xref: /openbmc/linux/drivers/iommu/intel/dmar.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16 
17 #define pr_fmt(fmt)     "DMAR: " fmt
18 
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/timer.h>
23 #include <linux/irq.h>
24 #include <linux/interrupt.h>
25 #include <linux/tboot.h>
26 #include <linux/dmi.h>
27 #include <linux/slab.h>
28 #include <linux/iommu.h>
29 #include <linux/numa.h>
30 #include <linux/limits.h>
31 #include <asm/irq_remapping.h>
32 
33 #include "iommu.h"
34 #include "../irq_remapping.h"
35 #include "perf.h"
36 #include "trace.h"
37 #include "perfmon.h"
38 
39 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
40 struct dmar_res_callback {
41 	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
42 	void			*arg[ACPI_DMAR_TYPE_RESERVED];
43 	bool			ignore_unhandled;
44 	bool			print_entry;
45 };
46 
47 /*
48  * Assumptions:
49  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
50  *    before IO devices managed by that unit.
51  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
52  *    after IO devices managed by that unit.
53  * 3) Hotplug events are rare.
54  *
55  * Locking rules for DMA and interrupt remapping related global data structures:
56  * 1) Use dmar_global_lock in process context
57  * 2) Use RCU in interrupt context
58  */
59 DECLARE_RWSEM(dmar_global_lock);
60 LIST_HEAD(dmar_drhd_units);
61 
62 struct acpi_table_header * __initdata dmar_tbl;
63 static int dmar_dev_scope_status = 1;
64 static DEFINE_IDA(dmar_seq_ids);
65 
66 static int alloc_iommu(struct dmar_drhd_unit *drhd);
67 static void free_iommu(struct intel_iommu *iommu);
68 
69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
70 {
71 	/*
72 	 * add INCLUDE_ALL at the tail, so scan the list will find it at
73 	 * the very end.
74 	 */
75 	if (drhd->include_all)
76 		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
77 	else
78 		list_add_rcu(&drhd->list, &dmar_drhd_units);
79 }
80 
81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
82 {
83 	struct acpi_dmar_device_scope *scope;
84 
85 	*cnt = 0;
86 	while (start < end) {
87 		scope = start;
88 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
89 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
90 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
91 			(*cnt)++;
92 		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
93 			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
94 			pr_warn("Unsupported device scope\n");
95 		}
96 		start += scope->length;
97 	}
98 	if (*cnt == 0)
99 		return NULL;
100 
101 	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
102 }
103 
104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
105 {
106 	int i;
107 	struct device *tmp_dev;
108 
109 	if (*devices && *cnt) {
110 		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
111 			put_device(tmp_dev);
112 		kfree(*devices);
113 	}
114 
115 	*devices = NULL;
116 	*cnt = 0;
117 }
118 
119 /* Optimize out kzalloc()/kfree() for normal cases */
120 static char dmar_pci_notify_info_buf[64];
121 
122 static struct dmar_pci_notify_info *
123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
124 {
125 	int level = 0;
126 	size_t size;
127 	struct pci_dev *tmp;
128 	struct dmar_pci_notify_info *info;
129 
130 	BUG_ON(dev->is_virtfn);
131 
132 	/*
133 	 * Ignore devices that have a domain number higher than what can
134 	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
135 	 */
136 	if (pci_domain_nr(dev->bus) > U16_MAX)
137 		return NULL;
138 
139 	/* Only generate path[] for device addition event */
140 	if (event == BUS_NOTIFY_ADD_DEVICE)
141 		for (tmp = dev; tmp; tmp = tmp->bus->self)
142 			level++;
143 
144 	size = struct_size(info, path, level);
145 	if (size <= sizeof(dmar_pci_notify_info_buf)) {
146 		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
147 	} else {
148 		info = kzalloc(size, GFP_KERNEL);
149 		if (!info) {
150 			if (dmar_dev_scope_status == 0)
151 				dmar_dev_scope_status = -ENOMEM;
152 			return NULL;
153 		}
154 	}
155 
156 	info->event = event;
157 	info->dev = dev;
158 	info->seg = pci_domain_nr(dev->bus);
159 	info->level = level;
160 	if (event == BUS_NOTIFY_ADD_DEVICE) {
161 		for (tmp = dev; tmp; tmp = tmp->bus->self) {
162 			level--;
163 			info->path[level].bus = tmp->bus->number;
164 			info->path[level].device = PCI_SLOT(tmp->devfn);
165 			info->path[level].function = PCI_FUNC(tmp->devfn);
166 			if (pci_is_root_bus(tmp->bus))
167 				info->bus = tmp->bus->number;
168 		}
169 	}
170 
171 	return info;
172 }
173 
174 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
175 {
176 	if ((void *)info != dmar_pci_notify_info_buf)
177 		kfree(info);
178 }
179 
180 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
181 				struct acpi_dmar_pci_path *path, int count)
182 {
183 	int i;
184 
185 	if (info->bus != bus)
186 		goto fallback;
187 	if (info->level != count)
188 		goto fallback;
189 
190 	for (i = 0; i < count; i++) {
191 		if (path[i].device != info->path[i].device ||
192 		    path[i].function != info->path[i].function)
193 			goto fallback;
194 	}
195 
196 	return true;
197 
198 fallback:
199 
200 	if (count != 1)
201 		return false;
202 
203 	i = info->level - 1;
204 	if (bus              == info->path[i].bus &&
205 	    path[0].device   == info->path[i].device &&
206 	    path[0].function == info->path[i].function) {
207 		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
208 			bus, path[0].device, path[0].function);
209 		return true;
210 	}
211 
212 	return false;
213 }
214 
215 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
216 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
217 			  void *start, void*end, u16 segment,
218 			  struct dmar_dev_scope *devices,
219 			  int devices_cnt)
220 {
221 	int i, level;
222 	struct device *tmp, *dev = &info->dev->dev;
223 	struct acpi_dmar_device_scope *scope;
224 	struct acpi_dmar_pci_path *path;
225 
226 	if (segment != info->seg)
227 		return 0;
228 
229 	for (; start < end; start += scope->length) {
230 		scope = start;
231 		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
232 		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
233 			continue;
234 
235 		path = (struct acpi_dmar_pci_path *)(scope + 1);
236 		level = (scope->length - sizeof(*scope)) / sizeof(*path);
237 		if (!dmar_match_pci_path(info, scope->bus, path, level))
238 			continue;
239 
240 		/*
241 		 * We expect devices with endpoint scope to have normal PCI
242 		 * headers, and devices with bridge scope to have bridge PCI
243 		 * headers.  However PCI NTB devices may be listed in the
244 		 * DMAR table with bridge scope, even though they have a
245 		 * normal PCI header.  NTB devices are identified by class
246 		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
247 		 * for this special case.
248 		 */
249 		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
250 		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
251 		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
252 		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
253 		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
254 			pr_warn("Device scope type does not match for %s\n",
255 				pci_name(info->dev));
256 			return -EINVAL;
257 		}
258 
259 		for_each_dev_scope(devices, devices_cnt, i, tmp)
260 			if (tmp == NULL) {
261 				devices[i].bus = info->dev->bus->number;
262 				devices[i].devfn = info->dev->devfn;
263 				rcu_assign_pointer(devices[i].dev,
264 						   get_device(dev));
265 				return 1;
266 			}
267 		BUG_ON(i >= devices_cnt);
268 	}
269 
270 	return 0;
271 }
272 
273 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
274 			  struct dmar_dev_scope *devices, int count)
275 {
276 	int index;
277 	struct device *tmp;
278 
279 	if (info->seg != segment)
280 		return 0;
281 
282 	for_each_active_dev_scope(devices, count, index, tmp)
283 		if (tmp == &info->dev->dev) {
284 			RCU_INIT_POINTER(devices[index].dev, NULL);
285 			synchronize_rcu();
286 			put_device(tmp);
287 			return 1;
288 		}
289 
290 	return 0;
291 }
292 
293 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
294 {
295 	int ret = 0;
296 	struct dmar_drhd_unit *dmaru;
297 	struct acpi_dmar_hardware_unit *drhd;
298 
299 	for_each_drhd_unit(dmaru) {
300 		if (dmaru->include_all)
301 			continue;
302 
303 		drhd = container_of(dmaru->hdr,
304 				    struct acpi_dmar_hardware_unit, header);
305 		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
306 				((void *)drhd) + drhd->header.length,
307 				dmaru->segment,
308 				dmaru->devices, dmaru->devices_cnt);
309 		if (ret)
310 			break;
311 	}
312 	if (ret >= 0)
313 		ret = dmar_iommu_notify_scope_dev(info);
314 	if (ret < 0 && dmar_dev_scope_status == 0)
315 		dmar_dev_scope_status = ret;
316 
317 	if (ret >= 0)
318 		intel_irq_remap_add_device(info);
319 
320 	return ret;
321 }
322 
323 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
324 {
325 	struct dmar_drhd_unit *dmaru;
326 
327 	for_each_drhd_unit(dmaru)
328 		if (dmar_remove_dev_scope(info, dmaru->segment,
329 			dmaru->devices, dmaru->devices_cnt))
330 			break;
331 	dmar_iommu_notify_scope_dev(info);
332 }
333 
334 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
335 {
336 	struct pci_dev *physfn = pci_physfn(pdev);
337 
338 	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
339 }
340 
341 static int dmar_pci_bus_notifier(struct notifier_block *nb,
342 				 unsigned long action, void *data)
343 {
344 	struct pci_dev *pdev = to_pci_dev(data);
345 	struct dmar_pci_notify_info *info;
346 
347 	/* Only care about add/remove events for physical functions.
