1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2006, Intel Corporation. 4 * 5 * Copyright (C) 2006-2008 Intel Corporation 6 * Author: Ashok Raj <ashok.raj@intel.com> 7 * Author: Shaohua Li <shaohua.li@intel.com> 8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * This file implements early detection/parsing of Remapping Devices 11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI 12 * tables. 13 * 14 * These routines are used by both DMA-remapping and Interrupt-remapping 15 */ 16 17 #define pr_fmt(fmt) "DMAR: " fmt 18 19 #include <linux/pci.h> 20 #include <linux/dmar.h> 21 #include <linux/iova.h> 22 #include <linux/intel-iommu.h> 23 #include <linux/timer.h> 24 #include <linux/irq.h> 25 #include <linux/interrupt.h> 26 #include <linux/tboot.h> 27 #include <linux/dmi.h> 28 #include <linux/slab.h> 29 #include <linux/iommu.h> 30 #include <linux/numa.h> 31 #include <linux/limits.h> 32 #include <asm/irq_remapping.h> 33 #include <asm/iommu_table.h> 34 35 #include "../irq_remapping.h" 36 37 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); 38 struct dmar_res_callback { 39 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; 40 void *arg[ACPI_DMAR_TYPE_RESERVED]; 41 bool ignore_unhandled; 42 bool print_entry; 43 }; 44 45 /* 46 * Assumptions: 47 * 1) The hotplug framework guarentees that DMAR unit will be hot-added 48 * before IO devices managed by that unit. 49 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed 50 * after IO devices managed by that unit. 51 * 3) Hotplug events are rare. 52 * 53 * Locking rules for DMA and interrupt remapping related global data structures: 54 * 1) Use dmar_global_lock in process context 55 * 2) Use RCU in interrupt context 56 */ 57 DECLARE_RWSEM(dmar_global_lock); 58 LIST_HEAD(dmar_drhd_units); 59 60 struct acpi_table_header * __initdata dmar_tbl; 61 static int dmar_dev_scope_status = 1; 62 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)]; 63 64 static int alloc_iommu(struct dmar_drhd_unit *drhd); 65 static void free_iommu(struct intel_iommu *iommu); 66 67 extern const struct iommu_ops intel_iommu_ops; 68 69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) 70 { 71 /* 72 * add INCLUDE_ALL at the tail, so scan the list will find it at 73 * the very end. 74 */ 75 if (drhd->include_all) 76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units); 77 else 78 list_add_rcu(&drhd->list, &dmar_drhd_units); 79 } 80 81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) 82 { 83 struct acpi_dmar_device_scope *scope; 84 85 *cnt = 0; 86 while (start < end) { 87 scope = start; 88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || 89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || 90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) 91 (*cnt)++; 92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && 93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { 94 pr_warn("Unsupported device scope\n"); 95 } 96 start += scope->length; 97 } 98 if (*cnt == 0) 99 return NULL; 100 101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); 102 } 103 104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) 105 { 106 int i; 107 struct device *tmp_dev; 108 109 if (*devices && *cnt) { 110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) 111 put_device(tmp_dev); 112 kfree(*devices); 113 } 114 115 *devices = NULL; 116 *cnt = 0; 117 } 118 119 /* Optimize out kzalloc()/kfree() for normal cases */ 120 static char dmar_pci_notify_info_buf[64]; 121 122 static struct dmar_pci_notify_info * 123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) 124 { 125 int level = 0; 126 size_t size; 127 struct pci_dev *tmp; 128 struct dmar_pci_notify_info *info; 129 130 BUG_ON(dev->is_virtfn); 131 132 /* 133 * Ignore devices that have a domain number higher than what can 134 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 135 */ 136 if (pci_domain_nr(dev->bus) > U16_MAX) 137 return NULL; 138 139 /* Only generate path[] for device addition event */ 140 if (event == BUS_NOTIFY_ADD_DEVICE) 141 for (tmp = dev; tmp; tmp = tmp->bus->self) 142 level++; 143 144 size = struct_size(info, path, level); 145 if (size <= sizeof(dmar_pci_notify_info_buf)) { 146 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; 147 } else { 148 info = kzalloc(size, GFP_KERNEL); 149 if (!info) { 150 pr_warn("Out of memory when allocating notify_info " 151 "for %s.\n", pci_name(dev)); 152 if (dmar_dev_scope_status == 0) 153 dmar_dev_scope_status = -ENOMEM; 154 return NULL; 155 } 156 } 157 158 info->event = event; 159 info->dev = dev; 160 info->seg = pci_domain_nr(dev->bus); 161 info->level = level; 162 if (event == BUS_NOTIFY_ADD_DEVICE) { 163 for (tmp = dev; tmp; tmp = tmp->bus->self) { 164 level--; 165 info->path[level].bus = tmp->bus->number; 166 info->path[level].device = PCI_SLOT(tmp->devfn); 167 info->path[level].function = PCI_FUNC(tmp->devfn); 168 if (pci_is_root_bus(tmp->bus)) 169 info->bus = tmp->bus->number; 170 } 171 } 172 173 return info; 174 } 175 176 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) 177 { 178 if ((void *)info != dmar_pci_notify_info_buf) 179 kfree(info); 180 } 181 182 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, 183 struct acpi_dmar_pci_path *path, int count) 184 { 185 int i; 186 187 if (info->bus != bus) 188 goto fallback; 189 if (info->level != count) 190 goto fallback; 191 192 for (i = 0; i < count; i++) { 193 if (path[i].device != info->path[i].device || 194 path[i].function != info->path[i].function) 195 goto fallback; 196 } 197 198 return true; 199 200 fallback: 201 202 if (count != 1) 203 return false; 204 205 i = info->level - 1; 206 if (bus == info->path[i].bus && 207 path[0].device == info->path[i].device && 208 path[0].function == info->path[i].function) { 209 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", 210 bus, path[0].device, path[0].function); 211 return true; 212 } 213 214 return false; 215 } 216 217 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ 218 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, 219 void *start, void*end, u16 segment, 220 struct dmar_dev_scope *devices, 221 int devices_cnt) 222 { 223 int i, level; 224 struct device *tmp, *dev = &info->dev->dev; 225 struct acpi_dmar_device_scope *scope; 226 struct acpi_dmar_pci_path *path; 227 228 if (segment != info->seg) 229 return 0; 230 231 for (; start < end; start += scope->length) { 232 scope = start; 233 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 234 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) 235 continue; 236 237 path = (struct acpi_dmar_pci_path *)(scope + 1); 238 level = (scope->length - sizeof(*scope)) / sizeof(*path); 239 if (!dmar_match_pci_path(info, scope->bus, path, level)) 240 continue; 241 242 /* 243 * We expect devices with endpoint scope to have normal PCI 244 * headers, and devices with bridge scope to have bridge PCI 245 * headers. However PCI NTB devices may be listed in the 246 * DMAR table with bridge scope, even though they have a 247 * normal PCI header. NTB devices are identified by class 248 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch 249 * for this special case. 250 */ 251 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 252 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || 253 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && 254 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 255 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { 256 pr_warn("Device scope type does not match for %s\n", 257 pci_name(info->dev)); 258 return -EINVAL; 259 } 260 261 for_each_dev_scope(devices, devices_cnt, i, tmp) 262 if (tmp == NULL) { 263 devices[i].bus = info->dev->bus->number; 264 devices[i].devfn = info->dev->devfn; 265 rcu_assign_pointer(devices[i].dev, 266 get_device(dev)); 267 return 1; 268 } 269 BUG_ON(i >= devices_cnt); 270 } 271 272 return 0; 273 } 274 275 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, 276 struct dmar_dev_scope *devices, int count) 277 { 278 int index; 279 struct device *tmp; 280 281 if (info->seg != segment) 282 return 0; 283 284 for_each_active_dev_scope(devices, count, index, tmp) 285 if (tmp == &info->dev->dev) { 286 RCU_INIT_POINTER(devices[index].dev, NULL); 287 synchronize_rcu(); 288 put_device(tmp); 289 return 1; 290 } 291 292 return 0; 293 } 294 295 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) 