xref: /openbmc/linux/drivers/iommu/fsl_pamu.c (revision e2c75e76)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright (C) 2013 Freescale Semiconductor, Inc.
16  *
17  */
18 
19 #define pr_fmt(fmt)    "fsl-pamu: %s: " fmt, __func__
20 
21 #include "fsl_pamu.h"
22 
23 #include <linux/fsl/guts.h>
24 #include <linux/interrupt.h>
25 #include <linux/genalloc.h>
26 
27 #include <asm/mpc85xx.h>
28 
29 /* define indexes for each operation mapping scenario */
30 #define OMI_QMAN        0x00
31 #define OMI_FMAN        0x01
32 #define OMI_QMAN_PRIV   0x02
33 #define OMI_CAAM        0x03
34 
35 #define make64(high, low) (((u64)(high) << 32) | (low))
36 
37 struct pamu_isr_data {
38 	void __iomem *pamu_reg_base;	/* Base address of PAMU regs */
39 	unsigned int count;		/* The number of PAMUs */
40 };
41 
42 static struct paace *ppaact;
43 static struct paace *spaact;
44 
45 static bool probed;			/* Has PAMU been probed? */
46 
47 /*
48  * Table for matching compatible strings, for device tree
49  * guts node, for QorIQ SOCs.
50  * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
51  * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
52  * string would be used.
53  */
54 static const struct of_device_id guts_device_ids[] = {
55 	{ .compatible = "fsl,qoriq-device-config-1.0", },
56 	{ .compatible = "fsl,qoriq-device-config-2.0", },
57 	{}
58 };
59 
60 /*
61  * Table for matching compatible strings, for device tree
62  * L3 cache controller node.
63  * "fsl,t4240-l3-cache-controller" corresponds to T4,
64  * "fsl,b4860-l3-cache-controller" corresponds to B4 &
65  * "fsl,p4080-l3-cache-controller" corresponds to other,
66  * SOCs.
67  */
68 static const struct of_device_id l3_device_ids[] = {
69 	{ .compatible = "fsl,t4240-l3-cache-controller", },
70 	{ .compatible = "fsl,b4860-l3-cache-controller", },
71 	{ .compatible = "fsl,p4080-l3-cache-controller", },
72 	{}
73 };
74 
75 /* maximum subwindows permitted per liodn */
76 static u32 max_subwindow_count;
77 
78 /* Pool for fspi allocation */
79 static struct gen_pool *spaace_pool;
80 
81 /**
82  * pamu_get_max_subwin_cnt() - Return the maximum supported
83  * subwindow count per liodn.
84  *
85  */
86 u32 pamu_get_max_subwin_cnt(void)
87 {
88 	return max_subwindow_count;
89 }
90 
91 /**
92  * pamu_get_ppaace() - Return the primary PACCE
93  * @liodn: liodn PAACT index for desired PAACE
94  *
95  * Returns the ppace pointer upon success else return
96  * null.
97  */
98 static struct paace *pamu_get_ppaace(int liodn)
99 {
100 	if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
101 		pr_debug("PPAACT doesn't exist\n");
102 		return NULL;
103 	}
104 
105 	return &ppaact[liodn];
106 }
107 
108 /**
109  * pamu_enable_liodn() - Set valid bit of PACCE
110  * @liodn: liodn PAACT index for desired PAACE
111  *
112  * Returns 0 upon success else error code < 0 returned
113  */
114 int pamu_enable_liodn(int liodn)
115 {
116 	struct paace *ppaace;
117 
118 	ppaace = pamu_get_ppaace(liodn);
119 	if (!ppaace) {
120 		pr_debug("Invalid primary paace entry\n");
121 		return -ENOENT;
122 	}
123 
124 	if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
125 		pr_debug("liodn %d not configured\n", liodn);
126 		return -EINVAL;
127 	}
128 
129 	/* Ensure that all other stores to the ppaace complete first */
130 	mb();
131 
132 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
133 	mb();
134 
135 	return 0;
136 }
137 
138 /**
139  * pamu_disable_liodn() - Clears valid bit of PACCE
140  * @liodn: liodn PAACT index for desired PAACE
141  *
142  * Returns 0 upon success else error code < 0 returned
143  */
144 int pamu_disable_liodn(int liodn)
145 {
146 	struct paace *ppaace;
147 
148 	ppaace = pamu_get_ppaace(liodn);
149 	if (!ppaace) {
150 		pr_debug("Invalid primary paace entry\n");
151 		return -ENOENT;
152 	}
153 
154 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
155 	mb();
156 
157 	return 0;
158 }
159 
160 /* Derive the window size encoding for a particular PAACE entry */
161 static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
162 {
163 	/* Bug if not a power of 2 */
164 	BUG_ON(addrspace_size & (addrspace_size - 1));
165 
166 	/* window size is 2^(WSE+1) bytes */
167 	return fls64(addrspace_size) - 2;
168 }
169 
170 /* Derive the PAACE window count encoding for the subwindow count */
171 static unsigned int map_subwindow_cnt_to_wce(u32 subwindow_cnt)
172 {
173 	/* window count is 2^(WCE+1) bytes */
174 	return __ffs(subwindow_cnt) - 1;
175 }
176 
177 /*
178  * Set the PAACE type as primary and set the coherency required domain
179  * attribute
180  */
181 static void pamu_init_ppaace(struct paace *ppaace)
182 {
183 	set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
184 
185 	set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
186 	       PAACE_M_COHERENCE_REQ);
187 }
188 
189 /*
190  * Set the PAACE type as secondary and set the coherency required domain
191  * attribute.
