xref: /openbmc/linux/drivers/iommu/fsl_pamu.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (C) 2013 Freescale Semiconductor, Inc.
5  */
6 
7 #define pr_fmt(fmt)    "fsl-pamu: %s: " fmt, __func__
8 
9 #include "fsl_pamu.h"
10 
11 #include <linux/fsl/guts.h>
12 #include <linux/interrupt.h>
13 #include <linux/genalloc.h>
14 
15 #include <asm/mpc85xx.h>
16 
17 /* define indexes for each operation mapping scenario */
18 #define OMI_QMAN        0x00
19 #define OMI_FMAN        0x01
20 #define OMI_QMAN_PRIV   0x02
21 #define OMI_CAAM        0x03
22 
23 #define make64(high, low) (((u64)(high) << 32) | (low))
24 
25 struct pamu_isr_data {
26 	void __iomem *pamu_reg_base;	/* Base address of PAMU regs */
27 	unsigned int count;		/* The number of PAMUs */
28 };
29 
30 static struct paace *ppaact;
31 static struct paace *spaact;
32 
33 static bool probed;			/* Has PAMU been probed? */
34 
35 /*
36  * Table for matching compatible strings, for device tree
37  * guts node, for QorIQ SOCs.
38  * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
39  * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
40  * string would be used.
41  */
42 static const struct of_device_id guts_device_ids[] = {
43 	{ .compatible = "fsl,qoriq-device-config-1.0", },
44 	{ .compatible = "fsl,qoriq-device-config-2.0", },
45 	{}
46 };
47 
48 /*
49  * Table for matching compatible strings, for device tree
50  * L3 cache controller node.
51  * "fsl,t4240-l3-cache-controller" corresponds to T4,
52  * "fsl,b4860-l3-cache-controller" corresponds to B4 &
53  * "fsl,p4080-l3-cache-controller" corresponds to other,
54  * SOCs.
55  */
56 static const struct of_device_id l3_device_ids[] = {
57 	{ .compatible = "fsl,t4240-l3-cache-controller", },
58 	{ .compatible = "fsl,b4860-l3-cache-controller", },
59 	{ .compatible = "fsl,p4080-l3-cache-controller", },
60 	{}
61 };
62 
63 /* maximum subwindows permitted per liodn */
64 static u32 max_subwindow_count;
65 
66 /**
67  * pamu_get_ppaace() - Return the primary PACCE
68  * @liodn: liodn PAACT index for desired PAACE
69  *
70  * Returns the ppace pointer upon success else return
71  * null.
72  */
73 static struct paace *pamu_get_ppaace(int liodn)
74 {
75 	if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
76 		pr_debug("PPAACT doesn't exist\n");
77 		return NULL;
78 	}
79 
80 	return &ppaact[liodn];
81 }
82 
83 /**
84  * pamu_enable_liodn() - Set valid bit of PACCE
85  * @liodn: liodn PAACT index for desired PAACE
86  *
87  * Returns 0 upon success else error code < 0 returned
88  */
89 int pamu_enable_liodn(int liodn)
90 {
91 	struct paace *ppaace;
92 
93 	ppaace = pamu_get_ppaace(liodn);
94 	if (!ppaace) {
95 		pr_debug("Invalid primary paace entry\n");
96 		return -ENOENT;
97 	}
98 
99 	if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
100 		pr_debug("liodn %d not configured\n", liodn);
101 		return -EINVAL;
102 	}
103 
104 	/* Ensure that all other stores to the ppaace complete first */
105 	mb();
106 
107 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
108 	mb();
109 
110 	return 0;
111 }
112 
113 /**
114  * pamu_disable_liodn() - Clears valid bit of PACCE
115  * @liodn: liodn PAACT index for desired PAACE
116  *
117  * Returns 0 upon success else error code < 0 returned
118  */
119 int pamu_disable_liodn(int liodn)
120 {
121 	struct paace *ppaace;
122 
123 	ppaace = pamu_get_ppaace(liodn);
124 	if (!ppaace) {
125 		pr_debug("Invalid primary paace entry\n");
126 		return -ENOENT;
127 	}
128 
129 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
130 	mb();
131 
132 	return 0;
133 }
134 
135 /* Derive the window size encoding for a particular PAACE entry */
136 static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
137 {
138 	/* Bug if not a power of 2 */
139 	BUG_ON(addrspace_size & (addrspace_size - 1));
140 
141 	/* window size is 2^(WSE+1) bytes */
142 	return fls64(addrspace_size) - 2;
143 }
144 
145 /*
146  * Set the PAACE type as primary and set the coherency required domain
147  * attribute
148  */
149 static void pamu_init_ppaace(struct paace *ppaace)
150 {
151 	set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
152 
153 	set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
154 	       PAACE_M_COHERENCE_REQ);
155 }
156 
157 /*
158  * Function used for updating stash destination for the coressponding
159  * LIODN.
