xref: /openbmc/linux/drivers/iommu/intel/dmar.c (revision 42d7a8dc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16 
17 #define pr_fmt(fmt)     "DMAR: " fmt
18 
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/intel-iommu.h>
23 #include <linux/timer.h>
24 #include <linux/irq.h>
25 #include <linux/interrupt.h>
26 #include <linux/tboot.h>
27 #include <linux/dmi.h>
28 #include <linux/slab.h>
29 #include <linux/iommu.h>
30 #include <linux/numa.h>
31 #include <linux/limits.h>
32 #include <asm/irq_remapping.h>
33 #include <asm/iommu_table.h>
34 #include <trace/events/intel_iommu.h>
35 
36 #include "../irq_remapping.h"
37 
38 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
39 struct dmar_res_callback {
40 	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
41 	void			*arg[ACPI_DMAR_TYPE_RESERVED];
42 	bool			ignore_unhandled;
43 	bool			print_entry;
44 };
45 
46 /*
47  * Assumptions:
48  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
49  *    before IO devices managed by that unit.
50  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
51  *    after IO devices managed by that unit.
52  * 3) Hotplug events are rare.
53  *
54  * Locking rules for DMA and interrupt remapping related global data structures:
55  * 1) Use dmar_global_lock in process context
56  * 2) Use RCU in interrupt context
57  */
58 DECLARE_RWSEM(dmar_global_lock);
59 LIST_HEAD(dmar_drhd_units);
60 
61 struct acpi_table_header * __initdata dmar_tbl;
62 static int dmar_dev_scope_status = 1;
63 static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
64 
65 static int alloc_iommu(struct dmar_drhd_unit *drhd);
66 static void free_iommu(struct intel_iommu *iommu);
67 
68 extern const struct iommu_ops intel_iommu_ops;
69 
70 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
71 {
72 	/*
73 	 * add INCLUDE_ALL at the tail, so scan the list will find it at
74 	 * the very end.
75 	 */
76 	if (drhd->include_all)
77 		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
78 	else
79 		list_add_rcu(&drhd->list, &dmar_drhd_units);
80 }
81 
82 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
83 {
84 	struct acpi_dmar_device_scope *scope;
85 
86 	*cnt = 0;
87 	while (start < end) {
88 		scope = start;
89 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
90 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
91 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
92 			(*cnt)++;
93 		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
94 			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
95 			pr_warn("Unsupported device scope\n");
96 		}
97 		start += scope->length;
98 	}
99 	if (*cnt == 0)
100 		return NULL;
101 
102 	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
103 }
104 
105 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
106 {
107 	int i;
108 	struct device *tmp_dev;
109 
110 	if (*devices && *cnt) {
111 		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
112 			put_device(tmp_dev);
113 		kfree(*devices);
114 	}
115 
116 	*devices = NULL;
117 	*cnt = 0;
118 }
119 
120 /* Optimize out kzalloc()/kfree() for normal cases */
121 static char dmar_pci_notify_info_buf[64];
122 
123 static struct dmar_pci_notify_info *
124 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
125 {
126 	int level = 0;
127 	size_t size;
128 	struct pci_dev *tmp;
129 	struct dmar_pci_notify_info *info;
130 
131 	BUG_ON(dev->is_virtfn);
132 
133 	/*
134 	 * Ignore devices that have a domain number higher than what can
135 	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
136 	 */
137 	if (pci_domain_nr(dev->bus) > U16_MAX)
138 		return NULL;
139 
140 	/* Only generate path[] for device addition event */
141 	if (event == BUS_NOTIFY_ADD_DEVICE)
142 		for (tmp = dev; tmp; tmp = tmp->bus->self)
143 			level++;
144 
145 	size = struct_size(info, path, level);
146 	if (size <= sizeof(dmar_pci_notify_info_buf)) {
147 		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
148 	} else {
149 		info = kzalloc(size, GFP_KERNEL);
150 		if (!info) {
151 			pr_warn("Out of memory when allocating notify_info "
152 				"for %s.\n", pci_name(dev));
153 			if (dmar_dev_scope_status == 0)
154 				dmar_dev_scope_status = -ENOMEM;
155 			return NULL;
156 		}
157 	}
158 
159 	info->event = event;
160 	info->dev = dev;
161 	info->seg = pci_domain_nr(dev->bus);
162 	info->level = level;
163 	if (event == BUS_NOTIFY_ADD_DEVICE) {
164 		for (tmp = dev; tmp; tmp = tmp->bus->self) {
165 			level--;
166 			info->path[level].bus = tmp->bus->number;
167 			info->path[level].device = PCI_SLOT(tmp->devfn);
168 			info->path[level].function = PCI_FUNC(tmp->devfn);
169 			if (pci_is_root_bus(tmp->bus))
170 				info->bus = tmp->bus->number;
171 		}
172 	}
173 
174 	return info;
175 }
176 
177 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
178 {
179 	if ((void *)info != dmar_pci_notify_info_buf)
180 		kfree(info);
181 }
182 
183 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
184 				struct acpi_dmar_pci_path *path, int count)
185 {
186 	int i;
187 
188 	if (info->bus != bus)
189 		goto fallback;
190 	if (info->level != count)
191 		goto fallback;
192 
193 	for (i = 0; i < count; i++) {
194 		if (path[i].device != info->path[i].device ||
195 		    path[i].function != info->path[i].function)
196 			goto fallback;
197 	}
198 
199 	return true;
200 
201 fallback:
202 
203 	if (count != 1)
204 		return false;
205 
206 	i = info->level - 1;
207 	if (bus              == info->path[i].bus &&
208 	    path[0].device   == info->path[i].device &&
209 	    path[0].function == info->path[i].function) {
210 		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
211 			bus, path[0].device, path[0].function);
212 		return true;
213 	}
214 
215 	return false;
216 }
217 
218 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
219 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
220 			  void *start, void*end, u16 segment,
221 			  struct dmar_dev_scope *devices,
222 			  int devices_cnt)
223 {
224 	int i, level;
225 	struct device *tmp, *dev = &info->dev->dev;
226 	struct acpi_dmar_device_scope *scope;
227 	struct acpi_dmar_pci_path *path;
228 
229 	if (segment != info->seg)
230 		return 0;
231 
232 	for (; start < end; start += scope->length) {
233 		scope = start;
234 		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
235 		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
236 			continue;
237 
238 		path = (struct acpi_dmar_pci_path *)(scope + 1);
239 		level = (scope->length - sizeof(*scope)) / sizeof(*path);
240 		if (!dmar_match_pci_path(info, scope->bus, path, level))
241 			continue;
242 
243 		/*
244 		 * We expect devices with endpoint scope to have normal PCI
245 		 * headers, and devices with bridge scope to have bridge PCI
246 		 * headers.  However PCI NTB devices may be listed in the
247 		 * DMAR table with bridge scope, even though they have a
248 		 * normal PCI header.  NTB devices are identified by class
249 		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
250 		 * for this special case.
251 		 */
252 		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
253 		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
254 		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
255 		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
256 		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
257 			pr_warn("Device scope type does not match for %s\n",
258 				pci_name(info->dev));
259 			return -EINVAL;
260 		}
261 
262 		for_each_dev_scope(devices, devices_cnt, i, tmp)
263 			if (tmp == NULL) {
264 				devices[i].bus = info->dev->bus->number;
265 				devices[i].devfn = info->dev->devfn;
266 				rcu_assign_pointer(devices[i].dev,
267 						   get_device(dev));
268 				return 1;
269 			}
270 		BUG_ON(i >= devices_cnt);
271 	}
272 
273 	return 0;
274 }
275 
276 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
277 			  struct dmar_dev_scope *devices, int count)
278 {
279 	int index;
280 	struct device *tmp;
281 
282 	if (info->seg != segment)
283 		return 0;
284 
285 	for_each_active_dev_scope(devices, count, index, tmp)
286 		if (tmp == &info->dev->dev) {
287 			RCU_INIT_POINTER(devices[index].dev, NULL);
288 			synchronize_rcu();
289 			put_device(tmp);
290 			return 1;
291 		}
292 
293 	return 0;
294 }
295 
296 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
297 {
298 	int ret = 0;
299 	struct dmar_drhd_unit *dmaru;
300 	struct acpi_dmar_hardware_unit *drhd;
301 
302 	for_each_drhd_unit(dmaru) {
303 		if (dmaru->include_all)
304 			continue;
305 
306 		drhd = container_of(dmaru->hdr,
307 				    struct acpi_dmar_hardware_unit, header);
308 		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
309 				((void *)drhd) + drhd->header.length,
310 				dmaru->segment,
311 				dmaru->devices, dmaru->devices_cnt);
312 		if (ret)
313 			break;
314 	}
315 	if (ret >= 0)
316 		ret = dmar_iommu_notify_scope_dev(info);
317 	if (ret < 0 && dmar_dev_scope_status == 0)
318 		dmar_dev_scope_status = ret;
319 
320 	if (ret >= 0)
321 		intel_irq_remap_add_device(info);
322 
323 	return ret;
324 }
325 
326 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
327 {
328 	struct dmar_drhd_unit *dmaru;
329 
330 	for_each_drhd_unit(dmaru)
331 		if (dmar_remove_dev_scope(info, dmaru->segment,
332 			dmaru->devices, dmaru->devices_cnt))
333 			break;
334 	dmar_iommu_notify_scope_dev(info);
335 }
336 
337 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
338 {
339 	struct pci_dev *physfn = pci_physfn(pdev);
340 
341 	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
342 }
343 
344 static int dmar_pci_bus_notifier(struct notifier_block *nb,
345 				 unsigned long action, void *data)
346 {
347 	struct pci_dev *pdev = to_pci_dev(data);
348 	struct dmar_pci_notify_info *info;
349 
350 	/* Only care about add/remove events for physical functions.
