1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2006, Intel Corporation. 4 * 5 * Copyright (C) 2006-2008 Intel Corporation 6 * Author: Ashok Raj <ashok.raj@intel.com> 7 * Author: Shaohua Li <shaohua.li@intel.com> 8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * This file implements early detection/parsing of Remapping Devices 11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI 12 * tables. 13 * 14 * These routines are used by both DMA-remapping and Interrupt-remapping 15 */ 16 17 #define pr_fmt(fmt) "DMAR: " fmt 18 19 #include <linux/pci.h> 20 #include <linux/dmar.h> 21 #include <linux/iova.h> 22 #include <linux/timer.h> 23 #include <linux/irq.h> 24 #include <linux/interrupt.h> 25 #include <linux/tboot.h> 26 #include <linux/dmi.h> 27 #include <linux/slab.h> 28 #include <linux/iommu.h> 29 #include <linux/numa.h> 30 #include <linux/limits.h> 31 #include <asm/irq_remapping.h> 32 33 #include "iommu.h" 34 #include "../irq_remapping.h" 35 #include "perf.h" 36 #include "trace.h" 37 #include "perfmon.h" 38 39 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *); 40 struct dmar_res_callback { 41 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED]; 42 void *arg[ACPI_DMAR_TYPE_RESERVED]; 43 bool ignore_unhandled; 44 bool print_entry; 45 }; 46 47 /* 48 * Assumptions: 49 * 1) The hotplug framework guarentees that DMAR unit will be hot-added 50 * before IO devices managed by that unit. 51 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed 52 * after IO devices managed by that unit. 53 * 3) Hotplug events are rare. 54 * 55 * Locking rules for DMA and interrupt remapping related global data structures: 56 * 1) Use dmar_global_lock in process context 57 * 2) Use RCU in interrupt context 58 */ 59 DECLARE_RWSEM(dmar_global_lock); 60 LIST_HEAD(dmar_drhd_units); 61 62 struct acpi_table_header * __initdata dmar_tbl; 63 static int dmar_dev_scope_status = 1; 64 static DEFINE_IDA(dmar_seq_ids); 65 66 static int alloc_iommu(struct dmar_drhd_unit *drhd); 67 static void free_iommu(struct intel_iommu *iommu); 68 69 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd) 70 { 71 /* 72 * add INCLUDE_ALL at the tail, so scan the list will find it at 73 * the very end. 74 */ 75 if (drhd->include_all) 76 list_add_tail_rcu(&drhd->list, &dmar_drhd_units); 77 else 78 list_add_rcu(&drhd->list, &dmar_drhd_units); 79 } 80 81 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt) 82 { 83 struct acpi_dmar_device_scope *scope; 84 85 *cnt = 0; 86 while (start < end) { 87 scope = start; 88 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE || 89 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT || 90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) 91 (*cnt)++; 92 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC && 93 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) { 94 pr_warn("Unsupported device scope\n"); 95 } 96 start += scope->length; 97 } 98 if (*cnt == 0) 99 return NULL; 100 101 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL); 102 } 103 104 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt) 105 { 106 int i; 107 struct device *tmp_dev; 108 109 if (*devices && *cnt) { 110 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev) 111 put_device(tmp_dev); 112 kfree(*devices); 113 } 114 115 *devices = NULL; 116 *cnt = 0; 117 } 118 119 /* Optimize out kzalloc()/kfree() for normal cases */ 120 static char dmar_pci_notify_info_buf[64]; 121 122 static struct dmar_pci_notify_info * 123 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event) 124 { 125 int level = 0; 126 size_t size; 127 struct pci_dev *tmp; 128 struct dmar_pci_notify_info *info; 129 130 /* 131 * Ignore devices that have a domain number higher than what can 132 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000 133 */ 134 if (pci_domain_nr(dev->bus) > U16_MAX) 135 return NULL; 136 137 /* Only generate path[] for device addition event */ 138 if (event == BUS_NOTIFY_ADD_DEVICE) 139 for (tmp = dev; tmp; tmp = tmp->bus->self) 140 level++; 141 142 size = struct_size(info, path, level); 143 if (size <= sizeof(dmar_pci_notify_info_buf)) { 144 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf; 145 } else { 146 info = kzalloc(size, GFP_KERNEL); 147 if (!info) { 148 if (dmar_dev_scope_status == 0) 149 dmar_dev_scope_status = -ENOMEM; 150 return NULL; 151 } 152 } 153 154 info->event = event; 155 info->dev = dev; 156 info->seg = pci_domain_nr(dev->bus); 157 info->level = level; 158 if (event == BUS_NOTIFY_ADD_DEVICE) { 159 for (tmp = dev; tmp; tmp = tmp->bus->self) { 160 level--; 161 info->path[level].bus = tmp->bus->number; 162 info->path[level].device = PCI_SLOT(tmp->devfn); 163 info->path[level].function = PCI_FUNC(tmp->devfn); 164 if (pci_is_root_bus(tmp->bus)) 165 info->bus = tmp->bus->number; 166 } 167 } 168 169 return info; 170 } 171 172 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info) 173 { 174 if ((void *)info != dmar_pci_notify_info_buf) 175 kfree(info); 176 } 177 178 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus, 179 struct acpi_dmar_pci_path *path, int count) 180 { 181 int i; 182 183 if (info->bus != bus) 184 goto fallback; 185 if (info->level != count) 186 goto fallback; 187 188 for (i = 0; i < count; i++) { 189 if (path[i].device != info->path[i].device || 190 path[i].function != info->path[i].function) 191 goto fallback; 192 } 193 194 return true; 195 196 fallback: 197 198 if (count != 1) 199 return false; 200 201 i = info->level - 1; 202 if (bus == info->path[i].bus && 203 path[0].device == info->path[i].device && 204 path[0].function == info->path[i].function) { 205 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n", 206 bus, path[0].device, path[0].function); 207 return true; 208 } 209 210 return false; 211 } 212 213 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */ 214 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info, 215 void *start, void*end, u16 segment, 216 struct dmar_dev_scope *devices, 217 int devices_cnt) 218 { 219 int i, level; 220 struct device *tmp, *dev = &info->dev->dev; 221 struct acpi_dmar_device_scope *scope; 222 struct acpi_dmar_pci_path *path; 223 224 if (segment != info->seg) 225 return 0; 226 227 for (; start < end; start += scope->length) { 228 scope = start; 229 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 230 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE) 231 continue; 232 233 path = (struct acpi_dmar_pci_path *)(scope + 1); 234 level = (scope->length - sizeof(*scope)) / sizeof(*path); 235 if (!dmar_match_pci_path(info, scope->bus, path, level)) 236 continue; 237 238 /* 239 * We expect devices with endpoint scope to have normal PCI 240 * headers, and devices with bridge scope to have bridge PCI 241 * headers. However PCI NTB devices may be listed in the 242 * DMAR table with bridge scope, even though they have a 243 * normal PCI header. NTB devices are identified by class 244 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch 245 * for this special case. 246 */ 247 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && 248 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) || 249 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE && 250 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 251 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) { 252 pr_warn("Device scope type does not match for %s\n", 253 pci_name(info->dev)); 254 return -EINVAL; 255 } 256 257 for_each_dev_scope(devices, devices_cnt, i, tmp) 258 if (tmp == NULL) { 259 devices[i].bus = info->dev->bus->number; 260 devices[i].devfn = info->dev->devfn; 261 rcu_assign_pointer(devices[i].dev, 262 get_device(dev)); 263 return 1; 264 } 265 if (WARN_ON(i >= devices_cnt)) 266 return -EINVAL; 267 } 268 269 return 0; 270 } 271 272 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment, 273 struct dmar_dev_scope *devices, int count) 274 { 275 int index; 276 struct device *tmp; 277 278 if (info->seg != segment) 279 return 0; 280 281 for_each_active_dev_scope(devices, count, index, tmp) 282 if (tmp == &info->dev->dev) { 283 RCU_INIT_POINTER(devices[index].dev, NULL); 284 synchronize_rcu(); 285 put_device(tmp); 286 return 1; 287 } 288 289 return 0; 290 } 291 292 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info) 293 { 294 int ret = 0; 295 struct dmar_drhd_unit *dmaru; 296 struct acpi_dmar_hardware_unit *drhd; 297 298 for_each_drhd_unit(dmaru) { 299 if (dmaru->include_all) 300 continue; 301 302 drhd = container_of(dmaru->hdr, 303 struct acpi_dmar_hardware_unit, header); 304 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1), 305 ((void *)drhd) + drhd->header.length, 306 dmaru->segment, 307 dmaru->devices, dmaru->devices_cnt); 308 if (ret) 309 break; 310 } 311 if (ret >= 0) 312 ret = dmar_iommu_notify_scope_dev(info); 313 if (ret < 0 && dmar_dev_scope_status == 0) 314 dmar_dev_scope_status = ret; 315 316 if (ret >= 0) 317 intel_irq_remap_add_device(info); 318 319 return ret; 320 } 321 322 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info) 323 { 324 struct dmar_drhd_unit *dmaru; 325 326 for_each_drhd_unit(dmaru) 327 if (dmar_remove_dev_scope(info, dmaru->segment, 328 dmaru->devices, dmaru->devices_cnt)) 329 break; 330 dmar_iommu_notify_scope_dev(info); 331 } 332 333 static inline void vf_inherit_msi_domain(struct pci_dev *pdev) 334 { 335 struct pci_dev *physfn = pci_physfn(pdev); 336 337 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev)); 338 } 339 340 static int dmar_pci_bus_notifier(struct notifier_block *nb, 341 unsigned long action, void *data) 342 { 343 struct pci_dev *pdev = to_pci_dev(data); 344 struct dmar_pci_notify_info *info; 345 346 /* Only care about add/remove events for physical functions. 