192  */
193 static void pamu_init_spaace(struct paace *spaace)
194 {
195 	set_bf(spaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_SECONDARY);
196 	set_bf(spaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
197 	       PAACE_M_COHERENCE_REQ);
198 }
199 
200 /*
201  * Return the spaace (corresponding to the secondary window index)
202  * for a particular ppaace.
203  */
204 static struct paace *pamu_get_spaace(struct paace *paace, u32 wnum)
205 {
206 	u32 subwin_cnt;
207 	struct paace *spaace = NULL;
208 
209 	subwin_cnt = 1UL << (get_bf(paace->impl_attr, PAACE_IA_WCE) + 1);
210 
211 	if (wnum < subwin_cnt)
212 		spaace = &spaact[paace->fspi + wnum];
213 	else
214 		pr_debug("secondary paace out of bounds\n");
215 
216 	return spaace;
217 }
218 
219 /**
220  * pamu_get_fspi_and_allocate() - Allocates fspi index and reserves subwindows
221  *                                required for primary PAACE in the secondary
222  *                                PAACE table.
223  * @subwin_cnt: Number of subwindows to be reserved.
224  *
225  * A PPAACE entry may have a number of associated subwindows. A subwindow
226  * corresponds to a SPAACE entry in the SPAACT table. Each PAACE entry stores
227  * the index (fspi) of the first SPAACE entry in the SPAACT table. This
228  * function returns the index of the first SPAACE entry. The remaining
229  * SPAACE entries are reserved contiguously from that index.
230  *
231  * Returns a valid fspi index in the range of 0 - SPAACE_NUMBER_ENTRIES on success.
232  * If no SPAACE entry is available or the allocator can not reserve the required
233  * number of contiguous entries function returns ULONG_MAX indicating a failure.
234  *
235  */
236 static unsigned long pamu_get_fspi_and_allocate(u32 subwin_cnt)
237 {
238 	unsigned long spaace_addr;
239 
240 	spaace_addr = gen_pool_alloc(spaace_pool, subwin_cnt * sizeof(struct paace));
241 	if (!spaace_addr)
242 		return ULONG_MAX;
243 
244 	return (spaace_addr - (unsigned long)spaact) / (sizeof(struct paace));
245 }
246 
247 /* Release the subwindows reserved for a particular LIODN */
248 void pamu_free_subwins(int liodn)
249 {
250 	struct paace *ppaace;
251 	u32 subwin_cnt, size;
252 
253 	ppaace = pamu_get_ppaace(liodn);
254 	if (!ppaace) {
255 		pr_debug("Invalid liodn entry\n");
256 		return;
257 	}
258 
259 	if (get_bf(ppaace->addr_bitfields, PPAACE_AF_MW)) {
260 		subwin_cnt = 1UL << (get_bf(ppaace->impl_attr, PAACE_IA_WCE) + 1);
261 		size = (subwin_cnt - 1) * sizeof(struct paace);
262 		gen_pool_free(spaace_pool, (unsigned long)&spaact[ppaace->fspi], size);
263 		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
264 	}
265 }
266 
267 /*
268  * Function used for updating stash destination for the coressponding
269  * LIODN.
270  */
271 int  pamu_update_paace_stash(int liodn, u32 subwin, u32 value)
272 {
273 	struct paace *paace;
274 
275 	paace = pamu_get_ppaace(liodn);
276 	if (!paace) {
277 		pr_debug("Invalid liodn entry\n");
278 		return -ENOENT;
279 	}
280 	if (subwin) {
281 		paace = pamu_get_spaace(paace, subwin - 1);
282 		if (!paace)
283 			return -ENOENT;
284 	}
285 	set_bf(paace->impl_attr, PAACE_IA_CID, value);
286 
287 	mb();
288 
289 	return 0;
290 }
291 
292 /* Disable a subwindow corresponding to the LIODN */
293 int pamu_disable_spaace(int liodn, u32 subwin)
294 {
295 	struct paace *paace;
296 
297 	paace = pamu_get_ppaace(liodn);
298 	if (!paace) {
299 		pr_debug("Invalid liodn entry\n");
300 		return -ENOENT;
301 	}
302 	if (subwin) {
303 		paace = pamu_get_spaace(paace, subwin - 1);
304 		if (!paace)
305 			return -ENOENT;
306 		set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
307 	} else {
308 		set_bf(paace->addr_bitfields, PAACE_AF_AP,
309 		       PAACE_AP_PERMS_DENIED);
310 	}
311 
312 	mb();
313 
314 	return 0;
315 }
316 
317 /**
318  * pamu_config_paace() - Sets up PPAACE entry for specified liodn
319  *
320  * @liodn: Logical IO device number
321  * @win_addr: starting address of DSA window
322  * @win-size: size of DSA window
323  * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
324  * @rpn: real (true physical) page number
325  * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
326  *	     stashid not defined
327  * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
328  *	     snoopid not defined
329  * @subwin_cnt: number of sub-windows
330  * @prot: window permissions
331  *
332  * Returns 0 upon success else error code < 0 returned
333  */
334 int pamu_config_ppaace(int liodn, phys_addr_t win_addr, phys_addr_t win_size,
335 		       u32 omi, unsigned long rpn, u32 snoopid, u32 stashid,
336 		       u32 subwin_cnt, int prot)
337 {
338 	struct paace *ppaace;
339 	unsigned long fspi;
340 
341 	if ((win_size & (win_size - 1)) || win_size < PAMU_PAGE_SIZE) {
342 		pr_debug("window size too small or not a power of two %pa\n",
343 			 &win_size);
344 		return -EINVAL;
345 	}
346 
