift(iommu);
1241 	desc = iommu->qi->desc + head;
1242 
1243 	pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1244 	       qi_type_string(desc->qw0 & 0xf),
1245 	       (unsigned long long)desc->qw0,
1246 	       (unsigned long long)desc->qw1);
1247 }
1248 
1249 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1250 {
1251 	u32 fault;
1252 	int head, tail;
1253 	struct q_inval *qi = iommu->qi;
1254 	int shift = qi_shift(iommu);
1255 
1256 	if (qi->desc_status[wait_index] == QI_ABORT)
1257 		return -EAGAIN;
1258 
1259 	fault = readl(iommu->reg + DMAR_FSTS_REG);
1260 	if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1261 		qi_dump_fault(iommu, fault);
1262 
1263 	/*
1264 	 * If IQE happens, the head points to the descriptor associated
1265 	 * with the error. No new descriptors are fetched until the IQE
1266 	 * is cleared.
1267 	 */
1268 	if (fault & DMA_FSTS_IQE) {
1269 		head = readl(iommu->reg + DMAR_IQH_REG);
1270 		if ((head >> shift) == index) {
1271 			struct qi_desc *desc = qi->desc + head;
1272 
1273 			/*
1274 			 * desc->qw2 and desc->qw3 are either reserved or
1275 			 * used by software as private data. We won't print
1276 			 * out these two qw's for security consideration.
1277 			 */
1278 			memcpy(desc, qi->desc + (wait_index << shift),
1279 			       1 << shift);
1280 			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1281 			pr_info("Invalidation Queue Error (IQE) cleared\n");
1282 			return -EINVAL;
1283 		}
1284 	}
1285 
1286 	/*
1287 	 * If ITE happens, all pending wait_desc commands are aborted.
1288 	 * No new descriptors are fetched until the ITE is cleared.
1289 	 */
1290 	if (fault & DMA_FSTS_ITE) {
1291 		head = readl(iommu->reg + DMAR_IQH_REG);
1292 		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1293 		head |= 1;
1294 		tail = readl(iommu->reg + DMAR_IQT_REG);
1295 		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1296 
1297 		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1298 		pr_info("Invalidation Time-out Error (ITE) cleared\n");
1299 
1300 		do {
1301 			if (qi->desc_status[head] == QI_IN_USE)
1302 				qi->desc_status[head] = QI_ABORT;
1303 			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1304 		} while (head != tail);
1305 
1306 		if (qi->desc_status[wait_index] == QI_ABORT)
1307 			return -EAGAIN;
1308 	}
1309 
1310 	if (fault & DMA_FSTS_ICE) {
1311 		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1312 		pr_info("Invalidation Completion Error (ICE) cleared\n");
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 /*
1319  * Function to submit invalidation descriptors of all types to the queued
1320  * invalidation interface(QI). Multiple descriptors can be submitted at a
1321  * time, a wait descriptor will be appended to each submission to ensure
1322  * hardware has completed the invalidation before return. Wait descriptors
1323  * can be part of the submission but it will not be polled for completion.
1324  */
1325 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1326 		   unsigned int count, unsigned long options)
1327 {
1328 	struct q_inval *qi = iommu->qi;
1329 	s64 devtlb_start_ktime = 0;
1330 	s64 iotlb_start_ktime = 0;
1331 	s64 iec_start_ktime = 0;
1332 	struct qi_desc wait_desc;
1333 	int wait_index, index;
1334 	unsigned long flags;
1335 	int offset, shift;
1336 	int rc, i;
1337 	u64 type;
1338 
1339 	if (!qi)
1340 		return 0;
1341 
1342 	type = desc->qw0 & GENMASK_ULL(3, 0);
1343 
1344 	if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1345 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1346 		iotlb_start_ktime = ktime_to_ns(ktime_get());
1347 
1348 	if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1349 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1350 		devtlb_start_ktime = ktime_to_ns(ktime_get());
1351 
1352 	if (type == QI_IEC_TYPE &&
1353 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1354 		iec_start_ktime = ktime_to_ns(ktime_get());
1355 
1356 restart:
1357 	rc = 0;
1358 
1359 	raw_spin_lock_irqsave(&qi->q_lock, flags);
1360 	/*
1361 	 * Check if we have enough empty slots in the queue to submit,
1362 	 * the calculation is based on:
1363 	 * # of desc + 1 wait desc + 1 space between head and tail
1364 	 */
1365 	while (qi->free_cnt < count + 2) {
1366 		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1367 		cpu_relax();
1368 		raw_spin_lock_irqsave(&qi->q_lock, flags);
1369 	}
1370 
1371 	index = qi->free_head;
1372 	wait_index = (index + count) % QI_LENGTH;
1373 	shift = qi_shift(iommu);
1374 
1375 	for (i = 0; i < count; i++) {
1376 		offset = ((index + i) % QI_LENGTH) << shift;
1377 		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1378 		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1379 		trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1380 				desc[i].qw2, desc[i].qw3);
1381 	}
1382 	qi->desc_status[wait_index] = QI_IN_USE;
1383 
1384 	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1385 			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1386 	if (options & QI_OPT_WAIT_DRAIN)
1387 		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1388 	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1389 	wait_desc.qw2 = 0;
1390 	wait_desc.qw3 = 0;
1391 
1392 	offset = wait_index << shift;
1393 	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1394 
1395 	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1396 	qi->free_cnt -= count + 1;
1397 
1398 	/*
1399 	 * update the HW tail register indicating the presence of
1400 	 * new descriptors.