348 	 * For VFs we actually do the lookup based on the corresponding
349 	 * PF in device_to_iommu() anyway. */
350 	if (pdev->is_virtfn) {
351 		/*
352 		 * Ensure that the VF device inherits the irq domain of the
353 		 * PF device. Ideally the device would inherit the domain
354 		 * from the bus, but DMAR can have multiple units per bus
355 		 * which makes this impossible. The VF 'bus' could inherit
356 		 * from the PF device, but that's yet another x86'sism to
357 		 * inflict on everybody else.
358 		 */
359 		if (action == BUS_NOTIFY_ADD_DEVICE)
360 			vf_inherit_msi_domain(pdev);
361 		return NOTIFY_DONE;
362 	}
363 
364 	if (action != BUS_NOTIFY_ADD_DEVICE &&
365 	    action != BUS_NOTIFY_REMOVED_DEVICE)
366 		return NOTIFY_DONE;
367 
368 	info = dmar_alloc_pci_notify_info(pdev, action);
369 	if (!info)
370 		return NOTIFY_DONE;
371 
372 	down_write(&dmar_global_lock);
373 	if (action == BUS_NOTIFY_ADD_DEVICE)
374 		dmar_pci_bus_add_dev(info);
375 	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
376 		dmar_pci_bus_del_dev(info);
377 	up_write(&dmar_global_lock);
378 
379 	dmar_free_pci_notify_info(info);
380 
381 	return NOTIFY_OK;
382 }
383 
384 static struct notifier_block dmar_pci_bus_nb = {
385 	.notifier_call = dmar_pci_bus_notifier,
386 	.priority = 1,
387 };
388 
389 static struct dmar_drhd_unit *
390 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
391 {
392 	struct dmar_drhd_unit *dmaru;
393 
394 	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
395 				dmar_rcu_check())
396 		if (dmaru->segment == drhd->segment &&
397 		    dmaru->reg_base_addr == drhd->address)
398 			return dmaru;
399 
400 	return NULL;
401 }
402 
403 /*
404  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
405  * structure which uniquely represent one DMA remapping hardware unit
406  * present in the platform
407  */
408 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
409 {
410 	struct acpi_dmar_hardware_unit *drhd;
411 	struct dmar_drhd_unit *dmaru;
412 	int ret;
413 
414 	drhd = (struct acpi_dmar_hardware_unit *)header;
415 	dmaru = dmar_find_dmaru(drhd);
416 	if (dmaru)
417 		goto out;
418 
419 	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
420 	if (!dmaru)
421 		return -ENOMEM;
422 
423 	/*
424 	 * If header is allocated from slab by ACPI _DSM method, we need to
425 	 * copy the content because the memory buffer will be freed on return.
426 	 */
427 	dmaru->hdr = (void *)(dmaru + 1);
428 	memcpy(dmaru->hdr, header, header->length);
429 	dmaru->reg_base_addr = drhd->address;
430 	dmaru->segment = drhd->segment;
431 	/* The size of the register set is 2 ^ N 4 KB pages. */
432 	dmaru->reg_size = 1UL << (drhd->size + 12);
433 	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
434 	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
435 					      ((void *)drhd) + drhd->header.length,
436 					      &dmaru->devices_cnt);
437 	if (dmaru->devices_cnt && dmaru->devices == NULL) {
438 		kfree(dmaru);
439 		return -ENOMEM;
440 	}
441 
442 	ret = alloc_iommu(dmaru);
443 	if (ret) {
444 		dmar_free_dev_scope(&dmaru->devices,
445 				    &dmaru->devices_cnt);
446 		kfree(dmaru);
447 		return ret;
448 	}
449 	dmar_register_drhd_unit(dmaru);
450 
451 out:
452 	if (arg)
453 		(*(int *)arg)++;
454 
455 	return 0;
456 }
457 
458 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
459 {
460 	if (dmaru->devices && dmaru->devices_cnt)
461 		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
462 	if (dmaru->iommu)
463 		free_iommu(dmaru->iommu);
464 	kfree(dmaru);
465 }
466 
467 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
468 				      void *arg)
469 {
470 	struct acpi_dmar_andd *andd = (void *)header;
471 
472 	/* Check for NUL termination within the designated length */
473 	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
474 		pr_warn(FW_BUG
475 			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
476 			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
477 			   dmi_get_system_info(DMI_BIOS_VENDOR),
478 			   dmi_get_system_info(DMI_BIOS_VERSION),
479 			   dmi_get_system_info(DMI_PRODUCT_VERSION));
480 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
481 		return -EINVAL;
482 	}
483 	pr_info("ANDD device: %x name: %s\n", andd->device_number,
484 		andd->device_name);
485 
486 	return 0;
487 }
488 
489 #ifdef CONFIG_ACPI_NUMA
490 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
491 {
492 	struct acpi_dmar_rhsa *rhsa;
493 	struct dmar_drhd_unit *drhd;
494 
495 	rhsa = (struct acpi_dmar_rhsa *)header;
496 	for_each_drhd_unit(drhd) {
497 		if (drhd->reg_base_addr == rhsa->base_address) {
498 			int node = pxm_to_node(rhsa->proximity_domain);
499 
500 			if (node != NUMA_NO_NODE && !node_online(node))
501 				node = NUMA_NO_NODE;
502 			drhd->iommu->node = node;
503 			return 0;
504 		}
505 	}
506 	pr_warn(FW_BUG
507 		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
508 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
509 		rhsa->base_address,
510 		dmi_get_system_info(DMI_BIOS_VENDOR),
511 		dmi_get_system_info(DMI_BIOS_VERSION),
512 		dmi_get_system_info(DMI_PRODUCT_VERSION));
513 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
514 
515 	return 0;
516 }
517 #else
518 #define	dmar_parse_one_rhsa		dmar_res_noop
519 #endif
520 
521 static void
522 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
523 {
524 	struct acpi_dmar_hardware_unit *drhd;
525 	struct acpi_dmar_reserved_memory *rmrr;
526 	struct acpi_dmar_atsr *atsr;
527 	struct acpi_dmar_rhsa *rhsa;
528 	struct acpi_dmar_satc *satc;
529 
530 	switch (header->type) {
531 	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
532 		drhd = container_of(header, struct acpi_dmar_hardware_unit,
533 				    header);
534 		pr_info("DRHD base: %#016Lx flags: %#x\n",
535 			(unsigned long long)drhd->address, drhd->flags);
536 		break;
537 	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
538 		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
539 				    header);
540 		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
541 			(unsigned long long)rmrr->base_address,
542 			(unsigned long long)rmrr->end_address);
543 		break;
544 	case ACPI_DMAR_TYPE_ROOT_ATS:
545 		atsr = container_of(header, struct acpi_dmar_atsr, header);
546 		pr_info("ATSR flags: %#x\n", atsr->flags);
547 		break;
548 	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
549 		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
550 		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
551 		       (unsigned long long)rhsa->base_address,
552 		       rhsa->proximity_domain);
553 		break;
554 	case ACPI_DMAR_TYPE_NAMESPACE:
555 		/* We don't print this here because we need to sanity-check
556 		   it first. So print it in dmar_parse_one_andd() instead. */
557 		break;
558 	case ACPI_DMAR_TYPE_SATC:
559 		satc = container_of(header, struct acpi_dmar_satc, header);
560 		pr_info("SATC flags: 0x%x\n", satc->flags);
561 		break;
562 	}
563 }
564 
565 /**
566  * dmar_table_detect - checks to see if the platform supports DMAR devices
567  */
568 static int __init dmar_table_detect(void)
569 {
570 	acpi_status status = AE_OK;
571 
572 	/* if we could find DMAR table, then there are DMAR devices */
573 	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
574 
575 	if (ACPI_SUCCESS(status) && !dmar_tbl) {
576 		pr_warn("Unable to map DMAR\n");
577 		status = AE_NOT_FOUND;
578 	}
579 
580 	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
581 }
582 
583 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
584 				       size_t len, struct dmar_res_callback *cb)
585 {
586 	struct acpi_dmar_header *iter, *next;
587 	struct acpi_dmar_header *end = ((void *)start) + len;
588 
589 	for (iter = start; iter < end; iter = next) {
590 		next = (void *)iter + iter->length;
591 		if (iter->length == 0) {
592 			/* Avoid looping forever on bad ACPI tables */
593 			pr_debug(FW_BUG "Invalid 0-length structure\n");
594 			break;
595 		} else if (next > end) {
596 			/* Avoid passing table end */
597 			pr_warn(FW_BUG "Record passes table end\n");
598 			return -EINVAL;
599 		}
600 
601 		if (cb->print_entry)
602 			dmar_table_print_dmar_entry(iter);
603 
604 		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
605 			/* continue for forward compatibility */
606 			pr_debug("Unknown DMAR structure type %d\n",
607 				 iter->type);
608 		} else if (cb->cb[iter->type]) {
609 			int ret;
610 
611 			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
612 			if (ret)
613 				return ret;
614 		} else if (!cb->ignore_unhandled) {
615 			pr_warn("No handler for DMAR structure type %d\n",
616 				iter->type);
617 			return -EINVAL;
618 		}
619 	}
620 
621 	return 0;
622 }
623 
624 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
625 				       struct dmar_res_callback *cb)
626 {
627 	return dmar_walk_remapping_entries((void *)(dmar + 1),
628 			dmar->header.length - sizeof(*dmar), cb);
629 }
630 
631 /**
632  * parse_dmar_table - parses the DMA reporting table
633  */
634 static int __init
635 parse_dmar_table(void)
636 {
637 	struct acpi_table_dmar *dmar;
638 	int drhd_count = 0;
639 	int ret;
640 	struct dmar_res_callback cb = {
641 		.print_entry = true,
642 		.ignore_unhandled = true,
643 		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
644 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
645 		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
646 		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
647 		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
648 		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
649 		.cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
650 	};
651 
652 	/*
653 	 * Do it again, earlier dmar_tbl mapping could be mapped with
654 	 * fixed map.