347 * For VFs we actually do the lookup based on the corresponding 348 * PF in device_to_iommu() anyway. */ 349 if (pdev->is_virtfn) { 350 /* 351 * Ensure that the VF device inherits the irq domain of the 352 * PF device. Ideally the device would inherit the domain 353 * from the bus, but DMAR can have multiple units per bus 354 * which makes this impossible. The VF 'bus' could inherit 355 * from the PF device, but that's yet another x86'sism to 356 * inflict on everybody else. 357 */ 358 if (action == BUS_NOTIFY_ADD_DEVICE) 359 vf_inherit_msi_domain(pdev); 360 return NOTIFY_DONE; 361 } 362 363 if (action != BUS_NOTIFY_ADD_DEVICE && 364 action != BUS_NOTIFY_REMOVED_DEVICE) 365 return NOTIFY_DONE; 366 367 info = dmar_alloc_pci_notify_info(pdev, action); 368 if (!info) 369 return NOTIFY_DONE; 370 371 down_write(&dmar_global_lock); 372 if (action == BUS_NOTIFY_ADD_DEVICE) 373 dmar_pci_bus_add_dev(info); 374 else if (action == BUS_NOTIFY_REMOVED_DEVICE) 375 dmar_pci_bus_del_dev(info); 376 up_write(&dmar_global_lock); 377 378 dmar_free_pci_notify_info(info); 379 380 return NOTIFY_OK; 381 } 382 383 static struct notifier_block dmar_pci_bus_nb = { 384 .notifier_call = dmar_pci_bus_notifier, 385 .priority = 1, 386 }; 387 388 static struct dmar_drhd_unit * 389 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd) 390 { 391 struct dmar_drhd_unit *dmaru; 392 393 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list, 394 dmar_rcu_check()) 395 if (dmaru->segment == drhd->segment && 396 dmaru->reg_base_addr == drhd->address) 397 return dmaru; 398 399 return NULL; 400 } 401 402 /* 403 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition 404 * structure which uniquely represent one DMA remapping hardware unit 405 * present in the platform 406 */ 407 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg) 408 { 409 struct acpi_dmar_hardware_unit *drhd; 410 struct dmar_drhd_unit *dmaru; 411 int ret; 412 413 drhd = (struct acpi_dmar_hardware_unit *)header; 414 dmaru = dmar_find_dmaru(drhd); 415 if (dmaru) 416 goto out; 417 418 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL); 419 if (!dmaru) 420 return -ENOMEM; 421 422 /* 423 * If header is allocated from slab by ACPI _DSM method, we need to 424 * copy the content because the memory buffer will be freed on return. 425 */ 426 dmaru->hdr = (void *)(dmaru + 1); 427 memcpy(dmaru->hdr, header, header->length); 428 dmaru->reg_base_addr = drhd->address; 429 dmaru->segment = drhd->segment; 430 /* The size of the register set is 2 ^ N 4 KB pages. */ 431 dmaru->reg_size = 1UL << (drhd->size + 12); 432 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */ 433 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1), 434 ((void *)drhd) + drhd->header.length, 435 &dmaru->devices_cnt); 436 if (dmaru->devices_cnt && dmaru->devices == NULL) { 437 kfree(dmaru); 438 return -ENOMEM; 439 } 440 441 ret = alloc_iommu(dmaru); 442 if (ret) { 443 dmar_free_dev_scope(&dmaru->devices, 444 &dmaru->devices_cnt); 445 kfree(dmaru); 446 return ret; 447 } 448 dmar_register_drhd_unit(dmaru); 449 450 out: 451 if (arg) 452 (*(int *)arg)++; 453 454 return 0; 455 } 456 457 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru) 458 { 459 if (dmaru->devices && dmaru->devices_cnt) 460 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt); 461 if (dmaru->iommu) 462 free_iommu(dmaru->iommu); 463 kfree(dmaru); 464 } 465 466 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header, 467 void *arg) 468 { 469 struct acpi_dmar_andd *andd = (void *)header; 470 471 /* Check for NUL termination within the designated length */ 472 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) { 473 pr_warn(FW_BUG 474 "Your BIOS is broken; ANDD object name is not NUL-terminated\n" 475 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 476 dmi_get_system_info(DMI_BIOS_VENDOR), 477 dmi_get_system_info(DMI_BIOS_VERSION), 478 dmi_get_system_info(DMI_PRODUCT_VERSION)); 479 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 480 return -EINVAL; 481 } 482 pr_info("ANDD device: %x name: %s\n", andd->device_number, 483 andd->device_name); 484 485 return 0; 486 } 487 488 #ifdef CONFIG_ACPI_NUMA 489 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg) 490 { 491 struct acpi_dmar_rhsa *rhsa; 492 struct dmar_drhd_unit *drhd; 493 494 rhsa = (struct acpi_dmar_rhsa *)header; 495 for_each_drhd_unit(drhd) { 496 if (drhd->reg_base_addr == rhsa->base_address) { 497 int node = pxm_to_node(rhsa->proximity_domain); 498 499 if (node != NUMA_NO_NODE && !node_online(node)) 500 node = NUMA_NO_NODE; 501 drhd->iommu->node = node; 502 return 0; 503 } 504 } 505 pr_warn(FW_BUG 506 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n" 507 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 508 rhsa->base_address, 509 dmi_get_system_info(DMI_BIOS_VENDOR), 510 dmi_get_system_info(DMI_BIOS_VERSION), 511 dmi_get_system_info(DMI_PRODUCT_VERSION)); 512 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 513 514 return 0; 515 } 516 #else 517 #define dmar_parse_one_rhsa dmar_res_noop 518 #endif 519 520 static void 521 dmar_table_print_dmar_entry(struct acpi_dmar_header *header) 522 { 523 struct acpi_dmar_hardware_unit *drhd; 524 struct acpi_dmar_reserved_memory *rmrr; 525 struct acpi_dmar_atsr *atsr; 526 struct acpi_dmar_rhsa *rhsa; 527 struct acpi_dmar_satc *satc; 528 529 switch (header->type) { 530 case ACPI_DMAR_TYPE_HARDWARE_UNIT: 531 drhd = container_of(header, struct acpi_dmar_hardware_unit, 532 header); 533 pr_info("DRHD base: %#016Lx flags: %#x\n", 534 (unsigned long long)drhd->address, drhd->flags); 535 break; 536 case ACPI_DMAR_TYPE_RESERVED_MEMORY: 537 rmrr = container_of(header, struct acpi_dmar_reserved_memory, 538 header); 539 pr_info("RMRR base: %#016Lx end: %#016Lx\n", 540 (unsigned long long)rmrr->base_address, 541 (unsigned long long)rmrr->end_address); 542 break; 543 case ACPI_DMAR_TYPE_ROOT_ATS: 544 atsr = container_of(header, struct acpi_dmar_atsr, header); 545 pr_info("ATSR flags: %#x\n", atsr->flags); 546 break; 547 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: 548 rhsa = container_of(header, struct acpi_dmar_rhsa, header); 549 pr_info("RHSA base: %#016Lx proximity domain: %#x\n", 550 (unsigned long long)rhsa->base_address, 551 rhsa->proximity_domain); 552 break; 553 case ACPI_DMAR_TYPE_NAMESPACE: 554 /* We don't print this here because we need to sanity-check 555 it first. So print it in dmar_parse_one_andd() instead. */ 556 break; 557 case ACPI_DMAR_TYPE_SATC: 558 satc = container_of(header, struct acpi_dmar_satc, header); 559 pr_info("SATC flags: 0x%x\n", satc->flags); 560 break; 561 } 562 } 563 564 /** 565 * dmar_table_detect - checks to see if the platform supports DMAR devices 566 */ 567 static int __init dmar_table_detect(void) 568 { 569 acpi_status status = AE_OK; 570 571 /* if we could find DMAR table, then there are DMAR devices */ 572 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl); 573 574 if (ACPI_SUCCESS(status) && !dmar_tbl) { 575 pr_warn("Unable to map DMAR\n"); 576 status = AE_NOT_FOUND; 577 } 578 579 return ACPI_SUCCESS(status) ? 