160  */
161 int pamu_update_paace_stash(int liodn, u32 value)
162 {
163 	struct paace *paace;
164 
165 	paace = pamu_get_ppaace(liodn);
166 	if (!paace) {
167 		pr_debug("Invalid liodn entry\n");
168 		return -ENOENT;
169 	}
170 	set_bf(paace->impl_attr, PAACE_IA_CID, value);
171 
172 	mb();
173 
174 	return 0;
175 }
176 
177 /**
178  * pamu_config_paace() - Sets up PPAACE entry for specified liodn
179  *
180  * @liodn: Logical IO device number
181  * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
182  * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
183  *	     stashid not defined
184  * @prot: window permissions
185  *
186  * Returns 0 upon success else error code < 0 returned
187  */
188 int pamu_config_ppaace(int liodn, u32 omi, u32 stashid, int prot)
189 {
190 	struct paace *ppaace;
191 
192 	ppaace = pamu_get_ppaace(liodn);
193 	if (!ppaace)
194 		return -ENOENT;
195 
196 	/* window size is 2^(WSE+1) bytes */
197 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
198 	       map_addrspace_size_to_wse(1ULL << 36));
199 
200 	pamu_init_ppaace(ppaace);
201 
202 	ppaace->wbah = 0;
203 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
204 
205 	/* set up operation mapping if it's configured */
206 	if (omi < OME_NUMBER_ENTRIES) {
207 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
208 		ppaace->op_encode.index_ot.omi = omi;
209 	} else if (~omi != 0) {
210 		pr_debug("bad operation mapping index: %d\n", omi);
211 		return -EINVAL;
212 	}
213 
214 	/* configure stash id */
215 	if (~stashid != 0)
216 		set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
217 
218 	set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
219 	ppaace->twbah = 0;
220 	set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, 0);
221 	set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
222 	set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
223 	set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
224 	mb();
225 
226 	return 0;
227 }
228 
229 /**
230  * get_ome_index() - Returns the index in the operation mapping table
231  *                   for device.
232  * @*omi_index: pointer for storing the index value
233  *
234  */
235 void get_ome_index(u32 *omi_index, struct device *dev)
236 {
237 	if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
238 		*omi_index = OMI_QMAN;
239 	if (of_device_is_compatible(dev->of_node, "fsl,qman"))
240 		*omi_index = OMI_QMAN_PRIV;
241 }
242 
243 /**
244  * get_stash_id - Returns stash destination id corresponding to a
245  *                cache type and vcpu.
246  * @stash_dest_hint: L1, L2 or L3
247  * @vcpu: vpcu target for a particular cache type.
248  *
249  * Returs stash on success or ~(u32)0 on failure.