655 	 */
656 	dmar_table_detect();
657 
658 	/*
659 	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
660 	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
661 	 */
662 	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
663 
664 	dmar = (struct acpi_table_dmar *)dmar_tbl;
665 	if (!dmar)
666 		return -ENODEV;
667 
668 	if (dmar->width < PAGE_SHIFT - 1) {
669 		pr_warn("Invalid DMAR haw\n");
670 		return -EINVAL;
671 	}
672 
673 	pr_info("Host address width %d\n", dmar->width + 1);
674 	ret = dmar_walk_dmar_table(dmar, &cb);
675 	if (ret == 0 && drhd_count == 0)
676 		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
677 
678 	return ret;
679 }
680 
681 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
682 				 int cnt, struct pci_dev *dev)
683 {
684 	int index;
685 	struct device *tmp;
686 
687 	while (dev) {
688 		for_each_active_dev_scope(devices, cnt, index, tmp)
689 			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
690 				return 1;
691 
692 		/* Check our parent */
693 		dev = dev->bus->self;
694 	}
695 
696 	return 0;
697 }
698 
699 struct dmar_drhd_unit *
700 dmar_find_matched_drhd_unit(struct pci_dev *dev)
701 {
702 	struct dmar_drhd_unit *dmaru;
703 	struct acpi_dmar_hardware_unit *drhd;
704 
705 	dev = pci_physfn(dev);
706 
707 	rcu_read_lock();
708 	for_each_drhd_unit(dmaru) {
709 		drhd = container_of(dmaru->hdr,
710 				    struct acpi_dmar_hardware_unit,
711 				    header);
712 
713 		if (dmaru->include_all &&
714 		    drhd->segment == pci_domain_nr(dev->bus))
715 			goto out;
716 
717 		if (dmar_pci_device_match(dmaru->devices,
718 					  dmaru->devices_cnt, dev))
719 			goto out;
720 	}
721 	dmaru = NULL;
722 out:
723 	rcu_read_unlock();
724 
725 	return dmaru;
726 }
727 
728 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
729 					      struct acpi_device *adev)
730 {
731 	struct dmar_drhd_unit *dmaru;
732 	struct acpi_dmar_hardware_unit *drhd;
733 	struct acpi_dmar_device_scope *scope;
734 	struct device *tmp;
735 	int i;
736 	struct acpi_dmar_pci_path *path;
737 
738 	for_each_drhd_unit(dmaru) {
739 		drhd = container_of(dmaru->hdr,
740 				    struct acpi_dmar_hardware_unit,
741 				    header);
742 
743 		for (scope = (void *)(drhd + 1);
744 		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
745 		     scope = ((void *)scope) + scope->length) {
746 			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
747 				continue;
748 			if (scope->enumeration_id != device_number)
749 				continue;
750 
751 			path = (void *)(scope + 1);
752 			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
753 				dev_name(&adev->dev), dmaru->reg_base_addr,
754 				scope->bus, path->device, path->function);
755 			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
756 				if (tmp == NULL) {
757 					dmaru->devices[i].bus = scope->bus;
758 					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
759 									    path->function);
760 					rcu_assign_pointer(dmaru->devices[i].dev,
761 							   get_device(&adev->dev));
762 					return;
763 				}
764 			BUG_ON(i >= dmaru->devices_cnt);
765 		}
766 	}
767 	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
768 		device_number, dev_name(&adev->dev));
769 }
770 
771 static int __init dmar_acpi_dev_scope_init(void)
772 {
773 	struct acpi_dmar_andd *andd;
774 
775 	if (dmar_tbl == NULL)
776 		return -ENODEV;
777 
778 	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
779 	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
780 	     andd = ((void *)andd) + andd->header.length) {
781 		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
782 			acpi_handle h;
783 			struct acpi_device *adev;
784 
785 			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
786 							  andd->device_name,
787 							  &h))) {
788 				pr_err("Failed to find handle for ACPI object %s\n",
789 				       andd->device_name);
790 				continue;
791 			}
792 			adev = acpi_fetch_acpi_dev(h);
793 			if (!adev) {
794 				pr_err("Failed to get device for ACPI object %s\n",
795 				       andd->device_name);
796 				continue;
797 			}
798 			dmar_acpi_insert_dev_scope(andd->device_number, adev);
799 		}
800 	}
801 	return 0;
802 }
803 
804 int __init dmar_dev_scope_init(void)
805 {
806 	struct pci_dev *dev = NULL;
807 	struct dmar_pci_notify_info *info;
808 
809 	if (dmar_dev_scope_status != 1)
810 		return dmar_dev_scope_status;
811 
812 	if (list_empty(&dmar_drhd_units)) {
813 		dmar_dev_scope_status = -ENODEV;
814 	} else {
815 		dmar_dev_scope_status = 0;
816 
817 		dmar_acpi_dev_scope_init();
818 
819 		for_each_pci_dev(dev) {
820 			if (dev->is_virtfn)
821 				continue;
822 
823 			info = dmar_alloc_pci_notify_info(dev,
824 					BUS_NOTIFY_ADD_DEVICE);
825 			if (!info) {
826 				pci_dev_put(dev);
827 				return dmar_dev_scope_status;
828 			} else {
829 				dmar_pci_bus_add_dev(info);
830 				dmar_free_pci_notify_info(info);
831 			}
832 		}
833 	}
834 
835 	return dmar_dev_scope_status;
836 }
837 
838 void __init dmar_register_bus_notifier(void)
839 {
840 	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
841 }
842 
843 
844 int __init dmar_table_init(void)
845 {
846 	static int dmar_table_initialized;
847 	int ret;
848 
849 	if (dmar_table_initialized == 0) {
850 		ret = parse_dmar_table();
851 		if (ret < 0) {
852 			if (ret != -ENODEV)
853 				pr_info("Parse DMAR table failure.\n");
854 		} else  if (list_empty(&dmar_drhd_units)) {
855 			pr_info("No DMAR devices found\n");
856 			ret = -ENODEV;
857 		}
858 
859 		if (ret < 0)
860 			dmar_table_initialized = ret;
861 		else
862 			dmar_table_initialized = 1;
863 	}
864 
865 	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
866 }
867 
868 static void warn_invalid_dmar(u64 addr, const char *message)
869 {
870 	pr_warn_once(FW_BUG
871 		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
872 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
873 		addr, message,
874 		dmi_get_system_info(DMI_BIOS_VENDOR),
875 		dmi_get_system_info(DMI_BIOS_VERSION),
876 		dmi_get_system_info(DMI_PRODUCT_VERSION));
877 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
878 }
879 
880 static int __ref
881 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
882 {
883 	struct acpi_dmar_hardware_unit *drhd;
884 	void __iomem *addr;
885 	u64 cap, ecap;
886 
887 	drhd = (void *)entry;
888 	if (!drhd->address) {
889 		warn_invalid_dmar(0, "");
890 		return -EINVAL;
891 	}
892 
893 	if (arg)
894 		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
895 	else
896 		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
897 	if (!addr) {
898 		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
899 		return -EINVAL;
900 	}
901 
902 	cap = dmar_readq(addr + DMAR_CAP_REG);
903 	ecap = dmar_readq(addr + DMAR_ECAP_REG);
904 
905 	if (arg)
906 		iounmap(addr);
907 	else
908 		early_iounmap(addr, VTD_PAGE_SIZE);
909 
910 	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
911 		warn_invalid_dmar(drhd->address, " returns all ones");
912 		return -EINVAL;
913 	}
914 
915 	return 0;
916 }
917 
918 void __init detect_intel_iommu(void)
919 {
920 	int ret;
921 	struct dmar_res_callback validate_drhd_cb = {
922 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
923 		.ignore_unhandled = true,
924 	};
925 
926 	down_write(&dmar_global_lock);
927 	ret = dmar_table_detect();
928 	if (!ret)
929 		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
930 					   &validate_drhd_cb);
931 	if (!ret && !no_iommu && !iommu_detected &&
932 	    (!dmar_disabled || dmar_platform_optin())) {
933 		iommu_detected = 1;
934 		/* Make sure ACS will be enabled */
935 		pci_request_acs();
936 	}
937 
938 #ifdef CONFIG_X86
939 	if (!ret) {
940 		x86_init.iommu.iommu_init = intel_iommu_init;
941 		x86_platform.iommu_shutdown = intel_iommu_shutdown;
942 	}
943 
944 #endif
945 
946 	if (dmar_tbl) {
947 		acpi_put_table(dmar_tbl);
948 		dmar_tbl = NULL;
949 	}
950 	up_write(&dmar_global_lock);
951 }
952 
953 static void unmap_iommu(struct intel_iommu *iommu)
954 {
955 	iounmap(iommu->reg);
956 	release_mem_region(iommu->reg_phys, iommu->reg_size);
957 }
958 
959 /**
960  * map_iommu: map the iommu's registers
961  * @iommu: the iommu to map
962  * @drhd: DMA remapping hardware definition structure
963  *
964  * Memory map the iommu's registers.  Start w/ a single page, and
965  * possibly expand if that turns out to be insufficent.