0 : -ENOENT; 580 } 581 582 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start, 583 size_t len, struct dmar_res_callback *cb) 584 { 585 struct acpi_dmar_header *iter, *next; 586 struct acpi_dmar_header *end = ((void *)start) + len; 587 588 for (iter = start; iter < end; iter = next) { 589 next = (void *)iter + iter->length; 590 if (iter->length == 0) { 591 /* Avoid looping forever on bad ACPI tables */ 592 pr_debug(FW_BUG "Invalid 0-length structure\n"); 593 break; 594 } else if (next > end) { 595 /* Avoid passing table end */ 596 pr_warn(FW_BUG "Record passes table end\n"); 597 return -EINVAL; 598 } 599 600 if (cb->print_entry) 601 dmar_table_print_dmar_entry(iter); 602 603 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) { 604 /* continue for forward compatibility */ 605 pr_debug("Unknown DMAR structure type %d\n", 606 iter->type); 607 } else if (cb->cb[iter->type]) { 608 int ret; 609 610 ret = cb->cb[iter->type](iter, cb->arg[iter->type]); 611 if (ret) 612 return ret; 613 } else if (!cb->ignore_unhandled) { 614 pr_warn("No handler for DMAR structure type %d\n", 615 iter->type); 616 return -EINVAL; 617 } 618 } 619 620 return 0; 621 } 622 623 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar, 624 struct dmar_res_callback *cb) 625 { 626 return dmar_walk_remapping_entries((void *)(dmar + 1), 627 dmar->header.length - sizeof(*dmar), cb); 628 } 629 630 /** 631 * parse_dmar_table - parses the DMA reporting table 632 */ 633 static int __init 634 parse_dmar_table(void) 635 { 636 struct acpi_table_dmar *dmar; 637 int drhd_count = 0; 638 int ret; 639 struct dmar_res_callback cb = { 640 .print_entry = true, 641 .ignore_unhandled = true, 642 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count, 643 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd, 644 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr, 645 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr, 646 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa, 647 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd, 648 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc, 649 }; 650 651 /* 652 * Do it again, earlier dmar_tbl mapping could be mapped with 653 * fixed map. 654 */ 655 dmar_table_detect(); 656 657 /* 658 * ACPI tables may not be DMA protected by tboot, so use DMAR copy 659 * SINIT saved in SinitMleData in TXT heap (which is DMA protected) 660 */ 661 dmar_tbl = tboot_get_dmar_table(dmar_tbl); 662 663 dmar = (struct acpi_table_dmar *)dmar_tbl; 664 if (!dmar) 665 return -ENODEV; 666 667 if (dmar->width < PAGE_SHIFT - 1) { 668 pr_warn("Invalid DMAR haw\n"); 669 return -EINVAL; 670 } 671 672 pr_info("Host address width %d\n", dmar->width + 1); 673 ret = dmar_walk_dmar_table(dmar, &cb); 674 if (ret == 0 && drhd_count == 0) 675 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n"); 676 677 return ret; 678 } 679 680 static int dmar_pci_device_match(struct dmar_dev_scope devices[], 681 int cnt, struct pci_dev *dev) 682 { 683 int index; 684 struct device *tmp; 685 686 while (dev) { 687 for_each_active_dev_scope(devices, cnt, index, tmp) 688 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp)) 689 return 1; 690 691 /* Check our parent */ 692 dev = dev->bus->self; 693 } 694 695 return 0; 696 } 697 698 struct dmar_drhd_unit * 699 dmar_find_matched_drhd_unit(struct pci_dev *dev) 700 { 701 struct dmar_drhd_unit *dmaru; 702 struct acpi_dmar_hardware_unit *drhd; 703 704 dev = pci_physfn(dev); 705 706 rcu_read_lock(); 707 for_each_drhd_unit(dmaru) { 708 drhd = container_of(dmaru->hdr, 709 struct acpi_dmar_hardware_unit, 710 header); 711 712 if (dmaru->include_all && 713 drhd->segment == pci_domain_nr(dev->bus)) 714 goto out; 715 716 if (dmar_pci_device_match(dmaru->devices, 717 dmaru->devices_cnt, dev)) 718 goto out; 719 } 720 dmaru = NULL; 721 out: 722 rcu_read_unlock(); 723 724 return dmaru; 725 } 726 727 static void __init dmar_acpi_insert_dev_scope(u8 device_number, 728 struct acpi_device *adev) 729 { 730 struct dmar_drhd_unit *dmaru; 731 struct acpi_dmar_hardware_unit *drhd; 732 struct acpi_dmar_device_scope *scope; 733 struct device *tmp; 734 int i; 735 struct acpi_dmar_pci_path *path; 736 737 for_each_drhd_unit(dmaru) { 738 drhd = container_of(dmaru->hdr, 739 struct acpi_dmar_hardware_unit, 740 header); 741 742 for (scope = (void *)(drhd + 1); 743 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length; 744 scope = ((void *)scope) + scope->length) { 745 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE) 746 continue; 747 if (scope->enumeration_id != device_number) 748 continue; 749 750 path = (void *)(scope + 1); 751 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n", 752 dev_name(&adev->dev), dmaru->reg_base_addr, 753 scope->bus, path->device, path->function); 754 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp) 755 if (tmp == NULL) { 756 dmaru->devices[i].bus = scope->bus; 757 dmaru->devices[i].devfn = PCI_DEVFN(path->device, 758 path->function); 759 rcu_assign_pointer(dmaru->devices[i].dev, 760 get_device(&adev->dev)); 761 return; 762 } 763 BUG_ON(i >= dmaru->devices_cnt); 764 } 765 } 766 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n", 767 device_number, dev_name(&adev->dev)); 768 } 769 770 static int __init dmar_acpi_dev_scope_init(void) 771 { 772 struct acpi_dmar_andd *andd; 773 774 if (dmar_tbl == NULL) 775 return -ENODEV; 776 777 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar); 778 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length; 779 andd = ((void *)andd) + andd->header.length) { 780 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) { 781 acpi_handle h; 782 struct acpi_device *adev; 783 784 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, 785 andd->device_name, 786 &h))) { 787 pr_err("Failed to find handle for ACPI object %s\n", 788 andd->device_name); 789 continue; 790 } 791 adev = acpi_fetch_acpi_dev(h); 792 if (!adev) { 793 pr_err("Failed to get device for ACPI object %s\n", 794 andd->device_name); 795 continue; 796 } 797 dmar_acpi_insert_dev_scope(andd->device_number, adev); 798 } 799 } 800 return 0; 801 } 802 803 int __init dmar_dev_scope_init(void) 804 { 805 struct pci_dev *dev = NULL; 806 struct dmar_pci_notify_info *info; 807 808 if (dmar_dev_scope_status != 1) 809 return dmar_dev_scope_status; 810 811 if (list_empty(&dmar_drhd_units)) { 812 dmar_dev_scope_status = -ENODEV; 813 } else { 814 dmar_dev_scope_status = 0; 815 816 dmar_acpi_dev_scope_init(); 817 818 for_each_pci_dev(dev) { 819 if (dev->is_virtfn) 820 continue; 821 822 info = dmar_alloc_pci_notify_info(dev, 823 BUS_NOTIFY_ADD_DEVICE); 824 if (!info) { 825 pci_dev_put(dev); 826 return dmar_dev_scope_status; 827 } else { 828 dmar_pci_bus_add_dev(info); 829 dmar_free_pci_notify_info(info); 830 } 831 } 832 } 833 834 return dmar_dev_scope_status; 835 } 836 837 void __init dmar_register_bus_notifier(void) 838 { 839 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb); 840 } 841 842 843 int __init dmar_table_init(void) 844 { 845 static int dmar_table_initialized; 846 int ret; 847 848 if (dmar_table_initialized == 0) { 849 ret = parse_dmar_table(); 850 if (ret < 0) { 851 if (ret != -ENODEV) 852 pr_info("Parse DMAR table failure.\n"); 853 } else if (list_empty(&dmar_drhd_units)) { 854 pr_info("No DMAR devices found\n"); 855 ret = -ENODEV; 856 } 857 858 if (ret < 0) 859 dmar_table_initialized = ret; 860 else 861 dmar_table_initialized = 1; 862 } 863 864 return dmar_table_initialized < 0 ? dmar_table_initialized : 0; 865 } 866 867 static void warn_invalid_dmar(u64 addr, const char *message) 868 { 869 pr_warn_once(FW_BUG 870 "Your BIOS is broken; DMAR reported at address %llx%s!\n" 871 "BIOS vendor: %s; Ver: %s; Product Version: %s\n", 872 addr, message, 873 dmi_get_system_info(DMI_BIOS_VENDOR), 874 dmi_get_system_info(DMI_BIOS_VERSION), 875 dmi_get_system_info(DMI_PRODUCT_VERSION)); 876 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); 877 } 878 879 static int __ref 880 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg) 881 { 882 struct acpi_dmar_hardware_unit *drhd; 883 void __iomem *addr; 884 u64 cap, ecap; 885 886 drhd = (void *)entry; 887 if (!drhd->address) { 888 warn_invalid_dmar(0, ""); 889 return -EINVAL; 890 } 891 892 if (arg) 893 addr = ioremap(drhd->address, VTD_PAGE_SIZE); 894 else 895 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE); 896 if (!addr) { 897 pr_warn("Can't validate DRHD address: %llx\n", drhd->address); 898 return -EINVAL; 899 } 900 901 cap = dmar_readq(addr + DMAR_CAP_REG); 902 ecap = dmar_readq(addr + DMAR_ECAP_REG); 903 904 if (arg) 905 iounmap(addr); 906 else 907 early_iounmap(addr, VTD_PAGE_SIZE); 908 909 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) { 910 warn_invalid_dmar(drhd->address, " returns all ones"); 911 return -EINVAL; 912 } 913 914 return 0; 915 } 916 917 void __init detect_intel_iommu(void) 918 { 919 int ret; 920 struct dmar_res_callback validate_drhd_cb = { 921 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd, 922 .ignore_unhandled = true, 923 }; 924 925 down_write(&dmar_global_lock); 926 ret = dmar_table_detect(); 927 if (!ret) 928 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl, 929 &validate_drhd_cb); 930 if (!ret && !no_iommu && !iommu_detected && 931 (!dmar_disabled || dmar_platform_optin())) { 932 iommu_detected = 1; 933 /* Make sure ACS will be enabled */ 934 pci_request_acs(); 935 } 936 937 #ifdef CONFIG_X86 938 if (!ret) { 939 x86_init.iommu.iommu_init = intel_iommu_init; 940 x86_platform.iommu_shutdown = intel_iommu_shutdown; 941 } 942 943 #endif 944 945 if (dmar_tbl) { 946 acpi_put_table(dmar_tbl); 947 dmar_tbl = NULL; 948 } 949 up_write(&dmar_global_lock); 950 } 951 952 static void unmap_iommu(struct intel_iommu *iommu) 953 { 954 iounmap(iommu->reg); 955 release_mem_region(iommu->reg_phys, iommu->reg_size); 956 } 957 958 /** 959 * map_iommu: map the iommu's registers 960 * @iommu: the iommu to map 961 * @drhd: DMA remapping hardware definition structure 962 * 963 * Memory map the iommu's registers. Start w/ a single page, and 964 * possibly expand if that turns out to be insufficent. 