351 	 * For VFs we actually do the lookup based on the corresponding
352 	 * PF in device_to_iommu() anyway. */
353 	if (pdev->is_virtfn) {
354 		/*
355 		 * Ensure that the VF device inherits the irq domain of the
356 		 * PF device. Ideally the device would inherit the domain
357 		 * from the bus, but DMAR can have multiple units per bus
358 		 * which makes this impossible. The VF 'bus' could inherit
359 		 * from the PF device, but that's yet another x86'sism to
360 		 * inflict on everybody else.
361 		 */
362 		if (action == BUS_NOTIFY_ADD_DEVICE)
363 			vf_inherit_msi_domain(pdev);
364 		return NOTIFY_DONE;
365 	}
366 
367 	if (action != BUS_NOTIFY_ADD_DEVICE &&
368 	    action != BUS_NOTIFY_REMOVED_DEVICE)
369 		return NOTIFY_DONE;
370 
371 	info = dmar_alloc_pci_notify_info(pdev, action);
372 	if (!info)
373 		return NOTIFY_DONE;
374 
375 	down_write(&dmar_global_lock);
376 	if (action == BUS_NOTIFY_ADD_DEVICE)
377 		dmar_pci_bus_add_dev(info);
378 	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
379 		dmar_pci_bus_del_dev(info);
380 	up_write(&dmar_global_lock);
381 
382 	dmar_free_pci_notify_info(info);
383 
384 	return NOTIFY_OK;
385 }
386 
387 static struct notifier_block dmar_pci_bus_nb = {
388 	.notifier_call = dmar_pci_bus_notifier,
389 	.priority = INT_MIN,
390 };
391 
392 static struct dmar_drhd_unit *
393 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
394 {
395 	struct dmar_drhd_unit *dmaru;
396 
397 	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
398 				dmar_rcu_check())
399 		if (dmaru->segment == drhd->segment &&
400 		    dmaru->reg_base_addr == drhd->address)
401 			return dmaru;
402 
403 	return NULL;
404 }
405 
406 /*
407  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
408  * structure which uniquely represent one DMA remapping hardware unit
409  * present in the platform
410  */
411 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
412 {
413 	struct acpi_dmar_hardware_unit *drhd;
414 	struct dmar_drhd_unit *dmaru;
415 	int ret;
416 
417 	drhd = (struct acpi_dmar_hardware_unit *)header;
418 	dmaru = dmar_find_dmaru(drhd);
419 	if (dmaru)
420 		goto out;
421 
422 	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
423 	if (!dmaru)
424 		return -ENOMEM;
425 
426 	/*
427 	 * If header is allocated from slab by ACPI _DSM method, we need to
428 	 * copy the content because the memory buffer will be freed on return.
429 	 */
430 	dmaru->hdr = (void *)(dmaru + 1);
431 	memcpy(dmaru->hdr, header, header->length);
432 	dmaru->reg_base_addr = drhd->address;
433 	dmaru->segment = drhd->segment;
434 	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
435 	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
436 					      ((void *)drhd) + drhd->header.length,
437 					      &dmaru->devices_cnt);
438 	if (dmaru->devices_cnt && dmaru->devices == NULL) {
439 		kfree(dmaru);
440 		return -ENOMEM;
441 	}
442 
443 	ret = alloc_iommu(dmaru);
444 	if (ret) {
445 		dmar_free_dev_scope(&dmaru->devices,
446 				    &dmaru->devices_cnt);
447 		kfree(dmaru);
448 		return ret;
449 	}
450 	dmar_register_drhd_unit(dmaru);
451 
452 out:
453 	if (arg)
454 		(*(int *)arg)++;
455 
456 	return 0;
457 }
458 
459 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
460 {
461 	if (dmaru->devices && dmaru->devices_cnt)
462 		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
463 	if (dmaru->iommu)
464 		free_iommu(dmaru->iommu);
465 	kfree(dmaru);
466 }
467 
468 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
469 				      void *arg)
470 {
471 	struct acpi_dmar_andd *andd = (void *)header;
472 
473 	/* Check for NUL termination within the designated length */
474 	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
475 		pr_warn(FW_BUG
476 			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
477 			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
478 			   dmi_get_system_info(DMI_BIOS_VENDOR),
479 			   dmi_get_system_info(DMI_BIOS_VERSION),
480 			   dmi_get_system_info(DMI_PRODUCT_VERSION));
481 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
482 		return -EINVAL;
483 	}
484 	pr_info("ANDD device: %x name: %s\n", andd->device_number,
485 		andd->device_name);
486 
487 	return 0;
488 }
489 
490 #ifdef CONFIG_ACPI_NUMA
491 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
492 {
493 	struct acpi_dmar_rhsa *rhsa;
494 	struct dmar_drhd_unit *drhd;
495 
496 	rhsa = (struct acpi_dmar_rhsa *)header;
497 	for_each_drhd_unit(drhd) {
498 		if (drhd->reg_base_addr == rhsa->base_address) {
499 			int node = pxm_to_node(rhsa->proximity_domain);
500 
501 			if (!node_online(node))
502 				node = NUMA_NO_NODE;
503 			drhd->iommu->node = node;
504 			return 0;
505 		}
506 	}
507 	pr_warn(FW_BUG
508 		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
509 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
510 		rhsa->base_address,
511 		dmi_get_system_info(DMI_BIOS_VENDOR),
512 		dmi_get_system_info(DMI_BIOS_VERSION),
513 		dmi_get_system_info(DMI_PRODUCT_VERSION));
514 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
515 
516 	return 0;
517 }
518 #else
519 #define	dmar_parse_one_rhsa		dmar_res_noop
520 #endif
521 
522 static void
523 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
524 {
525 	struct acpi_dmar_hardware_unit *drhd;
526 	struct acpi_dmar_reserved_memory *rmrr;
527 	struct acpi_dmar_atsr *atsr;
528 	struct acpi_dmar_rhsa *rhsa;
529 	struct acpi_dmar_satc *satc;
530 
531 	switch (header->type) {
532 	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
533 		drhd = container_of(header, struct acpi_dmar_hardware_unit,
534 				    header);
535 		pr_info("DRHD base: %#016Lx flags: %#x\n",
536 			(unsigned long long)drhd->address, drhd->flags);
537 		break;
538 	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
539 		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
540 				    header);
541 		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
542 			(unsigned long long)rmrr->base_address,
543 			(unsigned long long)rmrr->end_address);
544 		break;
545 	case ACPI_DMAR_TYPE_ROOT_ATS:
546 		atsr = container_of(header, struct acpi_dmar_atsr, header);
547 		pr_info("ATSR flags: %#x\n", atsr->flags);
548 		break;
549 	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
550 		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
551 		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
552 		       (unsigned long long)rhsa->base_address,
553 		       rhsa->proximity_domain);
554 		break;
555 	case ACPI_DMAR_TYPE_NAMESPACE:
556 		/* We don't print this here because we need to sanity-check
557 		   it first. So print it in dmar_parse_one_andd() instead. */
558 		break;
559 	case ACPI_DMAR_TYPE_SATC:
560 		satc = container_of(header, struct acpi_dmar_satc, header);
561 		pr_info("SATC flags: 0x%x\n", satc->flags);
562 		break;
563 	}
564 }
565 
566 /**
567  * dmar_table_detect - checks to see if the platform supports DMAR devices
568  */
569 static int __init dmar_table_detect(void)
570 {
571 	acpi_status status = AE_OK;
572 
573 	/* if we could find DMAR table, then there are DMAR devices */
574 	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
575 
576 	if (ACPI_SUCCESS(status) && !dmar_tbl) {
577 		pr_warn("Unable to map DMAR\n");
578 		status = AE_NOT_FOUND;
579 	}
580 
581 	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
582 }
583 
584 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
585 				       size_t len, struct dmar_res_callback *cb)
586 {
587 	struct acpi_dmar_header *iter, *next;
588 	struct acpi_dmar_header *end = ((void *)start) + len;
589 
590 	for (iter = start; iter < end; iter = next) {
591 		next = (void *)iter + iter->length;
592 		if (iter->length == 0) {
593 			/* Avoid looping forever on bad ACPI tables */
594 			pr_debug(FW_BUG "Invalid 0-length structure\n");
595 			break;
596 		} else if (next > end) {
597 			/* Avoid passing table end */
598 			pr_warn(FW_BUG "Record passes table end\n");
599 			return -EINVAL;
600 		}
601 
602 		if (cb->print_entry)
603 			dmar_table_print_dmar_entry(iter);
604 
605 		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
606 			/* continue for forward compatibility */
607 			pr_debug("Unknown DMAR structure type %d\n",
608 				 iter->type);
609 		} else if (cb->cb[iter->type]) {
610 			int ret;
611 
612 			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
613 			if (ret)
614 				return ret;
615 		} else if (!cb->ignore_unhandled) {
616 			pr_warn("No handler for DMAR structure type %d\n",
617 				iter->type);
618 			return -EINVAL;
619 		}
620 	}
621 
622 	return 0;
623 }
624 
625 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
626 				       struct dmar_res_callback *cb)
627 {
628 	return dmar_walk_remapping_entries((void *)(dmar + 1),
629 			dmar->header.length - sizeof(*dmar), cb);
630 }
631 
632 /**
633  * parse_dmar_table - parses the DMA reporting table
634  */
635 static int __init
636 parse_dmar_table(void)
637 {
638 	struct acpi_table_dmar *dmar;
639 	int drhd_count = 0;
640 	int ret;
641 	struct dmar_res_callback cb = {
642 		.print_entry = true,
643 		.ignore_unhandled = true,
644 		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
645 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
646 		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
647 		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
648 		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
649 		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
650 		.cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
651 	};
652 
653 	/*
654 	 * Do it again, earlier dmar_tbl mapping could be mapped with
655 	 * fixed map.