347 	if (win_addr & (win_size - 1)) {
348 		pr_debug("window address is not aligned with window size\n");
349 		return -EINVAL;
350 	}
351 
352 	ppaace = pamu_get_ppaace(liodn);
353 	if (!ppaace)
354 		return -ENOENT;
355 
356 	/* window size is 2^(WSE+1) bytes */
357 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
358 	       map_addrspace_size_to_wse(win_size));
359 
360 	pamu_init_ppaace(ppaace);
361 
362 	ppaace->wbah = win_addr >> (PAMU_PAGE_SHIFT + 20);
363 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL,
364 	       (win_addr >> PAMU_PAGE_SHIFT));
365 
366 	/* set up operation mapping if it's configured */
367 	if (omi < OME_NUMBER_ENTRIES) {
368 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
369 		ppaace->op_encode.index_ot.omi = omi;
370 	} else if (~omi != 0) {
371 		pr_debug("bad operation mapping index: %d\n", omi);
372 		return -EINVAL;
373 	}
374 
375 	/* configure stash id */
376 	if (~stashid != 0)
377 		set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
378 
379 	/* configure snoop id */
380 	if (~snoopid != 0)
381 		ppaace->domain_attr.to_host.snpid = snoopid;
382 
383 	if (subwin_cnt) {
384 		/* The first entry is in the primary PAACE instead */
385 		fspi = pamu_get_fspi_and_allocate(subwin_cnt - 1);
386 		if (fspi == ULONG_MAX) {
387 			pr_debug("spaace indexes exhausted\n");
388 			return -EINVAL;
389 		}
390 
391 		/* window count is 2^(WCE+1) bytes */
392 		set_bf(ppaace->impl_attr, PAACE_IA_WCE,
393 		       map_subwindow_cnt_to_wce(subwin_cnt));
394 		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0x1);
395 		ppaace->fspi = fspi;
396 	} else {
397 		set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
398 		ppaace->twbah = rpn >> 20;
399 		set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, rpn);
400 		set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
401 		set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
402 		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
403 	}
404 	mb();
405 
406 	return 0;
407 }
408 
409 /**
410  * pamu_config_spaace() - Sets up SPAACE entry for specified subwindow
411  *
412  * @liodn:  Logical IO device number
413  * @subwin_cnt:  number of sub-windows associated with dma-window
414  * @subwin: subwindow index
415  * @subwin_size: size of subwindow
416  * @omi: Operation mapping index
417  * @rpn: real (true physical) page number
418  * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
419  *			  snoopid not defined
420  * @stashid: cache stash id for associated cpu
421  * @enable: enable/disable subwindow after reconfiguration
422  * @prot: sub window permissions
423  *
424  * Returns 0 upon success else error code < 0 returned
425  */
426 int pamu_config_spaace(int liodn, u32 subwin_cnt, u32 subwin,
427 		       phys_addr_t subwin_size, u32 omi, unsigned long rpn,
428 		       u32 snoopid, u32 stashid, int enable, int prot)
429 {
430 	struct paace *paace;
431 
432 	/* setup sub-windows */
433 	if (!subwin_cnt) {
434 		pr_debug("Invalid subwindow count\n");
435 		return -EINVAL;
436 	}
437 
438 	paace = pamu_get_ppaace(liodn);
439 	if (subwin > 0 && subwin < subwin_cnt && paace) {
440 		paace = pamu_get_spaace(paace, subwin - 1);
441 
442 		if (paace && !(paace->addr_bitfields & PAACE_V_VALID)) {
443 			pamu_init_spaace(paace);
444 			set_bf(paace->addr_bitfields, SPAACE_AF_LIODN, liodn);
445 		}
446 	}
447 
448 	if (!paace) {
449 		pr_debug("Invalid liodn entry\n");
450 		return -ENOENT;
451 	}
452 
453 	if ((subwin_size & (subwin_size - 1)) || subwin_size < PAMU_PAGE_SIZE) {
454 		pr_debug("subwindow size out of range, or not a power of 2\n");
455 		return -EINVAL;
456 	}
457 
458 	if (rpn == ULONG_MAX) {
459 		pr_debug("real page number out of range\n");
460 		return -EINVAL;
461 	}
462 
463 	/* window size is 2^(WSE+1) bytes */
464 	set_bf(paace->win_bitfields, PAACE_WIN_SWSE,
465 	       map_addrspace_size_to_wse(subwin_size));
466 
467 	set_bf(paace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
468 	paace->twbah = rpn >> 20;
469 	set_bf(paace->win_bitfields, PAACE_WIN_TWBAL, rpn);
470 	set_bf(paace->addr_bitfields, PAACE_AF_AP, prot);
471 
472 	/* configure snoop id */
473 	if (~snoopid != 0)
474 		paace->domain_attr.to_host.snpid = snoopid;
475 
476 	/* set up operation mapping if it's configured */
477 	if (omi < OME_NUMBER_ENTRIES) {
478 		set_bf(paace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
479 		paace->op_encode.index_ot.omi = omi;
480 	} else if (~omi != 0) {
481 		pr_debug("bad operation mapping index: %d\n", omi);
482 		return -EINVAL;
483 	}
484 
485 	if (~stashid != 0)
486 		set_bf(paace->impl_attr, PAACE_IA_CID, stashid);
487 
488 	smp_wmb();
489 
490 	if (enable)
491 		set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
492 
493 	mb();
494 
495 	return 0;
496 }
497 
498 /**
499  * get_ome_index() - Returns the index in the operation mapping table
500  *                   for device.