250  *
251  */
252 u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
253 {
254 	const u32 *prop;
255 	struct device_node *node;
256 	u32 cache_level;
257 	int len, found = 0;
258 	int i;
259 
260 	/* Fastpath, exit early if L3/CPC cache is target for stashing */
261 	if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
262 		node = of_find_matching_node(NULL, l3_device_ids);
263 		if (node) {
264 			prop = of_get_property(node, "cache-stash-id", NULL);
265 			if (!prop) {
266 				pr_debug("missing cache-stash-id at %pOF\n",
267 					 node);
268 				of_node_put(node);
269 				return ~(u32)0;
270 			}
271 			of_node_put(node);
272 			return be32_to_cpup(prop);
273 		}
274 		return ~(u32)0;
275 	}
276 
277 	for_each_of_cpu_node(node) {
278 		prop = of_get_property(node, "reg", &len);
279 		for (i = 0; i < len / sizeof(u32); i++) {
280 			if (be32_to_cpup(&prop[i]) == vcpu) {
281 				found = 1;
282 				goto found_cpu_node;
283 			}
284 		}
285 	}
286 found_cpu_node:
287 
288 	/* find the hwnode that represents the cache */
289 	for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
290 		if (stash_dest_hint == cache_level) {
291 			prop = of_get_property(node, "cache-stash-id", NULL);
292 			if (!prop) {
293 				pr_debug("missing cache-stash-id at %pOF\n",
294 					 node);
295 				of_node_put(node);
296 				return ~(u32)0;
297 			}
298 			of_node_put(node);
299 			return be32_to_cpup(prop);
300 		}
301 
302 		prop = of_get_property(node, "next-level-cache", NULL);
303 		if (!prop) {
304 			pr_debug("can't find next-level-cache at %pOF\n", node);
305 			of_node_put(node);
306 			return ~(u32)0;  /* can't traverse any further */
307 		}
308 		of_node_put(node);
309 
310 		/* advance to next node in cache hierarchy */
311 		node = of_find_node_by_phandle(*prop);
312 		if (!node) {
313 			pr_debug("Invalid node for cache hierarchy\n");
314 			return ~(u32)0;
315 		}
316 	}
317 
318 	pr_debug("stash dest not found for %d on vcpu %d\n",
319 		 stash_dest_hint, vcpu);
320 	return ~(u32)0;
321 }
322 
323 /* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
324 #define QMAN_PAACE 1
325 #define QMAN_PORTAL_PAACE 2
326 #define BMAN_PAACE 3
327 
328 /**
329  * Setup operation mapping and stash destinations for QMAN and QMAN portal.
330  * Memory accesses to QMAN and BMAN private memory need not be coherent, so
331  * clear the PAACE entry coherency attribute for them.
332  */
333 static void setup_qbman_paace(struct paace *ppaace, int  paace_type)
334 {
335 	switch (paace_type) {
336 	case QMAN_PAACE:
337 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
338 		ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
339 		/* setup QMAN Private data stashing for the L3 cache */
340 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
341 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
342 		       0);
343 		break;
344 	case QMAN_PORTAL_PAACE:
345 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
346 		ppaace->op_encode.index_ot.omi = OMI_QMAN;
347 		/* Set DQRR and Frame stashing for the L3 cache */
348 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
349 		break;
350 	case BMAN_PAACE:
351 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
352 		       0);
353 		break;
354 	}
355 }
356 
357 /**
358  * Setup the operation mapping table for various devices. This is a static
359  * table where each table index corresponds to a particular device. PAMU uses
360  * this table to translate device transaction to appropriate corenet
361  * transaction.