656 	 */
657 	dmar_table_detect();
658 
659 	/*
660 	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
661 	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
662 	 */
663 	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
664 
665 	dmar = (struct acpi_table_dmar *)dmar_tbl;
666 	if (!dmar)
667 		return -ENODEV;
668 
669 	if (dmar->width < PAGE_SHIFT - 1) {
670 		pr_warn("Invalid DMAR haw\n");
671 		return -EINVAL;
672 	}
673 
674 	pr_info("Host address width %d\n", dmar->width + 1);
675 	ret = dmar_walk_dmar_table(dmar, &cb);
676 	if (ret == 0 && drhd_count == 0)
677 		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
678 
679 	return ret;
680 }
681 
682 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
683 				 int cnt, struct pci_dev *dev)
684 {
685 	int index;
686 	struct device *tmp;
687 
688 	while (dev) {
689 		for_each_active_dev_scope(devices, cnt, index, tmp)
690 			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
691 				return 1;
692 
693 		/* Check our parent */
694 		dev = dev->bus->self;
695 	}
696 
697 	return 0;
698 }
699 
700 struct dmar_drhd_unit *
701 dmar_find_matched_drhd_unit(struct pci_dev *dev)
702 {
703 	struct dmar_drhd_unit *dmaru;
704 	struct acpi_dmar_hardware_unit *drhd;
705 
706 	dev = pci_physfn(dev);
707 
708 	rcu_read_lock();
709 	for_each_drhd_unit(dmaru) {
710 		drhd = container_of(dmaru->hdr,
711 				    struct acpi_dmar_hardware_unit,
712 				    header);
713 
714 		if (dmaru->include_all &&
715 		    drhd->segment == pci_domain_nr(dev->bus))
716 			goto out;
717 
718 		if (dmar_pci_device_match(dmaru->devices,
719 					  dmaru->devices_cnt, dev))
720 			goto out;
721 	}
722 	dmaru = NULL;
723 out:
724 	rcu_read_unlock();
725 
726 	return dmaru;
727 }
728 
729 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
730 					      struct acpi_device *adev)
731 {
732 	struct dmar_drhd_unit *dmaru;
733 	struct acpi_dmar_hardware_unit *drhd;
734 	struct acpi_dmar_device_scope *scope;
735 	struct device *tmp;
736 	int i;
737 	struct acpi_dmar_pci_path *path;
738 
739 	for_each_drhd_unit(dmaru) {
740 		drhd = container_of(dmaru->hdr,
741 				    struct acpi_dmar_hardware_unit,
742 				    header);
743 
744 		for (scope = (void *)(drhd + 1);
745 		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
746 		     scope = ((void *)scope) + scope->length) {
747 			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
748 				continue;
749 			if (scope->enumeration_id != device_number)
750 				continue;
751 
752 			path = (void *)(scope + 1);
753 			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
754 				dev_name(&adev->dev), dmaru->reg_base_addr,
755 				scope->bus, path->device, path->function);
756 			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
757 				if (tmp == NULL) {
758 					dmaru->devices[i].bus = scope->bus;
759 					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
760 									    path->function);
761 					rcu_assign_pointer(dmaru->devices[i].dev,
762 							   get_device(&adev->dev));
763 					return;
764 				}
765 			BUG_ON(i >= dmaru->devices_cnt);
766 		}
767 	}
768 	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
769 		device_number, dev_name(&adev->dev));
770 }
771 
772 static int __init dmar_acpi_dev_scope_init(void)
773 {
774 	struct acpi_dmar_andd *andd;
775 
776 	if (dmar_tbl == NULL)
777 		return -ENODEV;
778 
779 	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
780 	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
781 	     andd = ((void *)andd) + andd->header.length) {
782 		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
783 			acpi_handle h;
784 			struct acpi_device *adev;
785 
786 			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
787 							  andd->device_name,
788 							  &h))) {
789 				pr_err("Failed to find handle for ACPI object %s\n",
790 				       andd->device_name);
791 				continue;
792 			}
793 			if (acpi_bus_get_device(h, &adev)) {
794 				pr_err("Failed to get device for ACPI object %s\n",
795 				       andd->device_name);
796 				continue;
797 			}
798 			dmar_acpi_insert_dev_scope(andd->device_number, adev);
799 		}
800 	}
801 	return 0;
802 }
803 
804 int __init dmar_dev_scope_init(void)
805 {
806 	struct pci_dev *dev = NULL;
807 	struct dmar_pci_notify_info *info;
808 
809 	if (dmar_dev_scope_status != 1)
810 		return dmar_dev_scope_status;
811 
812 	if (list_empty(&dmar_drhd_units)) {
813 		dmar_dev_scope_status = -ENODEV;
814 	} else {
815 		dmar_dev_scope_status = 0;
816 
817 		dmar_acpi_dev_scope_init();
818 
819 		for_each_pci_dev(dev) {
820 			if (dev->is_virtfn)
821 				continue;
822 
823 			info = dmar_alloc_pci_notify_info(dev,
824 					BUS_NOTIFY_ADD_DEVICE);
825 			if (!info) {
826 				return dmar_dev_scope_status;
827 			} else {
828 				dmar_pci_bus_add_dev(info);
829 				dmar_free_pci_notify_info(info);
830 			}
831 		}
832 	}
833 
834 	return dmar_dev_scope_status;
835 }
836 
837 void __init dmar_register_bus_notifier(void)
838 {
839 	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
840 }
841 
842 
843 int __init dmar_table_init(void)
844 {
845 	static int dmar_table_initialized;
846 	int ret;
847 
848 	if (dmar_table_initialized == 0) {
849 		ret = parse_dmar_table();
850 		if (ret < 0) {
851 			if (ret != -ENODEV)
852 				pr_info("Parse DMAR table failure.\n");
853 		} else  if (list_empty(&dmar_drhd_units)) {
854 			pr_info("No DMAR devices found\n");
855 			ret = -ENODEV;
856 		}
857 
858 		if (ret < 0)
859 			dmar_table_initialized = ret;
860 		else
861 			dmar_table_initialized = 1;
862 	}
863 
864 	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
865 }
866 
867 static void warn_invalid_dmar(u64 addr, const char *message)
868 {
869 	pr_warn_once(FW_BUG
870 		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
871 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
872 		addr, message,
873 		dmi_get_system_info(DMI_BIOS_VENDOR),
874 		dmi_get_system_info(DMI_BIOS_VERSION),
875 		dmi_get_system_info(DMI_PRODUCT_VERSION));
876 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
877 }
878 
879 static int __ref
880 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
881 {
882 	struct acpi_dmar_hardware_unit *drhd;
883 	void __iomem *addr;
884 	u64 cap, ecap;
885 
886 	drhd = (void *)entry;
887 	if (!drhd->address) {
888 		warn_invalid_dmar(0, "");
889 		return -EINVAL;
890 	}
891 
892 	if (arg)
893 		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
894 	else
895 		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
896 	if (!addr) {
897 		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
898 		return -EINVAL;
899 	}
900 
901 	cap = dmar_readq(addr + DMAR_CAP_REG);
902 	ecap = dmar_readq(addr + DMAR_ECAP_REG);
903 
904 	if (arg)
905 		iounmap(addr);
906 	else
907 		early_iounmap(addr, VTD_PAGE_SIZE);
908 
909 	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
910 		warn_invalid_dmar(drhd->address, " returns all ones");
911 		return -EINVAL;
912 	}
913 
914 	return 0;
915 }
916 
917 int __init detect_intel_iommu(void)
918 {
919 	int ret;
920 	struct dmar_res_callback validate_drhd_cb = {
921 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
922 		.ignore_unhandled = true,
923 	};
924 
925 	down_write(&dmar_global_lock);
926 	ret = dmar_table_detect();
927 	if (!ret)
928 		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
929 					   &validate_drhd_cb);
930 	if (!ret && !no_iommu && !iommu_detected &&
931 	    (!dmar_disabled || dmar_platform_optin())) {
932 		iommu_detected = 1;
933 		/* Make sure ACS will be enabled */
934 		pci_request_acs();
935 	}
936 
937 #ifdef CONFIG_X86
938 	if (!ret) {
939 		x86_init.iommu.iommu_init = intel_iommu_init;
940 		x86_platform.iommu_shutdown = intel_iommu_shutdown;
941 	}
942 
943 #endif
944 
945 	if (dmar_tbl) {
946 		acpi_put_table(dmar_tbl);
947 		dmar_tbl = NULL;
948 	}
949 	up_write(&dmar_global_lock);
950 
951 	return ret ? ret : 1;
952 }
953 
954 static void unmap_iommu(struct intel_iommu *iommu)
955 {
956 	iounmap(iommu->reg);
957 	release_mem_region(iommu->reg_phys, iommu->reg_size);
958 }
959 
960 /**
961  * map_iommu: map the iommu's registers
962  * @iommu: the iommu to map
963  * @phys_addr: the physical address of the base resgister
964  *
965  * Memory map the iommu's registers.  Start w/ a single page, and
966  * possibly expand if that turns out to be insufficent.