965 */ 966 static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd) 967 { 968 u64 phys_addr = drhd->reg_base_addr; 969 int map_size, err=0; 970 971 iommu->reg_phys = phys_addr; 972 iommu->reg_size = drhd->reg_size; 973 974 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) { 975 pr_err("Can't reserve memory\n"); 976 err = -EBUSY; 977 goto out; 978 } 979 980 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 981 if (!iommu->reg) { 982 pr_err("Can't map the region\n"); 983 err = -ENOMEM; 984 goto release; 985 } 986 987 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG); 988 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG); 989 990 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) { 991 err = -EINVAL; 992 warn_invalid_dmar(phys_addr, " returns all ones"); 993 goto unmap; 994 } 995 996 /* the registers might be more than one page */ 997 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap), 998 cap_max_fault_reg_offset(iommu->cap)); 999 map_size = VTD_PAGE_ALIGN(map_size); 1000 if (map_size > iommu->reg_size) { 1001 iounmap(iommu->reg); 1002 release_mem_region(iommu->reg_phys, iommu->reg_size); 1003 iommu->reg_size = map_size; 1004 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, 1005 iommu->name)) { 1006 pr_err("Can't reserve memory\n"); 1007 err = -EBUSY; 1008 goto out; 1009 } 1010 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size); 1011 if (!iommu->reg) { 1012 pr_err("Can't map the region\n"); 1013 err = -ENOMEM; 1014 goto release; 1015 } 1016 } 1017 1018 if (cap_ecmds(iommu->cap)) { 1019 int i; 1020 1021 for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) { 1022 iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG + 1023 i * DMA_ECMD_REG_STEP); 1024 } 1025 } 1026 1027 err = 0; 1028 goto out; 1029 1030 unmap: 1031 iounmap(iommu->reg); 1032 release: 1033 release_mem_region(iommu->reg_phys, iommu->reg_size); 1034 out: 1035 return err; 1036 } 1037 1038 static int alloc_iommu(struct dmar_drhd_unit *drhd) 1039 { 1040 struct intel_iommu *iommu; 1041 u32 ver, sts; 1042 int agaw = -1; 1043 int msagaw = -1; 1044 int err; 1045 1046 if (!drhd->reg_base_addr) { 1047 warn_invalid_dmar(0, ""); 1048 return -EINVAL; 1049 } 1050 1051 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); 1052 if (!iommu) 1053 return -ENOMEM; 1054 1055 iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0, 1056 DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL); 1057 if (iommu->seq_id < 0) { 1058 pr_err("Failed to allocate seq_id\n"); 1059 err = iommu->seq_id; 1060 goto error; 1061 } 1062 sprintf(iommu->name, "dmar%d", iommu->seq_id); 1063 1064 err = map_iommu(iommu, drhd); 1065 if (err) { 1066 pr_err("Failed to map %s\n", iommu->name); 1067 goto error_free_seq_id; 1068 } 1069 1070 err = -EINVAL; 1071 if (!cap_sagaw(iommu->cap) && 1072 (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) { 1073 pr_info("%s: No supported address widths. Not attempting DMA translation.\n", 1074 iommu->name); 1075 drhd->ignored = 1; 1076 } 1077 1078 if (!drhd->ignored) { 1079 agaw = iommu_calculate_agaw(iommu); 1080 if (agaw < 0) { 1081 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n", 1082 iommu->seq_id); 1083 drhd->ignored = 1; 1084 } 1085 } 1086 if (!drhd->ignored) { 1087 msagaw = iommu_calculate_max_sagaw(iommu); 1088 if (msagaw < 0) { 1089 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n", 1090 iommu->seq_id); 1091 drhd->ignored = 1; 1092 agaw = -1; 1093 } 1094 } 1095 iommu->agaw = agaw; 1096 iommu->msagaw = msagaw; 1097 iommu->segment = drhd->segment; 1098 1099 iommu->node = NUMA_NO_NODE; 1100 1101 ver = readl(iommu->reg + DMAR_VER_REG); 1102 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n", 1103 iommu->name, 1104 (unsigned long long)drhd->reg_base_addr, 1105 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver), 1106 (unsigned long long)iommu->cap, 1107 (unsigned long long)iommu->ecap); 1108 1109 /* Reflect status in gcmd */ 1110 sts = readl(iommu->reg + DMAR_GSTS_REG); 1111 if (sts & DMA_GSTS_IRES) 1112 iommu->gcmd |= DMA_GCMD_IRE; 1113 if (sts & DMA_GSTS_TES) 1114 iommu->gcmd |= DMA_GCMD_TE; 1115 if (sts & DMA_GSTS_QIES) 1116 iommu->gcmd |= DMA_GCMD_QIE; 1117 1118 if (alloc_iommu_pmu(iommu)) 1119 pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id); 1120 1121 raw_spin_lock_init(&iommu->register_lock); 1122 1123 /* 1124 * A value of N in PSS field of eCap register indicates hardware 1125 * supports PASID field of N+1 bits. 1126 */ 1127 if (pasid_supported(iommu)) 1128 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap); 1129 1130 /* 1131 * This is only for hotplug; at boot time intel_iommu_enabled won't 1132 * be set yet. When intel_iommu_init() runs, it registers the units 1133 * present at boot time, then sets intel_iommu_enabled. 1134 */ 1135 if (intel_iommu_enabled && !drhd->ignored) { 1136 err = iommu_device_sysfs_add(&iommu->iommu, NULL, 1137 intel_iommu_groups, 1138 "%s", iommu->name); 1139 if (err) 1140 goto err_unmap; 1141 1142 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL); 1143 if (err) 1144 goto err_sysfs; 1145 1146 iommu_pmu_register(iommu); 1147 } 1148 1149 drhd->iommu = iommu; 1150 iommu->drhd = drhd; 1151 1152 return 0; 1153 1154 err_sysfs: 1155 iommu_device_sysfs_remove(&iommu->iommu); 1156 err_unmap: 1157 free_iommu_pmu(iommu); 1158 unmap_iommu(iommu); 1159 error_free_seq_id: 1160 ida_free(&dmar_seq_ids, iommu->seq_id); 1161 error: 1162 kfree(iommu); 1163 return err; 1164 } 1165 1166 static void free_iommu(struct intel_iommu *iommu) 1167 { 1168 if (intel_iommu_enabled && !iommu->drhd->ignored) { 1169 iommu_pmu_unregister(iommu); 1170 iommu_device_unregister(&iommu->iommu); 1171 iommu_device_sysfs_remove(&iommu->iommu); 1172 } 1173 1174 free_iommu_pmu(iommu); 1175 1176 if (iommu->irq) { 1177 if (iommu->pr_irq) { 1178 free_irq(iommu->pr_irq, iommu); 1179 dmar_free_hwirq(iommu->pr_irq); 1180 iommu->pr_irq = 0; 1181 } 1182 free_irq(iommu->irq, iommu); 1183 dmar_free_hwirq(iommu->irq); 1184 iommu->irq = 0; 1185 } 1186 1187 if (iommu->qi) { 1188 free_page((unsigned long)iommu->qi->desc); 1189 kfree(iommu->qi->desc_status); 1190 kfree(iommu->qi); 1191 } 1192 1193 if (iommu->reg) 1194 unmap_iommu(iommu); 1195 1196 ida_free(&dmar_seq_ids, iommu->seq_id); 1197 kfree(iommu); 1198 } 1199 1200 /* 1201 * Reclaim all the submitted descriptors which have completed its work. 1202 */ 1203 static inline void reclaim_free_desc(struct q_inval *qi) 1204 { 1205 while (qi->desc_status[qi->free_tail] == QI_DONE || 1206 qi->desc_status[qi->free_tail] == QI_ABORT) { 1207 qi->desc_status[qi->free_tail] = QI_FREE; 1208 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH; 1209 qi->free_cnt++; 1210 } 1211 } 1212 1213 static const char *qi_type_string(u8 type) 1214 { 1215 switch (type) { 1216 case QI_CC_TYPE: 1217 return "Context-cache Invalidation"; 1218 case QI_IOTLB_TYPE: 1219 return "IOTLB Invalidation"; 1220 case QI_DIOTLB_TYPE: 1221 return "Device-TLB Invalidation"; 1222 case QI_IEC_TYPE: 1223 return "Interrupt Entry Cache Invalidation"; 1224 case QI_IWD_TYPE: 1225 return "Invalidation Wait"; 1226 case QI_EIOTLB_TYPE: 1227 return "PASID-based IOTLB Invalidation"; 1228 case QI_PC_TYPE: 1229 return "PASID-cache Invalidation"; 1230 case QI_DEIOTLB_TYPE: 1231 return "PASID-based Device-TLB Invalidation"; 1232 case QI_PGRP_RESP_TYPE: 1233 return "Page Group Response"; 1234 default: 1235 return "UNKNOWN"; 1236 } 1237 } 1238 1239 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault) 1240 { 1241 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG); 1242 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG); 1243 struct qi_desc *desc = iommu->qi->desc + head; 1244 1245 if (fault & DMA_FSTS_IQE) 1246 pr_err("VT-d detected Invalidation Queue Error: Reason %llx", 1247 DMAR_IQER_REG_IQEI(iqe_err)); 1248 if (fault & DMA_FSTS_ITE) 1249 pr_err("VT-d detected Invalidation Time-out Error: SID %llx", 1250 DMAR_IQER_REG_ITESID(iqe_err)); 1251 if (fault & DMA_FSTS_ICE) 1252 pr_err("VT-d detected Invalidation Completion Error: SID %llx", 1253 DMAR_IQER_REG_ICESID(iqe_err)); 1254 1255 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n", 1256 qi_type_string(desc->qw0 & 0xf), 1257 (unsigned long long)desc->qw0, 1258 (unsigned long long)desc->qw1); 1259 1260 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH; 1261 head <<= qi_shift(iommu); 1262 desc = iommu->qi->desc + head; 1263 1264 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n", 1265 qi_type_string(desc->qw0 & 0xf), 1266 (unsigned long long)desc->qw0, 1267 (unsigned long long)desc->qw1); 1268 } 1269 1270 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index) 1271 { 1272 u32 fault; 1273 int head, tail; 1274 struct q_inval *qi = iommu->qi; 1275 int shift = qi_shift(iommu); 1276 1277 if (qi->desc_status[wait_index] == QI_ABORT) 1278 return -EAGAIN; 1279 1280 fault = readl(iommu->reg + DMAR_FSTS_REG); 1281 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE)) 1282 qi_dump_fault(iommu, fault); 1283 1284 /* 1285 * If IQE happens, the head points to the descriptor associated 1286 * with the error. No new descriptors are fetched until the IQE 1287 * is cleared. 