296 { 297 int ret = 0; 298 struct dmar_drhd_unit *dmaru; 299 struct acpi_dmar_hardware_unit *drhd; 300 301 for_each_drhd_unit(dmaru) { 302 if (dmaru->include_all) 303 continue; 304 305 drhd = container_of(dmaru->hdr, 306 struct acpi_dmar_hardware_unit, header); 307 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), 308 ((void *)drhd) + drhd->header.length, 309 dmaru->segment, 310 dmaru->devices, dmaru->devices_cnt); 311 if (ret) 312 break; 313 } 314 if (ret >= 0) 315 ret = dmar_iommu_notify_scope_dev(info); 316 if (ret < 0 && dmar_dev_scope_status == 0) 317 dmar_dev_scope_status = ret; 318 319 if (ret >= 0) 320 intel_irq_remap_add_device(info); 321 322 return ret; 323 } 324 325 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) 326 { 327 struct dmar_drhd_unit *dmaru; 328 329 for_each_drhd_unit(dmaru) 330 if (dmar_remove_dev_scope(info, dmaru->segment, 331 dmaru->devices, dmaru->devices_cnt)) 332 break; 333 dmar_iommu_notify_scope_dev(info); 334 } 335 336 static inline void vf_inherit_msi_domain(struct pci_dev *pdev) 337 { 338 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&pdev->physfn->dev)); 339 } 340 341 static int dmar_pci_bus_notifier(struct notifier_block *nb, 342 unsigned long action, void *data) 343 { 344 struct pci_dev *pdev = to_pci_dev(data); 345 struct dmar_pci_notify_info *info; 346 347 /* Only care about add/remove events for physical functions. 348 * For VFs we actually do the lookup based on the corresponding 349 * PF in device_to_iommu() anyway. */ 350 if (pdev->is_virtfn) { 351 /* 352 * Ensure that the VF device inherits the irq domain of the 353 * PF device. Ideally the device would inherit the domain 354 * from the bus, but DMAR can have multiple units per bus 355 * which makes this impossible. The VF 'bus' could inherit 356 * from the PF device, but that's yet another x86'sism to 357 * inflict on everybody else. 358 */ 359 if (action == BUS_NOTIFY_ADD_DEVICE) 360 vf_inherit_msi_domain(pdev); 361 return NOTIFY_DONE; 362 } 363 364 if (action != BUS_NOTIFY_ADD_DEVICE && 365 action != BUS_NOTIFY_REMOVED_DEVICE) 366 return NOTIFY_DONE; 367 368 info = dmar_alloc_pci_notify_info(pdev, action); 369 if (!info) 370 return NOTIFY_DONE; 371 372 down_write(&dmar_global_lock); 373 if (action == BUS_NOTIFY_ADD_DEVICE) 374 dmar_pci_bus_add_dev(info); 375 else if (action == BUS_NOTIFY_REMOVED_DEVICE) 376 dmar_pci_bus_del_dev(info); 377 up_write(&dmar_global_lock); 378 379 dmar_free_pci_notify_info(info); 380 381 return NOTIFY_OK; 382 } 383 384 static struct notifier_block dmar_pci_bus_nb = { 385 .notifier_call = dmar_pci_bus_notifier, 386 .priority = INT_MIN, 387 }; 388 389 static struct dmar_drhd_unit * 390 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) 391 { 392 struct dmar_drhd_unit *dmaru; 393 394 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, 395 dmar_rcu_check()) 396 if (dmaru->segment == drhd->segment && 397 dmaru->reg_base_addr == drhd->address) 398 return dmaru; 399 400 return NULL; 401 } 402 403 /* 404 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition 405 * structure which uniquely represent one DMA remapping hardware unit 406 * present in the platform 407 */ 408 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) 409 { 410 struct acpi_dmar_hardware_unit *drhd; 411 struct dmar_drhd_unit *dmaru; 412 int ret; 413 414 drhd = (struct acpi_dmar_hardware_unit *)header; 415 dmaru = dmar_find_dmaru(drhd); 416 if (dmaru) 417 goto out; 418 419 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); 420 if (!dmaru) 421 return -ENOMEM; 422 423 /* 424 * If header is allocated from slab by ACPI _DSM method, we need to 425 * copy the content because the memory buffer will be freed on return. 426 */ 427 dmaru->hdr = (void *)(dmaru + 1); 428 memcpy(dmaru->hdr, header, header->length); 429 dmaru->reg_base_addr = drhd->address; 430 dmaru->segment = drhd->segment; 431 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ 432 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), 433 ((void *)drhd) + drhd->header.length, 434 &dmaru->devices_cnt); 435 if (dmaru->devices_cnt && dmaru->devices == NULL) { 436 kfree(dmaru); 437 return -ENOMEM; 438 } 439 440 ret = alloc_iommu(dmaru); 441 if (ret) { 442 dmar_free_dev_scope(&dmaru->devices, 443 &dmaru->devices_cnt); 444 kfree(dmaru); 445 return ret; 446 } 447 dmar_register_drhd_unit(dmaru); 448 449 out: 450 if (arg) 451 (*(int *)arg)++; 452 453 return 0; 454 } 455 456 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) 457 { 458 if (dmaru->devices && dmaru->devices_cnt) 459 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); 460 if (dmaru->iommu) 461 free_iommu(dmaru->iommu); 462 kfree(dmaru); 463 } 464 465 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, 466 void *arg) 467 { 468 struct acpi_dmar_andd *andd = (void *)header; 469 470 /* Check for NUL termination within the designated length */ 471 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { 472 pr_warn(FW_BUG 473 "Your BIOS is broken; ANDD object name is not NUL-terminated\n" 474 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 475 dmi_get_system_info(DMI_BIOS_VENDOR), 476 dmi_get_system_info(DMI_BIOS_VERSION), 477 dmi_get_system_info(DMI_PRODUCT_VERSION)); 478 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 479 return -EINVAL; 480 } 481 pr_info("ANDD device: %x name: %s\n", andd->device_number, 482 andd->device_name); 483 484 return 0; 485 } 486 487 #ifdef CONFIG_ACPI_NUMA 488 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) 489 { 490 struct acpi_dmar_rhsa *rhsa; 491 struct dmar_drhd_unit *drhd; 492 493 rhsa = (struct acpi_dmar_rhsa *)header; 494 for_each_drhd_unit(drhd) { 495 if (drhd->reg_base_addr == rhsa->base_address) { 496 int node = pxm_to_node(rhsa->proximity_domain); 497 498 if (!node_online(node)) 499 node = NUMA_NO_NODE; 500 drhd->iommu->node = node; 501 return 0; 502 } 503 } 504 pr_warn(FW_BUG 505 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" 506 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 507 rhsa->base_address, 508 dmi_get_system_info(DMI_BIOS_VENDOR), 509 dmi_get_system_info(DMI_BIOS_VERSION), 510 dmi_get_system_info(DMI_PRODUCT_VERSION)); 511 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 512 513 return 0; 514 } 515 #else 516 #define dmar_parse_one_rhsa dmar_res_noop 517 #endif 518 519 static void 520 dmar_table_print_dmar_entry(struct acpi_dmar_header *header) 521 { 522 struct acpi_dmar_hardware_unit *drhd; 523 struct acpi_dmar_reserved_memory *rmrr; 524 struct acpi_dmar_atsr *atsr; 525 struct acpi_dmar_rhsa *rhsa; 526 527 switch (header->type) { 528 case ACPI_DMAR_TYPE_HARDWARE_UNIT: 529 drhd = container_of(header, struct acpi_dmar_hardware_unit, 530 header); 531 pr_info("DRHD base: %#016Lx flags: %#x\n", 532 (unsigned long long)drhd->address, drhd->flags); 533 break; 534 case ACPI_DMAR_TYPE_RESERVED_MEMORY: 535 rmrr = container_of(header, struct acpi_dmar_reserved_memory, 536 header); 537 pr_info("RMRR base: %#016Lx end: %#016Lx\n", 538 (unsigned long long)rmrr->base_address, 539 (unsigned long long)rmrr->end_address); 540 break; 541 case ACPI_DMAR_TYPE_ROOT_ATS: 542 atsr = container_of(header, struct acpi_dmar_atsr, header); 543 pr_info("ATSR flags: %#x\n", atsr->flags); 544 break; 545 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: 546 rhsa = container_of(header, struct acpi_dmar_rhsa, header); 547 pr_info("RHSA base: %#016Lx proximity domain: %#x\n", 548 (unsigned long long)rhsa->base_address, 549 rhsa->proximity_domain); 550 break; 551 case ACPI_DMAR_TYPE_NAMESPACE: 552 /* We don't print this here because we need to sanity-check 553 it first. So print it in dmar_parse_one_andd() instead. */ 554 break; 555 } 556 } 557 558 /** 559 * dmar_table_detect - checks to see if the platform supports DMAR devices 560 */ 561 static int __init dmar_table_detect(void) 562 { 563 acpi_status status = AE_OK; 564 565 /* if we could find DMAR table, then there are DMAR devices */ 566 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); 567 568 if (ACPI_SUCCESS(status) && !dmar_tbl) { 569 pr_warn("Unable to map DMAR\n"); 570 status = AE_NOT_FOUND; 571 } 572 573 return ACPI_SUCCESS(status) ? 