966  */
967 static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd)
968 {
969 	u64 phys_addr = drhd->reg_base_addr;
970 	int map_size, err=0;
971 
972 	iommu->reg_phys = phys_addr;
973 	iommu->reg_size = drhd->reg_size;
974 
975 	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
976 		pr_err("Can't reserve memory\n");
977 		err = -EBUSY;
978 		goto out;
979 	}
980 
981 	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
982 	if (!iommu->reg) {
983 		pr_err("Can't map the region\n");
984 		err = -ENOMEM;
985 		goto release;
986 	}
987 
988 	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
989 	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
990 
991 	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
992 		err = -EINVAL;
993 		warn_invalid_dmar(phys_addr, " returns all ones");
994 		goto unmap;
995 	}
996 	if (ecap_vcs(iommu->ecap))
997 		iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
998 
999 	/* the registers might be more than one page */
1000 	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
1001 			 cap_max_fault_reg_offset(iommu->cap));
1002 	map_size = VTD_PAGE_ALIGN(map_size);
1003 	if (map_size > iommu->reg_size) {
1004 		iounmap(iommu->reg);
1005 		release_mem_region(iommu->reg_phys, iommu->reg_size);
1006 		iommu->reg_size = map_size;
1007 		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1008 					iommu->name)) {
1009 			pr_err("Can't reserve memory\n");
1010 			err = -EBUSY;
1011 			goto out;
1012 		}
1013 		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1014 		if (!iommu->reg) {
1015 			pr_err("Can't map the region\n");
1016 			err = -ENOMEM;
1017 			goto release;
1018 		}
1019 	}
1020 
1021 	if (cap_ecmds(iommu->cap)) {
1022 		int i;
1023 
1024 		for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) {
1025 			iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG +
1026 						       i * DMA_ECMD_REG_STEP);
1027 		}
1028 	}
1029 
1030 	err = 0;
1031 	goto out;
1032 
1033 unmap:
1034 	iounmap(iommu->reg);
1035 release:
1036 	release_mem_region(iommu->reg_phys, iommu->reg_size);
1037 out:
1038 	return err;
1039 }
1040 
1041 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1042 {
1043 	struct intel_iommu *iommu;
1044 	u32 ver, sts;
1045 	int agaw = -1;
1046 	int msagaw = -1;
1047 	int err;
1048 
1049 	if (!drhd->reg_base_addr) {
1050 		warn_invalid_dmar(0, "");
1051 		return -EINVAL;
1052 	}
1053 
1054 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1055 	if (!iommu)
1056 		return -ENOMEM;
1057 
1058 	iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1059 					DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1060 	if (iommu->seq_id < 0) {
1061 		pr_err("Failed to allocate seq_id\n");
1062 		err = iommu->seq_id;
1063 		goto error;
1064 	}
1065 	sprintf(iommu->name, "dmar%d", iommu->seq_id);
1066 
1067 	err = map_iommu(iommu, drhd);
1068 	if (err) {
1069 		pr_err("Failed to map %s\n", iommu->name);
1070 		goto error_free_seq_id;
1071 	}
1072 
1073 	err = -EINVAL;
1074 	if (cap_sagaw(iommu->cap) == 0) {
1075 		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1076 			iommu->name);
1077 		drhd->ignored = 1;
1078 	}
1079 
1080 	if (!drhd->ignored) {
1081 		agaw = iommu_calculate_agaw(iommu);
1082 		if (agaw < 0) {
1083 			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1084 			       iommu->seq_id);
1085 			drhd->ignored = 1;
1086 		}
1087 	}
1088 	if (!drhd->ignored) {
1089 		msagaw = iommu_calculate_max_sagaw(iommu);
1090 		if (msagaw < 0) {
1091 			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1092 			       iommu->seq_id);
1093 			drhd->ignored = 1;
1094 			agaw = -1;
1095 		}
1096 	}
1097 	iommu->agaw = agaw;
1098 	iommu->msagaw = msagaw;
1099 	iommu->segment = drhd->segment;
1100 
1101 	iommu->node = NUMA_NO_NODE;
1102 
1103 	ver = readl(iommu->reg + DMAR_VER_REG);
1104 	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1105 		iommu->name,
1106 		(unsigned long long)drhd->reg_base_addr,
1107 		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1108 		(unsigned long long)iommu->cap,
1109 		(unsigned long long)iommu->ecap);
1110 
1111 	/* Reflect status in gcmd */
1112 	sts = readl(iommu->reg + DMAR_GSTS_REG);
1113 	if (sts & DMA_GSTS_IRES)
1114 		iommu->gcmd |= DMA_GCMD_IRE;
1115 	if (sts & DMA_GSTS_TES)
1116 		iommu->gcmd |= DMA_GCMD_TE;
1117 	if (sts & DMA_GSTS_QIES)
1118 		iommu->gcmd |= DMA_GCMD_QIE;
1119 
1120 	if (alloc_iommu_pmu(iommu))
1121 		pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id);
1122 
1123 	raw_spin_lock_init(&iommu->register_lock);
1124 
1125 	/*
1126 	 * A value of N in PSS field of eCap register indicates hardware
1127 	 * supports PASID field of N+1 bits.
1128 	 */
1129 	if (pasid_supported(iommu))
1130 		iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1131 
1132 	/*
1133 	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1134 	 * be set yet. When intel_iommu_init() runs, it registers the units
1135 	 * present at boot time, then sets intel_iommu_enabled.
1136 	 */
1137 	if (intel_iommu_enabled && !drhd->ignored) {
1138 		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1139 					     intel_iommu_groups,
1140 					     "%s", iommu->name);
1141 		if (err)
1142 			goto err_unmap;
1143 
1144 		err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1145 		if (err)
1146 			goto err_sysfs;
1147 
1148 		iommu_pmu_register(iommu);
1149 	}
1150 
1151 	drhd->iommu = iommu;
1152 	iommu->drhd = drhd;
1153 
1154 	return 0;
1155 
1156 err_sysfs:
1157 	iommu_device_sysfs_remove(&iommu->iommu);
1158 err_unmap:
1159 	free_iommu_pmu(iommu);
1160 	unmap_iommu(iommu);
1161 error_free_seq_id:
1162 	ida_free(&dmar_seq_ids, iommu->seq_id);
1163 error:
1164 	kfree(iommu);
1165 	return err;
1166 }
1167 
1168 static void free_iommu(struct intel_iommu *iommu)
1169 {
1170 	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1171 		iommu_pmu_unregister(iommu);
1172 		iommu_device_unregister(&iommu->iommu);
1173 		iommu_device_sysfs_remove(&iommu->iommu);
1174 	}
1175 
1176 	free_iommu_pmu(iommu);
1177 
1178 	if (iommu->irq) {
1179 		if (iommu->pr_irq) {
1180 			free_irq(iommu->pr_irq, iommu);
1181 			dmar_free_hwirq(iommu->pr_irq);
1182 			iommu->pr_irq = 0;
1183 		}
1184 		free_irq(iommu->irq, iommu);
1185 		dmar_free_hwirq(iommu->irq);
1186 		iommu->irq = 0;
1187 	}
1188 
1189 	if (iommu->qi) {
1190 		free_page((unsigned long)iommu->qi->desc);
1191 		kfree(iommu->qi->desc_status);
1192 		kfree(iommu->qi);
1193 	}
1194 
1195 	if (iommu->reg)
1196 		unmap_iommu(iommu);
1197 
1198 	ida_free(&dmar_seq_ids, iommu->seq_id);
1199 	kfree(iommu);
1200 }
1201 
1202 /*
1203  * Reclaim all the submitted descriptors which have completed its work.