1401 	 */
1402 	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1403 
1404 	while (qi->desc_status[wait_index] != QI_DONE) {
1405 		/*
1406 		 * We will leave the interrupts disabled, to prevent interrupt
1407 		 * context to queue another cmd while a cmd is already submitted
1408 		 * and waiting for completion on this cpu. This is to avoid
1409 		 * a deadlock where the interrupt context can wait indefinitely
1410 		 * for free slots in the queue.
1411 		 */
1412 		rc = qi_check_fault(iommu, index, wait_index);
1413 		if (rc)
1414 			break;
1415 
1416 		raw_spin_unlock(&qi->q_lock);
1417 		cpu_relax();
1418 		raw_spin_lock(&qi->q_lock);
1419 	}
1420 
1421 	for (i = 0; i < count; i++)
1422 		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1423 
1424 	reclaim_free_desc(qi);
1425 	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1426 
1427 	if (rc == -EAGAIN)
1428 		goto restart;
1429 
1430 	if (iotlb_start_ktime)
1431 		dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1432 				ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1433 
1434 	if (devtlb_start_ktime)
1435 		dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1436 				ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1437 
1438 	if (iec_start_ktime)
1439 		dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1440 				ktime_to_ns(ktime_get()) - iec_start_ktime);
1441 
1442 	return rc;
1443 }
1444 
1445 /*
1446  * Flush the global interrupt entry cache.
1447  */
1448 void qi_global_iec(struct intel_iommu *iommu)
1449 {
1450 	struct qi_desc desc;
1451 
1452 	desc.qw0 = QI_IEC_TYPE;
1453 	desc.qw1 = 0;
1454 	desc.qw2 = 0;
1455 	desc.qw3 = 0;
1456 
1457 	/* should never fail */
1458 	qi_submit_sync(iommu, &desc, 1, 0);
1459 }
1460 
1461 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1462 		      u64 type)
1463 {
1464 	struct qi_desc desc;
1465 
1466 	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1467 			| QI_CC_GRAN(type) | QI_CC_TYPE;
1468 	desc.qw1 = 0;
1469 	desc.qw2 = 0;
1470 	desc.qw3 = 0;
1471 
1472 	qi_submit_sync(iommu, &desc, 1, 0);
1473 }
1474 
1475 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1476 		    unsigned int size_order, u64 type)
1477 {
1478 	u8 dw = 0, dr = 0;
1479 
1480 	struct qi_desc desc;
1481 	int ih = 0;
1482 
1483 	if (cap_write_drain(iommu->cap))
1484 		dw = 1;
1485 
1486 	if (cap_read_drain(iommu->cap))
1487 		dr = 1;
1488 
1489 	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1490 		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1491 	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1492 		| QI_IOTLB_AM(size_order);
1493 	desc.qw2 = 0;
1494 	desc.qw3 = 0;
1495 
1496 	qi_submit_sync(iommu, &desc, 1, 0);
1497 }
1498 
1499 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1500 			u16 qdep, u64 addr, unsigned mask)
1501 {
1502 	struct qi_desc desc;
1503 
1504 	if (mask) {
1505 		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1506 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1507 	} else
1508 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1509 
1510 	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1511 		qdep = 0;
1512 
1513 	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1514 		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1515 	desc.qw2 = 0;
1516 	desc.qw3 = 0;
1517 
1518 	qi_submit_sync(iommu, &desc, 1, 0);
1519 }
1520 
1521 /* PASID-based IOTLB invalidation */
1522 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1523 		     unsigned long npages, bool ih)
1524 {
1525 	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1526 
1527 	/*
1528 	 * npages == -1 means a PASID-selective invalidation, otherwise,
1529 	 * a positive value for Page-selective-within-PASID invalidation.
1530 	 * 0 is not a valid input.
