xref: /openbmc/linux/drivers/iommu/fsl_pamu.c (revision 6a551c11)
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright (C) 2013 Freescale Semiconductor, Inc.
16  *
17  */
18 
19 #define pr_fmt(fmt)    "fsl-pamu: %s: " fmt, __func__
20 
21 #include "fsl_pamu.h"
22 
23 #include <linux/fsl/guts.h>
24 #include <linux/interrupt.h>
25 #include <linux/genalloc.h>
26 
27 #include <asm/mpc85xx.h>
28 
29 /* define indexes for each operation mapping scenario */
30 #define OMI_QMAN        0x00
31 #define OMI_FMAN        0x01
32 #define OMI_QMAN_PRIV   0x02
33 #define OMI_CAAM        0x03
34 
35 #define make64(high, low) (((u64)(high) << 32) | (low))
36 
37 struct pamu_isr_data {
38 	void __iomem *pamu_reg_base;	/* Base address of PAMU regs */
39 	unsigned int count;		/* The number of PAMUs */
40 };
41 
42 static struct paace *ppaact;
43 static struct paace *spaact;
44 
45 /*
46  * Table for matching compatible strings, for device tree
47  * guts node, for QorIQ SOCs.
48  * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
49  * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
50  * string would be used.
51  */
52 static const struct of_device_id guts_device_ids[] = {
53 	{ .compatible = "fsl,qoriq-device-config-1.0", },
54 	{ .compatible = "fsl,qoriq-device-config-2.0", },
55 	{}
56 };
57 
58 /*
59  * Table for matching compatible strings, for device tree
60  * L3 cache controller node.
61  * "fsl,t4240-l3-cache-controller" corresponds to T4,
62  * "fsl,b4860-l3-cache-controller" corresponds to B4 &
63  * "fsl,p4080-l3-cache-controller" corresponds to other,
64  * SOCs.
65  */
66 static const struct of_device_id l3_device_ids[] = {
67 	{ .compatible = "fsl,t4240-l3-cache-controller", },
68 	{ .compatible = "fsl,b4860-l3-cache-controller", },
69 	{ .compatible = "fsl,p4080-l3-cache-controller", },
70 	{}
71 };
72 
73 /* maximum subwindows permitted per liodn */
74 static u32 max_subwindow_count;
75 
76 /* Pool for fspi allocation */
77 static struct gen_pool *spaace_pool;
78 
79 /**
80  * pamu_get_max_subwin_cnt() - Return the maximum supported
81  * subwindow count per liodn.
82  *
83  */
84 u32 pamu_get_max_subwin_cnt(void)
85 {
86 	return max_subwindow_count;
87 }
88 
89 /**
90  * pamu_get_ppaace() - Return the primary PACCE
91  * @liodn: liodn PAACT index for desired PAACE
92  *
93  * Returns the ppace pointer upon success else return
94  * null.
95  */
96 static struct paace *pamu_get_ppaace(int liodn)
97 {
98 	if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
99 		pr_debug("PPAACT doesn't exist\n");
100 		return NULL;
101 	}
102 
103 	return &ppaact[liodn];
104 }
105 
106 /**
107  * pamu_enable_liodn() - Set valid bit of PACCE
108  * @liodn: liodn PAACT index for desired PAACE
109  *
110  * Returns 0 upon success else error code < 0 returned
111  */
112 int pamu_enable_liodn(int liodn)
113 {
114 	struct paace *ppaace;
115 
116 	ppaace = pamu_get_ppaace(liodn);
117 	if (!ppaace) {
118 		pr_debug("Invalid primary paace entry\n");
119 		return -ENOENT;
120 	}
121 
122 	if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
123 		pr_debug("liodn %d not configured\n", liodn);
124 		return -EINVAL;
125 	}
126 
127 	/* Ensure that all other stores to the ppaace complete first */
128 	mb();
129 
130 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
131 	mb();
132 
133 	return 0;
134 }
135 
136 /**
137  * pamu_disable_liodn() - Clears valid bit of PACCE
138  * @liodn: liodn PAACT index for desired PAACE
139  *
140  * Returns 0 upon success else error code < 0 returned
141  */
142 int pamu_disable_liodn(int liodn)
143 {
144 	struct paace *ppaace;
145 
146 	ppaace = pamu_get_ppaace(liodn);
147 	if (!ppaace) {
148 		pr_debug("Invalid primary paace entry\n");
149 		return -ENOENT;
150 	}
151 
152 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
153 	mb();
154 
155 	return 0;
156 }
157 
158 /* Derive the window size encoding for a particular PAACE entry */
159 static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
160 {
161 	/* Bug if not a power of 2 */
162 	BUG_ON(addrspace_size & (addrspace_size - 1));
163 
164 	/* window size is 2^(WSE+1) bytes */
165 	return fls64(addrspace_size) - 2;
166 }
167 
168 /* Derive the PAACE window count encoding for the subwindow count */
169 static unsigned int map_subwindow_cnt_to_wce(u32 subwindow_cnt)
170 {
171 	/* window count is 2^(WCE+1) bytes */
172 	return __ffs(subwindow_cnt) - 1;
173 }
174 
175 /*
176  * Set the PAACE type as primary and set the coherency required domain
177  * attribute
178  */
179 static void pamu_init_ppaace(struct paace *ppaace)
180 {
181 	set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
182 
183 	set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
184 	       PAACE_M_COHERENCE_REQ);
185 }
186 
187 /*
188  * Set the PAACE type as secondary and set the coherency required domain
189  * attribute.