1204  */
1205 static inline void reclaim_free_desc(struct q_inval *qi)
1206 {
1207 	while (qi->desc_status[qi->free_tail] == QI_DONE ||
1208 	       qi->desc_status[qi->free_tail] == QI_ABORT) {
1209 		qi->desc_status[qi->free_tail] = QI_FREE;
1210 		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1211 		qi->free_cnt++;
1212 	}
1213 }
1214 
1215 static const char *qi_type_string(u8 type)
1216 {
1217 	switch (type) {
1218 	case QI_CC_TYPE:
1219 		return "Context-cache Invalidation";
1220 	case QI_IOTLB_TYPE:
1221 		return "IOTLB Invalidation";
1222 	case QI_DIOTLB_TYPE:
1223 		return "Device-TLB Invalidation";
1224 	case QI_IEC_TYPE:
1225 		return "Interrupt Entry Cache Invalidation";
1226 	case QI_IWD_TYPE:
1227 		return "Invalidation Wait";
1228 	case QI_EIOTLB_TYPE:
1229 		return "PASID-based IOTLB Invalidation";
1230 	case QI_PC_TYPE:
1231 		return "PASID-cache Invalidation";
1232 	case QI_DEIOTLB_TYPE:
1233 		return "PASID-based Device-TLB Invalidation";
1234 	case QI_PGRP_RESP_TYPE:
1235 		return "Page Group Response";
1236 	default:
1237 		return "UNKNOWN";
1238 	}
1239 }
1240 
1241 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1242 {
1243 	unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1244 	u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1245 	struct qi_desc *desc = iommu->qi->desc + head;
1246 
1247 	if (fault & DMA_FSTS_IQE)
1248 		pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1249 		       DMAR_IQER_REG_IQEI(iqe_err));
1250 	if (fault & DMA_FSTS_ITE)
1251 		pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1252 		       DMAR_IQER_REG_ITESID(iqe_err));
1253 	if (fault & DMA_FSTS_ICE)
1254 		pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1255 		       DMAR_IQER_REG_ICESID(iqe_err));
1256 
1257 	pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1258 	       qi_type_string(desc->qw0 & 0xf),
1259 	       (unsigned long long)desc->qw0,
1260 	       (unsigned long long)desc->qw1);
1261 
1262 	head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1263 	head <<= qi_shift(iommu);
1264 	desc = iommu->qi->desc + head;
1265 
1266 	pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1267 	       qi_type_string(desc->qw0 & 0xf),
1268 	       (unsigned long long)desc->qw0,
1269 	       (unsigned long long)desc->qw1);
1270 }
1271 
1272 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1273 {
1274 	u32 fault;
1275 	int head, tail;
1276 	struct q_inval *qi = iommu->qi;
1277 	int shift = qi_shift(iommu);
1278 
1279 	if (qi->desc_status[wait_index] == QI_ABORT)
1280 		return -EAGAIN;
1281 
1282 	fault = readl(iommu->reg + DMAR_FSTS_REG);
1283 	if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1284 		qi_dump_fault(iommu, fault);
1285 
1286 	/*
1287 	 * If IQE happens, the head points to the descriptor associated
1288 	 * with the error. No new descriptors are fetched until the IQE
1289 	 * is cleared.
1290 	 */
1291 	if (fault & DMA_FSTS_IQE) {
1292 		head = readl(iommu->reg + DMAR_IQH_REG);
1293 		if ((head >> shift) == index) {
1294 			struct qi_desc *desc = qi->desc + head;
1295 
1296 			/*
1297 			 * desc->qw2 and desc->qw3 are either reserved or
1298 			 * used by software as private data. We won't print
1299 			 * out these two qw's for security consideration.
1300 			 */
1301 			memcpy(desc, qi->desc + (wait_index << shift),
1302 			       1 << shift);
1303 			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1304 			pr_info("Invalidation Queue Error (IQE) cleared\n");
1305 			return -EINVAL;
1306 		}
1307 	}
1308 
1309 	/*
1310 	 * If ITE happens, all pending wait_desc commands are aborted.
1311 	 * No new descriptors are fetched until the ITE is cleared.
1312 	 */
1313 	if (fault & DMA_FSTS_ITE) {
1314 		head = readl(iommu->reg + DMAR_IQH_REG);
1315 		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1316 		head |= 1;
1317 		tail = readl(iommu->reg + DMAR_IQT_REG);
1318 		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1319 
1320 		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1321 		pr_info("Invalidation Time-out Error (ITE) cleared\n");
1322 
1323 		do {
1324 			if (qi->desc_status[head] == QI_IN_USE)
1325 				qi->desc_status[head] = QI_ABORT;
1326 			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1327 		} while (head != tail);
1328 
1329 		if (qi->desc_status[wait_index] == QI_ABORT)
1330 			return -EAGAIN;
1331 	}
1332 
1333 	if (fault & DMA_FSTS_ICE) {
1334 		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1335 		pr_info("Invalidation Completion Error (ICE) cleared\n");
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 /*
1342  * Function to submit invalidation descriptors of all types to the queued
1343  * invalidation interface(QI). Multiple descriptors can be submitted at a
1344  * time, a wait descriptor will be appended to each submission to ensure
1345  * hardware has completed the invalidation before return. Wait descriptors
1346  * can be part of the submission but it will not be polled for completion.
1347  */
1348 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1349 		   unsigned int count, unsigned long options)
1350 {
1351 	struct q_inval *qi = iommu->qi;
1352 	s64 devtlb_start_ktime = 0;
1353 	s64 iotlb_start_ktime = 0;
1354 	s64 iec_start_ktime = 0;
1355 	struct qi_desc wait_desc;
1356 	int wait_index, index;
1357 	unsigned long flags;
1358 	int offset, shift;
1359 	int rc, i;
1360 	u64 type;
1361 
1362 	if (!qi)
1363 		return 0;
1364 
1365 	type = desc->qw0 & GENMASK_ULL(3, 0);
1366 
1367 	if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1368 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1369 		iotlb_start_ktime = ktime_to_ns(ktime_get());
1370 
1371 	if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1372 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1373 		devtlb_start_ktime = ktime_to_ns(ktime_get());
1374 
1375 	if (type == QI_IEC_TYPE &&
1376 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1377 		iec_start_ktime = ktime_to_ns(ktime_get());
1378 
1379 restart:
1380 	rc = 0;
1381 
1382 	raw_spin_lock_irqsave(&qi->q_lock, flags);
1383 	/*
1384 	 * Check if we have enough empty slots in the queue to submit,
1385 	 * the calculation is based on:
1386 	 * # of desc + 1 wait desc + 1 space between head and tail
1387 	 */
1388 	while (qi->free_cnt < count + 2) {
1389 		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1390 		cpu_relax();
1391 		raw_spin_lock_irqsave(&qi->q_lock, flags);
1392 	}
1393 
1394 	index = qi->free_head;
1395 	wait_index = (index + count) % QI_LENGTH;
1396 	shift = qi_shift(iommu);
1397 
1398 	for (i = 0; i < count; i++) {
1399 		offset = ((index + i) % QI_LENGTH) << shift;
1400 		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1401 		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1402 		trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1403 				desc[i].qw2, desc[i].qw3);
1404 	}
1405 	qi->desc_status[wait_index] = QI_IN_USE;
1406 
1407 	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1408 			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1409 	if (options & QI_OPT_WAIT_DRAIN)
1410 		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1411 	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1412 	wait_desc.qw2 = 0;
1413 	wait_desc.qw3 = 0;
1414 
1415 	offset = wait_index << shift;
1416 	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1417 
1418 	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1419 	qi->free_cnt -= count + 1;
1420 
1421 	/*
1422 	 * update the HW tail register indicating the presence of
1423 	 * new descriptors.
1424 	 */
1425 	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1426 
1427 	while (qi->desc_status[wait_index] != QI_DONE) {
1428 		/*
1429 		 * We will leave the interrupts disabled, to prevent interrupt
1430 		 * context to queue another cmd while a cmd is already submitted
1431 		 * and waiting for completion on this cpu. This is to avoid
1432 		 * a deadlock where the interrupt context can wait indefinitely
1433 		 * for free slots in the queue.
1434 		 */
1435 		rc = qi_check_fault(iommu, index, wait_index);
1436 		if (rc)
1437 			break;
1438 
1439 		raw_spin_unlock(&qi->q_lock);
1440 		cpu_relax();
1441 		raw_spin_lock(&qi->q_lock);
1442 	}
1443 
1444 	for (i = 0; i < count; i++)
1445 		qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1446 
1447 	reclaim_free_desc(qi);
1448 	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1449 
1450 	if (rc == -EAGAIN)
1451 		goto restart;
1452 
1453 	if (iotlb_start_ktime)
1454 		dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1455 				ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1456 
1457 	if (devtlb_start_ktime)
1458 		dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1459 				ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1460 
1461 	if (iec_start_ktime)
1462 		dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1463 				ktime_to_ns(ktime_get()) - iec_start_ktime);
1464 
1465 	return rc;
1466 }
1467 
1468 /*
1469  * Flush the global interrupt entry cache.
1470  */
1471 void qi_global_iec(struct intel_iommu *iommu)
1472 {
1473 	struct qi_desc desc;
1474 
1475 	desc.qw0 = QI_IEC_TYPE;
1476 	desc.qw1 = 0;
1477 	desc.qw2 = 0;
1478 	desc.qw3 = 0;
1479 
1480 	/* should never fail */
1481 	qi_submit_sync(iommu, &desc, 1, 0);
1482 }
1483 
1484 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1485 		      u64 type)
1486 {
1487 	struct qi_desc desc;
1488 
1489 	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1490 			| QI_CC_GRAN(type) | QI_CC_TYPE;
1491 	desc.qw1 = 0;
1492 	desc.qw2 = 0;
1493 	desc.qw3 = 0;
1494 
1495 	qi_submit_sync(iommu, &desc, 1, 0);
1496 }
1497 
1498 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1499 		    unsigned int size_order, u64 type)
1500 {
1501 	u8 dw = 0, dr = 0;
1502 
1503 	struct qi_desc desc;
1504 	int ih = 0;
1505 
1506 	if (cap_write_drain(iommu->cap))
1507 		dw = 1;
1508 
1509 	if (cap_read_drain(iommu->cap))
1510 		dr = 1;
1511 
1512 	desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1513 		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1514 	desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1515 		| QI_IOTLB_AM(size_order);
1516 	desc.qw2 = 0;
1517 	desc.qw3 = 0;
1518 
1519 	qi_submit_sync(iommu, &desc, 1, 0);
1520 }
1521 
1522 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1523 			u16 qdep, u64 addr, unsigned mask)
1524 {
1525 	struct qi_desc desc;
1526 
1527 	if (mask) {
1528 		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1529 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1530 	} else
1531 		desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1532 
1533 	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1534 		qdep = 0;
1535 
1536 	desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1537 		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1538 	desc.qw2 = 0;
1539 	desc.qw3 = 0;
1540 
1541 	qi_submit_sync(iommu, &desc, 1, 0);
1542 }
1543 
1544 /* PASID-based IOTLB invalidation */
1545 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1546 		     unsigned long npages, bool ih)
1547 {
1548 	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1549 
1550 	/*
1551 	 * npages == -1 means a PASID-selective invalidation, otherwise,
1552 	 * a positive value for Page-selective-within-PASID invalidation.