1531 	 */
1532 	if (WARN_ON(!npages)) {
1533 		pr_err("Invalid input npages = %ld\n", npages);
1534 		return;
1535 	}
1536 
1537 	if (npages == -1) {
1538 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1539 				QI_EIOTLB_DID(did) |
1540 				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1541 				QI_EIOTLB_TYPE;
1542 		desc.qw1 = 0;
1543 	} else {
1544 		int mask = ilog2(__roundup_pow_of_two(npages));
1545 		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1546 
1547 		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1548 			addr = ALIGN_DOWN(addr, align);
1549 
1550 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1551 				QI_EIOTLB_DID(did) |
1552 				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1553 				QI_EIOTLB_TYPE;
1554 		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1555 				QI_EIOTLB_IH(ih) |
1556 				QI_EIOTLB_AM(mask);
1557 	}
1558 
1559 	qi_submit_sync(iommu, &desc, 1, 0);
1560 }
1561 
1562 /* PASID-based device IOTLB Invalidate */
1563 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1564 			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1565 {
1566 	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1567 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1568 
1569 	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1570 		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1571 		QI_DEV_IOTLB_PFSID(pfsid);
1572 
1573 	/*
1574 	 * If S bit is 0, we only flush a single page. If S bit is set,
1575 	 * The least significant zero bit indicates the invalidation address
1576 	 * range. VT-d spec 6.5.2.6.
1577 	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1578 	 * size order = 0 is PAGE_SIZE 4KB
1579 	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1580 	 * ECAP.
1581 	 */
1582 	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1583 		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1584 				    addr, size_order);
1585 
1586 	/* Take page address */
1587 	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1588 
1589 	if (size_order) {
1590 		/*
1591 		 * Existing 0s in address below size_order may be the least
1592 		 * significant bit, we must set them to 1s to avoid having
1593 		 * smaller size than desired.
1594 		 */
1595 		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1596 					VTD_PAGE_SHIFT);
1597 		/* Clear size_order bit to indicate size */
1598 		desc.qw1 &= ~mask;
1599 		/* Set the S bit to indicate flushing more than 1 page */
1600 		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1601 	}
1602 
1603 	qi_submit_sync(iommu, &desc, 1, 0);
1604 }
1605 
1606 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1607 			  u64 granu, u32 pasid)
1608 {
1609 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1610 
1611 	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1612 			QI_PC_GRAN(granu) | QI_PC_TYPE;
1613 	qi_submit_sync(iommu, &desc, 1, 0);
1614 }
1615 
1616 /*
1617  * Disable Queued Invalidation interface.
1618  */
1619 void dmar_disable_qi(struct intel_iommu *iommu)
1620 {
1621 	unsigned long flags;
1622 	u32 sts;
1623 	cycles_t start_time = get_cycles();
1624 
1625 	if (!ecap_qis(iommu->ecap))
1626 		return;
1627 
1628 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1629 
1630 	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1631 	if (!(sts & DMA_GSTS_QIES))
1632 		goto end;
1633 
1634 	/*
1635 	 * Give a chance to HW to complete the pending invalidation requests.
1636 	 */
1637 	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1638 		readl(iommu->reg + DMAR_IQH_REG)) &&
1639 		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1640 		cpu_relax();
1641 
1642 	iommu->gcmd &= ~DMA_GCMD_QIE;
1643 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1644 
1645 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1646 		      !(sts & DMA_GSTS_QIES), sts);
1647 end:
1648 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1649 }
1650 
1651 /*
1652  * Enable queued invalidation.
1653  */
1654 static void __dmar_enable_qi(struct intel_iommu *iommu)
1655 {
1656 	u32 sts;
1657 	unsigned long flags;
1658 	struct q_inval *qi = iommu->qi;
1659 	u64 val = virt_to_phys(qi->desc);
1660 
1661 	qi->free_head = qi->free_tail = 0;
1662 	qi->free_cnt = QI_LENGTH;
1663 
1664 	/*
1665 	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1666 	 * is present.
1667 	 */
1668 	if (ecap_smts(iommu->ecap))
1669 		val |= (1 << 11) | 1;
1670 
1671 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1672 
1673 	/* write zero to the tail reg */
1674 	writel(0, iommu->reg + DMAR_IQT_REG);
1675 
1676 	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1677 
1678 	iommu->gcmd |= DMA_GCMD_QIE;
1679 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1680 
1681 	/* Make sure hardware complete it */
1682 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1683 
1684 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1685 }
1686 
1687 /*
1688  * Enable Queued Invalidation interface. This is a must to support
1689  * interrupt-remapping. Also used by DMA-remapping, which replaces
1690  * register based IOTLB invalidation.