501  * @*omi_index: pointer for storing the index value
502  *
503  */
504 void get_ome_index(u32 *omi_index, struct device *dev)
505 {
506 	if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
507 		*omi_index = OMI_QMAN;
508 	if (of_device_is_compatible(dev->of_node, "fsl,qman"))
509 		*omi_index = OMI_QMAN_PRIV;
510 }
511 
512 /**
513  * get_stash_id - Returns stash destination id corresponding to a
514  *                cache type and vcpu.
515  * @stash_dest_hint: L1, L2 or L3
516  * @vcpu: vpcu target for a particular cache type.
517  *
518  * Returs stash on success or ~(u32)0 on failure.
519  *
520  */
521 u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
522 {
523 	const u32 *prop;
524 	struct device_node *node;
525 	u32 cache_level;
526 	int len, found = 0;
527 	int i;
528 
529 	/* Fastpath, exit early if L3/CPC cache is target for stashing */
530 	if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
531 		node = of_find_matching_node(NULL, l3_device_ids);
532 		if (node) {
533 			prop = of_get_property(node, "cache-stash-id", NULL);
534 			if (!prop) {
535 				pr_debug("missing cache-stash-id at %pOF\n",
536 					 node);
537 				of_node_put(node);
538 				return ~(u32)0;
539 			}
540 			of_node_put(node);
541 			return be32_to_cpup(prop);
542 		}
543 		return ~(u32)0;
544 	}
545 
546 	for_each_node_by_type(node, "cpu") {
547 		prop = of_get_property(node, "reg", &len);
548 		for (i = 0; i < len / sizeof(u32); i++) {
549 			if (be32_to_cpup(&prop[i]) == vcpu) {
550 				found = 1;
551 				goto found_cpu_node;
552 			}
553 		}
554 	}
555 found_cpu_node:
556 
557 	/* find the hwnode that represents the cache */
558 	for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
559 		if (stash_dest_hint == cache_level) {
560 			prop = of_get_property(node, "cache-stash-id", NULL);
561 			if (!prop) {
562 				pr_debug("missing cache-stash-id at %pOF\n",
563 					 node);
564 				of_node_put(node);
565 				return ~(u32)0;
566 			}
567 			of_node_put(node);
568 			return be32_to_cpup(prop);
569 		}
570 
571 		prop = of_get_property(node, "next-level-cache", NULL);
572 		if (!prop) {
573 			pr_debug("can't find next-level-cache at %pOF\n", node);
574 			of_node_put(node);
575 			return ~(u32)0;  /* can't traverse any further */
576 		}
577 		of_node_put(node);
578 
579 		/* advance to next node in cache hierarchy */
580 		node = of_find_node_by_phandle(*prop);
581 		if (!node) {
582 			pr_debug("Invalid node for cache hierarchy\n");
583 			return ~(u32)0;
584 		}
585 	}
586 
587 	pr_debug("stash dest not found for %d on vcpu %d\n",
588 		 stash_dest_hint, vcpu);
589 	return ~(u32)0;
590 }
591 
592 /* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
593 #define QMAN_PAACE 1
594 #define QMAN_PORTAL_PAACE 2
595 #define BMAN_PAACE 3
596 
597 /**
598  * Setup operation mapping and stash destinations for QMAN and QMAN portal.
599  * Memory accesses to QMAN and BMAN private memory need not be coherent, so
600  * clear the PAACE entry coherency attribute for them.
601  */
602 static void setup_qbman_paace(struct paace *ppaace, int  paace_type)
603 {
604 	switch (paace_type) {
605 	case QMAN_PAACE:
606 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
607 		ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
608 		/* setup QMAN Private data stashing for the L3 cache */
609 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
610 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
611 		       0);
612 		break;
613 	case QMAN_PORTAL_PAACE:
614 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
615 		ppaace->op_encode.index_ot.omi = OMI_QMAN;
616 		/* Set DQRR and Frame stashing for the L3 cache */
617 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
618 		break;
619 	case BMAN_PAACE:
620 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
621 		       0);
622 		break;
623 	}
624 }
625 
626 /**
627  * Setup the operation mapping table for various devices. This is a static
628  * table where each table index corresponds to a particular device. PAMU uses
629  * this table to translate device transaction to appropriate corenet
630  * transaction.