967  */
968 static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
969 {
970 	int map_size, err=0;
971 
972 	iommu->reg_phys = phys_addr;
973 	iommu->reg_size = VTD_PAGE_SIZE;
974 
975 	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
976 		pr_err("Can't reserve memory\n");
977 		err = -EBUSY;
978 		goto out;
979 	}
980 
981 	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
982 	if (!iommu->reg) {
983 		pr_err("Can't map the region\n");
984 		err = -ENOMEM;
985 		goto release;
986 	}
987 
988 	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
989 	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
990 
991 	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
992 		err = -EINVAL;
993 		warn_invalid_dmar(phys_addr, " returns all ones");
994 		goto unmap;
995 	}
996 	if (ecap_vcs(iommu->ecap))
997 		iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
998 
999 	/* the registers might be more than one page */
1000 	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
1001 			 cap_max_fault_reg_offset(iommu->cap));
1002 	map_size = VTD_PAGE_ALIGN(map_size);
1003 	if (map_size > iommu->reg_size) {
1004 		iounmap(iommu->reg);
1005 		release_mem_region(iommu->reg_phys, iommu->reg_size);
1006 		iommu->reg_size = map_size;
1007 		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1008 					iommu->name)) {
1009 			pr_err("Can't reserve memory\n");
1010 			err = -EBUSY;
1011 			goto out;
1012 		}
1013 		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1014 		if (!iommu->reg) {
1015 			pr_err("Can't map the region\n");
1016 			err = -ENOMEM;
1017 			goto release;
1018 		}
1019 	}
1020 	err = 0;
1021 	goto out;
1022 
1023 unmap:
1024 	iounmap(iommu->reg);
1025 release:
1026 	release_mem_region(iommu->reg_phys, iommu->reg_size);
1027 out:
1028 	return err;
1029 }
1030 
1031 static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1032 {
1033 	iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1034 					    DMAR_UNITS_SUPPORTED);
1035 	if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1036 		iommu->seq_id = -1;
1037 	} else {
1038 		set_bit(iommu->seq_id, dmar_seq_ids);
1039 		sprintf(iommu->name, "dmar%d", iommu->seq_id);
1040 	}
1041 
1042 	return iommu->seq_id;
1043 }
1044 
1045 static void dmar_free_seq_id(struct intel_iommu *iommu)
1046 {
1047 	if (iommu->seq_id >= 0) {
1048 		clear_bit(iommu->seq_id, dmar_seq_ids);
1049 		iommu->seq_id = -1;
1050 	}
1051 }
1052 
1053 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1054 {
1055 	struct intel_iommu *iommu;
1056 	u32 ver, sts;
1057 	int agaw = -1;
1058 	int msagaw = -1;
1059 	int err;
1060 
1061 	if (!drhd->reg_base_addr) {
1062 		warn_invalid_dmar(0, "");
1063 		return -EINVAL;
1064 	}
1065 
1066 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1067 	if (!iommu)
1068 		return -ENOMEM;
1069 
1070 	if (dmar_alloc_seq_id(iommu) < 0) {
1071 		pr_err("Failed to allocate seq_id\n");
1072 		err = -ENOSPC;
1073 		goto error;
1074 	}
1075 
1076 	err = map_iommu(iommu, drhd->reg_base_addr);
1077 	if (err) {
1078 		pr_err("Failed to map %s\n", iommu->name);
1079 		goto error_free_seq_id;
1080 	}
1081 
1082 	err = -EINVAL;
1083 	if (cap_sagaw(iommu->cap) == 0) {
1084 		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1085 			iommu->name);
1086 		drhd->ignored = 1;
1087 	}
1088 
1089 	if (!drhd->ignored) {
1090 		agaw = iommu_calculate_agaw(iommu);
1091 		if (agaw < 0) {
1092 			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1093 			       iommu->seq_id);
1094 			drhd->ignored = 1;
1095 		}
1096 	}
1097 	if (!drhd->ignored) {
1098 		msagaw = iommu_calculate_max_sagaw(iommu);
1099 		if (msagaw < 0) {
1100 			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1101 			       iommu->seq_id);
1102 			drhd->ignored = 1;
1103 			agaw = -1;
1104 		}
1105 	}
1106 	iommu->agaw = agaw;
1107 	iommu->msagaw = msagaw;
1108 	iommu->segment = drhd->segment;
1109 
1110 	iommu->node = NUMA_NO_NODE;
1111 
1112 	ver = readl(iommu->reg + DMAR_VER_REG);
1113 	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1114 		iommu->name,
1115 		(unsigned long long)drhd->reg_base_addr,
1116 		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1117 		(unsigned long long)iommu->cap,
1118 		(unsigned long long)iommu->ecap);
1119 
1120 	/* Reflect status in gcmd */
1121 	sts = readl(iommu->reg + DMAR_GSTS_REG);
1122 	if (sts & DMA_GSTS_IRES)
1123 		iommu->gcmd |= DMA_GCMD_IRE;
1124 	if (sts & DMA_GSTS_TES)
1125 		iommu->gcmd |= DMA_GCMD_TE;
1126 	if (sts & DMA_GSTS_QIES)
1127 		iommu->gcmd |= DMA_GCMD_QIE;
1128 
1129 	raw_spin_lock_init(&iommu->register_lock);
1130 
1131 	/*
1132 	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1133 	 * be set yet. When intel_iommu_init() runs, it registers the units
1134 	 * present at boot time, then sets intel_iommu_enabled.
1135 	 */
1136 	if (intel_iommu_enabled && !drhd->ignored) {
1137 		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1138 					     intel_iommu_groups,
1139 					     "%s", iommu->name);
1140 		if (err)
1141 			goto err_unmap;
1142 
1143 		err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1144 		if (err)
1145 			goto err_unmap;
1146 	}
1147 
1148 	drhd->iommu = iommu;
1149 	iommu->drhd = drhd;
1150 
1151 	return 0;
1152 
1153 err_unmap:
1154 	unmap_iommu(iommu);
1155 error_free_seq_id:
1156 	dmar_free_seq_id(iommu);
1157 error:
1158 	kfree(iommu);
1159 	return err;
1160 }
1161 
1162 static void free_iommu(struct intel_iommu *iommu)
1163 {
1164 	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1165 		iommu_device_unregister(&iommu->iommu);
1166 		iommu_device_sysfs_remove(&iommu->iommu);
1167 	}
1168 
1169 	if (iommu->irq) {
1170 		if (iommu->pr_irq) {
1171 			free_irq(iommu->pr_irq, iommu);
1172 			dmar_free_hwirq(iommu->pr_irq);
1173 			iommu->pr_irq = 0;
1174 		}
1175 		free_irq(iommu->irq, iommu);
1176 		dmar_free_hwirq(iommu->irq);
1177 		iommu->irq = 0;
1178 	}
1179 
1180 	if (iommu->qi) {
1181 		free_page((unsigned long)iommu->qi->desc);
1182 		kfree(iommu->qi->desc_status);
1183 		kfree(iommu->qi);
1184 	}
1185 
1186 	if (iommu->reg)
1187 		unmap_iommu(iommu);
1188 
1189 	dmar_free_seq_id(iommu);
1190 	kfree(iommu);
1191 }
1192 
1193 /*
1194  * Reclaim all the submitted descriptors which have completed its work.