1691  */
1692 int dmar_enable_qi(struct intel_iommu *iommu)
1693 {
1694 	struct q_inval *qi;
1695 	struct page *desc_page;
1696 
1697 	if (!ecap_qis(iommu->ecap))
1698 		return -ENOENT;
1699 
1700 	/*
1701 	 * queued invalidation is already setup and enabled.
1702 	 */
1703 	if (iommu->qi)
1704 		return 0;
1705 
1706 	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1707 	if (!iommu->qi)
1708 		return -ENOMEM;
1709 
1710 	qi = iommu->qi;
1711 
1712 	/*
1713 	 * Need two pages to accommodate 256 descriptors of 256 bits each
1714 	 * if the remapping hardware supports scalable mode translation.
1715 	 */
1716 	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1717 				     !!ecap_smts(iommu->ecap));
1718 	if (!desc_page) {
1719 		kfree(qi);
1720 		iommu->qi = NULL;
1721 		return -ENOMEM;
1722 	}
1723 
1724 	qi->desc = page_address(desc_page);
1725 
1726 	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1727 	if (!qi->desc_status) {
1728 		free_page((unsigned long) qi->desc);
1729 		kfree(qi);
1730 		iommu->qi = NULL;
1731 		return -ENOMEM;
1732 	}
1733 
1734 	raw_spin_lock_init(&qi->q_lock);
1735 
1736 	__dmar_enable_qi(iommu);
1737 
1738 	return 0;
1739 }
1740 
1741 /* iommu interrupt handling. Most stuff are MSI-like. */
1742 
1743 enum faulttype {
1744 	DMA_REMAP,
1745 	INTR_REMAP,
1746 	UNKNOWN,
1747 };
1748 
1749 static const char *dma_remap_fault_reasons[] =
1750 {
1751 	"Software",
1752 	"Present bit in root entry is clear",
1753 	"Present bit in context entry is clear",
1754 	"Invalid context entry",
1755 	"Access beyond MGAW",
1756 	"PTE Write access is not set",
1757 	"PTE Read access is not set",
1758 	"Next page table ptr is invalid",
1759 	"Root table address invalid",
1760 	"Context table ptr is invalid",
1761 	"non-zero reserved fields in RTP",
1762 	"non-zero reserved fields in CTP",
1763 	"non-zero reserved fields in PTE",
1764 	"PCE for translation request specifies blocking",
1765 };
1766 
1767 static const char * const dma_remap_sm_fault_reasons[] = {
1768 	"SM: Invalid Root Table Address",
1769 	"SM: TTM 0 for request with PASID",
1770 	"SM: TTM 0 for page group request",
1771 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1772 	"SM: Error attempting to access Root Entry",
1773 	"SM: Present bit in Root Entry is clear",
1774 	"SM: Non-zero reserved field set in Root Entry",
1775 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1776 	"SM: Error attempting to access Context Entry",
1777 	"SM: Present bit in Context Entry is clear",
1778 	"SM: Non-zero reserved field set in the Context Entry",
1779 	"SM: Invalid Context Entry",
1780 	"SM: DTE field in Context Entry is clear",
1781 	"SM: PASID Enable field in Context Entry is clear",
1782 	"SM: PASID is larger than the max in Context Entry",
1783 	"SM: PRE field in Context-Entry is clear",
1784 	"SM: RID_PASID field error in Context-Entry",
1785 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1786 	"SM: Error attempting to access the PASID Directory Entry",
1787 	"SM: Present bit in Directory Entry is clear",
1788 	"SM: Non-zero reserved field set in PASID Directory Entry",
1789 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1790 	"SM: Error attempting to access PASID Table Entry",
1791 	"SM: Present bit in PASID Table Entry is clear",
1792 	"SM: Non-zero reserved field set in PASID Table Entry",
1793 	"SM: Invalid Scalable-Mode PASID Table Entry",
1794 	"SM: ERE field is clear in PASID Table Entry",
1795 	"SM: SRE field is clear in PASID Table Entry",
1796 	"Unknown", "Unknown",/* 0x5E-0x5F */
1797 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1798 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1799 	"SM: Error attempting to access first-level paging entry",
1800 	"SM: Present bit in first-level paging entry is clear",
1801 	"SM: Non-zero reserved field set in first-level paging entry",
1802 	"SM: Error attempting to access FL-PML4 entry",
1803 	"SM: First-level entry address beyond MGAW in Nested translation",
1804 	"SM: Read permission error in FL-PML4 entry in Nested translation",
1805 	"SM: Read permission error in first-level paging entry in Nested translation",
1806 	"SM: Write permission error in first-level paging entry in Nested translation",
1807 	"SM: Error attempting to access second-level paging entry",
1808 	"SM: Read/Write permission error in second-level paging entry",
1809 	"SM: Non-zero reserved field set in second-level paging entry",
1810 	"SM: Invalid second-level page table pointer",