362  */
363 static void setup_omt(struct ome *omt)
364 {
365 	struct ome *ome;
366 
367 	/* Configure OMI_QMAN */
368 	ome = &omt[OMI_QMAN];
369 
370 	ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
371 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
372 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
373 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
374 
375 	ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
376 	ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
377 
378 	/* Configure OMI_FMAN */
379 	ome = &omt[OMI_FMAN];
380 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
381 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
382 
383 	/* Configure OMI_QMAN private */
384 	ome = &omt[OMI_QMAN_PRIV];
385 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READ;
386 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
387 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
388 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
389 
390 	/* Configure OMI_CAAM */
391 	ome = &omt[OMI_CAAM];
392 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
393 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
394 }
395 
396 /*
397  * Get the maximum number of PAACT table entries
398  * and subwindows supported by PAMU
399  */
400 static void get_pamu_cap_values(unsigned long pamu_reg_base)
401 {
402 	u32 pc_val;
403 
404 	pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
405 	/* Maximum number of subwindows per liodn */
406 	max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
407 }
408 
409 /* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
410 static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
411 			  phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
412 			  phys_addr_t omt_phys)
413 {
414 	u32 *pc;
415 	struct pamu_mmap_regs *pamu_regs;
416 
417 	pc = (u32 *) (pamu_reg_base + PAMU_PC);
418 	pamu_regs = (struct pamu_mmap_regs *)
419 		(pamu_reg_base + PAMU_MMAP_REGS_BASE);
420 
421 	/* set up pointers to corenet control blocks */
422 
423 	out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
424 	out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
425 	ppaact_phys = ppaact_phys + PAACT_SIZE;
426 	out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
427 	out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
428 
429 	out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
430 	out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
431 	spaact_phys = spaact_phys + SPAACT_SIZE;
432 	out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
433 	out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
434 
435 	out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
436 	out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
437 	omt_phys = omt_phys + OMT_SIZE;
438 	out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
439 	out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
440 
441 	/*
442 	 * set PAMU enable bit,
443 	 * allow ppaact & omt to be cached
444 	 * & enable PAMU access violation interrupts.
445 	 */
446 
447 	out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
448 		 PAMU_ACCESS_VIOLATION_ENABLE);
449 	out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
450 	return 0;
451 }
452 
453 /* Enable all device LIODNS */
454 static void setup_liodns(void)
455 {
456 	int i, len;
457 	struct paace *ppaace;
458 	struct device_node *node = NULL;
459 	const u32 *prop;
460 
461 	for_each_node_with_property(node, "fsl,liodn") {
462 		prop = of_get_property(node, "fsl,liodn", &len);
463 		for (i = 0; i < len / sizeof(u32); i++) {
464 			int liodn;
465 
466 			liodn = be32_to_cpup(&prop[i]);
467 			if (liodn >= PAACE_NUMBER_ENTRIES) {
468 				pr_debug("Invalid LIODN value %d\n", liodn);
469 				continue;
470 			}
471 			ppaace = pamu_get_ppaace(liodn);
472 			pamu_init_ppaace(ppaace);
473 			/* window size is 2^(WSE+1) bytes */
474 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
475 			ppaace->wbah = 0;
476 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
477 			set_bf(ppaace->impl_attr, PAACE_IA_ATM,
478 			       PAACE_ATM_NO_XLATE);
479 			set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
480 			       PAACE_AP_PERMS_ALL);
481 			if (of_device_is_compatible(node, "fsl,qman-portal"))
482 				setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
483 			if (of_device_is_compatible(node, "fsl,qman"))
484 				setup_qbman_paace(ppaace, QMAN_PAACE);
485 			if (of_device_is_compatible(node, "fsl,bman"))
486 				setup_qbman_paace(ppaace, BMAN_PAACE);
487 			mb();
488 			pamu_enable_liodn(liodn);
489 		}
490 	}
491 }
492 
493 static irqreturn_t pamu_av_isr(int irq, void *arg)
494 {
495 	struct pamu_isr_data *data = arg;
496 	phys_addr_t phys;
497 	unsigned int i, j, ret;
498 
499 	pr_emerg("access violation interrupt\n");
500 
501 	for (i = 0; i < data->count; i++) {
502 		void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
503 		u32 pics = in_be32(p + PAMU_PICS);
504 
505 		if (pics & PAMU_ACCESS_VIOLATION_STAT) {
506 			u32 avs1 = in_be32(p + PAMU_AVS1);
507 			struct paace *paace;
508 
509 			pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
510 			pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
511 			pr_emerg("AVS1=%08x\n", avs1);
512 			pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
513 			pr_emerg("AVA=%016llx\n",
514 				 make64(in_be32(p + PAMU_AVAH),
515 					in_be32(p + PAMU_AVAL)));
516 			pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
517 			pr_emerg("POEA=%016llx\n",
518 				 make64(in_be32(p + PAMU_POEAH),
519 					in_be32(p + PAMU_POEAL)));
520 
521 			phys = make64(in_be32(p + PAMU_POEAH),
522 				      in_be32(p + PAMU_POEAL));
523 
524 			/* Assume that POEA points to a PAACE */
525 			if (phys) {
526 				u32 *paace = phys_to_virt(phys);
527 
528 				/* Only the first four words are relevant */
529 				for (j = 0; j < 4; j++)
530 					pr_emerg("PAACE[%u]=%08x\n",
531 						 j, in_be32(paace + j));
532 			}
533 
534 			/* clear access violation condition */
535 			out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
536 			paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
537 			BUG_ON(!paace);
538 			/* check if we got a violation for a disabled LIODN */
539 			if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
540 				/*
541 				 * As per hardware erratum A-003638, access
542 				 * violation can be reported for a disabled
543 				 * LIODN. If we hit that condition, disable
544 				 * access violation reporting.