1195  */
1196 static inline void reclaim_free_desc(struct q_inval *qi)
1197 {
1198 	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1199 	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1200 		qi->desc_status[qi->free_tail] = QI_FREE;
1201 		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1202 		qi->free_cnt++;
1203 	}
1204 }
1205 
1206 static const char *qi_type_string(u8 type)
1207 {
1208 	switch (type) {
1209 	case QI_CC_TYPE:
1210 		return "Context-cache Invalidation";
1211 	case QI_IOTLB_TYPE:
1212 		return "IOTLB Invalidation";
1213 	case QI_DIOTLB_TYPE:
1214 		return "Device-TLB Invalidation";
1215 	case QI_IEC_TYPE:
1216 		return "Interrupt Entry Cache Invalidation";
1217 	case QI_IWD_TYPE:
1218 		return "Invalidation Wait";
1219 	case QI_EIOTLB_TYPE:
1220 		return "PASID-based IOTLB Invalidation";
1221 	case QI_PC_TYPE:
1222 		return "PASID-cache Invalidation";
1223 	case QI_DEIOTLB_TYPE:
1224 		return "PASID-based Device-TLB Invalidation";
1225 	case QI_PGRP_RESP_TYPE:
1226 		return "Page Group Response";
1227 	default:
1228 		return "UNKNOWN";
1229 	}
1230 }
1231 
1232 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1233 {
1234 	unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1235 	u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1236 	struct qi_desc *desc = iommu->qi->desc + head;
1237 
1238 	if (fault & DMA_FSTS_IQE)
1239 		pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1240 		       DMAR_IQER_REG_IQEI(iqe_err));
1241 	if (fault & DMA_FSTS_ITE)
1242 		pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1243 		       DMAR_IQER_REG_ITESID(iqe_err));
1244 	if (fault & DMA_FSTS_ICE)
1245 		pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1246 		       DMAR_IQER_REG_ICESID(iqe_err));
1247 
1248 	pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1249 	       qi_type_string(desc->qw0 & 0xf),
1250 	       (unsigned long long)desc->qw0,
1251 	       (unsigned long long)desc->qw1);
1252 
1253 	head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1254 	head <<= qi_shift(iommu);
1255 	desc = iommu->qi->desc + head;
1256 
1257 	pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1258 	       qi_type_string(desc->qw0 & 0xf),
1259 	       (unsigned long long)desc->qw0,
1260 	       (unsigned long long)desc->qw1);
1261 }
1262 
1263 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1264 {
1265 	u32 fault;
1266 	int head, tail;
1267 	struct q_inval *qi = iommu->qi;
1268 	int shift = qi_shift(iommu);
1269 
1270 	if (qi->desc_status[wait_index] == QI_ABORT)
1271 		return -EAGAIN;
1272 
1273 	fault = readl(iommu->reg + DMAR_FSTS_REG);
1274 	if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1275 		qi_dump_fault(iommu, fault);
1276 
1277 	/*
1278 	 * If IQE happens, the head points to the descriptor associated
1279 	 * with the error. No new descriptors are fetched until the IQE
1280 	 * is cleared.
1281 	 */
1282 	if (fault & DMA_FSTS_IQE) {
1283 		head = readl(iommu->reg + DMAR_IQH_REG);
1284 		if ((head >> shift) == index) {
1285 			struct qi_desc *desc = qi->desc + head;
1286 
1287 			/*
1288 			 * desc->qw2 and desc->qw3 are either reserved or
1289 			 * used by software as private data. We won't print
1290 			 * out these two qw's for security consideration.
1291 			 */
1292 			memcpy(desc, qi->desc + (wait_index << shift),
1293 			       1 << shift);
1294 			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1295 			pr_info("Invalidation Queue Error (IQE) cleared\n");
1296 			return -EINVAL;
1297 		}
1298 	}
1299 
1300 	/*
1301 	 * If ITE happens, all pending wait_desc commands are aborted.
1302 	 * No new descriptors are fetched until the ITE is cleared.
1303 	 */
1304 	if (fault & DMA_FSTS_ITE) {
1305 		head = readl(iommu->reg + DMAR_IQH_REG);
1306 		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1307 		head |= 1;
1308 		tail = readl(iommu->reg + DMAR_IQT_REG);
1309 		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1310 
1311 		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1312 		pr_info("Invalidation Time-out Error (ITE) cleared\n");
1313 
1314 		do {
1315 			if (qi->desc_status[head] == QI_IN_USE)
1316 				qi->desc_status[head] = QI_ABORT;
1317 			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1318 		} while (head != tail);
1319 
1320 		if (qi->desc_status[wait_index] == QI_ABORT)
1321 			return -EAGAIN;
1322 	}
1323 
1324 	if (fault & DMA_FSTS_ICE) {
1325 		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1326 		pr_info("Invalidation Completion Error (ICE) cleared\n");
1327 	}
1328 
1329 	return 0;
1330 }
1331 
1332 /*
1333  * Function to submit invalidation descriptors of all types to the queued
1334  * invalidation interface(QI). Multiple descriptors can be submitted at a
1335  * time, a wait descriptor will be appended to each submission to ensure
1336  * hardware has completed the invalidation before return. Wait descriptors
1337  * can be part of the submission but it will not be polled for completion.
1338  */
1339 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1340 		   unsigned int count, unsigned long options)
1341 {
1342 	struct q_inval *qi = iommu->qi;
1343 	struct qi_desc wait_desc;
1344 	int wait_index, index;
1345 	unsigned long flags;
1346 	int offset, shift;
1347 	int rc, i;
1348 
1349 	if (!qi)
1350 		return 0;
1351 
1352 restart:
1353 	rc = 0;
1354 
1355 	raw_spin_lock_irqsave(&qi->q_lock, flags);
1356 	/*
1357 	 * Check if we have enough empty slots in the queue to submit,
1358 	 * the calculation is based on:
1359 	 * # of desc + 1 wait desc + 1 space between head and tail
1360 	 */
1361 	while (qi->free_cnt < count + 2) {
1362 		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1363 		cpu_relax();
1364 		raw_spin_lock_irqsave(&qi->q_lock, flags);
1365 	}
1366 
1367 	index = qi->free_head;
1368 	wait_index = (index + count) % QI_LENGTH;
1369 	shift = qi_shift(iommu);
1370 
1371 	for (i = 0; i < count; i++) {
1372 		offset = ((index + i) % QI_LENGTH) << shift;
1373 		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1374 		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1375 		trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1376 				desc[i].qw2, desc[i].qw3);
1377 	}
1378 	qi->desc_status[wait_index] = QI_IN_USE;
1379 
1380 	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1381 			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1382 	if (options & QI_OPT_WAIT_DRAIN)
1383 		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1384 	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1385 	wait_desc.qw2 = 0;
1386 	wait_desc.qw3 = 0;
1387 
1388 	offset = wait_index << shift;
1389 	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1390 
1391 	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1392 	qi->free_cnt -= count + 1;
1393 
1394 	/*
1395 	 * update the HW tail register indicating the presence of
1396 	 * new descriptors.
1397 	 */
1398 	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1399 
1400 	while (qi->desc_status[wait_index] != QI_DONE) {
1401 		/*
1402 		 * We will leave the interrupts disabled, to prevent interrupt
1403 		 * context to queue another cmd while a cmd is already submitted
1404 		 * and waiting for completion on this cpu. This is to avoid
1405 		 * a deadlock where the interrupt context can wait indefinitely
1406 		 * for free slots in the queue.
1407 		 */
1408 		rc = qi_check_fault(iommu, index, wait_index);
1409 		if (rc)
1410 			break;
1411 
1412 		raw_spin_unlock(&qi->q_lock);
1413 		cpu_relax();
1414 		raw_spin_lock(&qi->q_lock);
1415 	}
1416 
1417 	for (i = 0; i < count; i++)
1418 		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1419 
1420 	reclaim_free_desc(qi);
1421 	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1422 
1423 	if (rc == -EAGAIN)
1424 		goto restart;
1425 
1426 	return rc;
1427 }
1428 
1429 /*
1430  * Flush the global interrupt entry cache.
1431  */
1432 void qi_global_iec(struct intel_iommu *iommu)
1433 {
1434 	struct qi_desc desc;
1435 
1436 	desc.qw0 = QI_IEC_TYPE;
1437 	desc.qw1 = 0;
1438 	desc.qw2 = 0;
1439 	desc.qw3 = 0;
1440 
1441 	/* should never fail */
1442 	qi_submit_sync(iommu, &desc, 1, 0);
1443 }
1444 
1445 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1446 		      u64 type)
1447 {
1448 	struct qi_desc desc;
1449 
1450 	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1451 			| QI_CC_GRAN(type) | QI_CC_TYPE;
1452 	desc.qw1 = 0;
1453 	desc.qw2 = 0;
1454 	desc.qw3 = 0;
1455 
1456 	qi_submit_sync(iommu, &desc, 1, 0);
1457 }
1458 
1459 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1460 		    unsigned int size_order, u64 type)
1461 {
1462 	u8 dw = 0, dr = 0;
1463 
1464 	struct qi_desc desc;
1465 	int ih = 0;
1466 
1467 	if (cap_write_drain(iommu->cap))
1468 		dw = 1;
1469 
1470 	if (cap_read_drain(iommu->cap))
1471 		dr = 1;
1472 
1473 	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1474 		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1475 	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1476 		| QI_IOTLB_AM(size_order);
1477 	desc.qw2 = 0;
1478 	desc.qw3 = 0;
1479 
1480 	qi_submit_sync(iommu, &desc, 1, 0);
1481 }
1482 
1483 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1484 			u16 qdep, u64 addr, unsigned mask)
1485 {
1486 	struct qi_desc desc;
1487 
1488 	if (mask) {
1489 		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1490 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1491 	} else
1492 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1493 
1494 	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1495 		qdep = 0;
1496 
1497 	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1498 		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1499 	desc.qw2 = 0;
1500 	desc.qw3 = 0;
1501 
1502 	qi_submit_sync(iommu, &desc, 1, 0);
1503 }
1504 
1505 /* PASID-based IOTLB invalidation */
1506 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1507 		     unsigned long npages, bool ih)
1508 {
1509 	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1510 
1511 	/*
1512 	 * npages == -1 means a PASID-selective invalidation, otherwise,
1513 	 * a positive value for Page-selective-within-PASID invalidation.