1811 	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1812 	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1813 	"SM: Address in first-level translation is not canonical",
1814 	"SM: U/S set 0 for first-level translation with user privilege",
1815 	"SM: No execute permission for request with PASID and ER=1",
1816 	"SM: Address beyond the DMA hardware max",
1817 	"SM: Second-level entry address beyond the max",
1818 	"SM: No write permission for Write/AtomicOp request",
1819 	"SM: No read permission for Read/AtomicOp request",
1820 	"SM: Invalid address-interrupt address",
1821 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1822 	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1823 };
1824 
1825 static const char *irq_remap_fault_reasons[] =
1826 {
1827 	"Detected reserved fields in the decoded interrupt-remapped request",
1828 	"Interrupt index exceeded the interrupt-remapping table size",
1829 	"Present field in the IRTE entry is clear",
1830 	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1831 	"Detected reserved fields in the IRTE entry",
1832 	"Blocked a compatibility format interrupt request",
1833 	"Blocked an interrupt request due to source-id verification failure",
1834 };
1835 
1836 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1837 {
1838 	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1839 					ARRAY_SIZE(irq_remap_fault_reasons))) {
1840 		*fault_type = INTR_REMAP;
1841 		return irq_remap_fault_reasons[fault_reason - 0x20];
1842 	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1843 			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1844 		*fault_type = DMA_REMAP;
1845 		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1846 	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1847 		*fault_type = DMA_REMAP;
1848 		return dma_remap_fault_reasons[fault_reason];
1849 	} else {
1850 		*fault_type = UNKNOWN;
1851 		return "Unknown";
1852 	}
1853 }
1854 
1855 
1856 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1857 {
1858 	if (iommu->irq == irq)
1859 		return DMAR_FECTL_REG;
1860 	else if (iommu->pr_irq == irq)
1861 		return DMAR_PECTL_REG;
1862 	else
1863 		BUG();
1864 }
1865 
1866 void dmar_msi_unmask(struct irq_data *data)
1867 {
1868 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1869 	int reg = dmar_msi_reg(iommu, data->irq);
1870 	unsigned long flag;
1871 
1872 	/* unmask it */
1873 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1874 	writel(0, iommu->reg + reg);
1875 	/* Read a reg to force flush the post write */
1876 	readl(iommu->reg + reg);
1877 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1878 }
1879 
1880 void dmar_msi_mask(struct irq_data *data)
1881 {
1882 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1883 	int reg = dmar_msi_reg(iommu, data->irq);
1884 	unsigned long flag;
1885 
1886 	/* mask it */
1887 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1888 	writel(DMA_FECTL_IM, iommu->reg + reg);
1889 	/* Read a reg to force flush the post write */
1890 	readl(iommu->reg + reg);
1891 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1892 }
1893 
1894 void dmar_msi_write(int irq, struct msi_msg *msg)
1895 {
1896 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1897 	int reg = dmar_msi_reg(iommu, irq);
1898 	unsigned long flag;
1899 
1900 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1901 	writel(msg->data, iommu->reg + reg + 4);
1902 	writel(msg->address_lo, iommu->reg + reg + 8);
1903 	writel(msg->address_hi, iommu->reg + reg + 12);
1904 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1905 }
1906 
1907 void dmar_msi_read(int irq, struct msi_msg *msg)
1908 {
1909 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1910 	int reg = dmar_msi_reg(iommu, irq);
1911 	unsigned long flag;
1912 
1913 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1914 	msg->data = readl(iommu->reg + reg + 4);
1915 	msg->address_lo = readl(iommu->reg + reg + 8);
1916 	msg->address_hi = readl(iommu->reg + reg + 12);
1917 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1918 }
1919 
1920 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1921 		u8 fault_reason, u32 pasid, u16 source_id,
1922 		unsigned long long addr)
1923 {
1924 	const char *reason;
1925 	int fault_type;
1926 
1927 	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1928 
1929 	if (fault_type == INTR_REMAP) {
1930 		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1931 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1932 		       PCI_FUNC(source_id & 0xFF), addr >> 48,
1933 		       fault_reason, reason);
1934 
1935 		return 0;
1936 	}
1937 
1938 	if (pasid == INVALID_IOASID)