0 : -ENOENT; 574 } 575 576 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, 577 size_t len, struct dmar_res_callback *cb) 578 { 579 struct acpi_dmar_header *iter, *next; 580 struct acpi_dmar_header *end = ((void *)start) + len; 581 582 for (iter = start; iter < end; iter = next) { 583 next = (void *)iter + iter->length; 584 if (iter->length == 0) { 585 /* Avoid looping forever on bad ACPI tables */ 586 pr_debug(FW_BUG "Invalid 0-length structure\n"); 587 break; 588 } else if (next > end) { 589 /* Avoid passing table end */ 590 pr_warn(FW_BUG "Record passes table end\n"); 591 return -EINVAL; 592 } 593 594 if (cb->print_entry) 595 dmar_table_print_dmar_entry(iter); 596 597 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { 598 /* continue for forward compatibility */ 599 pr_debug("Unknown DMAR structure type %d\n", 600 iter->type); 601 } else if (cb->cb[iter->type]) { 602 int ret; 603 604 ret = cb->cb[iter->type](iter, cb->arg[iter->type]); 605 if (ret) 606 return ret; 607 } else if (!cb->ignore_unhandled) { 608 pr_warn("No handler for DMAR structure type %d\n", 609 iter->type); 610 return -EINVAL; 611 } 612 } 613 614 return 0; 615 } 616 617 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, 618 struct dmar_res_callback *cb) 619 { 620 return dmar_walk_remapping_entries((void *)(dmar + 1), 621 dmar->header.length - sizeof(*dmar), cb); 622 } 623 624 /** 625 * parse_dmar_table - parses the DMA reporting table 626 */ 627 static int __init 628 parse_dmar_table(void) 629 { 630 struct acpi_table_dmar *dmar; 631 int drhd_count = 0; 632 int ret; 633 struct dmar_res_callback cb = { 634 .print_entry = true, 635 .ignore_unhandled = true, 636 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, 637 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, 638 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, 639 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, 640 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, 641 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, 642 }; 643 644 /* 645 * Do it again, earlier dmar_tbl mapping could be mapped with 646 * fixed map. 647 */ 648 dmar_table_detect(); 649 650 /* 651 * ACPI tables may not be DMA protected by tboot, so use DMAR copy 652 * SINIT saved in SinitMleData in TXT heap (which is DMA protected) 653 */ 654 dmar_tbl = tboot_get_dmar_table(dmar_tbl); 655 656 dmar = (struct acpi_table_dmar *)dmar_tbl; 657 if (!dmar) 658 return -ENODEV; 659 660 if (dmar->width < PAGE_SHIFT - 1) { 661 pr_warn("Invalid DMAR haw\n"); 662 return -EINVAL; 663 } 664 665 pr_info("Host address width %d\n", dmar->width + 1); 666 ret = dmar_walk_dmar_table(dmar, &cb); 667 if (ret == 0 && drhd_count == 0) 668 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); 669 670 return ret; 671 } 672 673 static int dmar_pci_device_match(struct dmar_dev_scope devices[], 674 int cnt, struct pci_dev *dev) 675 { 676 int index; 677 struct device *tmp; 678 679 while (dev) { 680 for_each_active_dev_scope(devices, cnt, index, tmp) 681 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) 682 return 1; 683 684 /* Check our parent */ 685 dev = dev->bus->self; 686 } 687 688 return 0; 689 } 690 691 struct dmar_drhd_unit * 692 dmar_find_matched_drhd_unit(struct pci_dev *dev) 693 { 694 struct dmar_drhd_unit *dmaru; 695 struct acpi_dmar_hardware_unit *drhd; 696 697 dev = pci_physfn(dev); 698 699 rcu_read_lock(); 700 for_each_drhd_unit(dmaru) { 701 drhd = container_of(dmaru->hdr, 702 struct acpi_dmar_hardware_unit, 703 header); 704 705 if (dmaru->include_all && 706 drhd->segment == pci_domain_nr(dev->bus)) 707 goto out; 708 709 if (dmar_pci_device_match(dmaru->devices, 710 dmaru->devices_cnt, dev)) 711 goto out; 712 } 713 dmaru = NULL; 714 out: 715 rcu_read_unlock(); 716 717 return dmaru; 718 } 719 720 static void __init dmar_acpi_insert_dev_scope(u8 device_number, 721 struct acpi_device *adev) 722 { 723 struct dmar_drhd_unit *dmaru; 724 struct acpi_dmar_hardware_unit *drhd; 725 struct acpi_dmar_device_scope *scope; 726 struct device *tmp; 727 int i; 728 struct acpi_dmar_pci_path *path; 729 730 for_each_drhd_unit(dmaru) { 731 drhd = container_of(dmaru->hdr, 732 struct acpi_dmar_hardware_unit, 733 header); 734 735 for (scope = (void *)(drhd + 1); 736 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; 737 scope = ((void *)scope) + scope->length) { 738 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) 739 continue; 740 if (scope->enumeration_id != device_number) 741 continue; 742 743 path = (void *)(scope + 1); 744 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", 745 dev_name(&adev->dev), dmaru->reg_base_addr, 746 scope->bus, path->device, path->function); 747 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) 748 if (tmp == NULL) { 749 dmaru->devices[i].bus = scope->bus; 750 dmaru->devices[i].devfn = PCI_DEVFN(path->device, 751 path->function); 752 rcu_assign_pointer(dmaru->devices[i].dev, 753 get_device(&adev->dev)); 754 return; 755 } 756 BUG_ON(i >= dmaru->devices_cnt); 757 } 758 } 759 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", 760 device_number, dev_name(&adev->dev)); 761 } 762 763 static int __init dmar_acpi_dev_scope_init(void) 764 { 765 struct acpi_dmar_andd *andd; 766 767 if (dmar_tbl == NULL) 768 return -ENODEV; 769 770 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); 771 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; 772 andd = ((void *)andd) + andd->header.length) { 773 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { 774 acpi_handle h; 775 struct acpi_device *adev; 776 777 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, 778 andd->device_name, 779 &h))) { 780 pr_err("Failed to find handle for ACPI object %s\n", 781 andd->device_name); 782 continue; 783 } 784 if (acpi_bus_get_device(h, &adev)) { 785 pr_err("Failed to get device for ACPI object %s\n", 786 andd->device_name); 787 continue; 788 } 789 dmar_acpi_insert_dev_scope(andd->device_number, adev); 790 } 791 } 792 return 0; 793 } 794 795 int __init dmar_dev_scope_init(void) 796 { 797 struct pci_dev *dev = NULL; 798 struct dmar_pci_notify_info *info; 799 800 if (dmar_dev_scope_status != 1) 801 return dmar_dev_scope_status; 802 803 if (list_empty(&dmar_drhd_units)) { 804 dmar_dev_scope_status = -ENODEV; 805 } else { 806 dmar_dev_scope_status = 0; 807 808 dmar_acpi_dev_scope_init(); 809 810 for_each_pci_dev(dev) { 811 if (dev->is_virtfn) 812 continue; 813 814 info = dmar_alloc_pci_notify_info(dev, 815 BUS_NOTIFY_ADD_DEVICE); 816 if (!info) { 817 return dmar_dev_scope_status; 818 } else { 819 dmar_pci_bus_add_dev(info); 820 dmar_free_pci_notify_info(info); 821 } 822 } 823 } 824 825 return dmar_dev_scope_status; 826 } 827 828 void __init dmar_register_bus_notifier(void) 829 { 830 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); 831 } 832 833 834 int __init dmar_table_init(void) 835 { 836 static int dmar_table_initialized; 837 int ret; 838 839 if (dmar_table_initialized == 0) { 840 ret = parse_dmar_table(); 841 if (ret < 0) { 842 if (ret != -ENODEV) 843 pr_info("Parse DMAR table failure.\n"); 844 } else if (list_empty(&dmar_drhd_units)) { 845 pr_info("No DMAR devices found\n"); 846 ret = -ENODEV; 847 } 848 849 if (ret < 0) 850 dmar_table_initialized = ret; 851 else 852 dmar_table_initialized = 1; 853 } 854 855 return dmar_table_initialized < 0 ? dmar_table_initialized : 0; 856 } 857 858 static void warn_invalid_dmar(u64 addr, const char *message) 859 { 860 pr_warn_once(FW_BUG 861 "Your BIOS is broken; DMAR reported at address %llx%s!