631  */
632 static void setup_omt(struct ome *omt)
633 {
634 	struct ome *ome;
635 
636 	/* Configure OMI_QMAN */
637 	ome = &omt[OMI_QMAN];
638 
639 	ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
640 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
641 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
642 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
643 
644 	ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
645 	ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
646 
647 	/* Configure OMI_FMAN */
648 	ome = &omt[OMI_FMAN];
649 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
650 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
651 
652 	/* Configure OMI_QMAN private */
653 	ome = &omt[OMI_QMAN_PRIV];
654 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READ;
655 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
656 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
657 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
658 
659 	/* Configure OMI_CAAM */
660 	ome = &omt[OMI_CAAM];
661 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
662 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
663 }
664 
665 /*
666  * Get the maximum number of PAACT table entries
667  * and subwindows supported by PAMU
668  */
669 static void get_pamu_cap_values(unsigned long pamu_reg_base)
670 {
671 	u32 pc_val;
672 
673 	pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
674 	/* Maximum number of subwindows per liodn */
675 	max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
676 }
677 
678 /* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
679 static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
680 			  phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
681 			  phys_addr_t omt_phys)
682 {
683 	u32 *pc;
684 	struct pamu_mmap_regs *pamu_regs;
685 
686 	pc = (u32 *) (pamu_reg_base + PAMU_PC);
687 	pamu_regs = (struct pamu_mmap_regs *)
688 		(pamu_reg_base + PAMU_MMAP_REGS_BASE);
689 
690 	/* set up pointers to corenet control blocks */
691 
692 	out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
693 	out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
694 	ppaact_phys = ppaact_phys + PAACT_SIZE;
695 	out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
696 	out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
697 
698 	out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
699 	out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
700 	spaact_phys = spaact_phys + SPAACT_SIZE;
701 	out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
702 	out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
703 
704 	out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
705 	out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
706 	omt_phys = omt_phys + OMT_SIZE;
707 	out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
708 	out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
709 
710 	/*
711 	 * set PAMU enable bit,
712 	 * allow ppaact & omt to be cached
713 	 * & enable PAMU access violation interrupts.
714 	 */
715 
716 	out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
717 		 PAMU_ACCESS_VIOLATION_ENABLE);
718 	out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
719 	return 0;
720 }
721 
722 /* Enable all device LIODNS */
723 static void setup_liodns(void)
724 {
725 	int i, len;
726 	struct paace *ppaace;
727 	struct device_node *node = NULL;
728 	const u32 *prop;
729 
730 	for_each_node_with_property(node, "fsl,liodn") {
731 		prop = of_get_property(node, "fsl,liodn", &len);
732 		for (i = 0; i < len / sizeof(u32); i++) {
733 			int liodn;
734 
735 			liodn = be32_to_cpup(&prop[i]);
736 			if (liodn >= PAACE_NUMBER_ENTRIES) {
737 				pr_debug("Invalid LIODN value %d\n", liodn);
738 				continue;
739 			}
740 			ppaace = pamu_get_ppaace(liodn);
741 			pamu_init_ppaace(ppaace);
742 			/* window size is 2^(WSE+1) bytes */
743 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
744 			ppaace->wbah = 0;
745 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
746 			set_bf(ppaace->impl_attr, PAACE_IA_ATM,
747 			       PAACE_ATM_NO_XLATE);
748 			set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
749 			       PAACE_AP_PERMS_ALL);
750 			if (of_device_is_compatible(node, "fsl,qman-portal"))
751 				setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
752 			if (of_device_is_compatible(node, "fsl,qman"))
753 				setup_qbman_paace(ppaace, QMAN_PAACE);
754 			if (of_device_is_compatible(node, "fsl,bman"))
755 				setup_qbman_paace(ppaace, BMAN_PAACE);
756 			mb();
757 			pamu_enable_liodn(liodn);
758 		}
759 	}
760 }
761 
762 static irqreturn_t pamu_av_isr(int irq, void *arg)
763 {
764 	struct pamu_isr_data *data = arg;
765 	phys_addr_t phys;
766 	unsigned int i, j, ret;
767 
768 	pr_emerg("access violation interrupt\n");
769 
770 	for (i = 0; i < data->count; i++) {
771 		void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
772 		u32 pics = in_be32(p + PAMU_PICS);
773 
774 		if (pics & PAMU_ACCESS_VIOLATION_STAT) {
775 			u32 avs1 = in_be32(p + PAMU_AVS1);
776 			struct paace *paace;
777 
778 			pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
779 			pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
780 			pr_emerg("AVS1=%08x\n", avs1);
781 			pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
782 			pr_emerg("AVA=%016llx\n",
783 				 make64(in_be32(p + PAMU_AVAH),
784 					in_be32(p + PAMU_AVAL)));
785 			pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
786 			pr_emerg("POEA=%016llx\n",
787 				 make64(in_be32(p + PAMU_POEAH),
788 					in_be32(p + PAMU_POEAL)));
789 
790 			phys = make64(in_be32(p + PAMU_POEAH),
791 				      in_be32(p + PAMU_POEAL));
792 
793 			/* Assume that POEA points to a PAACE */
794 			if (phys) {
795 				u32 *paace = phys_to_virt(phys);
796 
797 				/* Only the first four words are relevant */
798 				for (j = 0; j < 4; j++)
799 					pr_emerg("PAACE[%u]=%08x\n",
800 						 j, in_be32(paace + j));
801 			}
802 
803 			/* clear access violation condition */
804 			out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
805 			paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
806 			BUG_ON(!paace);
807 			/* check if we got a violation for a disabled LIODN */
808 			if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
809 				/*
810 				 * As per hardware erratum A-003638, access
811 				 * violation can be reported for a disabled
812 				 * LIODN. If we hit that condition, disable
813 				 * access violation reporting.