545 				 */
546 				pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
547 			} else {
548 				/* Disable the LIODN */
549 				ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
550 				BUG_ON(ret);
551 				pr_emerg("Disabling liodn %x\n",
552 					 avs1 >> PAMU_AVS1_LIODN_SHIFT);
553 			}
554 			out_be32((p + PAMU_PICS), pics);
555 		}
556 	}
557 
558 	return IRQ_HANDLED;
559 }
560 
561 #define LAWAR_EN		0x80000000
562 #define LAWAR_TARGET_MASK	0x0FF00000
563 #define LAWAR_TARGET_SHIFT	20
564 #define LAWAR_SIZE_MASK		0x0000003F
565 #define LAWAR_CSDID_MASK	0x000FF000
566 #define LAWAR_CSDID_SHIFT	12
567 
568 #define LAW_SIZE_4K		0xb
569 
570 struct ccsr_law {
571 	u32	lawbarh;	/* LAWn base address high */
572 	u32	lawbarl;	/* LAWn base address low */
573 	u32	lawar;		/* LAWn attributes */
574 	u32	reserved;
575 };
576 
577 /*
578  * Create a coherence subdomain for a given memory block.
579  */
580 static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
581 {
582 	struct device_node *np;
583 	const __be32 *iprop;
584 	void __iomem *lac = NULL;	/* Local Access Control registers */
585 	struct ccsr_law __iomem *law;
586 	void __iomem *ccm = NULL;
587 	u32 __iomem *csdids;
588 	unsigned int i, num_laws, num_csds;
589 	u32 law_target = 0;
590 	u32 csd_id = 0;
591 	int ret = 0;
592 
593 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
594 	if (!np)
595 		return -ENODEV;
596 
597 	iprop = of_get_property(np, "fsl,num-laws", NULL);
598 	if (!iprop) {
599 		ret = -ENODEV;
600 		goto error;
601 	}
602 
603 	num_laws = be32_to_cpup(iprop);
604 	if (!num_laws) {
605 		ret = -ENODEV;
606 		goto error;
607 	}
608 
609 	lac = of_iomap(np, 0);
610 	if (!lac) {
611 		ret = -ENODEV;
612 		goto error;
613 	}
614 
615 	/* LAW registers are at offset 0xC00 */
616 	law = lac + 0xC00;
617 
618 	of_node_put(np);
619 
620 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
621 	if (!np) {
622 		ret = -ENODEV;
623 		goto error;
624 	}
625 
626 	iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
627 	if (!iprop) {
628 		ret = -ENODEV;
629 		goto error;
630 	}
631 
632 	num_csds = be32_to_cpup(iprop);
633 	if (!num_csds) {
634 		ret = -ENODEV;
635 		goto error;
636 	}
637 
638 	ccm = of_iomap(np, 0);
639 	if (!ccm) {
640 		ret = -ENOMEM;
641 		goto error;
642 	}
643 
644 	/* The undocumented CSDID registers are at offset 0x600 */
645 	csdids = ccm + 0x600;
646 
647 	of_node_put(np);
648 	np = NULL;
649 
650 	/* Find an unused coherence subdomain ID */
651 	for (csd_id = 0; csd_id < num_csds; csd_id++) {
652 		if (!csdids[csd_id])
653 			break;
654 	}
655 
656 	/* Store the Port ID in the (undocumented) proper CIDMRxx register */
657 	csdids[csd_id] = csd_port_id;
658 
659 	/* Find the DDR LAW that maps to our buffer. */
660 	for (i = 0; i < num_laws; i++) {
661 		if (law[i].lawar & LAWAR_EN) {
662 			phys_addr_t law_start, law_end;
663 
664 			law_start = make64(law[i].lawbarh, law[i].lawbarl);
665 			law_end = law_start +
666 				(2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