\n" 862 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 863 addr, message, 864 dmi_get_system_info(DMI_BIOS_VENDOR), 865 dmi_get_system_info(DMI_BIOS_VERSION), 866 dmi_get_system_info(DMI_PRODUCT_VERSION)); 867 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 868 } 869 870 static int __ref 871 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) 872 { 873 struct acpi_dmar_hardware_unit *drhd; 874 void __iomem *addr; 875 u64 cap, ecap; 876 877 drhd = (void *)entry; 878 if (!drhd->address) { 879 warn_invalid_dmar(0, ""); 880 return -EINVAL; 881 } 882 883 if (arg) 884 addr = ioremap(drhd->address, VTD_PAGE_SIZE); 885 else 886 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); 887 if (!addr) { 888 pr_warn("Can't validate DRHD address: %llx\n", drhd->address); 889 return -EINVAL; 890 } 891 892 cap = dmar_readq(addr + DMAR_CAP_REG); 893 ecap = dmar_readq(addr + DMAR_ECAP_REG); 894 895 if (arg) 896 iounmap(addr); 897 else 898 early_iounmap(addr, VTD_PAGE_SIZE); 899 900 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { 901 warn_invalid_dmar(drhd->address, " returns all ones"); 902 return -EINVAL; 903 } 904 905 return 0; 906 } 907 908 int __init detect_intel_iommu(void) 909 { 910 int ret; 911 struct dmar_res_callback validate_drhd_cb = { 912 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, 913 .ignore_unhandled = true, 914 }; 915 916 down_write(&dmar_global_lock); 917 ret = dmar_table_detect(); 918 if (!ret) 919 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, 920 &validate_drhd_cb); 921 if (!ret && !no_iommu && !iommu_detected && 922 (!dmar_disabled || dmar_platform_optin())) { 923 iommu_detected = 1; 924 /* Make sure ACS will be enabled */ 925 pci_request_acs(); 926 } 927 928 #ifdef CONFIG_X86 929 if (!ret) { 930 x86_init.iommu.iommu_init = intel_iommu_init; 931 x86_platform.iommu_shutdown = intel_iommu_shutdown; 932 } 933 934 #endif 935 936 if (dmar_tbl) { 937 acpi_put_table(dmar_tbl); 938 dmar_tbl = NULL; 939 } 940 up_write(&dmar_global_lock); 941 942 return ret ? ret : 1; 943 } 944 945 static void unmap_iommu(struct intel_iommu *iommu) 946 { 947 iounmap(iommu->reg); 948 release_mem_region(iommu->reg_phys, iommu->reg_size); 949 } 950 951 /** 952 * map_iommu: map the iommu's registers 953 * @iommu: the iommu to map 954 * @phys_addr: the physical address of the base resgister 955 * 956 * Memory map the iommu's registers. Start w/ a single page, and 957 * possibly expand if that turns out to be insufficent. 958 */ 959 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr) 960 { 961 int map_size, err=0; 962 963 iommu->reg_phys = phys_addr; 964 iommu->reg_size = VTD_PAGE_SIZE; 965 966 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { 967 pr_err("Can't reserve memory\n"); 968 err = -EBUSY; 969 goto out; 970 } 971 972 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 973 if (!iommu->reg) { 974 pr_err("Can't map the region\n"); 975 err = -ENOMEM; 976 goto release; 977 } 978 979 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); 980 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); 981 982 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { 983 err = -EINVAL; 984 warn_invalid_dmar(phys_addr, " returns all ones"); 985 goto unmap; 986 } 987 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG); 988 989 /* the registers might be more than one page */ 990 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), 991 cap_max_fault_reg_offset(iommu->cap)); 992 map_size = VTD_PAGE_ALIGN(map_size); 993 if (map_size > iommu->reg_size) { 994 iounmap(iommu->reg); 995 release_mem_region(iommu->reg_phys, iommu->reg_size); 996 iommu->reg_size = map_size; 997 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, 998 iommu->name)) { 999 pr_err("Can't reserve memory\n"); 1000 err = -EBUSY; 1001 goto out; 1002 } 1003 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 1004 if (!iommu->reg) { 1005 pr_err("Can't map the region\n"); 1006 err = -ENOMEM; 1007 goto release; 1008 } 1009 } 1010 err = 0; 1011 goto out; 1012 1013 unmap: 1014 iounmap(iommu->reg); 1015 release: 1016 release_mem_region(iommu->reg_phys, iommu->reg_size); 1017 out: 1018 return err; 1019 } 1020 1021 static int dmar_alloc_seq_id(struct intel_iommu *iommu) 1022 { 1023 iommu->seq_id = find_first_zero_bit(dmar_seq_ids, 1024 DMAR_UNITS_SUPPORTED); 1025 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) { 1026 iommu->seq_id = -1; 1027 } else { 1028 set_bit(iommu->seq_id, dmar_seq_ids); 1029 sprintf(iommu->name, "dmar%d", iommu->seq_id); 1030 } 1031 1032 return iommu->seq_id; 1033 } 1034 1035 static void dmar_free_seq_id(struct intel_iommu *iommu) 1036 { 1037 if (iommu->seq_id >= 0) { 1038 clear_bit(iommu->seq_id, dmar_seq_ids); 1039 iommu->seq_id = -1; 1040 } 1041 } 1042 1043 static int alloc_iommu(struct dmar_drhd_unit *drhd) 1044 { 1045 struct intel_iommu *iommu; 1046 u32 ver, sts; 1047 int agaw = -1; 1048 int msagaw = -1; 1049 int err; 1050 1051 if (!drhd->reg_base_addr) { 1052 warn_invalid_dmar(0, ""); 1053 return -EINVAL; 1054 } 1055 1056 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); 1057 if (!iommu) 1058 return -ENOMEM; 1059 1060 if (dmar_alloc_seq_id(iommu) < 0) { 1061 pr_err("Failed to allocate seq_id\n"); 1062 err = -ENOSPC; 1063 goto error; 1064 } 1065 1066 err = map_iommu(iommu, drhd->reg_base_addr); 1067 if (err) { 1068 pr_err("Failed to map %s\n", iommu->name); 1069 goto error_free_seq_id; 1070 } 1071 1072 err = -EINVAL; 1073 if (cap_sagaw(iommu->cap) == 0) { 1074 pr_info("%s: No supported address widths. Not attempting DMA translation.\n", 1075 iommu->name); 1076 drhd->ignored = 1; 1077 } 1078 1079 if (!drhd->ignored) { 1080 agaw = iommu_calculate_agaw(iommu); 1081 if (agaw < 0) { 1082 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", 1083 iommu->seq_id); 1084 drhd->ignored = 1; 1085 } 1086 } 1087 if (!drhd->ignored) { 1088 msagaw = iommu_calculate_max_sagaw(iommu); 1089 if (msagaw < 0) { 1090 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", 1091 iommu->seq_id); 1092 drhd->ignored = 1; 1093 agaw = -1; 1094 } 1095 } 1096 iommu->agaw = agaw; 1097 iommu->msagaw = msagaw; 1098 iommu->segment = drhd->segment; 1099 1100 iommu->node = NUMA_NO_NODE; 1101 1102 ver = readl(iommu->reg + DMAR_VER_REG); 1103 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", 1104 iommu->name, 1105 (unsigned long long)drhd->reg_base_addr, 1106 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), 1107 (unsigned long long)iommu->cap, 1108 (unsigned long long)iommu->ecap); 1109 1110 /* Reflect status in gcmd */ 1111 sts = readl(iommu->reg + DMAR_GSTS_REG); 1112 if (sts & DMA_GSTS_IRES) 1113 iommu->gcmd |= DMA_GCMD_IRE; 1114 if (sts & DMA_GSTS_TES) 1115 iommu->gcmd |= DMA_GCMD_TE; 1116 if (sts & DMA_GSTS_QIES) 1117 iommu->gcmd |= DMA_GCMD_QIE; 1118 1119 raw_spin_lock_init(&iommu->register_lock); 1120 1121 /* 1122 * This is only for hotplug; at boot time intel_iommu_enabled won't 1123 * be set yet. When intel_iommu_init() runs, it registers the units 1124 * present at boot time, then sets intel_iommu_enabled. 1125 */ 1126 if (intel_iommu_enabled && !drhd->ignored) { 1127 err = iommu_device_sysfs_add(&iommu->iommu, NULL, 1128 intel_iommu_groups, 1129 "%s", iommu->name); 1130 if (err) 1131 goto err_unmap; 1132 1133 iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops); 1134 1135 err = iommu_device_register(&iommu->iommu); 1136 if (err) 1137 goto err_unmap; 1138 } 1139 1140 drhd->iommu = iommu; 1141 iommu->drhd = drhd; 1142 1143 return 0; 1144 1145 err_unmap: 1146 unmap_iommu(iommu); 1147 error_free_seq_id: 1148 dmar_free_seq_id(iommu); 1149 error: 1150 kfree(iommu); 1151 return err; 1152 } 1153 1154 static void free_iommu(struct intel_iommu *iommu) 1155 { 1156 if (intel_iommu_enabled && !iommu->drhd->ignored) { 1157 iommu_device_unregister(&iommu->iommu); 1158 iommu_device_sysfs_remove(&iommu->iommu); 1159 } 1160 1161 if (iommu->irq) { 1162 if (iommu->pr_irq) { 1163 free_irq(iommu->pr_irq, iommu); 1164 dmar_free_hwirq(iommu->pr_irq); 1165 iommu->pr_irq = 0; 1166 } 1167 free_irq(iommu->irq, iommu); 1168 dmar_free_hwirq(iommu->irq); 1169 iommu->irq = 0; 1170 } 1171 1172 if (iommu->qi) { 1173 free_page((unsigned long)iommu->qi->desc); 1174 kfree(iommu->qi->desc_status); 1175 kfree(iommu->qi); 1176 } 1177 1178 if (iommu->reg) 1179 unmap_iommu(iommu); 1180 1181 dmar_free_seq_id(iommu); 1182 kfree(iommu); 1183 } 1184 1185 /* 1186 * Reclaim all the submitted descriptors which have completed its work. 1187 */ 1188 static inline void reclaim_free_desc(struct q_inval *qi) 1189 { 1190 while (qi->desc_status[qi->free_tail] == QI_DONE || 1191 qi->desc_status[qi->free_tail] == QI_ABORT) { 1192 qi->desc_status[qi->free_tail] = QI_FREE; 1193 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; 1194 qi->free_cnt++; 1195 } 1196 } 1197 1198 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) 1199 { 1200 u32 fault; 1201 int head, tail; 1202 struct q_inval *qi = iommu->qi; 1203 int shift = qi_shift(iommu); 1204 1205 if (qi->desc_status[wait_index] == QI_ABORT) 1206 return -EAGAIN; 1207 1208 fault = readl(iommu->reg + DMAR_FSTS_REG); 1209 1210 /* 1211 * If IQE happens, the head points to the descriptor associated 1212 * with the error. No new descriptors are fetched until the IQE 1213 * is cleared. 