814 				 */
815 				pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
816 			} else {
817 				/* Disable the LIODN */
818 				ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
819 				BUG_ON(ret);
820 				pr_emerg("Disabling liodn %x\n",
821 					 avs1 >> PAMU_AVS1_LIODN_SHIFT);
822 			}
823 			out_be32((p + PAMU_PICS), pics);
824 		}
825 	}
826 
827 	return IRQ_HANDLED;
828 }
829 
830 #define LAWAR_EN		0x80000000
831 #define LAWAR_TARGET_MASK	0x0FF00000
832 #define LAWAR_TARGET_SHIFT	20
833 #define LAWAR_SIZE_MASK		0x0000003F
834 #define LAWAR_CSDID_MASK	0x000FF000
835 #define LAWAR_CSDID_SHIFT	12
836 
837 #define LAW_SIZE_4K		0xb
838 
839 struct ccsr_law {
840 	u32	lawbarh;	/* LAWn base address high */
841 	u32	lawbarl;	/* LAWn base address low */
842 	u32	lawar;		/* LAWn attributes */
843 	u32	reserved;
844 };
845 
846 /*
847  * Create a coherence subdomain for a given memory block.
848  */
849 static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
850 {
851 	struct device_node *np;
852 	const __be32 *iprop;
853 	void __iomem *lac = NULL;	/* Local Access Control registers */
854 	struct ccsr_law __iomem *law;
855 	void __iomem *ccm = NULL;
856 	u32 __iomem *csdids;
857 	unsigned int i, num_laws, num_csds;
858 	u32 law_target = 0;
859 	u32 csd_id = 0;
860 	int ret = 0;
861 
862 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
863 	if (!np)
864 		return -ENODEV;
865 
866 	iprop = of_get_property(np, "fsl,num-laws", NULL);
867 	if (!iprop) {
868 		ret = -ENODEV;
869 		goto error;
870 	}
871 
872 	num_laws = be32_to_cpup(iprop);
873 	if (!num_laws) {
874 		ret = -ENODEV;
875 		goto error;
876 	}
877 
878 	lac = of_iomap(np, 0);
879 	if (!lac) {
880 		ret = -ENODEV;
881 		goto error;
882 	}
883 
884 	/* LAW registers are at offset 0xC00 */
885 	law = lac + 0xC00;
886 
887 	of_node_put(np);
888 
889 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
890 	if (!np) {
891 		ret = -ENODEV;
892 		goto error;
893 	}
894 
895 	iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
896 	if (!iprop) {
897 		ret = -ENODEV;
898 		goto error;
899 	}
900 
901 	num_csds = be32_to_cpup(iprop);
902 	if (!num_csds) {
903 		ret = -ENODEV;
904 		goto error;
905 	}
906 
907 	ccm = of_iomap(np, 0);
908 	if (!ccm) {
909 		ret = -ENOMEM;
910 		goto error;
911 	}
912 
913 	/* The undocumented CSDID registers are at offset 0x600 */
914 	csdids = ccm + 0x600;
915 
916 	of_node_put(np);
917 	np = NULL;
918 
919 	/* Find an unused coherence subdomain ID */
920 	for (csd_id = 0; csd_id < num_csds; csd_id++) {
921 		if (!csdids[csd_id])
922 			break;
923 	}
924 
925 	/* Store the Port ID in the (undocumented) proper CIDMRxx register */
926 	csdids[csd_id] = csd_port_id;
927 
928 	/* Find the DDR LAW that maps to our buffer. */
929 	for (i = 0; i < num_laws; i++) {
930 		if (law[i].lawar & LAWAR_EN) {
931 			phys_addr_t law_start, law_end;
932 
933 			law_start = make64(law[i].lawbarh, law[i].lawbarl);
934 			law_end = law_start +
935 				(2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
936 
937 			if (law_start <= phys && phys < law_end) {
938 				law_target = law[i].lawar & LAWAR_TARGET_MASK;
939 				break;
940 			}
941 		}
942 	}
943 
944 	if (i == 0 || i == num_laws) {
945 		/* This should never happen */
946 		ret = -ENOENT;
947 		goto error;
948 	}
949 
950 	/* Find a free LAW entry */
951 	while (law[--i].lawar & LAWAR_EN) {
952 		if (i == 0) {
953 			/* No higher priority LAW slots available */
954 			ret = -ENOENT;
955 			goto error;
956 		}
957 	}
958 
959 	law[i].lawbarh = upper_32_bits(phys);
960 	law[i].lawbarl = lower_32_bits(phys);
961 	wmb();
962 	law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
963 		(LAW_SIZE_4K + get_order(size));
964 	wmb();
965 
966 error:
967 	if (ccm)
968 		iounmap(ccm);
969 
970 	if (lac)
971 		iounmap(lac);
972 
973 	if (np)
974 		of_node_put(np);
975 
976 	return ret;
977 }
978 
979 /*
980  * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
981  * bit map of snoopers for a given range of memory mapped by a LAW.
982  *
983  * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
984  * table should never need to be updated.  SVRs are guaranteed to be unique, so
985  * there is no worry that a future SOC will inadvertently have one of these
986  * values.