1553 	 * 0 is not a valid input.
1554 	 */
1555 	if (WARN_ON(!npages)) {
1556 		pr_err("Invalid input npages = %ld\n", npages);
1557 		return;
1558 	}
1559 
1560 	if (npages == -1) {
1561 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1562 				QI_EIOTLB_DID(did) |
1563 				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1564 				QI_EIOTLB_TYPE;
1565 		desc.qw1 = 0;
1566 	} else {
1567 		int mask = ilog2(__roundup_pow_of_two(npages));
1568 		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1569 
1570 		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1571 			addr = ALIGN_DOWN(addr, align);
1572 
1573 		desc.qw0 = QI_EIOTLB_PASID(pasid) |
1574 				QI_EIOTLB_DID(did) |
1575 				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1576 				QI_EIOTLB_TYPE;
1577 		desc.qw1 = QI_EIOTLB_ADDR(addr) |
1578 				QI_EIOTLB_IH(ih) |
1579 				QI_EIOTLB_AM(mask);
1580 	}
1581 
1582 	qi_submit_sync(iommu, &desc, 1, 0);
1583 }
1584 
1585 /* PASID-based device IOTLB Invalidate */
1586 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1587 			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1588 {
1589 	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1590 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1591 
1592 	desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1593 		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1594 		QI_DEV_IOTLB_PFSID(pfsid);
1595 
1596 	/*
1597 	 * If S bit is 0, we only flush a single page. If S bit is set,
1598 	 * The least significant zero bit indicates the invalidation address
1599 	 * range. VT-d spec 6.5.2.6.
1600 	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1601 	 * size order = 0 is PAGE_SIZE 4KB
1602 	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1603 	 * ECAP.
1604 	 */
1605 	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1606 		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1607 				    addr, size_order);
1608 
1609 	/* Take page address */
1610 	desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1611 
1612 	if (size_order) {
1613 		/*
1614 		 * Existing 0s in address below size_order may be the least
1615 		 * significant bit, we must set them to 1s to avoid having
1616 		 * smaller size than desired.
1617 		 */
1618 		desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1619 					VTD_PAGE_SHIFT);
1620 		/* Clear size_order bit to indicate size */
1621 		desc.qw1 &= ~mask;
1622 		/* Set the S bit to indicate flushing more than 1 page */
1623 		desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1624 	}
1625 
1626 	qi_submit_sync(iommu, &desc, 1, 0);
1627 }
1628 
1629 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1630 			  u64 granu, u32 pasid)
1631 {
1632 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1633 
1634 	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1635 			QI_PC_GRAN(granu) | QI_PC_TYPE;
1636 	qi_submit_sync(iommu, &desc, 1, 0);
1637 }
1638 
1639 /*
1640  * Disable Queued Invalidation interface.
1641  */
1642 void dmar_disable_qi(struct intel_iommu *iommu)
1643 {
1644 	unsigned long flags;
1645 	u32 sts;
1646 	cycles_t start_time = get_cycles();
1647 
1648 	if (!ecap_qis(iommu->ecap))
1649 		return;
1650 
1651 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1652 
1653 	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1654 	if (!(sts & DMA_GSTS_QIES))
1655 		goto end;
1656 
1657 	/*
1658 	 * Give a chance to HW to complete the pending invalidation requests.
1659 	 */
1660 	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1661 		readl(iommu->reg + DMAR_IQH_REG)) &&
1662 		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1663 		cpu_relax();
1664 
1665 	iommu->gcmd &= ~DMA_GCMD_QIE;
1666 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1667 
1668 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1669 		      !(sts & DMA_GSTS_QIES), sts);
1670 end:
1671 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1672 }
1673 
1674 /*
1675  * Enable queued invalidation.
1676  */
1677 static void __dmar_enable_qi(struct intel_iommu *iommu)
1678 {
1679 	u32 sts;
1680 	unsigned long flags;
1681 	struct q_inval *qi = iommu->qi;
1682 	u64 val = virt_to_phys(qi->desc);
1683 
1684 	qi->free_head = qi->free_tail = 0;
1685 	qi->free_cnt = QI_LENGTH;
1686 
1687 	/*
1688 	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1689 	 * is present.
1690 	 */
1691 	if (ecap_smts(iommu->ecap))
1692 		val |= (1 << 11) | 1;
1693 
1694 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1695 
1696 	/* write zero to the tail reg */
1697 	writel(0, iommu->reg + DMAR_IQT_REG);
1698 
1699 	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1700 
1701 	iommu->gcmd |= DMA_GCMD_QIE;
1702 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1703 
1704 	/* Make sure hardware complete it */
1705 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1706 
1707 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1708 }
1709 
1710 /*
1711  * Enable Queued Invalidation interface. This is a must to support
1712  * interrupt-remapping. Also used by DMA-remapping, which replaces
1713  * register based IOTLB invalidation.
1714  */
1715 int dmar_enable_qi(struct intel_iommu *iommu)
1716 {
1717 	struct q_inval *qi;
1718 	struct page *desc_page;
1719 
1720 	if (!ecap_qis(iommu->ecap))
1721 		return -ENOENT;
1722 
1723 	/*
1724 	 * queued invalidation is already setup and enabled.
1725 	 */
1726 	if (iommu->qi)
1727 		return 0;
1728 
1729 	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1730 	if (!iommu->qi)
1731 		return -ENOMEM;
1732 
1733 	qi = iommu->qi;
1734 
1735 	/*
1736 	 * Need two pages to accommodate 256 descriptors of 256 bits each
1737 	 * if the remapping hardware supports scalable mode translation.
1738 	 */
1739 	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1740 				     !!ecap_smts(iommu->ecap));
1741 	if (!desc_page) {
1742 		kfree(qi);
1743 		iommu->qi = NULL;
1744 		return -ENOMEM;
1745 	}
1746 
1747 	qi->desc = page_address(desc_page);
1748 
1749 	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1750 	if (!qi->desc_status) {
1751 		free_page((unsigned long) qi->desc);
1752 		kfree(qi);
1753 		iommu->qi = NULL;
1754 		return -ENOMEM;
1755 	}
1756 
1757 	raw_spin_lock_init(&qi->q_lock);
1758 
1759 	__dmar_enable_qi(iommu);
1760 
1761 	return 0;
1762 }
1763 
1764 /* iommu interrupt handling. Most stuff are MSI-like. */
1765 
1766 enum faulttype {
1767 	DMA_REMAP,
1768 	INTR_REMAP,
1769 	UNKNOWN,
1770 };
1771 
1772 static const char *dma_remap_fault_reasons[] =
1773 {
1774 	"Software",
1775 	"Present bit in root entry is clear",
1776 	"Present bit in context entry is clear",
1777 	"Invalid context entry",
1778 	"Access beyond MGAW",
1779 	"PTE Write access is not set",
1780 	"PTE Read access is not set",
1781 	"Next page table ptr is invalid",
1782 	"Root table address invalid",
1783 	"Context table ptr is invalid",
1784 	"non-zero reserved fields in RTP",
1785 	"non-zero reserved fields in CTP",
1786 	"non-zero reserved fields in PTE",
1787 	"PCE for translation request specifies blocking",
1788 };
1789 
1790 static const char * const dma_remap_sm_fault_reasons[] = {
1791 	"SM: Invalid Root Table Address",
1792 	"SM: TTM 0 for request with PASID",
1793 	"SM: TTM 0 for page group request",
1794 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1795 	"SM: Error attempting to access Root Entry",
1796 	"SM: Present bit in Root Entry is clear",
1797 	"SM: Non-zero reserved field set in Root Entry",
1798 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1799 	"SM: Error attempting to access Context Entry",
1800 	"SM: Present bit in Context Entry is clear",
1801 	"SM: Non-zero reserved field set in the Context Entry",
1802 	"SM: Invalid Context Entry",
1803 	"SM: DTE field in Context Entry is clear",
1804 	"SM: PASID Enable field in Context Entry is clear",
1805 	"SM: PASID is larger than the max in Context Entry",
1806 	"SM: PRE field in Context-Entry is clear",
1807 	"SM: RID_PASID field error in Context-Entry",
1808 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1809 	"SM: Error attempting to access the PASID Directory Entry",
1810 	"SM: Present bit in Directory Entry is clear",
1811 	"SM: Non-zero reserved field set in PASID Directory Entry",
1812 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1813 	"SM: Error attempting to access PASID Table Entry",
1814 	"SM: Present bit in PASID Table Entry is clear",
1815 	"SM: Non-zero reserved field set in PASID Table Entry",
1816 	"SM: Invalid Scalable-Mode PASID Table Entry",
1817 	"SM: ERE field is clear in PASID Table Entry",
1818 	"SM: SRE field is clear in PASID Table Entry",
1819 	"Unknown", "Unknown",/* 0x5E-0x5F */
1820 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1821 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1822 	"SM: Error attempting to access first-level paging entry",
1823 	"SM: Present bit in first-level paging entry is clear",
1824 	"SM: Non-zero reserved field set in first-level paging entry",
1825 	"SM: Error attempting to access FL-PML4 entry",
1826 	"SM: First-level entry address beyond MGAW in Nested translation",
1827 	"SM: Read permission error in FL-PML4 entry in Nested translation",
1828 	"SM: Read permission error in first-level paging entry in Nested translation",
1829 	"SM: Write permission error in first-level paging entry in Nested translation",