1214 */ 1215 if (fault & DMA_FSTS_IQE) { 1216 head = readl(iommu->reg + DMAR_IQH_REG); 1217 if ((head >> shift) == index) { 1218 struct qi_desc *desc = qi->desc + head; 1219 1220 /* 1221 * desc->qw2 and desc->qw3 are either reserved or 1222 * used by software as private data. We won't print 1223 * out these two qw's for security consideration. 1224 */ 1225 pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n", 1226 (unsigned long long)desc->qw0, 1227 (unsigned long long)desc->qw1); 1228 memcpy(desc, qi->desc + (wait_index << shift), 1229 1 << shift); 1230 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); 1231 return -EINVAL; 1232 } 1233 } 1234 1235 /* 1236 * If ITE happens, all pending wait_desc commands are aborted. 1237 * No new descriptors are fetched until the ITE is cleared. 1238 */ 1239 if (fault & DMA_FSTS_ITE) { 1240 head = readl(iommu->reg + DMAR_IQH_REG); 1241 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1242 head |= 1; 1243 tail = readl(iommu->reg + DMAR_IQT_REG); 1244 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1245 1246 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); 1247 1248 do { 1249 if (qi->desc_status[head] == QI_IN_USE) 1250 qi->desc_status[head] = QI_ABORT; 1251 head = (head - 2 + QI_LENGTH) % QI_LENGTH; 1252 } while (head != tail); 1253 1254 if (qi->desc_status[wait_index] == QI_ABORT) 1255 return -EAGAIN; 1256 } 1257 1258 if (fault & DMA_FSTS_ICE) 1259 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); 1260 1261 return 0; 1262 } 1263 1264 /* 1265 * Function to submit invalidation descriptors of all types to the queued 1266 * invalidation interface(QI). Multiple descriptors can be submitted at a 1267 * time, a wait descriptor will be appended to each submission to ensure 1268 * hardware has completed the invalidation before return. Wait descriptors 1269 * can be part of the submission but it will not be polled for completion. 1270 */ 1271 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, 1272 unsigned int count, unsigned long options) 1273 { 1274 struct q_inval *qi = iommu->qi; 1275 struct qi_desc wait_desc; 1276 int wait_index, index; 1277 unsigned long flags; 1278 int offset, shift; 1279 int rc, i; 1280 1281 if (!qi) 1282 return 0; 1283 1284 restart: 1285 rc = 0; 1286 1287 raw_spin_lock_irqsave(&qi->q_lock, flags); 1288 /* 1289 * Check if we have enough empty slots in the queue to submit, 1290 * the calculation is based on: 1291 * # of desc + 1 wait desc + 1 space between head and tail 1292 */ 1293 while (qi->free_cnt < count + 2) { 1294 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1295 cpu_relax(); 1296 raw_spin_lock_irqsave(&qi->q_lock, flags); 1297 } 1298 1299 index = qi->free_head; 1300 wait_index = (index + count) % QI_LENGTH; 1301 shift = qi_shift(iommu); 1302 1303 for (i = 0; i < count; i++) { 1304 offset = ((index + i) % QI_LENGTH) << shift; 1305 memcpy(qi->desc + offset, &desc[i], 1 << shift); 1306 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; 1307 } 1308 qi->desc_status[wait_index] = QI_IN_USE; 1309 1310 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 1311 QI_IWD_STATUS_WRITE | QI_IWD_TYPE; 1312 if (options & QI_OPT_WAIT_DRAIN) 1313 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; 1314 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); 1315 wait_desc.qw2 = 0; 1316 wait_desc.qw3 = 0; 1317 1318 offset = wait_index << shift; 1319 memcpy(qi->desc + offset, &wait_desc, 1 << shift); 1320 1321 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; 1322 qi->free_cnt -= count + 1; 1323 1324 /* 1325 * update the HW tail register indicating the presence of 1326 * new descriptors. 1327 */ 1328 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); 1329 1330 while (qi->desc_status[wait_index] != QI_DONE) { 1331 /* 1332 * We will leave the interrupts disabled, to prevent interrupt 1333 * context to queue another cmd while a cmd is already submitted 1334 * and waiting for completion on this cpu. This is to avoid 1335 * a deadlock where the interrupt context can wait indefinitely 1336 * for free slots in the queue. 1337 */ 1338 rc = qi_check_fault(iommu, index, wait_index); 1339 if (rc) 1340 break; 1341 1342 raw_spin_unlock(&qi->q_lock); 1343 cpu_relax(); 1344 raw_spin_lock(&qi->q_lock); 1345 } 1346 1347 for (i = 0; i < count; i++) 1348 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; 1349 1350 reclaim_free_desc(qi); 1351 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1352 1353 if (rc == -EAGAIN) 1354 goto restart; 1355 1356 return rc; 1357 } 1358 1359 /* 1360 * Flush the global interrupt entry cache. 1361 */ 1362 void qi_global_iec(struct intel_iommu *iommu) 1363 { 1364 struct qi_desc desc; 1365 1366 desc.qw0 = QI_IEC_TYPE; 1367 desc.qw1 = 0; 1368 desc.qw2 = 0; 1369 desc.qw3 = 0; 1370 1371 /* should never fail */ 1372 qi_submit_sync(iommu, &desc, 1, 0); 1373 } 1374 1375 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, 1376 u64 type) 1377 { 1378 struct qi_desc desc; 1379 1380 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) 1381 | QI_CC_GRAN(type) | QI_CC_TYPE; 1382 desc.qw1 = 0; 1383 desc.qw2 = 0; 1384 desc.qw3 = 0; 1385 1386 qi_submit_sync(iommu, &desc, 1, 0); 1387 } 1388 1389 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, 1390 unsigned int size_order, u64 type) 1391 { 1392 u8 dw = 0, dr = 0; 1393 1394 struct qi_desc desc; 1395 int ih = 0; 1396 1397 if (cap_write_drain(iommu->cap)) 1398 dw = 1; 1399 1400 if (cap_read_drain(iommu->cap)) 1401 dr = 1; 1402 1403 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) 1404 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; 1405 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) 1406 | QI_IOTLB_AM(size_order); 1407 desc.qw2 = 0; 1408 desc.qw3 = 0; 1409 1410 qi_submit_sync(iommu, &desc, 1, 0); 1411 } 1412 1413 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1414 u16 qdep, u64 addr, unsigned mask) 1415 { 1416 struct qi_desc desc; 1417 1418 if (mask) { 1419 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; 1420 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; 1421 } else 1422 desc.qw1 = QI_DEV_IOTLB_ADDR(addr); 1423 1424 if (qdep >= QI_DEV_IOTLB_MAX_INVS) 1425 qdep = 0; 1426 1427 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | 1428 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); 1429 desc.qw2 = 0; 1430 desc.qw3 = 0; 1431 1432 qi_submit_sync(iommu, &desc, 1, 0); 1433 } 1434 1435 /* PASID-based IOTLB invalidation */ 1436 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, 1437 unsigned long npages, bool ih) 1438 { 1439 struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; 1440 1441 /* 1442 * npages == -1 means a PASID-selective invalidation, otherwise, 1443 * a positive value for Page-selective-within-PASID invalidation. 1444 * 0 is not a valid input. 1445 */ 1446 if (WARN_ON(!npages)) { 1447 pr_err("Invalid input npages = %ld\n", npages); 1448 return; 1449 } 1450 1451 if (npages == -1) { 1452 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1453 QI_EIOTLB_DID(did) | 1454 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 1455 QI_EIOTLB_TYPE; 1456 desc.qw1 = 0; 1457 } else { 1458 int mask = ilog2(__roundup_pow_of_two(npages)); 1459 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); 1460 1461 if (WARN_ON_ONCE(!ALIGN(addr, align))) 1462 addr &= ~(align - 1); 1463 1464 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1465 QI_EIOTLB_DID(did) | 1466 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | 1467 QI_EIOTLB_TYPE; 1468 desc.qw1 = QI_EIOTLB_ADDR(addr) | 1469 QI_EIOTLB_IH(ih) | 1470 QI_EIOTLB_AM(mask); 1471 } 1472 1473 qi_submit_sync(iommu, &desc, 1, 0); 1474 } 1475 1476 /* PASID-based device IOTLB Invalidate */ 1477 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1478 u32 pasid, u16 qdep, u64 addr, unsigned int size_order) 1479 { 1480 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); 1481 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1482 1483 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | 1484 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | 1485 QI_DEV_IOTLB_PFSID(pfsid); 1486 1487 /* 1488 * If S bit is 0, we only flush a single page. If S bit is set, 1489 * The least significant zero bit indicates the invalidation address 1490 * range. VT-d spec 6.5.2.6. 