987  */
988 static const struct {
989 	u32 svr;
990 	u32 port_id;
991 } port_id_map[] = {
992 	{(SVR_P2040 << 8) | 0x10, 0xFF000000},	/* P2040 1.0 */
993 	{(SVR_P2040 << 8) | 0x11, 0xFF000000},	/* P2040 1.1 */
994 	{(SVR_P2041 << 8) | 0x10, 0xFF000000},	/* P2041 1.0 */
995 	{(SVR_P2041 << 8) | 0x11, 0xFF000000},	/* P2041 1.1 */
996 	{(SVR_P3041 << 8) | 0x10, 0xFF000000},	/* P3041 1.0 */
997 	{(SVR_P3041 << 8) | 0x11, 0xFF000000},	/* P3041 1.1 */
998 	{(SVR_P4040 << 8) | 0x20, 0xFFF80000},	/* P4040 2.0 */
999 	{(SVR_P4080 << 8) | 0x20, 0xFFF80000},	/* P4080 2.0 */
1000 	{(SVR_P5010 << 8) | 0x10, 0xFC000000},	/* P5010 1.0 */
1001 	{(SVR_P5010 << 8) | 0x20, 0xFC000000},	/* P5010 2.0 */
1002 	{(SVR_P5020 << 8) | 0x10, 0xFC000000},	/* P5020 1.0 */
1003 	{(SVR_P5021 << 8) | 0x10, 0xFF800000},	/* P5021 1.0 */
1004 	{(SVR_P5040 << 8) | 0x10, 0xFF800000},	/* P5040 1.0 */
1005 };
1006 
1007 #define SVR_SECURITY	0x80000	/* The Security (E) bit */
1008 
1009 static int fsl_pamu_probe(struct platform_device *pdev)
1010 {
1011 	struct device *dev = &pdev->dev;
1012 	void __iomem *pamu_regs = NULL;
1013 	struct ccsr_guts __iomem *guts_regs = NULL;
1014 	u32 pamubypenr, pamu_counter;
1015 	unsigned long pamu_reg_off;
1016 	unsigned long pamu_reg_base;
1017 	struct pamu_isr_data *data = NULL;
1018 	struct device_node *guts_node;
1019 	u64 size;
1020 	struct page *p;
1021 	int ret = 0;
1022 	int irq;
1023 	phys_addr_t ppaact_phys;
1024 	phys_addr_t spaact_phys;
1025 	struct ome *omt;
1026 	phys_addr_t omt_phys;
1027 	size_t mem_size = 0;
1028 	unsigned int order = 0;
1029 	u32 csd_port_id = 0;
1030 	unsigned i;
1031 	/*
1032 	 * enumerate all PAMUs and allocate and setup PAMU tables
1033 	 * for each of them,
1034 	 * NOTE : All PAMUs share the same LIODN tables.
1035 	 */
1036 
1037 	if (WARN_ON(probed))
1038 		return -EBUSY;
1039 
1040 	pamu_regs = of_iomap(dev->of_node, 0);
1041 	if (!pamu_regs) {
1042 		dev_err(dev, "ioremap of PAMU node failed\n");
1043 		return -ENOMEM;
1044 	}
1045 	of_get_address(dev->of_node, 0, &size, NULL);
1046 
1047 	irq = irq_of_parse_and_map(dev->of_node, 0);
1048 	if (irq == NO_IRQ) {
1049 		dev_warn(dev, "no interrupts listed in PAMU node\n");
1050 		goto error;
1051 	}
1052 
1053 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1054 	if (!data) {
1055 		ret = -ENOMEM;
1056 		goto error;
1057 	}
1058 	data->pamu_reg_base = pamu_regs;
1059 	data->count = size / PAMU_OFFSET;
1060 
1061 	/* The ISR needs access to the regs, so we won't iounmap them */
1062 	ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
1063 	if (ret < 0) {
1064 		dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
1065 		goto error;
1066 	}
1067 
1068 	guts_node = of_find_matching_node(NULL, guts_device_ids);
1069 	if (!guts_node) {
1070 		dev_err(dev, "could not find GUTS node %pOF\n", dev->of_node);
1071 		ret = -ENODEV;
1072 		goto error;
1073 	}
1074 
1075 	guts_regs = of_iomap(guts_node, 0);
1076 	of_node_put(guts_node);
1077 	if (!guts_regs) {
1078 		dev_err(dev, "ioremap of GUTS node failed\n");
1079 		ret = -ENODEV;
1080 		goto error;
1081 	}
1082 
1083 	/* read in the PAMU capability registers */
1084 	get_pamu_cap_values((unsigned long)pamu_regs);
1085 	/*
1086 	 * To simplify the allocation of a coherency domain, we allocate the
1087 	 * PAACT and the OMT in the same memory buffer.  Unfortunately, this
1088 	 * wastes more memory compared to allocating the buffers separately.