1288 */ 1289 if (fault & DMA_FSTS_IQE) { 1290 head = readl(iommu->reg + DMAR_IQH_REG); 1291 if ((head >> shift) == index) { 1292 struct qi_desc *desc = qi->desc + head; 1293 1294 /* 1295 * desc->qw2 and desc->qw3 are either reserved or 1296 * used by software as private data. We won't print 1297 * out these two qw's for security consideration. 1298 */ 1299 memcpy(desc, qi->desc + (wait_index << shift), 1300 1 << shift); 1301 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG); 1302 pr_info("Invalidation Queue Error (IQE) cleared\n"); 1303 return -EINVAL; 1304 } 1305 } 1306 1307 /* 1308 * If ITE happens, all pending wait_desc commands are aborted. 1309 * No new descriptors are fetched until the ITE is cleared. 1310 */ 1311 if (fault & DMA_FSTS_ITE) { 1312 head = readl(iommu->reg + DMAR_IQH_REG); 1313 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1314 head |= 1; 1315 tail = readl(iommu->reg + DMAR_IQT_REG); 1316 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH; 1317 1318 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG); 1319 pr_info("Invalidation Time-out Error (ITE) cleared\n"); 1320 1321 do { 1322 if (qi->desc_status[head] == QI_IN_USE) 1323 qi->desc_status[head] = QI_ABORT; 1324 head = (head - 2 + QI_LENGTH) % QI_LENGTH; 1325 } while (head != tail); 1326 1327 if (qi->desc_status[wait_index] == QI_ABORT) 1328 return -EAGAIN; 1329 } 1330 1331 if (fault & DMA_FSTS_ICE) { 1332 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG); 1333 pr_info("Invalidation Completion Error (ICE) cleared\n"); 1334 } 1335 1336 return 0; 1337 } 1338 1339 /* 1340 * Function to submit invalidation descriptors of all types to the queued 1341 * invalidation interface(QI). Multiple descriptors can be submitted at a 1342 * time, a wait descriptor will be appended to each submission to ensure 1343 * hardware has completed the invalidation before return. Wait descriptors 1344 * can be part of the submission but it will not be polled for completion. 1345 */ 1346 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc, 1347 unsigned int count, unsigned long options) 1348 { 1349 struct q_inval *qi = iommu->qi; 1350 s64 devtlb_start_ktime = 0; 1351 s64 iotlb_start_ktime = 0; 1352 s64 iec_start_ktime = 0; 1353 struct qi_desc wait_desc; 1354 int wait_index, index; 1355 unsigned long flags; 1356 int offset, shift; 1357 int rc, i; 1358 u64 type; 1359 1360 if (!qi) 1361 return 0; 1362 1363 type = desc->qw0 & GENMASK_ULL(3, 0); 1364 1365 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) && 1366 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB)) 1367 iotlb_start_ktime = ktime_to_ns(ktime_get()); 1368 1369 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) && 1370 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB)) 1371 devtlb_start_ktime = ktime_to_ns(ktime_get()); 1372 1373 if (type == QI_IEC_TYPE && 1374 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC)) 1375 iec_start_ktime = ktime_to_ns(ktime_get()); 1376 1377 restart: 1378 rc = 0; 1379 1380 raw_spin_lock_irqsave(&qi->q_lock, flags); 1381 /* 1382 * Check if we have enough empty slots in the queue to submit, 1383 * the calculation is based on: 1384 * # of desc + 1 wait desc + 1 space between head and tail 1385 */ 1386 while (qi->free_cnt < count + 2) { 1387 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1388 cpu_relax(); 1389 raw_spin_lock_irqsave(&qi->q_lock, flags); 1390 } 1391 1392 index = qi->free_head; 1393 wait_index = (index + count) % QI_LENGTH; 1394 shift = qi_shift(iommu); 1395 1396 for (i = 0; i < count; i++) { 1397 offset = ((index + i) % QI_LENGTH) << shift; 1398 memcpy(qi->desc + offset, &desc[i], 1 << shift); 1399 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE; 1400 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1, 1401 desc[i].qw2, desc[i].qw3); 1402 } 1403 qi->desc_status[wait_index] = QI_IN_USE; 1404 1405 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) | 1406 QI_IWD_STATUS_WRITE | QI_IWD_TYPE; 1407 if (options & QI_OPT_WAIT_DRAIN) 1408 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN; 1409 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]); 1410 wait_desc.qw2 = 0; 1411 wait_desc.qw3 = 0; 1412 1413 offset = wait_index << shift; 1414 memcpy(qi->desc + offset, &wait_desc, 1 << shift); 1415 1416 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH; 1417 qi->free_cnt -= count + 1; 1418 1419 /* 1420 * update the HW tail register indicating the presence of 1421 * new descriptors. 1422 */ 1423 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG); 1424 1425 while (READ_ONCE(qi->desc_status[wait_index]) != QI_DONE) { 1426 /* 1427 * We will leave the interrupts disabled, to prevent interrupt 1428 * context to queue another cmd while a cmd is already submitted 1429 * and waiting for completion on this cpu. This is to avoid 1430 * a deadlock where the interrupt context can wait indefinitely 1431 * for free slots in the queue. 1432 */ 1433 rc = qi_check_fault(iommu, index, wait_index); 1434 if (rc) 1435 break; 1436 1437 raw_spin_unlock(&qi->q_lock); 1438 cpu_relax(); 1439 raw_spin_lock(&qi->q_lock); 1440 } 1441 1442 for (i = 0; i < count; i++) 1443 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE; 1444 1445 reclaim_free_desc(qi); 1446 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 1447 1448 if (rc == -EAGAIN) 1449 goto restart; 1450 1451 if (iotlb_start_ktime) 1452 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB, 1453 ktime_to_ns(ktime_get()) - iotlb_start_ktime); 1454 1455 if (devtlb_start_ktime) 1456 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB, 1457 ktime_to_ns(ktime_get()) - devtlb_start_ktime); 1458 1459 if (iec_start_ktime) 1460 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC, 1461 ktime_to_ns(ktime_get()) - iec_start_ktime); 1462 1463 return rc; 1464 } 1465 1466 /* 1467 * Flush the global interrupt entry cache. 1468 */ 1469 void qi_global_iec(struct intel_iommu *iommu) 1470 { 1471 struct qi_desc desc; 1472 1473 desc.qw0 = QI_IEC_TYPE; 1474 desc.qw1 = 0; 1475 desc.qw2 = 0; 1476 desc.qw3 = 0; 1477 1478 /* should never fail */ 1479 qi_submit_sync(iommu, &desc, 1, 0); 1480 } 1481 1482 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm, 1483 u64 type) 1484 { 1485 struct qi_desc desc; 1486 1487 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did) 1488 | QI_CC_GRAN(type) | QI_CC_TYPE; 1489 desc.qw1 = 0; 1490 desc.qw2 = 0; 1491 desc.qw3 = 0; 1492 1493 qi_submit_sync(iommu, &desc, 1, 0); 1494 } 1495 1496 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr, 1497 unsigned int size_order, u64 type) 1498 { 1499 u8 dw = 0, dr = 0; 1500 1501 struct qi_desc desc; 1502 int ih = 0; 1503 1504 if (cap_write_drain(iommu->cap)) 1505 dw = 1; 1506 1507 if (cap_read_drain(iommu->cap)) 1508 dr = 1; 1509 1510 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw) 1511 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE; 1512 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih) 1513 | QI_IOTLB_AM(size_order); 1514 desc.qw2 = 0; 1515 desc.qw3 = 0; 1516 1517 qi_submit_sync(iommu, &desc, 1, 0); 1518 } 1519 1520 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1521 u16 qdep, u64 addr, unsigned mask) 1522 { 1523 struct qi_desc desc; 1524 1525 /* 1526 * VT-d spec, section 4.3: 1527 * 1528 * Software is recommended to not submit any Device-TLB invalidation 1529 * requests while address remapping hardware is disabled. 1530 */ 1531 if (!(iommu->gcmd & DMA_GCMD_TE)) 1532 return; 1533 1534 if (mask) { 1535 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1; 1536 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE; 1537 } else 1538 desc.qw1 = QI_DEV_IOTLB_ADDR(addr); 1539 1540 if (qdep >= QI_DEV_IOTLB_MAX_INVS) 1541 qdep = 0; 1542 1543 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) | 1544 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid); 1545 desc.qw2 = 0; 1546 desc.qw3 = 0; 1547 1548 qi_submit_sync(iommu, &desc, 1, 0); 1549 } 1550 1551 /* PASID-based IOTLB invalidation */ 1552 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr, 1553 unsigned long npages, bool ih) 1554 { 1555 struct qi_desc desc = {.qw2 = 0, .qw3 = 0}; 1556 1557 /* 1558 * npages == -1 means a PASID-selective invalidation, otherwise, 1559 * a positive value for Page-selective-within-PASID invalidation. 1560 * 0 is not a valid input. 