1491 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. 1492 * size order = 0 is PAGE_SIZE 4KB 1493 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in 1494 * ECAP. 1495 */ 1496 if (addr & GENMASK_ULL(size_order + VTD_PAGE_SHIFT, 0)) 1497 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n", 1498 addr, size_order); 1499 1500 /* Take page address */ 1501 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr); 1502 1503 if (size_order) { 1504 /* 1505 * Existing 0s in address below size_order may be the least 1506 * significant bit, we must set them to 1s to avoid having 1507 * smaller size than desired. 1508 */ 1509 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1, 1510 VTD_PAGE_SHIFT); 1511 /* Clear size_order bit to indicate size */ 1512 desc.qw1 &= ~mask; 1513 /* Set the S bit to indicate flushing more than 1 page */ 1514 desc.qw1 |= QI_DEV_EIOTLB_SIZE; 1515 } 1516 1517 qi_submit_sync(iommu, &desc, 1, 0); 1518 } 1519 1520 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, 1521 u64 granu, u32 pasid) 1522 { 1523 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1524 1525 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | 1526 QI_PC_GRAN(granu) | QI_PC_TYPE; 1527 qi_submit_sync(iommu, &desc, 1, 0); 1528 } 1529 1530 /* 1531 * Disable Queued Invalidation interface. 1532 */ 1533 void dmar_disable_qi(struct intel_iommu *iommu) 1534 { 1535 unsigned long flags; 1536 u32 sts; 1537 cycles_t start_time = get_cycles(); 1538 1539 if (!ecap_qis(iommu->ecap)) 1540 return; 1541 1542 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1543 1544 sts = readl(iommu->reg + DMAR_GSTS_REG); 1545 if (!(sts & DMA_GSTS_QIES)) 1546 goto end; 1547 1548 /* 1549 * Give a chance to HW to complete the pending invalidation requests. 1550 */ 1551 while ((readl(iommu->reg + DMAR_IQT_REG) != 1552 readl(iommu->reg + DMAR_IQH_REG)) && 1553 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) 1554 cpu_relax(); 1555 1556 iommu->gcmd &= ~DMA_GCMD_QIE; 1557 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1558 1559 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, 1560 !(sts & DMA_GSTS_QIES), sts); 1561 end: 1562 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1563 } 1564 1565 /* 1566 * Enable queued invalidation. 1567 */ 1568 static void __dmar_enable_qi(struct intel_iommu *iommu) 1569 { 1570 u32 sts; 1571 unsigned long flags; 1572 struct q_inval *qi = iommu->qi; 1573 u64 val = virt_to_phys(qi->desc); 1574 1575 qi->free_head = qi->free_tail = 0; 1576 qi->free_cnt = QI_LENGTH; 1577 1578 /* 1579 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability 1580 * is present. 1581 */ 1582 if (ecap_smts(iommu->ecap)) 1583 val |= (1 << 11) | 1; 1584 1585 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1586 1587 /* write zero to the tail reg */ 1588 writel(0, iommu->reg + DMAR_IQT_REG); 1589 1590 dmar_writeq(iommu->reg + DMAR_IQA_REG, val); 1591 1592 iommu->gcmd |= DMA_GCMD_QIE; 1593 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1594 1595 /* Make sure hardware complete it */ 1596 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); 1597 1598 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1599 } 1600 1601 /* 1602 * Enable Queued Invalidation interface. This is a must to support 1603 * interrupt-remapping. Also used by DMA-remapping, which replaces 1604 * register based IOTLB invalidation. 1605 */ 1606 int dmar_enable_qi(struct intel_iommu *iommu) 1607 { 1608 struct q_inval *qi; 1609 struct page *desc_page; 1610 1611 if (!ecap_qis(iommu->ecap)) 1612 return -ENOENT; 1613 1614 /* 1615 * queued invalidation is already setup and enabled. 1616 */ 1617 if (iommu->qi) 1618 return 0; 1619 1620 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); 1621 if (!iommu->qi) 1622 return -ENOMEM; 1623 1624 qi = iommu->qi; 1625 1626 /* 1627 * Need two pages to accommodate 256 descriptors of 256 bits each 1628 * if the remapping hardware supports scalable mode translation. 1629 */ 1630 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 1631 !!ecap_smts(iommu->ecap)); 1632 if (!desc_page) { 1633 kfree(qi); 1634 iommu->qi = NULL; 1635 return -ENOMEM; 1636 } 1637 1638 qi->desc = page_address(desc_page); 1639 1640 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); 1641 if (!qi->desc_status) { 1642 free_page((unsigned long) qi->desc); 1643 kfree(qi); 1644 iommu->qi = NULL; 1645 return -ENOMEM; 1646 } 1647 1648 raw_spin_lock_init(&qi->q_lock); 1649 1650 __dmar_enable_qi(iommu); 1651 1652 return 0; 1653 } 1654 1655 /* iommu interrupt handling. Most stuff are MSI-like. */ 1656 1657 enum faulttype { 1658 DMA_REMAP, 1659 INTR_REMAP, 1660 UNKNOWN, 1661 }; 1662 1663 static const char *dma_remap_fault_reasons[] = 1664 { 1665 "Software", 1666 "Present bit in root entry is clear", 1667 "Present bit in context entry is clear", 1668 "Invalid context entry", 1669 "Access beyond MGAW", 1670 "PTE Write access is not set", 1671 "PTE Read access is not set", 1672 "Next page table ptr is invalid", 1673 "Root table address invalid", 1674 "Context table ptr is invalid", 1675 "non-zero reserved fields in RTP", 1676 "non-zero reserved fields in CTP", 1677 "non-zero reserved fields in PTE", 1678 "PCE for translation request specifies blocking", 1679 }; 1680 1681 static const char * const dma_remap_sm_fault_reasons[] = { 1682 "SM: Invalid Root Table Address", 1683 "SM: TTM 0 for request with PASID", 1684 "SM: TTM 0 for page group request", 1685 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ 1686 "SM: Error attempting to access Root Entry", 1687 "SM: Present bit in Root Entry is clear", 1688 "SM: Non-zero reserved field set in Root Entry", 1689 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ 1690 "SM: Error attempting to access Context Entry", 1691 "SM: Present bit in Context Entry is clear", 1692 "SM: Non-zero reserved field set in the Context Entry", 1693 "SM: Invalid Context Entry", 1694 "SM: DTE field in Context Entry is clear", 1695 "SM: PASID Enable field in Context Entry is clear", 1696 "SM: PASID is larger than the max in Context Entry", 1697 "SM: PRE field in Context-Entry is clear", 1698 "SM: RID_PASID field error in Context-Entry", 1699 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ 1700 "SM: Error attempting to access the PASID Directory Entry", 1701 "SM: Present bit in Directory Entry is clear", 1702 "SM: Non-zero reserved field set in PASID Directory Entry", 1703 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ 1704 "SM: Error attempting to access PASID Table Entry", 1705 "SM: Present bit in PASID Table Entry is clear", 1706 "SM: Non-zero reserved field set in PASID Table Entry", 1707 "SM: Invalid Scalable-Mode PASID Table Entry", 1708 "SM: ERE field is clear in PASID Table Entry", 1709 "SM: SRE field is clear in PASID Table Entry", 1710 "Unknown", "Unknown",/* 0x5E-0x5F */ 1711 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ 1712 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ 1713 "SM: Error attempting to access first-level paging entry", 1714 "SM: Present bit in first-level paging entry is clear", 1715 "SM: Non-zero reserved field set in first-level paging entry", 1716 "SM: Error attempting to access FL-PML4 entry", 1717 "SM: First-level entry address beyond MGAW in Nested translation", 1718 "SM: Read permission error in FL-PML4 entry in Nested translation", 1719 "SM: Read permission error in first-level paging entry in Nested translation", 1720 "SM: Write permission error in first-level paging entry in Nested translation", 1721 "SM: Error attempting to access second-level paging entry", 1722 "SM: Read/Write permission error in second-level paging entry", 1723 "SM: Non-zero reserved field set in second-level paging entry", 1724 "SM: Invalid second-level page table pointer", 1725 "SM: A/D bit update needed in second-level entry when set up in no snoop", 1726 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ 1727 "SM: Address in first-level translation is not canonical", 1728 "SM: U/S set 0 for first-level translation with user privilege", 1729 "SM: No execute permission for request with PASID and ER=1", 1730 "SM: Address beyond the DMA hardware max", 1731 "SM: Second-level entry address beyond the max", 1732 "SM: No write permission for Write/AtomicOp request", 1733 "SM: No read permission for Read/AtomicOp request", 