1939 		pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1940 		       type ? "DMA Read" : "DMA Write",
1941 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1942 		       PCI_FUNC(source_id & 0xFF), addr,
1943 		       fault_reason, reason);
1944 	else
1945 		pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1946 		       type ? "DMA Read" : "DMA Write", pasid,
1947 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1948 		       PCI_FUNC(source_id & 0xFF), addr,
1949 		       fault_reason, reason);
1950 
1951 	dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1952 
1953 	return 0;
1954 }
1955 
1956 #define PRIMARY_FAULT_REG_LEN (16)
1957 irqreturn_t dmar_fault(int irq, void *dev_id)
1958 {
1959 	struct intel_iommu *iommu = dev_id;
1960 	int reg, fault_index;
1961 	u32 fault_status;
1962 	unsigned long flag;
1963 	static DEFINE_RATELIMIT_STATE(rs,
1964 				      DEFAULT_RATELIMIT_INTERVAL,
1965 				      DEFAULT_RATELIMIT_BURST);
1966 
1967 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1968 	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1969 	if (fault_status && __ratelimit(&rs))
1970 		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1971 
1972 	/* TBD: ignore advanced fault log currently */
1973 	if (!(fault_status & DMA_FSTS_PPF))
1974 		goto unlock_exit;
1975 
1976 	fault_index = dma_fsts_fault_record_index(fault_status);
1977 	reg = cap_fault_reg_offset(iommu->cap);
1978 	while (1) {
1979 		/* Disable printing, simply clear the fault when ratelimited */
1980 		bool ratelimited = !__ratelimit(&rs);
1981 		u8 fault_reason;
1982 		u16 source_id;
1983 		u64 guest_addr;
1984 		u32 pasid;
1985 		int type;
1986 		u32 data;
1987 		bool pasid_present;
1988 
1989 		/* highest 32 bits */
1990 		data = readl(iommu->reg + reg +
1991 				fault_index * PRIMARY_FAULT_REG_LEN + 12);
1992 		if (!(data & DMA_FRCD_F))
1993 			break;
1994 
1995 		if (!ratelimited) {
1996 			fault_reason = dma_frcd_fault_reason(data);
1997 			type = dma_frcd_type(data);
1998 
1999 			pasid = dma_frcd_pasid_value(data);
2000 			data = readl(iommu->reg + reg +
2001 				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
2002 			source_id = dma_frcd_source_id(data);
2003 
2004 			pasid_present = dma_frcd_pasid_present(data);
2005 			guest_addr = dmar_readq(iommu->reg + reg +
2006 					fault_index * PRIMARY_FAULT_REG_LEN);
2007 			guest_addr = dma_frcd_page_addr(guest_addr);
2008 		}
2009 
2010 		/* clear the fault */
2011 		writel(DMA_FRCD_F, iommu->reg + reg +
2012 			fault_index * PRIMARY_FAULT_REG_LEN + 12);
2013 
2014 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2015 
2016 		if (!ratelimited)
2017 			/* Using pasid -1 if pasid is not present */
2018 			dmar_fault_do_one(iommu, type, fault_reason,
2019 					  pasid_present ? pasid : INVALID_IOASID,
2020 					  source_id, guest_addr);
2021 
2022 		fault_index++;
2023 		if (fault_index >= cap_num_fault_regs(iommu->cap))
2024 			fault_index = 0;
2025 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2026 	}
2027 
2028 	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2029 	       iommu->reg + DMAR_FSTS_REG);
2030 
2031 unlock_exit:
2032 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2033 	return IRQ_HANDLED;
2034 }
2035 
2036 int dmar_set_interrupt(struct intel_iommu *iommu)
2037 {
2038 	int irq, ret;
2039 
2040 	/*
2041 	 * Check if the fault interrupt is already initialized.
2042 	 */
2043 	if (iommu->irq)
2044 		return 0;
2045 
2046 	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2047 	if (irq > 0) {
2048 		iommu->irq = irq;
2049 	} else {
2050 		pr_err("No free IRQ vectors\n");
2051 		return -EINVAL;
2052 	}
2053 
2054 	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2055 	if (ret)
2056 		pr_err("Can't request irq\n");
2057 	return ret;
2058 }
2059 
2060 int __init enable_drhd_fault_handling(void)
2061 {
2062 	struct dmar_drhd_unit *drhd;
2063 	struct intel_iommu *iommu;
2064 
2065 	/*
2066 	 * Enable fault control interrupt.
2067 	 */
2068 	for_each_iommu(iommu, drhd) {
2069 		u32 fault_status;
2070 		int ret = dmar_set_interrupt(iommu);
2071 
2072 		if (ret) {
2073 			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2074 			       (unsigned long long)drhd->reg_base_addr, ret);
2075 			return -1;
2076 		}
2077 
2078 		/*
2079 		 * Clear any previous faults.
2080 		 */
2081 		dmar_fault(iommu->irq, iommu);
2082 		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2083 		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2084 	}
2085 
2086 	return 0;
2087 }
2088 
2089 /*
2090  * Re-enable Queued Invalidation interface.