1514 	 * 0 is not a valid input.
1515 	 */
1516 	if (WARN_ON(!npages)) {
1517 		pr_err("Invalid input npages = %ld\n", npages);
1518 		return;
1519 	}
1520 
1521 	if (npages == -1) {
1522 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1523 				QI_EIOTLB_DID(did) |
1524 				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1525 				QI_EIOTLB_TYPE;
1526 		desc.qw1 = 0;
1527 	} else {
1528 		int mask = ilog2(__roundup_pow_of_two(npages));
1529 		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1530 
1531 		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1532 			addr = ALIGN_DOWN(addr, align);
1533 
1534 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1535 				QI_EIOTLB_DID(did) |
1536 				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1537 				QI_EIOTLB_TYPE;
1538 		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1539 				QI_EIOTLB_IH(ih) |
1540 				QI_EIOTLB_AM(mask);
1541 	}
1542 
1543 	qi_submit_sync(iommu, &desc, 1, 0);
1544 }
1545 
1546 /* PASID-based device IOTLB Invalidate */
1547 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1548 			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1549 {
1550 	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1551 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1552 
1553 	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1554 		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1555 		QI_DEV_IOTLB_PFSID(pfsid);
1556 
1557 	/*
1558 	 * If S bit is 0, we only flush a single page. If S bit is set,
1559 	 * The least significant zero bit indicates the invalidation address
1560 	 * range. VT-d spec 6.5.2.6.
1561 	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1562 	 * size order = 0 is PAGE_SIZE 4KB
1563 	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1564 	 * ECAP.
1565 	 */
1566 	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1567 		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1568 				    addr, size_order);
1569 
1570 	/* Take page address */
1571 	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1572 
1573 	if (size_order) {
1574 		/*
1575 		 * Existing 0s in address below size_order may be the least
1576 		 * significant bit, we must set them to 1s to avoid having
1577 		 * smaller size than desired.
1578 		 */
1579 		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1580 					VTD_PAGE_SHIFT);
1581 		/* Clear size_order bit to indicate size */
1582 		desc.qw1 &= ~mask;
1583 		/* Set the S bit to indicate flushing more than 1 page */
1584 		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1585 	}
1586 
1587 	qi_submit_sync(iommu, &desc, 1, 0);
1588 }
1589 
1590 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1591 			  u64 granu, u32 pasid)
1592 {
1593 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1594 
1595 	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1596 			QI_PC_GRAN(granu) | QI_PC_TYPE;
1597 	qi_submit_sync(iommu, &desc, 1, 0);
1598 }
1599 
1600 /*
1601  * Disable Queued Invalidation interface.
1602  */
1603 void dmar_disable_qi(struct intel_iommu *iommu)
1604 {
1605 	unsigned long flags;
1606 	u32 sts;
1607 	cycles_t start_time = get_cycles();
1608 
1609 	if (!ecap_qis(iommu->ecap))
1610 		return;
1611 
1612 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1613 
1614 	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1615 	if (!(sts & DMA_GSTS_QIES))
1616 		goto end;
1617 
1618 	/*
1619 	 * Give a chance to HW to complete the pending invalidation requests.
1620 	 */
1621 	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1622 		readl(iommu->reg + DMAR_IQH_REG)) &&
1623 		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1624 		cpu_relax();
1625 
1626 	iommu->gcmd &= ~DMA_GCMD_QIE;
1627 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1628 
1629 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1630 		      !(sts & DMA_GSTS_QIES), sts);
1631 end:
1632 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1633 }
1634 
1635 /*
1636  * Enable queued invalidation.
1637  */
1638 static void __dmar_enable_qi(struct intel_iommu *iommu)
1639 {
1640 	u32 sts;
1641 	unsigned long flags;
1642 	struct q_inval *qi = iommu->qi;
1643 	u64 val = virt_to_phys(qi->desc);
1644 
1645 	qi->free_head = qi->free_tail = 0;
1646 	qi->free_cnt = QI_LENGTH;
1647 
1648 	/*
1649 	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1650 	 * is present.
1651 	 */
1652 	if (ecap_smts(iommu->ecap))
1653 		val |= (1 << 11) | 1;
1654 
1655 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1656 
1657 	/* write zero to the tail reg */
1658 	writel(0, iommu->reg + DMAR_IQT_REG);
1659 
1660 	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1661 
1662 	iommu->gcmd |= DMA_GCMD_QIE;
1663 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1664 
1665 	/* Make sure hardware complete it */
1666 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1667 
1668 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1669 }
1670 
1671 /*
1672  * Enable Queued Invalidation interface. This is a must to support
1673  * interrupt-remapping. Also used by DMA-remapping, which replaces
1674  * register based IOTLB invalidation.
1675  */
1676 int dmar_enable_qi(struct intel_iommu *iommu)
1677 {
1678 	struct q_inval *qi;
1679 	struct page *desc_page;
1680 
1681 	if (!ecap_qis(iommu->ecap))
1682 		return -ENOENT;
1683 
1684 	/*
1685 	 * queued invalidation is already setup and enabled.
1686 	 */
1687 	if (iommu->qi)
1688 		return 0;
1689 
1690 	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1691 	if (!iommu->qi)
1692 		return -ENOMEM;
1693 
1694 	qi = iommu->qi;
1695 
1696 	/*
1697 	 * Need two pages to accommodate 256 descriptors of 256 bits each
1698 	 * if the remapping hardware supports scalable mode translation.
1699 	 */
1700 	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1701 				     !!ecap_smts(iommu->ecap));
1702 	if (!desc_page) {
1703 		kfree(qi);
1704 		iommu->qi = NULL;
1705 		return -ENOMEM;
1706 	}
1707 
1708 	qi->desc = page_address(desc_page);
1709 
1710 	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1711 	if (!qi->desc_status) {
1712 		free_page((unsigned long) qi->desc);
1713 		kfree(qi);
1714 		iommu->qi = NULL;
1715 		return -ENOMEM;
1716 	}
1717 
1718 	raw_spin_lock_init(&qi->q_lock);
1719 
1720 	__dmar_enable_qi(iommu);
1721 
1722 	return 0;
1723 }
1724 
1725 /* iommu interrupt handling. Most stuff are MSI-like. */
1726 
1727 enum faulttype {
1728 	DMA_REMAP,
1729 	INTR_REMAP,
1730 	UNKNOWN,
1731 };
1732 
1733 static const char *dma_remap_fault_reasons[] =
1734 {
1735 	"Software",
1736 	"Present bit in root entry is clear",
1737 	"Present bit in context entry is clear",
1738 	"Invalid context entry",
1739 	"Access beyond MGAW",
1740 	"PTE Write access is not set",
1741 	"PTE Read access is not set",
1742 	"Next page table ptr is invalid",
1743 	"Root table address invalid",
1744 	"Context table ptr is invalid",
1745 	"non-zero reserved fields in RTP",
1746 	"non-zero reserved fields in CTP",
1747 	"non-zero reserved fields in PTE",
1748 	"PCE for translation request specifies blocking",
1749 };
1750 
1751 static const char * const dma_remap_sm_fault_reasons[] = {
1752 	"SM: Invalid Root Table Address",
1753 	"SM: TTM 0 for request with PASID",
1754 	"SM: TTM 0 for page group request",
1755 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1756 	"SM: Error attempting to access Root Entry",
1757 	"SM: Present bit in Root Entry is clear",
1758 	"SM: Non-zero reserved field set in Root Entry",
1759 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1760 	"SM: Error attempting to access Context Entry",
1761 	"SM: Present bit in Context Entry is clear",
1762 	"SM: Non-zero reserved field set in the Context Entry",
1763 	"SM: Invalid Context Entry",
1764 	"SM: DTE field in Context Entry is clear",
1765 	"SM: PASID Enable field in Context Entry is clear",
1766 	"SM: PASID is larger than the max in Context Entry",
1767 	"SM: PRE field in Context-Entry is clear",
1768 	"SM: RID_PASID field error in Context-Entry",
1769 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1770 	"SM: Error attempting to access the PASID Directory Entry",
1771 	"SM: Present bit in Directory Entry is clear",
1772 	"SM: Non-zero reserved field set in PASID Directory Entry",
1773 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1774 	"SM: Error attempting to access PASID Table Entry",
1775 	"SM: Present bit in PASID Table Entry is clear",
1776 	"SM: Non-zero reserved field set in PASID Table Entry",
1777 	"SM: Invalid Scalable-Mode PASID Table Entry",
1778 	"SM: ERE field is clear in PASID Table Entry",
1779 	"SM: SRE field is clear in PASID Table Entry",
1780 	"Unknown", "Unknown",/* 0x5E-0x5F */
1781 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1782 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1783 	"SM: Error attempting to access first-level paging entry",
1784 	"SM: Present bit in first-level paging entry is clear",
1785 	"SM: Non-zero reserved field set in first-level paging entry",
1786 	"SM: Error attempting to access FL-PML4 entry",
1787 	"SM: First-level entry address beyond MGAW in Nested translation",
1788 	"SM: Read permission error in FL-PML4 entry in Nested translation",