1734 "SM: Invalid address-interrupt address", 1735 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ 1736 "SM: A/D bit update needed in first-level entry when set up in no snoop", 1737 }; 1738 1739 static const char *irq_remap_fault_reasons[] = 1740 { 1741 "Detected reserved fields in the decoded interrupt-remapped request", 1742 "Interrupt index exceeded the interrupt-remapping table size", 1743 "Present field in the IRTE entry is clear", 1744 "Error accessing interrupt-remapping table pointed by IRTA_REG", 1745 "Detected reserved fields in the IRTE entry", 1746 "Blocked a compatibility format interrupt request", 1747 "Blocked an interrupt request due to source-id verification failure", 1748 }; 1749 1750 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) 1751 { 1752 if (fault_reason >= 0x20 && (fault_reason - 0x20 < 1753 ARRAY_SIZE(irq_remap_fault_reasons))) { 1754 *fault_type = INTR_REMAP; 1755 return irq_remap_fault_reasons[fault_reason - 0x20]; 1756 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < 1757 ARRAY_SIZE(dma_remap_sm_fault_reasons))) { 1758 *fault_type = DMA_REMAP; 1759 return dma_remap_sm_fault_reasons[fault_reason - 0x30]; 1760 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { 1761 *fault_type = DMA_REMAP; 1762 return dma_remap_fault_reasons[fault_reason]; 1763 } else { 1764 *fault_type = UNKNOWN; 1765 return "Unknown"; 1766 } 1767 } 1768 1769 1770 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) 1771 { 1772 if (iommu->irq == irq) 1773 return DMAR_FECTL_REG; 1774 else if (iommu->pr_irq == irq) 1775 return DMAR_PECTL_REG; 1776 else 1777 BUG(); 1778 } 1779 1780 void dmar_msi_unmask(struct irq_data *data) 1781 { 1782 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1783 int reg = dmar_msi_reg(iommu, data->irq); 1784 unsigned long flag; 1785 1786 /* unmask it */ 1787 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1788 writel(0, iommu->reg + reg); 1789 /* Read a reg to force flush the post write */ 1790 readl(iommu->reg + reg); 1791 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1792 } 1793 1794 void dmar_msi_mask(struct irq_data *data) 1795 { 1796 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1797 int reg = dmar_msi_reg(iommu, data->irq); 1798 unsigned long flag; 1799 1800 /* mask it */ 1801 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1802 writel(DMA_FECTL_IM, iommu->reg + reg); 1803 /* Read a reg to force flush the post write */ 1804 readl(iommu->reg + reg); 1805 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1806 } 1807 1808 void dmar_msi_write(int irq, struct msi_msg *msg) 1809 { 1810 struct intel_iommu *iommu = irq_get_handler_data(irq); 1811 int reg = dmar_msi_reg(iommu, irq); 1812 unsigned long flag; 1813 1814 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1815 writel(msg->data, iommu->reg + reg + 4); 1816 writel(msg->address_lo, iommu->reg + reg + 8); 1817 writel(msg->address_hi, iommu->reg + reg + 12); 1818 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1819 } 1820 1821 void dmar_msi_read(int irq, struct msi_msg *msg) 1822 { 1823 struct intel_iommu *iommu = irq_get_handler_data(irq); 1824 int reg = dmar_msi_reg(iommu, irq); 1825 unsigned long flag; 1826 1827 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1828 msg->data = readl(iommu->reg + reg + 4); 1829 msg->address_lo = readl(iommu->reg + reg + 8); 1830 msg->address_hi = readl(iommu->reg + reg + 12); 1831 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1832 } 1833 1834 static int dmar_fault_do_one(struct intel_iommu *iommu, int type, 1835 u8 fault_reason, u32 pasid, u16 source_id, 1836 unsigned long long addr) 1837 { 1838 const char *reason; 1839 int fault_type; 1840 1841 reason = dmar_get_fault_reason(fault_reason, &fault_type); 1842 1843 if (fault_type == INTR_REMAP) 1844 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n", 1845 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1846 PCI_FUNC(source_id & 0xFF), addr >> 48, 1847 fault_reason, reason); 1848 else 1849 pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n", 1850 type ? "DMA Read" : "DMA Write", 1851 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1852 PCI_FUNC(source_id & 0xFF), pasid, addr, 1853 fault_reason, reason); 1854 return 0; 1855 } 1856 1857 #define PRIMARY_FAULT_REG_LEN (16) 1858 irqreturn_t dmar_fault(int irq, void *dev_id) 1859 { 1860 struct intel_iommu *iommu = dev_id; 1861 int reg, fault_index; 1862 u32 fault_status; 1863 unsigned long flag; 1864 static DEFINE_RATELIMIT_STATE(rs, 1865 DEFAULT_RATELIMIT_INTERVAL, 1866 DEFAULT_RATELIMIT_BURST); 1867 1868 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1869 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1870 if (fault_status && __ratelimit(&rs)) 1871 pr_err("DRHD: handling fault status reg %x\n", fault_status); 1872 1873 /* TBD: ignore advanced fault log currently */ 1874 if (!(fault_status & DMA_FSTS_PPF)) 1875 goto unlock_exit; 1876 1877 fault_index = dma_fsts_fault_record_index(fault_status); 1878 reg = cap_fault_reg_offset(iommu->cap); 1879 while (1) { 1880 /* Disable printing, simply clear the fault when ratelimited */ 1881 bool ratelimited = !__ratelimit(&rs); 1882 u8 fault_reason; 1883 u16 source_id; 1884 u64 guest_addr; 1885 u32 pasid; 1886 int type; 1887 u32 data; 1888 bool pasid_present; 1889 1890 /* highest 32 bits */ 1891 data = readl(iommu->reg + reg + 1892 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1893 if (!(data & DMA_FRCD_F)) 1894 break; 1895 1896 if (!ratelimited) { 1897 fault_reason = dma_frcd_fault_reason(data); 1898 type = dma_frcd_type(data); 1899 1900 pasid = dma_frcd_pasid_value(data); 1901 data = readl(iommu->reg + reg + 1902 fault_index * PRIMARY_FAULT_REG_LEN + 8); 1903 source_id = dma_frcd_source_id(data); 1904 1905 pasid_present = dma_frcd_pasid_present(data); 1906 guest_addr = dmar_readq(iommu->reg + reg + 1907 fault_index * PRIMARY_FAULT_REG_LEN); 1908 guest_addr = dma_frcd_page_addr(guest_addr); 1909 } 1910 1911 /* clear the fault */ 1912 writel(DMA_FRCD_F, iommu->reg + reg + 1913 fault_index * PRIMARY_FAULT_REG_LEN + 12); 1914 1915 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1916 1917 if (!ratelimited) 1918 /* Using pasid -1 if pasid is not present */ 1919 dmar_fault_do_one(iommu, type, fault_reason, 1920 pasid_present ? pasid : -1, 1921 source_id, guest_addr); 1922 1923 fault_index++; 1924 if (fault_index >= cap_num_fault_regs(iommu->cap)) 1925 fault_index = 0; 1926 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1927 } 1928 1929 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, 1930 iommu->reg + DMAR_FSTS_REG); 1931 1932 unlock_exit: 1933 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1934 return IRQ_HANDLED; 1935 } 1936 1937 int dmar_set_interrupt(struct intel_iommu *iommu) 1938 { 1939 int irq, ret; 1940 1941 /* 1942 * Check if the fault interrupt is already initialized. 1943 */ 1944 if (iommu->irq) 1945 return 0; 1946 1947 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); 1948 if (irq > 0) { 1949 iommu->irq = irq; 1950 } else { 1951 pr_err("No free IRQ vectors\n"); 1952 return -EINVAL; 1953 } 1954 1955 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); 1956 if (ret) 1957 pr_err("Can't request irq\n"); 1958 return ret; 1959 } 1960 1961 int __init enable_drhd_fault_handling(void) 1962 { 1963 struct dmar_drhd_unit *drhd; 1964 struct intel_iommu *iommu; 1965 1966 /* 1967 * Enable fault control interrupt. 1968 */ 1969 for_each_iommu(iommu, drhd) { 1970 u32 fault_status; 1971 int ret = dmar_set_interrupt(iommu); 1972 1973 if (ret) { 1974 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", 1975 (unsigned long long)drhd->reg_base_addr, ret); 1976 return -1; 1977 } 1978 1979 /* 1980 * Clear any previous faults. 1981 */ 1982 dmar_fault(iommu->irq, iommu); 1983 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 1984 writel(fault_status, iommu->reg + DMAR_FSTS_REG); 1985 } 1986 1987 return 0; 1988 } 1989 1990 /* 1991 * Re-enable Queued Invalidation interface. 1992 */ 1993 int dmar_reenable_qi(struct intel_iommu *iommu) 1994 { 1995 if (!ecap_qis(iommu->ecap)) 1996 return -ENOENT; 1997 1998 if (!iommu->qi) 1999 return -ENOENT; 2000 2001 /* 2002 * First disable queued invalidation. 