1561 */ 1562 if (WARN_ON(!npages)) { 1563 pr_err("Invalid input npages = %ld\n", npages); 1564 return; 1565 } 1566 1567 if (npages == -1) { 1568 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1569 QI_EIOTLB_DID(did) | 1570 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | 1571 QI_EIOTLB_TYPE; 1572 desc.qw1 = 0; 1573 } else { 1574 int mask = ilog2(__roundup_pow_of_two(npages)); 1575 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask)); 1576 1577 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align))) 1578 addr = ALIGN_DOWN(addr, align); 1579 1580 desc.qw0 = QI_EIOTLB_PASID(pasid) | 1581 QI_EIOTLB_DID(did) | 1582 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) | 1583 QI_EIOTLB_TYPE; 1584 desc.qw1 = QI_EIOTLB_ADDR(addr) | 1585 QI_EIOTLB_IH(ih) | 1586 QI_EIOTLB_AM(mask); 1587 } 1588 1589 qi_submit_sync(iommu, &desc, 1, 0); 1590 } 1591 1592 /* PASID-based device IOTLB Invalidate */ 1593 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid, 1594 u32 pasid, u16 qdep, u64 addr, unsigned int size_order) 1595 { 1596 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1); 1597 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1598 1599 /* 1600 * VT-d spec, section 4.3: 1601 * 1602 * Software is recommended to not submit any Device-TLB invalidation 1603 * requests while address remapping hardware is disabled. 1604 */ 1605 if (!(iommu->gcmd & DMA_GCMD_TE)) 1606 return; 1607 1608 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | 1609 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | 1610 QI_DEV_IOTLB_PFSID(pfsid); 1611 1612 /* 1613 * If S bit is 0, we only flush a single page. If S bit is set, 1614 * The least significant zero bit indicates the invalidation address 1615 * range. VT-d spec 6.5.2.6. 1616 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB. 1617 * size order = 0 is PAGE_SIZE 4KB 1618 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in 1619 * ECAP. 1620 */ 1621 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order)) 1622 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n", 1623 addr, size_order); 1624 1625 /* Take page address */ 1626 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr); 1627 1628 if (size_order) { 1629 /* 1630 * Existing 0s in address below size_order may be the least 1631 * significant bit, we must set them to 1s to avoid having 1632 * smaller size than desired. 1633 */ 1634 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1, 1635 VTD_PAGE_SHIFT); 1636 /* Clear size_order bit to indicate size */ 1637 desc.qw1 &= ~mask; 1638 /* Set the S bit to indicate flushing more than 1 page */ 1639 desc.qw1 |= QI_DEV_EIOTLB_SIZE; 1640 } 1641 1642 qi_submit_sync(iommu, &desc, 1, 0); 1643 } 1644 1645 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, 1646 u64 granu, u32 pasid) 1647 { 1648 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0}; 1649 1650 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) | 1651 QI_PC_GRAN(granu) | QI_PC_TYPE; 1652 qi_submit_sync(iommu, &desc, 1, 0); 1653 } 1654 1655 /* 1656 * Disable Queued Invalidation interface. 1657 */ 1658 void dmar_disable_qi(struct intel_iommu *iommu) 1659 { 1660 unsigned long flags; 1661 u32 sts; 1662 cycles_t start_time = get_cycles(); 1663 1664 if (!ecap_qis(iommu->ecap)) 1665 return; 1666 1667 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1668 1669 sts = readl(iommu->reg + DMAR_GSTS_REG); 1670 if (!(sts & DMA_GSTS_QIES)) 1671 goto end; 1672 1673 /* 1674 * Give a chance to HW to complete the pending invalidation requests. 1675 */ 1676 while ((readl(iommu->reg + DMAR_IQT_REG) != 1677 readl(iommu->reg + DMAR_IQH_REG)) && 1678 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time))) 1679 cpu_relax(); 1680 1681 iommu->gcmd &= ~DMA_GCMD_QIE; 1682 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1683 1684 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, 1685 !(sts & DMA_GSTS_QIES), sts); 1686 end: 1687 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1688 } 1689 1690 /* 1691 * Enable queued invalidation. 1692 */ 1693 static void __dmar_enable_qi(struct intel_iommu *iommu) 1694 { 1695 u32 sts; 1696 unsigned long flags; 1697 struct q_inval *qi = iommu->qi; 1698 u64 val = virt_to_phys(qi->desc); 1699 1700 qi->free_head = qi->free_tail = 0; 1701 qi->free_cnt = QI_LENGTH; 1702 1703 /* 1704 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability 1705 * is present. 1706 */ 1707 if (ecap_smts(iommu->ecap)) 1708 val |= BIT_ULL(11) | BIT_ULL(0); 1709 1710 raw_spin_lock_irqsave(&iommu->register_lock, flags); 1711 1712 /* write zero to the tail reg */ 1713 writel(0, iommu->reg + DMAR_IQT_REG); 1714 1715 dmar_writeq(iommu->reg + DMAR_IQA_REG, val); 1716 1717 iommu->gcmd |= DMA_GCMD_QIE; 1718 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); 1719 1720 /* Make sure hardware complete it */ 1721 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts); 1722 1723 raw_spin_unlock_irqrestore(&iommu->register_lock, flags); 1724 } 1725 1726 /* 1727 * Enable Queued Invalidation interface. This is a must to support 1728 * interrupt-remapping. Also used by DMA-remapping, which replaces 1729 * register based IOTLB invalidation. 1730 */ 1731 int dmar_enable_qi(struct intel_iommu *iommu) 1732 { 1733 struct q_inval *qi; 1734 struct page *desc_page; 1735 1736 if (!ecap_qis(iommu->ecap)) 1737 return -ENOENT; 1738 1739 /* 1740 * queued invalidation is already setup and enabled. 1741 */ 1742 if (iommu->qi) 1743 return 0; 1744 1745 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC); 1746 if (!iommu->qi) 1747 return -ENOMEM; 1748 1749 qi = iommu->qi; 1750 1751 /* 1752 * Need two pages to accommodate 256 descriptors of 256 bits each 1753 * if the remapping hardware supports scalable mode translation. 1754 */ 1755 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 1756 !!ecap_smts(iommu->ecap)); 1757 if (!desc_page) { 1758 kfree(qi); 1759 iommu->qi = NULL; 1760 return -ENOMEM; 1761 } 1762 1763 qi->desc = page_address(desc_page); 1764 1765 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC); 1766 if (!qi->desc_status) { 1767 free_page((unsigned long) qi->desc); 1768 kfree(qi); 1769 iommu->qi = NULL; 1770 return -ENOMEM; 1771 } 1772 1773 raw_spin_lock_init(&qi->q_lock); 1774 1775 __dmar_enable_qi(iommu); 1776 1777 return 0; 1778 } 1779 1780 /* iommu interrupt handling. Most stuff are MSI-like. */ 1781 1782 enum faulttype { 1783 DMA_REMAP, 1784 INTR_REMAP, 1785 UNKNOWN, 1786 }; 1787 1788 static const char *dma_remap_fault_reasons[] = 1789 { 1790 "Software", 1791 "Present bit in root entry is clear", 1792 "Present bit in context entry is clear", 1793 "Invalid context entry", 1794 "Access beyond MGAW", 1795 "PTE Write access is not set", 1796 "PTE Read access is not set", 1797 "Next page table ptr is invalid", 1798 "Root table address invalid", 1799 "Context table ptr is invalid", 1800 "non-zero reserved fields in RTP", 1801 "non-zero reserved fields in CTP", 1802 "non-zero reserved fields in PTE", 1803 "PCE for translation request specifies blocking", 1804 }; 1805 1806 static const char * const dma_remap_sm_fault_reasons[] = { 1807 "SM: Invalid Root Table Address", 1808 "SM: TTM 0 for request with PASID", 1809 "SM: TTM 0 for page group request", 1810 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */ 1811 "SM: Error attempting to access Root Entry", 1812 "SM: Present bit in Root Entry is clear", 1813 "SM: Non-zero reserved field set in Root Entry", 1814 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */ 1815 "SM: Error attempting to access Context Entry", 1816 "SM: Present bit in Context Entry is clear", 1817 "SM: Non-zero reserved field set in the Context Entry", 1818 "SM: Invalid Context Entry", 1819 "SM: DTE field in Context Entry is clear", 1820 "SM: PASID Enable field in Context Entry is clear", 1821 "SM: PASID is larger than the max in Context Entry", 1822 "SM: PRE field in Context-Entry is clear", 1823 "SM: RID_PASID field error in Context-Entry", 1824 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */ 1825 "SM: Error attempting to access the PASID Directory Entry", 1826 "SM: Present bit in Directory Entry is clear", 1827 "SM: Non-zero reserved field set in PASID Directory Entry", 1828 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */ 1829 "SM: Error attempting to access PASID Table Entry", 1830 "SM: Present bit in PASID Table Entry is clear", 1831 "SM: Non-zero reserved field set in PASID Table Entry", 1832 "SM: Invalid Scalable-Mode PASID Table Entry", 1833 "SM: ERE field is clear in PASID Table Entry", 1834 "SM: SRE field is clear in PASID Table Entry", 1835 "Unknown", "Unknown",/* 0x5E-0x5F */ 1836 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */ 1837 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */ 1838 "SM: Error attempting to access first-level paging entry", 1839 "SM: Present bit in first-level paging entry is clear", 1840 "SM: Non-zero reserved field set in first-level paging entry", 1841 "SM: Error attempting to access FL-PML4 entry", 1842 "SM: First-level entry address beyond MGAW in Nested translation", 1843 "SM: Read permission error in FL-PML4 entry in Nested translation", 1844 "SM: Read permission error in first-level paging entry in Nested translation", 1845 "SM: Write permission error in first-level paging entry in Nested translation", 1846 "SM: Error attempting to access second-level paging entry", 1847 "SM: Read/Write permission error in second-level paging entry", 1848 "SM: Non-zero reserved field set in second-level paging entry", 1849 "SM: Invalid second-level page table pointer", 1850 "SM: A/D bit update needed in second-level entry when set up in no snoop", 1851 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */ 1852 "SM: Address in first-level translation is not canonical", 1853 "SM: U/S set 0 for first-level translation with user privilege", 1854 "SM: No execute permission for request with PASID and ER=1", 1855 "SM: Address beyond the DMA hardware max", 1856 "SM: Second-level entry address beyond the max", 1857 "SM: No write permission for Write/AtomicOp request", 1858 "SM: No read permission for Read/AtomicOp request", 1859 "SM: Invalid address-interrupt address", 1860 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */ 1861 "SM: A/D bit update needed in first-level entry when set up in no snoop", 1862 }; 1863 1864 static const char *irq_remap_fault_reasons[] = 1865 { 1866 "Detected reserved fields in the decoded interrupt-remapped request", 1867 "Interrupt index exceeded the interrupt-remapping table size", 1868 "Present field in the IRTE entry is clear", 1869 "Error accessing interrupt-remapping table pointed by IRTA_REG", 1870 "Detected reserved fields in the IRTE entry", 1871 "Blocked a compatibility format interrupt request", 1872 "Blocked an interrupt request due to source-id verification failure", 1873 }; 1874 1875 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type) 1876 { 1877 if (fault_reason >= 0x20 && (fault_reason - 0x20 < 1878 ARRAY_SIZE(irq_remap_fault_reasons))) { 1879 *fault_type = INTR_REMAP; 1880 return irq_remap_fault_reasons[fault_reason - 0x20]; 1881 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 < 1882 ARRAY_SIZE(dma_remap_sm_fault_reasons))) { 1883 *fault_type = DMA_REMAP; 1884 return dma_remap_sm_fault_reasons[fault_reason - 0x30]; 1885 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) { 1886 *fault_type = DMA_REMAP; 1887 return dma_remap_fault_reasons[fault_reason]; 1888 } else { 1889 *fault_type = UNKNOWN; 1890 return "Unknown"; 1891 } 1892 } 1893 1894 1895 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq) 1896 { 1897 if (iommu->irq == irq) 1898 return DMAR_FECTL_REG; 1899 else if (iommu->pr_irq == irq) 1900 return DMAR_PECTL_REG; 1901 else if (iommu->perf_irq == irq) 1902 return DMAR_PERFINTRCTL_REG; 1903 else 1904 BUG(); 1905 } 1906 1907 void dmar_msi_unmask(struct irq_data *data) 1908 { 1909 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1910 int reg = dmar_msi_reg(iommu, data->irq); 1911 unsigned long flag; 1912 1913 /* unmask it */ 1914 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1915 writel(0, iommu->reg + reg); 1916 /* Read a reg to force flush the post write */ 1917 readl(iommu->reg + reg); 1918 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1919 } 1920 1921 void dmar_msi_mask(struct irq_data *data) 1922 { 1923 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data); 1924 int reg = dmar_msi_reg(iommu, data->irq); 1925 unsigned long flag; 1926 1927 /* mask it */ 1928 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1929 writel(DMA_FECTL_IM, iommu->reg + reg); 1930 /* Read a reg to force flush the post write */ 1931 readl(iommu->reg + reg); 1932 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1933 } 1934 1935 void dmar_msi_write(int irq, struct msi_msg *msg) 1936 { 1937 struct intel_iommu *iommu = irq_get_handler_data(irq); 1938 int reg = dmar_msi_reg(iommu, irq); 1939 unsigned long flag; 1940 1941 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1942 writel(msg->data, iommu->reg + reg + 4); 1943 writel(msg->address_lo, iommu->reg + reg + 8); 1944 writel(msg->address_hi, iommu->reg + reg + 12); 1945 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1946 } 1947 1948 void dmar_msi_read(int irq, struct msi_msg *msg) 1949 { 1950 struct intel_iommu *iommu = irq_get_handler_data(irq); 1951 int reg = dmar_msi_reg(iommu, irq); 1952 unsigned long flag; 1953 1954 raw_spin_lock_irqsave(&iommu->register_lock, flag); 1955 msg->data = readl(iommu->reg + reg + 4); 1956 msg->address_lo = readl(iommu->reg + reg + 8); 1957 msg->address_hi = readl(iommu->reg + reg + 12); 1958 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 1959 } 1960 1961 static int dmar_fault_do_one(struct intel_iommu *iommu, int type, 1962 u8 fault_reason, u32 pasid, u16 source_id, 1963 unsigned long long addr) 1964 { 1965 const char *reason; 1966 int fault_type; 1967 1968 reason = dmar_get_fault_reason(fault_reason, &fault_type); 1969 1970 if (fault_type == INTR_REMAP) { 1971 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n", 1972 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1973 PCI_FUNC(source_id & 0xFF), addr >> 48, 1974 fault_reason, reason); 1975 1976 return 0; 1977 } 1978 1979 if (pasid == IOMMU_PASID_INVALID) 1980 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n", 1981 type ? "DMA Read" : "DMA Write", 1982 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1983 PCI_FUNC(source_id & 0xFF), addr, 1984 fault_reason, reason); 1985 else 1986 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n", 1987 type ? "DMA Read" : "DMA Write", pasid, 1988 source_id >> 8, PCI_SLOT(source_id & 0xFF), 1989 PCI_FUNC(source_id & 0xFF), addr, 1990 fault_reason, reason); 1991 1992 dmar_fault_dump_ptes(iommu, source_id, addr, pasid); 1993 1994 return 0; 1995 } 1996 1997 #define PRIMARY_FAULT_REG_LEN (16) 1998 irqreturn_t dmar_fault(int irq, void *dev_id) 1999 { 2000 struct intel_iommu *iommu = dev_id; 2001 int reg, fault_index; 2002 u32 fault_status; 2003 unsigned long flag; 2004 static DEFINE_RATELIMIT_STATE(rs, 2005 DEFAULT_RATELIMIT_INTERVAL, 2006 DEFAULT_RATELIMIT_BURST); 2007 2008 raw_spin_lock_irqsave(&iommu->register_lock, flag); 2009 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 2010 if (fault_status && __ratelimit(&rs)) 2011 pr_err("DRHD: handling fault status reg %x\n", fault_status); 2012 2013 /* TBD: ignore advanced fault log currently */ 2014 if (!(fault_status & DMA_FSTS_PPF)) 2015 goto unlock_exit; 2016 2017 fault_index = dma_fsts_fault_record_index(fault_status); 2018 reg = cap_fault_reg_offset(iommu->cap); 2019 while (1) { 2020 /* Disable printing, simply clear the fault when ratelimited */ 2021 bool ratelimited = !__ratelimit(&rs); 2022 u8 fault_reason; 2023 u16 source_id; 2024 u64 guest_addr; 2025 u32 pasid; 2026 int type; 2027 u32 data; 2028 bool pasid_present; 2029 2030 /* highest 32 bits */ 2031 data = readl(iommu->reg + reg + 2032 fault_index * PRIMARY_FAULT_REG_LEN + 12); 2033 if (!(data & DMA_FRCD_F)) 2034 break; 2035 2036 if (!ratelimited) { 2037 fault_reason = dma_frcd_fault_reason(data); 2038 type = dma_frcd_type(data); 2039 2040 pasid = dma_frcd_pasid_value(data); 2041 data = readl(iommu->reg + reg + 2042 fault_index * PRIMARY_FAULT_REG_LEN + 8); 2043 source_id = dma_frcd_source_id(data); 2044 2045 pasid_present = dma_frcd_pasid_present(data); 2046 guest_addr = dmar_readq(iommu->reg + reg + 2047 fault_index * PRIMARY_FAULT_REG_LEN); 2048 guest_addr = dma_frcd_page_addr(guest_addr); 2049 } 2050 2051 /* clear the fault */ 2052 writel(DMA_FRCD_F, iommu->reg + reg + 2053 fault_index * PRIMARY_FAULT_REG_LEN + 12); 2054 2055 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 2056 2057 if (!ratelimited) 2058 /* Using pasid -1 if pasid is not present */ 2059 dmar_fault_do_one(iommu, type, fault_reason, 2060 pasid_present ? pasid : IOMMU_PASID_INVALID, 2061 source_id, guest_addr); 2062 2063 fault_index++; 2064 if (fault_index >= cap_num_fault_regs(iommu->cap)) 2065 fault_index = 0; 2066 raw_spin_lock_irqsave(&iommu->register_lock, flag); 2067 } 2068 2069 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO, 2070 iommu->reg + DMAR_FSTS_REG); 2071 2072 unlock_exit: 2073 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 2074 return IRQ_HANDLED; 2075 } 2076 2077 int dmar_set_interrupt(struct intel_iommu *iommu) 2078 { 2079 int irq, ret; 2080 2081 /* 2082 * Check if the fault interrupt is already initialized. 2083 */ 2084 if (iommu->irq) 2085 return 0; 2086 2087 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu); 2088 if (irq > 0) { 2089 iommu->irq = irq; 2090 } else { 2091 pr_err("No free IRQ vectors\n"); 2092 return -EINVAL; 2093 } 2094 2095 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu); 2096 if (ret) 2097 pr_err("Can't request irq\n"); 2098 return ret; 2099 } 2100 2101 int __init enable_drhd_fault_handling(void) 2102 { 2103 struct dmar_drhd_unit *drhd; 2104 struct intel_iommu *iommu; 2105 2106 /* 2107 * Enable fault control interrupt. 2108 */ 2109 for_each_iommu(iommu, drhd) { 2110 u32 fault_status; 2111 int ret = dmar_set_interrupt(iommu); 2112 2113 if (ret) { 2114 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n", 2115 (unsigned long long)drhd->reg_base_addr, ret); 2116 return -1; 2117 } 2118 2119 /* 2120 * Clear any previous faults. 