667 
668 			if (law_start <= phys && phys < law_end) {
669 				law_target = law[i].lawar & LAWAR_TARGET_MASK;
670 				break;
671 			}
672 		}
673 	}
674 
675 	if (i == 0 || i == num_laws) {
676 		/* This should never happen */
677 		ret = -ENOENT;
678 		goto error;
679 	}
680 
681 	/* Find a free LAW entry */
682 	while (law[--i].lawar & LAWAR_EN) {
683 		if (i == 0) {
684 			/* No higher priority LAW slots available */
685 			ret = -ENOENT;
686 			goto error;
687 		}
688 	}
689 
690 	law[i].lawbarh = upper_32_bits(phys);
691 	law[i].lawbarl = lower_32_bits(phys);
692 	wmb();
693 	law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
694 		(LAW_SIZE_4K + get_order(size));
695 	wmb();
696 
697 error:
698 	if (ccm)
699 		iounmap(ccm);
700 
701 	if (lac)
702 		iounmap(lac);
703 
704 	if (np)
705 		of_node_put(np);
706 
707 	return ret;
708 }
709 
710 /*
711  * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
712  * bit map of snoopers for a given range of memory mapped by a LAW.
713  *
714  * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
715  * table should never need to be updated.  SVRs are guaranteed to be unique, so
716  * there is no worry that a future SOC will inadvertently have one of these
717  * values.
718  */
719 static const struct {
720 	u32 svr;
721 	u32 port_id;
722 } port_id_map[] = {
723 	{(SVR_P2040 << 8) | 0x10, 0xFF000000},	/* P2040 1.0 */
724 	{(SVR_P2040 << 8) | 0x11, 0xFF000000},	/* P2040 1.1 */
725 	{(SVR_P2041 << 8) | 0x10, 0xFF000000},	/* P2041 1.0 */
726 	{(SVR_P2041 << 8) | 0x11, 0xFF000000},	/* P2041 1.1 */
727 	{(SVR_P3041 << 8) | 0x10, 0xFF000000},	/* P3041 1.0 */
728 	{(SVR_P3041 << 8) | 0x11, 0xFF000000},	/* P3041 1.1 */
729 	{(SVR_P4040 << 8) | 0x20, 0xFFF80000},	/* P4040 2.0 */
730 	{(SVR_P4080 << 8) | 0x20, 0xFFF80000},	/* P4080 2.0 */
731 	{(SVR_P5010 << 8) | 0x10, 0xFC000000},	/* P5010 1.0 */
732 	{(SVR_P5010 << 8) | 0x20, 0xFC000000},	/* P5010 2.0 */
733 	{(SVR_P5020 << 8) | 0x10, 0xFC000000},	/* P5020 1.0 */
734 	{(SVR_P5021 << 8) | 0x10, 0xFF800000},	/* P5021 1.0 */
735 	{(SVR_P5040 << 8) | 0x10, 0xFF800000},	/* P5040 1.0 */
736 };
737 
738 #define SVR_SECURITY	0x80000	/* The Security (E) bit */
739 
740 static int fsl_pamu_probe(struct platform_device *pdev)
741 {
742 	struct device *dev = &pdev->dev;
743 	void __iomem *pamu_regs = NULL;
744 	struct ccsr_guts __iomem *guts_regs = NULL;
745 	u32 pamubypenr, pamu_counter;
746 	unsigned long pamu_reg_off;
747 	unsigned long pamu_reg_base;
748 	struct pamu_isr_data *data = NULL;
749 	struct device_node *guts_node;
750 	u64 size;
751 	struct page *p;
752 	int ret = 0;
753 	int irq;
754 	phys_addr_t ppaact_phys;
755 	phys_addr_t spaact_phys;
756 	struct ome *omt;
757 	phys_addr_t omt_phys;
758 	size_t mem_size = 0;
759 	unsigned int order = 0;
760 	u32 csd_port_id = 0;
761 	unsigned i;
762 	/*
763 	 * enumerate all PAMUs and allocate and setup PAMU tables
764 	 * for each of them,
765 	 * NOTE : All PAMUs share the same LIODN tables.