1789 	"SM: Read permission error in first-level paging entry in Nested translation",
1790 	"SM: Write permission error in first-level paging entry in Nested translation",
1791 	"SM: Error attempting to access second-level paging entry",
1792 	"SM: Read/Write permission error in second-level paging entry",
1793 	"SM: Non-zero reserved field set in second-level paging entry",
1794 	"SM: Invalid second-level page table pointer",
1795 	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1796 	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1797 	"SM: Address in first-level translation is not canonical",
1798 	"SM: U/S set 0 for first-level translation with user privilege",
1799 	"SM: No execute permission for request with PASID and ER=1",
1800 	"SM: Address beyond the DMA hardware max",
1801 	"SM: Second-level entry address beyond the max",
1802 	"SM: No write permission for Write/AtomicOp request",
1803 	"SM: No read permission for Read/AtomicOp request",
1804 	"SM: Invalid address-interrupt address",
1805 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1806 	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1807 };
1808 
1809 static const char *irq_remap_fault_reasons[] =
1810 {
1811 	"Detected reserved fields in the decoded interrupt-remapped request",
1812 	"Interrupt index exceeded the interrupt-remapping table size",
1813 	"Present field in the IRTE entry is clear",
1814 	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1815 	"Detected reserved fields in the IRTE entry",
1816 	"Blocked a compatibility format interrupt request",
1817 	"Blocked an interrupt request due to source-id verification failure",
1818 };
1819 
1820 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1821 {
1822 	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1823 					ARRAY_SIZE(irq_remap_fault_reasons))) {
1824 		*fault_type = INTR_REMAP;
1825 		return irq_remap_fault_reasons[fault_reason - 0x20];
1826 	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1827 			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1828 		*fault_type = DMA_REMAP;
1829 		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1830 	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1831 		*fault_type = DMA_REMAP;
1832 		return dma_remap_fault_reasons[fault_reason];
1833 	} else {
1834 		*fault_type = UNKNOWN;
1835 		return "Unknown";
1836 	}
1837 }
1838 
1839 
1840 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1841 {
1842 	if (iommu->irq == irq)
1843 		return DMAR_FECTL_REG;
1844 	else if (iommu->pr_irq == irq)
1845 		return DMAR_PECTL_REG;
1846 	else
1847 		BUG();
1848 }
1849 
1850 void dmar_msi_unmask(struct irq_data *data)
1851 {
1852 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1853 	int reg = dmar_msi_reg(iommu, data->irq);
1854 	unsigned long flag;
1855 
1856 	/* unmask it */
1857 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1858 	writel(0, iommu->reg + reg);
1859 	/* Read a reg to force flush the post write */
1860 	readl(iommu->reg + reg);
1861 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1862 }
1863 
1864 void dmar_msi_mask(struct irq_data *data)
1865 {
1866 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1867 	int reg = dmar_msi_reg(iommu, data->irq);
1868 	unsigned long flag;
1869 
1870 	/* mask it */
1871 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1872 	writel(DMA_FECTL_IM, iommu->reg + reg);
1873 	/* Read a reg to force flush the post write */
1874 	readl(iommu->reg + reg);
1875 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1876 }
1877 
1878 void dmar_msi_write(int irq, struct msi_msg *msg)
1879 {
1880 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1881 	int reg = dmar_msi_reg(iommu, irq);
1882 	unsigned long flag;
1883 
1884 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1885 	writel(msg->data, iommu->reg + reg + 4);
1886 	writel(msg->address_lo, iommu->reg + reg + 8);
1887 	writel(msg->address_hi, iommu->reg + reg + 12);
1888 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1889 }
1890 
1891 void dmar_msi_read(int irq, struct msi_msg *msg)
1892 {
1893 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1894 	int reg = dmar_msi_reg(iommu, irq);
1895 	unsigned long flag;
1896 
1897 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1898 	msg->data = readl(iommu->reg + reg + 4);
1899 	msg->address_lo = readl(iommu->reg + reg + 8);
1900 	msg->address_hi = readl(iommu->reg + reg + 12);
1901 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1902 }
1903 
1904 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1905 		u8 fault_reason, u32 pasid, u16 source_id,
1906 		unsigned long long addr)
1907 {
1908 	const char *reason;
1909 	int fault_type;
1910 
1911 	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1912 
1913 	if (fault_type == INTR_REMAP)
1914 		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
1915 			source_id >> 8, PCI_SLOT(source_id & 0xFF),
1916 			PCI_FUNC(source_id & 0xFF), addr >> 48,
1917 			fault_reason, reason);
1918 	else
1919 		pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
1920 		       type ? "DMA Read" : "DMA Write",
1921 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1922 		       PCI_FUNC(source_id & 0xFF), pasid, addr,
1923 		       fault_reason, reason);
1924 	return 0;
1925 }
1926 
1927 #define PRIMARY_FAULT_REG_LEN (16)
1928 irqreturn_t dmar_fault(int irq, void *dev_id)
1929 {
1930 	struct intel_iommu *iommu = dev_id;
1931 	int reg, fault_index;
1932 	u32 fault_status;
1933 	unsigned long flag;
1934 	static DEFINE_RATELIMIT_STATE(rs,
1935 				      DEFAULT_RATELIMIT_INTERVAL,
1936 				      DEFAULT_RATELIMIT_BURST);
1937 
1938 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1939 	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1940 	if (fault_status && __ratelimit(&rs))
1941 		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1942 
1943 	/* TBD: ignore advanced fault log currently */
1944 	if (!(fault_status & DMA_FSTS_PPF))
1945 		goto unlock_exit;
1946 
1947 	fault_index = dma_fsts_fault_record_index(fault_status);
1948 	reg = cap_fault_reg_offset(iommu->cap);
1949 	while (1) {
1950 		/* Disable printing, simply clear the fault when ratelimited */
1951 		bool ratelimited = !__ratelimit(&rs);
1952 		u8 fault_reason;
1953 		u16 source_id;
1954 		u64 guest_addr;
1955 		u32 pasid;
1956 		int type;
1957 		u32 data;
1958 		bool pasid_present;
1959 
1960 		/* highest 32 bits */
1961 		data = readl(iommu->reg + reg +
1962 				fault_index * PRIMARY_FAULT_REG_LEN + 12);
1963 		if (!(data & DMA_FRCD_F))
1964 			break;
1965 
1966 		if (!ratelimited) {
1967 			fault_reason = dma_frcd_fault_reason(data);
1968 			type = dma_frcd_type(data);
1969 
1970 			pasid = dma_frcd_pasid_value(data);
1971 			data = readl(iommu->reg + reg +
1972 				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
1973 			source_id = dma_frcd_source_id(data);
1974 
1975 			pasid_present = dma_frcd_pasid_present(data);
1976 			guest_addr = dmar_readq(iommu->reg + reg +
1977 					fault_index * PRIMARY_FAULT_REG_LEN);
1978 			guest_addr = dma_frcd_page_addr(guest_addr);
1979 		}
1980 
1981 		/* clear the fault */
1982 		writel(DMA_FRCD_F, iommu->reg + reg +
1983 			fault_index * PRIMARY_FAULT_REG_LEN + 12);
1984 
1985 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1986 
1987 		if (!ratelimited)
1988 			/* Using pasid -1 if pasid is not present */
1989 			dmar_fault_do_one(iommu, type, fault_reason,
1990 					  pasid_present ? pasid : -1,
1991 					  source_id, guest_addr);
1992 
1993 		fault_index++;
1994 		if (fault_index >= cap_num_fault_regs(iommu->cap))
1995 			fault_index = 0;
1996 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1997 	}
1998 
1999 	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2000 	       iommu->reg + DMAR_FSTS_REG);
2001 
2002 unlock_exit:
2003 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2004 	return IRQ_HANDLED;
2005 }
2006 
2007 int dmar_set_interrupt(struct intel_iommu *iommu)
2008 {
2009 	int irq, ret;
2010 
2011 	/*
2012 	 * Check if the fault interrupt is already initialized.
2013 	 */
2014 	if (iommu->irq)
2015 		return 0;
2016 
2017 	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2018 	if (irq > 0) {
2019 		iommu->irq = irq;
2020 	} else {
2021 		pr_err("No free IRQ vectors\n");
2022 		return -EINVAL;
2023 	}
2024 
2025 	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2026 	if (ret)
2027 		pr_err("Can't request irq\n");
2028 	return ret;
2029 }
2030 
2031 int __init enable_drhd_fault_handling(void)
2032 {
2033 	struct dmar_drhd_unit *drhd;
2034 	struct intel_iommu *iommu;
2035 
2036 	/*
2037 	 * Enable fault control interrupt.
2038 	 */
2039 	for_each_iommu(iommu, drhd) {
2040 		u32 fault_status;
2041 		int ret = dmar_set_interrupt(iommu);
2042 
2043 		if (ret) {
2044 			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2045 			       (unsigned long long)drhd->reg_base_addr, ret);
2046 			return -1;
2047 		}
2048 
2049 		/*
2050 		 * Clear any previous faults.
2051 		 */
2052 		dmar_fault(iommu->irq, iommu);
2053 		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2054 		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 /*
2061  * Re-enable Queued Invalidation interface.