2091  */
2092 int dmar_reenable_qi(struct intel_iommu *iommu)
2093 {
2094 	if (!ecap_qis(iommu->ecap))
2095 		return -ENOENT;
2096 
2097 	if (!iommu->qi)
2098 		return -ENOENT;
2099 
2100 	/*
2101 	 * First disable queued invalidation.
2102 	 */
2103 	dmar_disable_qi(iommu);
2104 	/*
2105 	 * Then enable queued invalidation again. Since there is no pending
2106 	 * invalidation requests now, it's safe to re-enable queued
2107 	 * invalidation.
2108 	 */
2109 	__dmar_enable_qi(iommu);
2110 
2111 	return 0;
2112 }
2113 
2114 /*
2115  * Check interrupt remapping support in DMAR table description.
2116  */
2117 int __init dmar_ir_support(void)
2118 {
2119 	struct acpi_table_dmar *dmar;
2120 	dmar = (struct acpi_table_dmar *)dmar_tbl;
2121 	if (!dmar)
2122 		return 0;
2123 	return dmar->flags & 0x1;
2124 }
2125 
2126 /* Check whether DMAR units are in use */
2127 static inline bool dmar_in_use(void)
2128 {
2129 	return irq_remapping_enabled || intel_iommu_enabled;
2130 }
2131 
2132 static int __init dmar_free_unused_resources(void)
2133 {
2134 	struct dmar_drhd_unit *dmaru, *dmaru_n;
2135 
2136 	if (dmar_in_use())
2137 		return 0;
2138 
2139 	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2140 		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2141 
2142 	down_write(&dmar_global_lock);
2143 	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2144 		list_del(&dmaru->list);
2145 		dmar_free_drhd(dmaru);
2146 	}
2147 	up_write(&dmar_global_lock);
2148 
2149 	return 0;
2150 }
2151 
2152 late_initcall(dmar_free_unused_resources);
2153 
2154 /*
2155  * DMAR Hotplug Support
2156  * For more details, please refer to Intel(R) Virtualization Technology
2157  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2158  * "Remapping Hardware Unit Hot Plug".
2159  */
2160 static guid_t dmar_hp_guid =
2161 	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2162 		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2163 
2164 /*
2165  * Currently there's only one revision and BIOS will not check the revision id,
2166  * so use 0 for safety.
2167  */
2168 #define	DMAR_DSM_REV_ID			0
2169 #define	DMAR_DSM_FUNC_DRHD		1
2170 #define	DMAR_DSM_FUNC_ATSR		2
2171 #define	DMAR_DSM_FUNC_RHSA		3
2172 #define	DMAR_DSM_FUNC_SATC		4
2173 
2174 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2175 {
2176 	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2177 }
2178 
2179 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2180 				  dmar_res_handler_t handler, void *arg)
2181 {
2182 	int ret = -ENODEV;
2183 	union acpi_object *obj;
2184 	struct acpi_dmar_header *start;
2185 	struct dmar_res_callback callback;
2186 	static int res_type[] = {
2187 		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2188 		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2189 		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2190 		[DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2191 	};
2192 
2193 	if (!dmar_detect_dsm(handle, func))
2194 		return 0;
2195 
2196 	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2197 				      func, NULL, ACPI_TYPE_BUFFER);
2198 	if (!obj)
2199 		return -ENODEV;
2200 
2201 	memset(&callback, 0, sizeof(callback));
2202 	callback.cb[res_type[func]] = handler;
2203 	callback.arg[res_type[func]] = arg;
2204 	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2205 	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2206 
2207 	ACPI_FREE(obj);
2208 
2209 	return ret;
2210 }
2211 
2212 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2213 {
2214 	int ret;
2215 	struct dmar_drhd_unit *dmaru;
2216 
2217 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2218 	if (!dmaru)
2219 		return -ENODEV;
2220 
2221 	ret = dmar_ir_hotplug(dmaru, true);
2222 	if (ret == 0)
2223 		ret = dmar_iommu_hotplug(dmaru, true);
2224 
2225 	return ret;
2226 }
2227 
2228 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2229 {
2230 	int i, ret;
2231 	struct device *dev;
2232 	struct dmar_drhd_unit *dmaru;
2233 
2234 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2235 	if (!dmaru)
2236 		return 0;
2237 
2238 	/*
2239 	 * All PCI devices managed by this unit should have been destroyed.