1089 	 */
1090 	/* Determine how much memory we need */
1091 	mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
1092 		(PAGE_SIZE << get_order(SPAACT_SIZE)) +
1093 		(PAGE_SIZE << get_order(OMT_SIZE));
1094 	order = get_order(mem_size);
1095 
1096 	p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1097 	if (!p) {
1098 		dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
1099 		ret = -ENOMEM;
1100 		goto error;
1101 	}
1102 
1103 	ppaact = page_address(p);
1104 	ppaact_phys = page_to_phys(p);
1105 
1106 	/* Make sure the memory is naturally aligned */
1107 	if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
1108 		dev_err(dev, "PAACT/OMT block is unaligned\n");
1109 		ret = -ENOMEM;
1110 		goto error;
1111 	}
1112 
1113 	spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
1114 	omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
1115 
1116 	dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
1117 
1118 	/* Check to see if we need to implement the work-around on this SOC */
1119 
1120 	/* Determine the Port ID for our coherence subdomain */
1121 	for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
1122 		if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
1123 			csd_port_id = port_id_map[i].port_id;
1124 			dev_dbg(dev, "found matching SVR %08x\n",
1125 				port_id_map[i].svr);
1126 			break;
1127 		}
1128 	}
1129 
1130 	if (csd_port_id) {
1131 		dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
1132 			&ppaact_phys, mem_size, csd_port_id);
1133 
1134 		ret = create_csd(ppaact_phys, mem_size, csd_port_id);
1135 		if (ret) {
1136 			dev_err(dev, "could not create coherence subdomain\n");
1137 			return ret;
1138 		}
1139 	}
1140 
1141 	spaact_phys = virt_to_phys(spaact);
1142 	omt_phys = virt_to_phys(omt);
1143 
1144 	spaace_pool = gen_pool_create(ilog2(sizeof(struct paace)), -1);
1145 	if (!spaace_pool) {
1146 		ret = -ENOMEM;
1147 		dev_err(dev, "Failed to allocate spaace gen pool\n");
1148 		goto error;
1149 	}
1150 
1151 	ret = gen_pool_add(spaace_pool, (unsigned long)spaact, SPAACT_SIZE, -1);
1152 	if (ret)
1153 		goto error_genpool;
1154 
1155 	pamubypenr = in_be32(&guts_regs->pamubypenr);
1156 
1157 	for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
1158 	     pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
1159 
1160 		pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
1161 		setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
1162 			       spaact_phys, omt_phys);
1163 		/* Disable PAMU bypass for this PAMU */
1164 		pamubypenr &= ~pamu_counter;
1165 	}
1166 
1167 	setup_omt(omt);
1168 
1169 	/* Enable all relevant PAMU(s) */
1170 	out_be32(&guts_regs->pamubypenr, pamubypenr);
1171 
1172 	iounmap(guts_regs);
1173 
1174 	/* Enable DMA for the LIODNs in the device tree */
1175 
1176 	setup_liodns();
1177 
1178 	probed = true;
1179 
1180 	return 0;
1181 
1182 error_genpool:
1183 	gen_pool_destroy(spaace_pool);
1184 
1185 error:
1186 	if (irq != NO_IRQ)
1187 		free_irq(irq, data);
1188 
1189 	if (data) {
1190 		memset(data, 0, sizeof(struct pamu_isr_data));
1191 		kfree(data);
1192 	}
1193 
1194 	if (pamu_regs)
1195 		iounmap(pamu_regs);
1196 
1197 	if (guts_regs)
1198 		iounmap(guts_regs);
1199 
1200 	if (ppaact)
1201 		free_pages((unsigned long)ppaact, order);
1202 
1203 	ppaact = NULL;
1204 
1205 	return ret;
1206 }
1207 
1208 static struct platform_driver fsl_of_pamu_driver = {
1209 	.driver = {
1210 		.name = "fsl-of-pamu",
1211 	},
1212 	.probe = fsl_pamu_probe,
1213 };
1214 
1215 static __init int fsl_pamu_init(void)
1216 {
1217 	struct platform_device *pdev = NULL;
1218 	struct device_node *np;
1219 	int ret;
1220 
1221 	/*
1222 	 * The normal OF process calls the probe function at some
1223 	 * indeterminate later time, after most drivers have loaded.  This is
1224 	 * too late for us, because PAMU clients (like the Qman driver)
1225 	 * depend on PAMU being initialized early.
1226 	 *
1227 	 * So instead, we "manually" call our probe function by creating the
1228 	 * platform devices ourselves.
1229 	 */
1230 
1231 	/*
1232 	 * We assume that there is only one PAMU node in the device tree.  A
1233 	 * single PAMU node represents all of the PAMU devices in the SOC
1234 	 * already.   Everything else already makes that assumption, and the
1235 	 * binding for the PAMU nodes doesn't allow for any parent-child
1236 	 * relationships anyway.  In other words, support for more than one
1237 	 * PAMU node would require significant changes to a lot of code.
1238 	 */
1239 
1240 	np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
1241 	if (!np) {
1242 		pr_err("could not find a PAMU node\n");
1243 		return -ENODEV;
1244 	}
1245 
1246 	ret = platform_driver_register(&fsl_of_pamu_driver);
1247 	if (ret) {
1248 		pr_err("could not register driver (err=%i)\n", ret);
1249 		goto error_driver_register;
1250 	}
1251 
1252 	pdev = platform_device_alloc("fsl-of-pamu", 0);
1253 	if (!pdev) {
1254 		pr_err("could not allocate device %pOF\n", np);
1255 		ret = -ENOMEM;
1256 		goto error_device_alloc;
1257 	}
1258 	pdev->dev.of_node = of_node_get(np);
1259 
1260 	ret = pamu_domain_init();
1261 	if (ret)
1262 		goto error_device_add;
1263 
1264 	ret = platform_device_add(pdev);
1265 	if (ret) {
1266 		pr_err("could not add device %pOF (err=%i)\n", np, ret);
1267 		goto error_device_add;
1268 	}
1269 
1270 	return 0;
1271 
1272 error_device_add:
1273 	of_node_put(pdev->dev.of_node);
1274 	pdev->dev.of_node = NULL;
1275 
1276 	platform_device_put(pdev);
1277 
1278 error_device_alloc:
1279 	platform_driver_unregister(&fsl_of_pamu_driver);
1280 
1281 error_driver_register:
1282 	of_node_put(np);
1283 
1284 	return ret;
1285 }
1286 arch_initcall(fsl_pamu_init);
1287