766 	 */
767 
768 	if (WARN_ON(probed))
769 		return -EBUSY;
770 
771 	pamu_regs = of_iomap(dev->of_node, 0);
772 	if (!pamu_regs) {
773 		dev_err(dev, "ioremap of PAMU node failed\n");
774 		return -ENOMEM;
775 	}
776 	of_get_address(dev->of_node, 0, &size, NULL);
777 
778 	irq = irq_of_parse_and_map(dev->of_node, 0);
779 	if (irq == NO_IRQ) {
780 		dev_warn(dev, "no interrupts listed in PAMU node\n");
781 		goto error;
782 	}
783 
784 	data = kzalloc(sizeof(*data), GFP_KERNEL);
785 	if (!data) {
786 		ret = -ENOMEM;
787 		goto error;
788 	}
789 	data->pamu_reg_base = pamu_regs;
790 	data->count = size / PAMU_OFFSET;
791 
792 	/* The ISR needs access to the regs, so we won't iounmap them */
793 	ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
794 	if (ret < 0) {
795 		dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
796 		goto error;
797 	}
798 
799 	guts_node = of_find_matching_node(NULL, guts_device_ids);
800 	if (!guts_node) {
801 		dev_err(dev, "could not find GUTS node %pOF\n", dev->of_node);
802 		ret = -ENODEV;
803 		goto error;
804 	}
805 
806 	guts_regs = of_iomap(guts_node, 0);
807 	of_node_put(guts_node);
808 	if (!guts_regs) {
809 		dev_err(dev, "ioremap of GUTS node failed\n");
810 		ret = -ENODEV;
811 		goto error;
812 	}
813 
814 	/* read in the PAMU capability registers */
815 	get_pamu_cap_values((unsigned long)pamu_regs);
816 	/*
817 	 * To simplify the allocation of a coherency domain, we allocate the
818 	 * PAACT and the OMT in the same memory buffer.  Unfortunately, this
819 	 * wastes more memory compared to allocating the buffers separately.
820 	 */
821 	/* Determine how much memory we need */
822 	mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
823 		(PAGE_SIZE << get_order(SPAACT_SIZE)) +
824 		(PAGE_SIZE << get_order(OMT_SIZE));
825 	order = get_order(mem_size);
826 
827 	p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
828 	if (!p) {
829 		dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
830 		ret = -ENOMEM;
831 		goto error;
832 	}
833 
834 	ppaact = page_address(p);
835 	ppaact_phys = page_to_phys(p);
836 
837 	/* Make sure the memory is naturally aligned */
838 	if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
839 		dev_err(dev, "PAACT/OMT block is unaligned\n");
840 		ret = -ENOMEM;
841 		goto error;
842 	}
843 
844 	spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
845 	omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
846 
847 	dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
848 
849 	/* Check to see if we need to implement the work-around on this SOC */
850 
851 	/* Determine the Port ID for our coherence subdomain */
852 	for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
853 		if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
854 			csd_port_id = port_id_map[i].port_id;
855 			dev_dbg(dev, "found matching SVR %08x\n",
856 				port_id_map[i].svr);
857 			break;
858 		}
859 	}
860 
861 	if (csd_port_id) {
862 		dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
863 			&ppaact_phys, mem_size, csd_port_id);
864 
865 		ret = create_csd(ppaact_phys, mem_size, csd_port_id);
866 		if (ret) {
867 			dev_err(dev, "could not create coherence subdomain\n");
868 			return ret;
869 		}
870 	}
871 
872 	spaact_phys = virt_to_phys(spaact);
873 	omt_phys = virt_to_phys(omt);
874 