2062  */
2063 int dmar_reenable_qi(struct intel_iommu *iommu)
2064 {
2065 	if (!ecap_qis(iommu->ecap))
2066 		return -ENOENT;
2067 
2068 	if (!iommu->qi)
2069 		return -ENOENT;
2070 
2071 	/*
2072 	 * First disable queued invalidation.
2073 	 */
2074 	dmar_disable_qi(iommu);
2075 	/*
2076 	 * Then enable queued invalidation again. Since there is no pending
2077 	 * invalidation requests now, it's safe to re-enable queued
2078 	 * invalidation.
2079 	 */
2080 	__dmar_enable_qi(iommu);
2081 
2082 	return 0;
2083 }
2084 
2085 /*
2086  * Check interrupt remapping support in DMAR table description.
2087  */
2088 int __init dmar_ir_support(void)
2089 {
2090 	struct acpi_table_dmar *dmar;
2091 	dmar = (struct acpi_table_dmar *)dmar_tbl;
2092 	if (!dmar)
2093 		return 0;
2094 	return dmar->flags & 0x1;
2095 }
2096 
2097 /* Check whether DMAR units are in use */
2098 static inline bool dmar_in_use(void)
2099 {
2100 	return irq_remapping_enabled || intel_iommu_enabled;
2101 }
2102 
2103 static int __init dmar_free_unused_resources(void)
2104 {
2105 	struct dmar_drhd_unit *dmaru, *dmaru_n;
2106 
2107 	if (dmar_in_use())
2108 		return 0;
2109 
2110 	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2111 		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2112 
2113 	down_write(&dmar_global_lock);
2114 	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2115 		list_del(&dmaru->list);
2116 		dmar_free_drhd(dmaru);
2117 	}
2118 	up_write(&dmar_global_lock);
2119 
2120 	return 0;
2121 }
2122 
2123 late_initcall(dmar_free_unused_resources);
2124 IOMMU_INIT_POST(detect_intel_iommu);
2125 
2126 /*
2127  * DMAR Hotplug Support
2128  * For more details, please refer to Intel(R) Virtualization Technology
2129  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2130  * "Remapping Hardware Unit Hot Plug".
2131  */
2132 static guid_t dmar_hp_guid =
2133 	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2134 		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2135 
2136 /*
2137  * Currently there's only one revision and BIOS will not check the revision id,
2138  * so use 0 for safety.
2139  */
2140 #define	DMAR_DSM_REV_ID			0
2141 #define	DMAR_DSM_FUNC_DRHD		1
2142 #define	DMAR_DSM_FUNC_ATSR		2
2143 #define	DMAR_DSM_FUNC_RHSA		3
2144 #define	DMAR_DSM_FUNC_SATC		4
2145 
2146 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2147 {
2148 	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2149 }
2150 
2151 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2152 				  dmar_res_handler_t handler, void *arg)
2153 {
2154 	int ret = -ENODEV;
2155 	union acpi_object *obj;
2156 	struct acpi_dmar_header *start;
2157 	struct dmar_res_callback callback;
2158 	static int res_type[] = {
2159 		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2160 		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2161 		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2162 		[DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2163 	};
2164 
2165 	if (!dmar_detect_dsm(handle, func))
2166 		return 0;
2167 
2168 	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2169 				      func, NULL, ACPI_TYPE_BUFFER);
2170 	if (!obj)
2171 		return -ENODEV;
2172 
2173 	memset(&callback, 0, sizeof(callback));
2174 	callback.cb[res_type[func]] = handler;
2175 	callback.arg[res_type[func]] = arg;
2176 	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2177 	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2178 
2179 	ACPI_FREE(obj);
2180 
2181 	return ret;
2182 }
2183 
2184 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2185 {
2186 	int ret;
2187 	struct dmar_drhd_unit *dmaru;
2188 
2189 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2190 	if (!dmaru)
2191 		return -ENODEV;
2192 
2193 	ret = dmar_ir_hotplug(dmaru, true);
2194 	if (ret == 0)
2195 		ret = dmar_iommu_hotplug(dmaru, true);
2196 
2197 	return ret;
2198 }
2199 
2200 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2201 {
2202 	int i, ret;
2203 	struct device *dev;
2204 	struct dmar_drhd_unit *dmaru;
2205 
2206 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2207 	if (!dmaru)
2208 		return 0;
2209 
2210 	/*
2211 	 * All PCI devices managed by this unit should have been destroyed.
2212 	 */
2213 	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2214 		for_each_active_dev_scope(dmaru->devices,
2215 					  dmaru->devices_cnt, i, dev)
2216 			return -EBUSY;
2217 	}
2218 
2219 	ret = dmar_ir_hotplug(dmaru, false);
2220 	if (ret == 0)
2221 		ret = dmar_iommu_hotplug(dmaru, false);
2222 
2223 	return ret;
2224 }
2225 
2226 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2227 {
2228 	struct dmar_drhd_unit *dmaru;
2229 
2230 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2231 	if (dmaru) {
2232 		list_del_rcu(&dmaru->list);
2233 		synchronize_rcu();
2234 		dmar_free_drhd(dmaru);
2235 	}
2236 
2237 	return 0;
2238 }
2239 
2240 static int dmar_hotplug_insert(acpi_handle handle)
2241 {
2242 	int ret;
2243 	int drhd_count = 0;
2244 
2245 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2246 				     &dmar_validate_one_drhd, (void *)1);
2247 	if (ret)
2248 		goto out;
2249 
2250 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2251 				     &dmar_parse_one_drhd, (void *)&drhd_count);
2252 	if (ret == 0 && drhd_count == 0) {
2253 		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2254 		goto out;
2255 	} else if (ret) {
2256 		goto release_drhd;
2257 	}
2258 
2259 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2260 				     &dmar_parse_one_rhsa, NULL);
2261 	if (ret)
2262 		goto release_drhd;
2263 
2264 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2265 				     &dmar_parse_one_atsr, NULL);
2266 	if (ret)
2267 		goto release_atsr;
2268 
2269 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2270 				     &dmar_hp_add_drhd, NULL);
2271 	if (!ret)
2272 		return 0;
2273 
2274 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2275 			       &dmar_hp_remove_drhd, NULL);
2276 release_atsr:
2277 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2278 			       &dmar_release_one_atsr, NULL);
2279 release_drhd:
2280 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2281 			       &dmar_hp_release_drhd, NULL);
2282 out:
2283 	return ret;
2284 }
2285 
2286 static int dmar_hotplug_remove(acpi_handle handle)
2287 {
2288 	int ret;
2289 
2290 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2291 				     &dmar_check_one_atsr, NULL);
2292 	if (ret)
2293 		return ret;
2294 
2295 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2296 				     &dmar_hp_remove_drhd, NULL);
2297 	if (ret == 0) {
2298 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2299 					       &dmar_release_one_atsr, NULL));
2300 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2301 					       &dmar_hp_release_drhd, NULL));
2302 	} else {
2303 		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2304 				       &dmar_hp_add_drhd, NULL);
2305 	}
2306 
2307 	return ret;
2308 }
2309 
2310 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2311 				       void *context, void **retval)
2312 {
2313 	acpi_handle *phdl = retval;
2314 
2315 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2316 		*phdl = handle;
2317 		return AE_CTRL_TERMINATE;
2318 	}
2319 
2320 	return AE_OK;
2321 }
2322 
2323 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2324 {
2325 	int ret;
2326 	acpi_handle tmp = NULL;
2327 	acpi_status status;
2328 
2329 	if (!dmar_in_use())
2330 		return 0;
2331 
2332 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2333 		tmp = handle;
2334 	} else {
2335 		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2336 					     ACPI_UINT32_MAX,
2337 					     dmar_get_dsm_handle,
2338 					     NULL, NULL, &tmp);
2339 		if (ACPI_FAILURE(status)) {
2340 			pr_warn("Failed to locate _DSM method.\n");
2341 			return -ENXIO;
2342 		}
2343 	}
2344 	if (tmp == NULL)
2345 		return 0;
2346 
2347 	down_write(&dmar_global_lock);
2348 	if (insert)
2349 		ret = dmar_hotplug_insert(tmp);
2350 	else
2351 		ret = dmar_hotplug_remove(tmp);
2352 	up_write(&dmar_global_lock);
2353 
2354 	return ret;
2355 }
2356 
2357 int dmar_device_add(acpi_handle handle)
2358 {
2359 	return dmar_device_hotplug(handle, true);
2360 }
2361 
2362 int dmar_device_remove(acpi_handle handle)
2363 {
2364 	return dmar_device_hotplug(handle, false);
2365 }
2366 
2367 /*
2368  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2369  *
2370  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2371  * the ACPI DMAR table. This means that the platform boot firmware has made
2372  * sure no device can issue DMA outside of RMRR regions.
2373  */
2374 bool dmar_platform_optin(void)
2375 {
2376 	struct acpi_table_dmar *dmar;
2377 	acpi_status status;
2378 	bool ret;
2379 
2380 	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2381 				(struct acpi_table_header **)&dmar);
2382 	if (ACPI_FAILURE(status))
2383 		return false;
2384 
2385 	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2386 	acpi_put_table((struct acpi_table_header *)dmar);
2387 
2388 	return ret;
2389 }
2390 EXPORT_SYMBOL_GPL(dmar_platform_optin);
2391