1830 	"SM: Error attempting to access second-level paging entry",
1831 	"SM: Read/Write permission error in second-level paging entry",
1832 	"SM: Non-zero reserved field set in second-level paging entry",
1833 	"SM: Invalid second-level page table pointer",
1834 	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1835 	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1836 	"SM: Address in first-level translation is not canonical",
1837 	"SM: U/S set 0 for first-level translation with user privilege",
1838 	"SM: No execute permission for request with PASID and ER=1",
1839 	"SM: Address beyond the DMA hardware max",
1840 	"SM: Second-level entry address beyond the max",
1841 	"SM: No write permission for Write/AtomicOp request",
1842 	"SM: No read permission for Read/AtomicOp request",
1843 	"SM: Invalid address-interrupt address",
1844 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1845 	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1846 };
1847 
1848 static const char *irq_remap_fault_reasons[] =
1849 {
1850 	"Detected reserved fields in the decoded interrupt-remapped request",
1851 	"Interrupt index exceeded the interrupt-remapping table size",
1852 	"Present field in the IRTE entry is clear",
1853 	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1854 	"Detected reserved fields in the IRTE entry",
1855 	"Blocked a compatibility format interrupt request",
1856 	"Blocked an interrupt request due to source-id verification failure",
1857 };
1858 
1859 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1860 {
1861 	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1862 					ARRAY_SIZE(irq_remap_fault_reasons))) {
1863 		*fault_type = INTR_REMAP;
1864 		return irq_remap_fault_reasons[fault_reason - 0x20];
1865 	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1866 			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1867 		*fault_type = DMA_REMAP;
1868 		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1869 	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1870 		*fault_type = DMA_REMAP;
1871 		return dma_remap_fault_reasons[fault_reason];
1872 	} else {
1873 		*fault_type = UNKNOWN;
1874 		return "Unknown";
1875 	}
1876 }
1877 
1878 
1879 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1880 {
1881 	if (iommu->irq == irq)
1882 		return DMAR_FECTL_REG;
1883 	else if (iommu->pr_irq == irq)
1884 		return DMAR_PECTL_REG;
1885 	else if (iommu->perf_irq == irq)
1886 		return DMAR_PERFINTRCTL_REG;
1887 	else
1888 		BUG();
1889 }
1890 
1891 void dmar_msi_unmask(struct irq_data *data)
1892 {
1893 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1894 	int reg = dmar_msi_reg(iommu, data->irq);
1895 	unsigned long flag;
1896 
1897 	/* unmask it */
1898 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1899 	writel(0, iommu->reg + reg);
1900 	/* Read a reg to force flush the post write */
1901 	readl(iommu->reg + reg);
1902 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1903 }
1904 
1905 void dmar_msi_mask(struct irq_data *data)
1906 {
1907 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1908 	int reg = dmar_msi_reg(iommu, data->irq);
1909 	unsigned long flag;
1910 
1911 	/* mask it */
1912 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1913 	writel(DMA_FECTL_IM, iommu->reg + reg);
1914 	/* Read a reg to force flush the post write */
1915 	readl(iommu->reg + reg);
1916 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1917 }
1918 
1919 void dmar_msi_write(int irq, struct msi_msg *msg)
1920 {
1921 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1922 	int reg = dmar_msi_reg(iommu, irq);
1923 	unsigned long flag;
1924 
1925 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1926 	writel(msg->data, iommu->reg + reg + 4);
1927 	writel(msg->address_lo, iommu->reg + reg + 8);
1928 	writel(msg->address_hi, iommu->reg + reg + 12);
1929 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1930 }
1931 
1932 void dmar_msi_read(int irq, struct msi_msg *msg)
1933 {
1934 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1935 	int reg = dmar_msi_reg(iommu, irq);
1936 	unsigned long flag;
1937 
1938 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1939 	msg->data = readl(iommu->reg + reg + 4);
1940 	msg->address_lo = readl(iommu->reg + reg + 8);
1941 	msg->address_hi = readl(iommu->reg + reg + 12);
1942 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1943 }
1944 
1945 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1946 		u8 fault_reason, u32 pasid, u16 source_id,
1947 		unsigned long long addr)
1948 {
1949 	const char *reason;
1950 	int fault_type;
1951 
1952 	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1953 
1954 	if (fault_type == INTR_REMAP) {
1955 		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1956 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1957 		       PCI_FUNC(source_id & 0xFF), addr >> 48,
1958 		       fault_reason, reason);
1959 
1960 		return 0;
1961 	}
1962 
1963 	if (pasid == INVALID_IOASID)
1964 		pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1965 		       type ? "DMA Read" : "DMA Write",
1966 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1967 		       PCI_FUNC(source_id & 0xFF), addr,
1968 		       fault_reason, reason);
1969 	else
1970 		pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1971 		       type ? "DMA Read" : "DMA Write", pasid,
1972 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1973 		       PCI_FUNC(source_id & 0xFF), addr,
1974 		       fault_reason, reason);
1975 
1976 	dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1977 
1978 	return 0;
1979 }
1980 
1981 #define PRIMARY_FAULT_REG_LEN (16)
1982 irqreturn_t dmar_fault(int irq, void *dev_id)
1983 {
1984 	struct intel_iommu *iommu = dev_id;
1985 	int reg, fault_index;
1986 	u32 fault_status;
1987 	unsigned long flag;
1988 	static DEFINE_RATELIMIT_STATE(rs,
1989 				      DEFAULT_RATELIMIT_INTERVAL,
1990 				      DEFAULT_RATELIMIT_BURST);
1991 
1992 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1993 	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1994 	if (fault_status && __ratelimit(&rs))
1995 		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1996 
1997 	/* TBD: ignore advanced fault log currently */
1998 	if (!(fault_status & DMA_FSTS_PPF))
1999 		goto unlock_exit;
2000 
2001 	fault_index = dma_fsts_fault_record_index(fault_status);
2002 	reg = cap_fault_reg_offset(iommu->cap);
2003 	while (1) {
2004 		/* Disable printing, simply clear the fault when ratelimited */
2005 		bool ratelimited = !__ratelimit(&rs);
2006 		u8 fault_reason;
2007 		u16 source_id;
2008 		u64 guest_addr;
2009 		u32 pasid;
2010 		int type;
2011 		u32 data;
2012 		bool pasid_present;
2013 
2014 		/* highest 32 bits */
2015 		data = readl(iommu->reg + reg +
2016 				fault_index * PRIMARY_FAULT_REG_LEN + 12);
2017 		if (!(data & DMA_FRCD_F))
2018 			break;
2019 
2020 		if (!ratelimited) {
2021 			fault_reason = dma_frcd_fault_reason(data);
2022 			type = dma_frcd_type(data);
2023 
2024 			pasid = dma_frcd_pasid_value(data);
2025 			data = readl(iommu->reg + reg +
2026 				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
2027 			source_id = dma_frcd_source_id(data);
2028 
2029 			pasid_present = dma_frcd_pasid_present(data);
2030 			guest_addr = dmar_readq(iommu->reg + reg +
2031 					fault_index * PRIMARY_FAULT_REG_LEN);
2032 			guest_addr = dma_frcd_page_addr(guest_addr);
2033 		}
2034 
2035 		/* clear the fault */
2036 		writel(DMA_FRCD_F, iommu->reg + reg +
2037 			fault_index * PRIMARY_FAULT_REG_LEN + 12);
2038 
2039 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2040 
2041 		if (!ratelimited)
2042 			/* Using pasid -1 if pasid is not present */
2043 			dmar_fault_do_one(iommu, type, fault_reason,
2044 					  pasid_present ? pasid : INVALID_IOASID,
2045 					  source_id, guest_addr);
2046 
2047 		fault_index++;
2048 		if (fault_index >= cap_num_fault_regs(iommu->cap))
2049 			fault_index = 0;
2050 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2051 	}
2052 
2053 	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2054 	       iommu->reg + DMAR_FSTS_REG);
2055 
2056 unlock_exit:
2057 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2058 	return IRQ_HANDLED;
2059 }
2060 
2061 int dmar_set_interrupt(struct intel_iommu *iommu)
2062 {
2063 	int irq, ret;
2064 
2065 	/*
2066 	 * Check if the fault interrupt is already initialized.
2067 	 */
2068 	if (iommu->irq)
2069 		return 0;
2070 
2071 	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2072 	if (irq > 0) {
2073 		iommu->irq = irq;
2074 	} else {
2075 		pr_err("No free IRQ vectors\n");
2076 		return -EINVAL;
2077 	}
2078 
2079 	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2080 	if (ret)
2081 		pr_err("Can't request irq\n");
2082 	return ret;
2083 }
2084 
2085 int __init enable_drhd_fault_handling(void)
2086 {
2087 	struct dmar_drhd_unit *drhd;
2088 	struct intel_iommu *iommu;
2089 
2090 	/*
2091 	 * Enable fault control interrupt.
2092 	 */
2093 	for_each_iommu(iommu, drhd) {
2094 		u32 fault_status;
2095 		int ret = dmar_set_interrupt(iommu);
2096 
2097 		if (ret) {
2098 			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2099 			       (unsigned long long)drhd->reg_base_addr, ret);
2100 			return -1;
2101 		}
2102 
2103 		/*
2104 		 * Clear any previous faults.