2121 */ 2122 dmar_fault(iommu->irq, iommu); 2123 fault_status = readl(iommu->reg + DMAR_FSTS_REG); 2124 writel(fault_status, iommu->reg + DMAR_FSTS_REG); 2125 } 2126 2127 return 0; 2128 } 2129 2130 /* 2131 * Re-enable Queued Invalidation interface. 2132 */ 2133 int dmar_reenable_qi(struct intel_iommu *iommu) 2134 { 2135 if (!ecap_qis(iommu->ecap)) 2136 return -ENOENT; 2137 2138 if (!iommu->qi) 2139 return -ENOENT; 2140 2141 /* 2142 * First disable queued invalidation. 2143 */ 2144 dmar_disable_qi(iommu); 2145 /* 2146 * Then enable queued invalidation again. Since there is no pending 2147 * invalidation requests now, it's safe to re-enable queued 2148 * invalidation. 2149 */ 2150 __dmar_enable_qi(iommu); 2151 2152 return 0; 2153 } 2154 2155 /* 2156 * Check interrupt remapping support in DMAR table description. 2157 */ 2158 int __init dmar_ir_support(void) 2159 { 2160 struct acpi_table_dmar *dmar; 2161 dmar = (struct acpi_table_dmar *)dmar_tbl; 2162 if (!dmar) 2163 return 0; 2164 return dmar->flags & 0x1; 2165 } 2166 2167 /* Check whether DMAR units are in use */ 2168 static inline bool dmar_in_use(void) 2169 { 2170 return irq_remapping_enabled || intel_iommu_enabled; 2171 } 2172 2173 static int __init dmar_free_unused_resources(void) 2174 { 2175 struct dmar_drhd_unit *dmaru, *dmaru_n; 2176 2177 if (dmar_in_use()) 2178 return 0; 2179 2180 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units)) 2181 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb); 2182 2183 down_write(&dmar_global_lock); 2184 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) { 2185 list_del(&dmaru->list); 2186 dmar_free_drhd(dmaru); 2187 } 2188 up_write(&dmar_global_lock); 2189 2190 return 0; 2191 } 2192 2193 late_initcall(dmar_free_unused_resources); 2194 2195 /* 2196 * DMAR Hotplug Support 2197 * For more details, please refer to Intel(R) Virtualization Technology 2198 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8 2199 * "Remapping Hardware Unit Hot Plug". 2200 */ 2201 static guid_t dmar_hp_guid = 2202 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B, 2203 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF); 2204 2205 /* 2206 * Currently there's only one revision and BIOS will not check the revision id, 2207 * so use 0 for safety. 2208 */ 2209 #define DMAR_DSM_REV_ID 0 2210 #define DMAR_DSM_FUNC_DRHD 1 2211 #define DMAR_DSM_FUNC_ATSR 2 2212 #define DMAR_DSM_FUNC_RHSA 3 2213 #define DMAR_DSM_FUNC_SATC 4 2214 2215 static inline bool dmar_detect_dsm(acpi_handle handle, int func) 2216 { 2217 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func); 2218 } 2219 2220 static int dmar_walk_dsm_resource(acpi_handle handle, int func, 2221 dmar_res_handler_t handler, void *arg) 2222 { 2223 int ret = -ENODEV; 2224 union acpi_object *obj; 2225 struct acpi_dmar_header *start; 2226 struct dmar_res_callback callback; 2227 static int res_type[] = { 2228 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT, 2229 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS, 2230 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY, 2231 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC, 2232 }; 2233 2234 if (!dmar_detect_dsm(handle, func)) 2235 return 0; 2236 2237 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 2238 func, NULL, ACPI_TYPE_BUFFER); 2239 if (!obj) 2240 return -ENODEV; 2241 2242 memset(&callback, 0, sizeof(callback)); 2243 callback.cb[res_type[func]] = handler; 2244 callback.arg[res_type[func]] = arg; 2245 start = (struct acpi_dmar_header *)obj->buffer.pointer; 2246 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback); 2247 2248 ACPI_FREE(obj); 2249 2250 return ret; 2251 } 2252 2253 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg) 2254 { 2255 int ret; 2256 struct dmar_drhd_unit *dmaru; 2257 2258 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2259 if (!dmaru) 2260 return -ENODEV; 2261 2262 ret = dmar_ir_hotplug(dmaru, true); 2263 if (ret == 0) 2264 ret = dmar_iommu_hotplug(dmaru, true); 2265 2266 return ret; 2267 } 2268 2269 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg) 2270 { 2271 int i, ret; 2272 struct device *dev; 2273 struct dmar_drhd_unit *dmaru; 2274 2275 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2276 if (!dmaru) 2277 return 0; 2278 2279 /* 2280 * All PCI devices managed by this unit should have been destroyed. 2281 */ 2282 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) { 2283 for_each_active_dev_scope(dmaru->devices, 2284 dmaru->devices_cnt, i, dev) 2285 return -EBUSY; 2286 } 2287 2288 ret = dmar_ir_hotplug(dmaru, false); 2289 if (ret == 0) 2290 ret = dmar_iommu_hotplug(dmaru, false); 2291 2292 return ret; 2293 } 2294 2295 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg) 2296 { 2297 struct dmar_drhd_unit *dmaru; 2298 2299 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header); 2300 if (dmaru) { 2301 list_del_rcu(&dmaru->list); 2302 synchronize_rcu(); 2303 dmar_free_drhd(dmaru); 2304 } 2305 2306 return 0; 2307 } 2308 2309 static int dmar_hotplug_insert(acpi_handle handle) 2310 { 2311 int ret; 2312 int drhd_count = 0; 2313 2314 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2315 &dmar_validate_one_drhd, (void *)1); 2316 if (ret) 2317 goto out; 2318 2319 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2320 &dmar_parse_one_drhd, (void *)&drhd_count); 2321 if (ret == 0 && drhd_count == 0) { 2322 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n"); 2323 goto out; 2324 } else if (ret) { 2325 goto release_drhd; 2326 } 2327 2328 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA, 2329 &dmar_parse_one_rhsa, NULL); 2330 if (ret) 2331 goto release_drhd; 2332 2333 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2334 &dmar_parse_one_atsr, NULL); 2335 if (ret) 2336 goto release_atsr; 2337 2338 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2339 &dmar_hp_add_drhd, NULL); 2340 if (!ret) 2341 return 0; 2342 2343 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2344 &dmar_hp_remove_drhd, NULL); 2345 release_atsr: 2346 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2347 &dmar_release_one_atsr, NULL); 2348 release_drhd: 2349 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2350 &dmar_hp_release_drhd, NULL); 2351 out: 2352 return ret; 2353 } 2354 2355 static int dmar_hotplug_remove(acpi_handle handle) 2356 { 2357 int ret; 2358 2359 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2360 &dmar_check_one_atsr, NULL); 2361 if (ret) 2362 return ret; 2363 2364 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2365 &dmar_hp_remove_drhd, NULL); 2366 if (ret == 0) { 2367 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR, 2368 &dmar_release_one_atsr, NULL)); 2369 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2370 &dmar_hp_release_drhd, NULL)); 2371 } else { 2372 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD, 2373 &dmar_hp_add_drhd, NULL); 2374 } 2375 2376 return ret; 2377 } 2378 2379 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl, 2380 void *context, void **retval) 2381 { 2382 acpi_handle *phdl = retval; 2383 2384 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2385 *phdl = handle; 2386 return AE_CTRL_TERMINATE; 2387 } 2388 2389 return AE_OK; 2390 } 2391 2392 static int dmar_device_hotplug(acpi_handle handle, bool insert) 2393 { 2394 int ret; 2395 acpi_handle tmp = NULL; 2396 acpi_status status; 2397 2398 if (!dmar_in_use()) 2399 return 0; 2400 2401 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) { 2402 tmp = handle; 2403 } else { 2404 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 2405 ACPI_UINT32_MAX, 2406 dmar_get_dsm_handle, 2407 NULL, NULL, &tmp); 2408 if (ACPI_FAILURE(status)) { 2409 pr_warn("Failed to locate _DSM method.\n"); 2410 return -ENXIO; 2411 } 2412 } 2413 if (tmp == NULL) 2414 return 0; 2415 2416 down_write(&dmar_global_lock); 2417 if (insert) 2418 ret = dmar_hotplug_insert(tmp); 2419 else 2420 ret = dmar_hotplug_remove(tmp); 2421 up_write(&dmar_global_lock); 2422 2423 return ret; 2424 } 2425 2426 int dmar_device_add(acpi_handle handle) 2427 { 2428 return dmar_device_hotplug(handle, true); 2429 } 2430 2431 int dmar_device_remove(acpi_handle handle) 2432 { 2433 return dmar_device_hotplug(handle, false); 2434 } 2435 2436 /* 2437 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table 2438 * 2439 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in 2440 * the ACPI DMAR table. This means that the platform boot firmware has made 2441 * sure no device can issue DMA outside of RMRR regions. 2442 */ 2443 bool dmar_platform_optin(void) 2444 { 2445 struct acpi_table_dmar *dmar; 2446 acpi_status status; 2447 bool ret; 2448 2449 status = acpi_get_table(ACPI_SIG_DMAR, 0, 2450 (struct acpi_table_header **)&dmar); 2451 if (ACPI_FAILURE(status)) 2452 return false; 2453 2454 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN); 2455 acpi_put_table((struct acpi_table_header *)dmar); 2456 2457 return ret; 2458 } 2459 EXPORT_SYMBOL_GPL(dmar_platform_optin); 2460