2240 	 */
2241 	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2242 		for_each_active_dev_scope(dmaru->devices,
2243 					  dmaru->devices_cnt, i, dev)
2244 			return -EBUSY;
2245 	}
2246 
2247 	ret = dmar_ir_hotplug(dmaru, false);
2248 	if (ret == 0)
2249 		ret = dmar_iommu_hotplug(dmaru, false);
2250 
2251 	return ret;
2252 }
2253 
2254 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2255 {
2256 	struct dmar_drhd_unit *dmaru;
2257 
2258 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2259 	if (dmaru) {
2260 		list_del_rcu(&dmaru->list);
2261 		synchronize_rcu();
2262 		dmar_free_drhd(dmaru);
2263 	}
2264 
2265 	return 0;
2266 }
2267 
2268 static int dmar_hotplug_insert(acpi_handle handle)
2269 {
2270 	int ret;
2271 	int drhd_count = 0;
2272 
2273 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2274 				     &dmar_validate_one_drhd, (void *)1);
2275 	if (ret)
2276 		goto out;
2277 
2278 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2279 				     &dmar_parse_one_drhd, (void *)&drhd_count);
2280 	if (ret == 0 && drhd_count == 0) {
2281 		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2282 		goto out;
2283 	} else if (ret) {
2284 		goto release_drhd;
2285 	}
2286 
2287 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2288 				     &dmar_parse_one_rhsa, NULL);
2289 	if (ret)
2290 		goto release_drhd;
2291 
2292 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2293 				     &dmar_parse_one_atsr, NULL);
2294 	if (ret)
2295 		goto release_atsr;
2296 
2297 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2298 				     &dmar_hp_add_drhd, NULL);
2299 	if (!ret)
2300 		return 0;
2301 
2302 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2303 			       &dmar_hp_remove_drhd, NULL);
2304 release_atsr:
2305 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2306 			       &dmar_release_one_atsr, NULL);
2307 release_drhd:
2308 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2309 			       &dmar_hp_release_drhd, NULL);
2310 out:
2311 	return ret;
2312 }
2313 
2314 static int dmar_hotplug_remove(acpi_handle handle)
2315 {
2316 	int ret;
2317 
2318 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2319 				     &dmar_check_one_atsr, NULL);
2320 	if (ret)
2321 		return ret;
2322 
2323 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2324 				     &dmar_hp_remove_drhd, NULL);
2325 	if (ret == 0) {
2326 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2327 					       &dmar_release_one_atsr, NULL));
2328 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2329 					       &dmar_hp_release_drhd, NULL));
2330 	} else {
2331 		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2332 				       &dmar_hp_add_drhd, NULL);
2333 	}
2334 
2335 	return ret;
2336 }
2337 
2338 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2339 				       void *context, void **retval)
2340 {
2341 	acpi_handle *phdl = retval;
2342 
2343 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2344 		*phdl = handle;
2345 		return AE_CTRL_TERMINATE;
2346 	}
2347 
2348 	return AE_OK;
2349 }
2350 
2351 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2352 {
2353 	int ret;
2354 	acpi_handle tmp = NULL;
2355 	acpi_status status;
2356 
2357 	if (!dmar_in_use())
2358 		return 0;
2359 
2360 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2361 		tmp = handle;
2362 	} else {
2363 		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2364 					     ACPI_UINT32_MAX,
2365 					     dmar_get_dsm_handle,
2366 					     NULL, NULL, &tmp);
2367 		if (ACPI_FAILURE(status)) {
2368 			pr_warn("Failed to locate _DSM method.\n");
2369 			return -ENXIO;
2370 		}
2371 	}
2372 	if (tmp == NULL)
2373 		return 0;
2374 
2375 	down_write(&dmar_global_lock);
2376 	if (insert)
2377 		ret = dmar_hotplug_insert(tmp);
2378 	else
2379 		ret = dmar_hotplug_remove(tmp);
2380 	up_write(&dmar_global_lock);
2381 
2382 	return ret;
2383 }
2384 
2385 int dmar_device_add(acpi_handle handle)
2386 {
2387 	return dmar_device_hotplug(handle, true);
2388 }
2389 
2390 int dmar_device_remove(acpi_handle handle)
2391 {
2392 	return dmar_device_hotplug(handle, false);
2393 }
2394 
2395 /*
2396  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2397  *
2398  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2399  * the ACPI DMAR table. This means that the platform boot firmware has made
2400  * sure no device can issue DMA outside of RMRR regions.
2401  */
2402 bool dmar_platform_optin(void)
2403 {
2404 	struct acpi_table_dmar *dmar;
2405 	acpi_status status;
2406 	bool ret;
2407 
2408 	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2409 				(struct acpi_table_header **)&dmar);
2410 	if (ACPI_FAILURE(status))
2411 		return false;
2412 
2413 	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2414 	acpi_put_table((struct acpi_table_header *)dmar);
2415 
2416 	return ret;
2417 }
2418 EXPORT_SYMBOL_GPL(dmar_platform_optin);
2419