875 	pamubypenr = in_be32(&guts_regs->pamubypenr);
876 
877 	for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
878 	     pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
879 
880 		pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
881 		setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
882 			       spaact_phys, omt_phys);
883 		/* Disable PAMU bypass for this PAMU */
884 		pamubypenr &= ~pamu_counter;
885 	}
886 
887 	setup_omt(omt);
888 
889 	/* Enable all relevant PAMU(s) */
890 	out_be32(&guts_regs->pamubypenr, pamubypenr);
891 
892 	iounmap(guts_regs);
893 
894 	/* Enable DMA for the LIODNs in the device tree */
895 
896 	setup_liodns();
897 
898 	probed = true;
899 
900 	return 0;
901 
902 error:
903 	if (irq != NO_IRQ)
904 		free_irq(irq, data);
905 
906 	kfree_sensitive(data);
907 
908 	if (pamu_regs)
909 		iounmap(pamu_regs);
910 
911 	if (guts_regs)
912 		iounmap(guts_regs);
913 
914 	if (ppaact)
915 		free_pages((unsigned long)ppaact, order);
916 
917 	ppaact = NULL;
918 
919 	return ret;
920 }
921 
922 static struct platform_driver fsl_of_pamu_driver = {
923 	.driver = {
924 		.name = "fsl-of-pamu",
925 	},
926 	.probe = fsl_pamu_probe,
927 };
928 
929 static __init int fsl_pamu_init(void)
930 {
931 	struct platform_device *pdev = NULL;
932 	struct device_node *np;
933 	int ret;
934 
935 	/*
936 	 * The normal OF process calls the probe function at some
937 	 * indeterminate later time, after most drivers have loaded.  This is
938 	 * too late for us, because PAMU clients (like the Qman driver)
939 	 * depend on PAMU being initialized early.
940 	 *
941 	 * So instead, we "manually" call our probe function by creating the
942 	 * platform devices ourselves.
943 	 */
944 
945 	/*
946 	 * We assume that there is only one PAMU node in the device tree.  A
947 	 * single PAMU node represents all of the PAMU devices in the SOC
948 	 * already.   Everything else already makes that assumption, and the
949 	 * binding for the PAMU nodes doesn't allow for any parent-child
950 	 * relationships anyway.  In other words, support for more than one
951 	 * PAMU node would require significant changes to a lot of code.
952 	 */
953 
954 	np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
955 	if (!np) {
956 		pr_err("could not find a PAMU node\n");
957 		return -ENODEV;
958 	}
959 
960 	ret = platform_driver_register(&fsl_of_pamu_driver);
961 	if (ret) {
962 		pr_err("could not register driver (err=%i)\n", ret);
963 		goto error_driver_register;
964 	}
965 
966 	pdev = platform_device_alloc("fsl-of-pamu", 0);
967 	if (!pdev) {
968 		pr_err("could not allocate device %pOF\n", np);
969 		ret = -ENOMEM;
970 		goto error_device_alloc;
971 	}
972 	pdev->dev.of_node = of_node_get(np);
973 
974 	ret = pamu_domain_init();
975 	if (ret)
976 		goto error_device_add;
977 
978 	ret = platform_device_add(pdev);
979 	if (ret) {
980 		pr_err("could not add device %pOF (err=%i)\n", np, ret);
981 		goto error_device_add;
982 	}
983 
984 	return 0;
985 
986 error_device_add:
987 	of_node_put(pdev->dev.of_node);
988 	pdev->dev.of_node = NULL;
989 
990 	platform_device_put(pdev);
991 
992 error_device_alloc:
993 	platform_driver_unregister(&fsl_of_pamu_driver);
994 
995 error_driver_register:
996 	of_node_put(np);
997 
998 	return ret;
999 }
1000 arch_initcall(fsl_pamu_init);
1001