2105 		 */
2106 		dmar_fault(iommu->irq, iommu);
2107 		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2108 		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 /*
2115  * Re-enable Queued Invalidation interface.
2116  */
2117 int dmar_reenable_qi(struct intel_iommu *iommu)
2118 {
2119 	if (!ecap_qis(iommu->ecap))
2120 		return -ENOENT;
2121 
2122 	if (!iommu->qi)
2123 		return -ENOENT;
2124 
2125 	/*
2126 	 * First disable queued invalidation.
2127 	 */
2128 	dmar_disable_qi(iommu);
2129 	/*
2130 	 * Then enable queued invalidation again. Since there is no pending
2131 	 * invalidation requests now, it's safe to re-enable queued
2132 	 * invalidation.
2133 	 */
2134 	__dmar_enable_qi(iommu);
2135 
2136 	return 0;
2137 }
2138 
2139 /*
2140  * Check interrupt remapping support in DMAR table description.
2141  */
2142 int __init dmar_ir_support(void)
2143 {
2144 	struct acpi_table_dmar *dmar;
2145 	dmar = (struct acpi_table_dmar *)dmar_tbl;
2146 	if (!dmar)
2147 		return 0;
2148 	return dmar->flags & 0x1;
2149 }
2150 
2151 /* Check whether DMAR units are in use */
2152 static inline bool dmar_in_use(void)
2153 {
2154 	return irq_remapping_enabled || intel_iommu_enabled;
2155 }
2156 
2157 static int __init dmar_free_unused_resources(void)
2158 {
2159 	struct dmar_drhd_unit *dmaru, *dmaru_n;
2160 
2161 	if (dmar_in_use())
2162 		return 0;
2163 
2164 	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2165 		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2166 
2167 	down_write(&dmar_global_lock);
2168 	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2169 		list_del(&dmaru->list);
2170 		dmar_free_drhd(dmaru);
2171 	}
2172 	up_write(&dmar_global_lock);
2173 
2174 	return 0;
2175 }
2176 
2177 late_initcall(dmar_free_unused_resources);
2178 
2179 /*
2180  * DMAR Hotplug Support
2181  * For more details, please refer to Intel(R) Virtualization Technology
2182  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2183  * "Remapping Hardware Unit Hot Plug".
2184  */
2185 static guid_t dmar_hp_guid =
2186 	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2187 		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2188 
2189 /*
2190  * Currently there's only one revision and BIOS will not check the revision id,
2191  * so use 0 for safety.
2192  */
2193 #define	DMAR_DSM_REV_ID			0
2194 #define	DMAR_DSM_FUNC_DRHD		1
2195 #define	DMAR_DSM_FUNC_ATSR		2
2196 #define	DMAR_DSM_FUNC_RHSA		3
2197 #define	DMAR_DSM_FUNC_SATC		4
2198 
2199 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2200 {
2201 	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2202 }
2203 
2204 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2205 				  dmar_res_handler_t handler, void *arg)
2206 {
2207 	int ret = -ENODEV;
2208 	union acpi_object *obj;
2209 	struct acpi_dmar_header *start;
2210 	struct dmar_res_callback callback;
2211 	static int res_type[] = {
2212 		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2213 		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2214 		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2215 		[DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2216 	};
2217 
2218 	if (!dmar_detect_dsm(handle, func))
2219 		return 0;
2220 
2221 	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2222 				      func, NULL, ACPI_TYPE_BUFFER);
2223 	if (!obj)
2224 		return -ENODEV;
2225 
2226 	memset(&callback, 0, sizeof(callback));
2227 	callback.cb[res_type[func]] = handler;
2228 	callback.arg[res_type[func]] = arg;
2229 	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2230 	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2231 
2232 	ACPI_FREE(obj);
2233 
2234 	return ret;
2235 }
2236 
2237 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2238 {
2239 	int ret;
2240 	struct dmar_drhd_unit *dmaru;
2241 
2242 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2243 	if (!dmaru)
2244 		return -ENODEV;
2245 
2246 	ret = dmar_ir_hotplug(dmaru, true);
2247 	if (ret == 0)
2248 		ret = dmar_iommu_hotplug(dmaru, true);
2249 
2250 	return ret;
2251 }
2252 
2253 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2254 {
2255 	int i, ret;
2256 	struct device *dev;
2257 	struct dmar_drhd_unit *dmaru;
2258 
2259 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2260 	if (!dmaru)
2261 		return 0;
2262 
2263 	/*
2264 	 * All PCI devices managed by this unit should have been destroyed.
2265 	 */
2266 	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2267 		for_each_active_dev_scope(dmaru->devices,
2268 					  dmaru->devices_cnt, i, dev)
2269 			return -EBUSY;
2270 	}
2271 
2272 	ret = dmar_ir_hotplug(dmaru, false);
2273 	if (ret == 0)
2274 		ret = dmar_iommu_hotplug(dmaru, false);
2275 
2276 	return ret;
2277 }
2278 
2279 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2280 {
2281 	struct dmar_drhd_unit *dmaru;
2282 
2283 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2284 	if (dmaru) {
2285 		list_del_rcu(&dmaru->list);
2286 		synchronize_rcu();
2287 		dmar_free_drhd(dmaru);
2288 	}
2289 
2290 	return 0;
2291 }
2292 
2293 static int dmar_hotplug_insert(acpi_handle handle)
2294 {
2295 	int ret;
2296 	int drhd_count = 0;
2297 
2298 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2299 				     &dmar_validate_one_drhd, (void *)1);
2300 	if (ret)
2301 		goto out;
2302 
2303 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2304 				     &dmar_parse_one_drhd, (void *)&drhd_count);
2305 	if (ret == 0 && drhd_count == 0) {
2306 		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2307 		goto out;
2308 	} else if (ret) {
2309 		goto release_drhd;
2310 	}
2311 
2312 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2313 				     &dmar_parse_one_rhsa, NULL);
2314 	if (ret)
2315 		goto release_drhd;
2316 
2317 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2318 				     &dmar_parse_one_atsr, NULL);
2319 	if (ret)
2320 		goto release_atsr;
2321 
2322 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2323 				     &dmar_hp_add_drhd, NULL);
2324 	if (!ret)
2325 		return 0;
2326 
2327 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2328 			       &dmar_hp_remove_drhd, NULL);
2329 release_atsr:
2330 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2331 			       &dmar_release_one_atsr, NULL);
2332 release_drhd:
2333 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2334 			       &dmar_hp_release_drhd, NULL);
2335 out:
2336 	return ret;
2337 }
2338 
2339 static int dmar_hotplug_remove(acpi_handle handle)
2340 {
2341 	int ret;
2342 
2343 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2344 				     &dmar_check_one_atsr, NULL);
2345 	if (ret)
2346 		return ret;
2347 
2348 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2349 				     &dmar_hp_remove_drhd, NULL);
2350 	if (ret == 0) {
2351 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2352 					       &dmar_release_one_atsr, NULL));
2353 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2354 					       &dmar_hp_release_drhd, NULL));
2355 	} else {
2356 		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2357 				       &dmar_hp_add_drhd, NULL);
2358 	}
2359 
2360 	return ret;
2361 }
2362 
2363 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2364 				       void *context, void **retval)
2365 {
2366 	acpi_handle *phdl = retval;
2367 
2368 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2369 		*phdl = handle;
2370 		return AE_CTRL_TERMINATE;
2371 	}
2372 
2373 	return AE_OK;
2374 }
2375 
2376 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2377 {
2378 	int ret;
2379 	acpi_handle tmp = NULL;
2380 	acpi_status status;
2381 
2382 	if (!dmar_in_use())
2383 		return 0;
2384 
2385 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2386 		tmp = handle;
2387 	} else {
2388 		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2389 					     ACPI_UINT32_MAX,
2390 					     dmar_get_dsm_handle,
2391 					     NULL, NULL, &tmp);
2392 		if (ACPI_FAILURE(status)) {
2393 			pr_warn("Failed to locate _DSM method.\n");
2394 			return -ENXIO;
2395 		}
2396 	}
2397 	if (tmp == NULL)
2398 		return 0;
2399 
2400 	down_write(&dmar_global_lock);
2401 	if (insert)
2402 		ret = dmar_hotplug_insert(tmp);
2403 	else
2404 		ret = dmar_hotplug_remove(tmp);
2405 	up_write(&dmar_global_lock);
2406 
2407 	return ret;
2408 }
2409 
2410 int dmar_device_add(acpi_handle handle)
2411 {
2412 	return dmar_device_hotplug(handle, true);
2413 }
2414 
2415 int dmar_device_remove(acpi_handle handle)
2416 {
2417 	return dmar_device_hotplug(handle, false);
2418 }
2419 
2420 /*
2421  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2422  *
2423  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2424  * the ACPI DMAR table. This means that the platform boot firmware has made
2425  * sure no device can issue DMA outside of RMRR regions.
2426  */
2427 bool dmar_platform_optin(void)
2428 {
2429 	struct acpi_table_dmar *dmar;
2430 	acpi_status status;
2431 	bool ret;
2432 
2433 	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2434 				(struct acpi_table_header **)&dmar);
2435 	if (ACPI_FAILURE(status))
2436 		return false;
2437 
2438 	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2439 	acpi_put_table((struct acpi_table_header *)dmar);
2440 
2441 	return ret;
2442 }
2443 EXPORT_SYMBOL_GPL(dmar_platform_optin);
2444