2003 */ 2004 dmar_disable_qi(iommu); 2005 /* 2006 * Then enable queued invalidation again. Since there is no pending 2007 * invalidation requests now, it's safe to re-enable queued 2008 * invalidation. 2009 */ 2010 __dmar_enable_qi(iommu); 2011 2012 return 0; 2013 } 2014 2015 /* 2016 * Check interrupt remapping support in DMAR table description. 2017 */ 2018 int __init dmar_ir_support(void) 2019 { 2020 struct acpi_table_dmar *dmar; 2021 dmar = (struct acpi_table_dmar *)dmar_tbl; 2022 if (!dmar) 2023 return 0; 2024 return dmar->flags & 0x1; 2025 } 2026 2027 /* Check whether DMAR units are in use */ 2028 static inline bool dmar_in_use(void) 2029 { 2030 return irq_remapping_enabled || intel_iommu_enabled; 2031 } 2032 2033 static int __init dmar_free_unused_resources(void) 2034 { 2035 struct dmar_drhd_unit *dmaru, *dmaru_n; 2036 2037 if (dmar_in_use()) 2038 return 0; 2039 2040 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) 2041 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); 2042 2043 down_write(&dmar_global_lock); 2044 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { 2045 list_del(&dmaru->list); 2046 dmar_free_drhd(dmaru); 2047 } 2048 up_write(&dmar_global_lock); 2049 2050 return 0; 2051 } 2052 2053 late_initcall(dmar_free_unused_resources); 2054 IOMMU_INIT_POST(detect_intel_iommu); 2055 2056 /* 2057 * DMAR Hotplug Support 2058 * For more details, please refer to Intel(R) Virtualization Technology 2059 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 2060 * "Remapping Hardware Unit Hot Plug". 2061 */ 2062 static guid_t dmar_hp_guid = 2063 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, 2064 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); 2065 2066 /* 2067 * Currently there's only one revision and BIOS will not check the revision id, 2068 * so use 0 for safety. 2069 */ 2070 #define DMAR_DSM_REV_ID 0 2071 #define DMAR_DSM_FUNC_DRHD 1 2072 #define DMAR_DSM_FUNC_ATSR 2 2073 #define DMAR_DSM_FUNC_RHSA 3 2074 2075 static inline bool dmar_detect_dsm(acpi_handle handle, int func) 2076 { 2077 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); 2078 } 2079 2080 static int dmar_walk_dsm_resource(acpi_handle handle, int func, 2081 dmar_res_handler_t handler, void *arg) 2082 { 2083 int ret = -ENODEV; 2084 union acpi_object *obj; 2085 struct acpi_dmar_header *start; 2086 struct dmar_res_callback callback; 2087 static int res_type[] = { 2088 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, 2089 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, 2090 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, 2091 }; 2092 2093 if (!dmar_detect_dsm(handle, func)) 2094 return 0; 2095 2096 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 2097 func, NULL, ACPI_TYPE_BUFFER); 2098 if (!obj) 2099 return -ENODEV; 2100 2101 memset(&callback, 0, sizeof(callback)); 2102 callback.cb[res_type[func]] = handler; 2103 callback.arg[res_type[func]] = arg; 2104 start = (struct acpi_dmar_header *)obj->buffer.pointer; 2105 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); 2106 2107 ACPI_FREE(obj); 2108 2109 return ret; 2110 } 2111 2112 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) 2113 { 2114 int ret; 2115 struct dmar_drhd_unit *dmaru; 2116 2117 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2118 if (!dmaru) 2119 return -ENODEV; 2120 2121 ret = dmar_ir_hotplug(dmaru, true); 2122 if (ret == 0) 2123 ret = dmar_iommu_hotplug(dmaru, true); 2124 2125 return ret; 2126 } 2127 2128 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) 2129 { 2130 int i, ret; 2131 struct device *dev; 2132 struct dmar_drhd_unit *dmaru; 2133 2134 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2135 if (!dmaru) 2136 return 0; 2137 2138 /* 2139 * All PCI devices managed by this unit should have been destroyed. 2140 */ 2141 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { 2142 for_each_active_dev_scope(dmaru->devices, 2143 dmaru->devices_cnt, i, dev) 2144 return -EBUSY; 2145 } 2146 2147 ret = dmar_ir_hotplug(dmaru, false); 2148 if (ret == 0) 2149 ret = dmar_iommu_hotplug(dmaru, false); 2150 2151 return ret; 2152 } 2153 2154 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) 2155 { 2156 struct dmar_drhd_unit *dmaru; 2157 2158 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2159 if (dmaru) { 2160 list_del_rcu(&dmaru->list); 2161 synchronize_rcu(); 2162 dmar_free_drhd(dmaru); 2163 } 2164 2165 return 0; 2166 } 2167 2168 static int dmar_hotplug_insert(acpi_handle handle) 2169 { 2170 int ret; 2171 int drhd_count = 0; 2172 2173 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2174 &dmar_validate_one_drhd, (void *)1); 2175 if (ret) 2176 goto out; 2177 2178 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2179 &dmar_parse_one_drhd, (void *)&drhd_count); 2180 if (ret == 0 && drhd_count == 0) { 2181 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); 2182 goto out; 2183 } else if (ret) { 2184 goto release_drhd; 2185 } 2186 2187 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, 2188 &dmar_parse_one_rhsa, NULL); 2189 if (ret) 2190 goto release_drhd; 2191 2192 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2193 &dmar_parse_one_atsr, NULL); 2194 if (ret) 2195 goto release_atsr; 2196 2197 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2198 &dmar_hp_add_drhd, NULL); 2199 if (!ret) 2200 return 0; 2201 2202 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2203 &dmar_hp_remove_drhd, NULL); 2204 release_atsr: 2205 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2206 &dmar_release_one_atsr, NULL); 2207 release_drhd: 2208 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2209 &dmar_hp_release_drhd, NULL); 2210 out: 2211 return ret; 2212 } 2213 2214 static int dmar_hotplug_remove(acpi_handle handle) 2215 { 2216 int ret; 2217 2218 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2219 &dmar_check_one_atsr, NULL); 2220 if (ret) 2221 return ret; 2222 2223 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2224 &dmar_hp_remove_drhd, NULL); 2225 if (ret == 0) { 2226 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2227 &dmar_release_one_atsr, NULL)); 2228 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2229 &dmar_hp_release_drhd, NULL)); 2230 } else { 2231 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2232 &dmar_hp_add_drhd, NULL); 2233 } 2234 2235 return ret; 2236 } 2237 2238 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, 2239 void *context, void **retval) 2240 { 2241 acpi_handle *phdl = retval; 2242 2243 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2244 *phdl = handle; 2245 return AE_CTRL_TERMINATE; 2246 } 2247 2248 return AE_OK; 2249 } 2250 2251 static int dmar_device_hotplug(acpi_handle handle, bool insert) 2252 { 2253 int ret; 2254 acpi_handle tmp = NULL; 2255 acpi_status status; 2256 2257 if (!dmar_in_use()) 2258 return 0; 2259 2260 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2261 tmp = handle; 2262 } else { 2263 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2264 ACPI_UINT32_MAX, 2265 dmar_get_dsm_handle, 2266 NULL, NULL, &tmp); 2267 if (ACPI_FAILURE(status)) { 2268 pr_warn("Failed to locate _DSM method.\n"); 2269 return -ENXIO; 2270 } 2271 } 2272 if (tmp == NULL) 2273 return 0; 2274 2275 down_write(&dmar_global_lock); 2276 if (insert) 2277 ret = dmar_hotplug_insert(tmp); 2278 else 2279 ret = dmar_hotplug_remove(tmp); 2280 up_write(&dmar_global_lock); 2281 2282 return ret; 2283 } 2284 2285 int dmar_device_add(acpi_handle handle) 2286 { 2287 return dmar_device_hotplug(handle, true); 2288 } 2289 2290 int dmar_device_remove(acpi_handle handle) 2291 { 2292 return dmar_device_hotplug(handle, false); 2293 } 2294 2295 /* 2296 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table 2297 * 2298 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in 2299 * the ACPI DMAR table. This means that the platform boot firmware has made 2300 * sure no device can issue DMA outside of RMRR regions. 2301 */ 2302 bool dmar_platform_optin(void) 2303 { 2304 struct acpi_table_dmar *dmar; 2305 acpi_status status; 2306 bool ret; 2307 2308 status = acpi_get_table(ACPI_SIG_DMAR, 0, 2309 (struct acpi_table_header **)&dmar); 2310 if (ACPI_FAILURE(status)) 2311 return false; 2312 2313 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); 2314 acpi_put_table((struct acpi_table_header *)dmar); 2315 2316 return ret; 2317 } 2318 EXPORT_SYMBOL_GPL(dmar_platform_optin); 2319