190  */
191 static void pamu_init_spaace(struct paace *spaace)
192 {
193 	set_bf(spaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_SECONDARY);
194 	set_bf(spaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
195 	       PAACE_M_COHERENCE_REQ);
196 }
197 
198 /*
199  * Return the spaace (corresponding to the secondary window index)
200  * for a particular ppaace.
201  */
202 static struct paace *pamu_get_spaace(struct paace *paace, u32 wnum)
203 {
204 	u32 subwin_cnt;
205 	struct paace *spaace = NULL;
206 
207 	subwin_cnt = 1UL << (get_bf(paace->impl_attr, PAACE_IA_WCE) + 1);
208 
209 	if (wnum < subwin_cnt)
210 		spaace = &spaact[paace->fspi + wnum];
211 	else
212 		pr_debug("secondary paace out of bounds\n");
213 
214 	return spaace;
215 }
216 
217 /**
218  * pamu_get_fspi_and_allocate() - Allocates fspi index and reserves subwindows
219  *                                required for primary PAACE in the secondary
220  *                                PAACE table.
221  * @subwin_cnt: Number of subwindows to be reserved.
222  *
223  * A PPAACE entry may have a number of associated subwindows. A subwindow
224  * corresponds to a SPAACE entry in the SPAACT table. Each PAACE entry stores
225  * the index (fspi) of the first SPAACE entry in the SPAACT table. This
226  * function returns the index of the first SPAACE entry. The remaining
227  * SPAACE entries are reserved contiguously from that index.
228  *
229  * Returns a valid fspi index in the range of 0 - SPAACE_NUMBER_ENTRIES on success.
230  * If no SPAACE entry is available or the allocator can not reserve the required
231  * number of contiguous entries function returns ULONG_MAX indicating a failure.
232  *
233  */
234 static unsigned long pamu_get_fspi_and_allocate(u32 subwin_cnt)
235 {
236 	unsigned long spaace_addr;
237 
238 	spaace_addr = gen_pool_alloc(spaace_pool, subwin_cnt * sizeof(struct paace));
239 	if (!spaace_addr)
240 		return ULONG_MAX;
241 
242 	return (spaace_addr - (unsigned long)spaact) / (sizeof(struct paace));
243 }
244 
245 /* Release the subwindows reserved for a particular LIODN */
246 void pamu_free_subwins(int liodn)
247 {
248 	struct paace *ppaace;
249 	u32 subwin_cnt, size;
250 
251 	ppaace = pamu_get_ppaace(liodn);
252 	if (!ppaace) {
253 		pr_debug("Invalid liodn entry\n");
254 		return;
255 	}
256 
257 	if (get_bf(ppaace->addr_bitfields, PPAACE_AF_MW)) {
258 		subwin_cnt = 1UL << (get_bf(ppaace->impl_attr, PAACE_IA_WCE) + 1);
259 		size = (subwin_cnt - 1) * sizeof(struct paace);
260 		gen_pool_free(spaace_pool, (unsigned long)&spaact[ppaace->fspi], size);
261 		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
262 	}
263 }
264 
265 /*
266  * Function used for updating stash destination for the coressponding
267  * LIODN.
268  */
269 int  pamu_update_paace_stash(int liodn, u32 subwin, u32 value)
270 {
271 	struct paace *paace;
272 
273 	paace = pamu_get_ppaace(liodn);
274 	if (!paace) {
275 		pr_debug("Invalid liodn entry\n");
276 		return -ENOENT;
277 	}
278 	if (subwin) {
279 		paace = pamu_get_spaace(paace, subwin - 1);
280 		if (!paace)
281 			return -ENOENT;
282 	}
283 	set_bf(paace->impl_attr, PAACE_IA_CID, value);
284 
285 	mb();
286 
287 	return 0;
288 }
289 
290 /* Disable a subwindow corresponding to the LIODN */
291 int pamu_disable_spaace(int liodn, u32 subwin)
292 {
293 	struct paace *paace;
294 
295 	paace = pamu_get_ppaace(liodn);
296 	if (!paace) {
297 		pr_debug("Invalid liodn entry\n");
298 		return -ENOENT;
299 	}
300 	if (subwin) {
301 		paace = pamu_get_spaace(paace, subwin - 1);
302 		if (!paace)
303 			return -ENOENT;
304 		set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
305 	} else {
306 		set_bf(paace->addr_bitfields, PAACE_AF_AP,
307 		       PAACE_AP_PERMS_DENIED);
308 	}
309 
310 	mb();
311 
312 	return 0;
313 }
314 
315 /**
316  * pamu_config_paace() - Sets up PPAACE entry for specified liodn
317  *
318  * @liodn: Logical IO device number
319  * @win_addr: starting address of DSA window
320  * @win-size: size of DSA window
321  * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
322  * @rpn: real (true physical) page number
323  * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
324  *	     stashid not defined
325  * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
326  *	     snoopid not defined
327  * @subwin_cnt: number of sub-windows
328  * @prot: window permissions
329  *
330  * Returns 0 upon success else error code < 0 returned
331  */
332 int pamu_config_ppaace(int liodn, phys_addr_t win_addr, phys_addr_t win_size,
333 		       u32 omi, unsigned long rpn, u32 snoopid, u32 stashid,
334 		       u32 subwin_cnt, int prot)
335 {
336 	struct paace *ppaace;
337 	unsigned long fspi;
338 
339 	if ((win_size & (win_size - 1)) || win_size < PAMU_PAGE_SIZE) {
340 		pr_debug("window size too small or not a power of two %pa\n",
341 			 &win_size);
342 		return -EINVAL;
343 	}
344 
345 	if (win_addr & (win_size - 1)) {
346 		pr_debug("window address is not aligned with window size\n");
347 		return -EINVAL;
348 	}
349 
350 	ppaace = pamu_get_ppaace(liodn);
351 	if (!ppaace)
352 		return -ENOENT;
353 
354 	/* window size is 2^(WSE+1) bytes */
355 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
356 	       map_addrspace_size_to_wse(win_size));
357 
358 	pamu_init_ppaace(ppaace);
359 
360 	ppaace->wbah = win_addr >> (PAMU_PAGE_SHIFT + 20);
361 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL,
362 	       (win_addr >> PAMU_PAGE_SHIFT));
363 
364 	/* set up operation mapping if it's configured */
365 	if (omi < OME_NUMBER_ENTRIES) {
366 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
367 		ppaace->op_encode.index_ot.omi = omi;
368 	} else if (~omi != 0) {
369 		pr_debug("bad operation mapping index: %d\n", omi);
370 		return -EINVAL;
371 	}
372 
373 	/* configure stash id */
374 	if (~stashid != 0)
375 		set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
376 
377 	/* configure snoop id */
378 	if (~snoopid != 0)
379 		ppaace->domain_attr.to_host.snpid = snoopid;
380 
381 	if (subwin_cnt) {
382 		/* The first entry is in the primary PAACE instead */
383 		fspi = pamu_get_fspi_and_allocate(subwin_cnt - 1);
384 		if (fspi == ULONG_MAX) {
385 			pr_debug("spaace indexes exhausted\n");
386 			return -EINVAL;
387 		}
388 
389 		/* window count is 2^(WCE+1) bytes */
390 		set_bf(ppaace->impl_attr, PAACE_IA_WCE,
391 		       map_subwindow_cnt_to_wce(subwin_cnt));
392 		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0x1);
393 		ppaace->fspi = fspi;
394 	} else {
395 		set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
396 		ppaace->twbah = rpn >> 20;
397 		set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, rpn);
398 		set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
399 		set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
400 		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
401 	}
402 	mb();
403 
404 	return 0;
405 }
406 
407 /**
408  * pamu_config_spaace() - Sets up SPAACE entry for specified subwindow
409  *
410  * @liodn:  Logical IO device number
411  * @subwin_cnt:  number of sub-windows associated with dma-window
412  * @subwin: subwindow index
413  * @subwin_size: size of subwindow
414  * @omi: Operation mapping index
415  * @rpn: real (true physical) page number
416  * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
417  *			  snoopid not defined
418  * @stashid: cache stash id for associated cpu
419  * @enable: enable/disable subwindow after reconfiguration
420  * @prot: sub window permissions
421  *
422  * Returns 0 upon success else error code < 0 returned
423  */
424 int pamu_config_spaace(int liodn, u32 subwin_cnt, u32 subwin,
425 		       phys_addr_t subwin_size, u32 omi, unsigned long rpn,
426 		       u32 snoopid, u32 stashid, int enable, int prot)
427 {
428 	struct paace *paace;
429 
430 	/* setup sub-windows */
431 	if (!subwin_cnt) {
432 		pr_debug("Invalid subwindow count\n");
433 		return -EINVAL;
434 	}
435 
436 	paace = pamu_get_ppaace(liodn);
437 	if (subwin > 0 && subwin < subwin_cnt && paace) {
438 		paace = pamu_get_spaace(paace, subwin - 1);
439 
440 		if (paace && !(paace->addr_bitfields & PAACE_V_VALID)) {
441 			pamu_init_spaace(paace);
442 			set_bf(paace->addr_bitfields, SPAACE_AF_LIODN, liodn);
443 		}
444 	}
445 
446 	if (!paace) {
447 		pr_debug("Invalid liodn entry\n");
448 		return -ENOENT;
449 	}
450 
451 	if ((subwin_size & (subwin_size - 1)) || subwin_size < PAMU_PAGE_SIZE) {
452 		pr_debug("subwindow size out of range, or not a power of 2\n");
453 		return -EINVAL;
454 	}
455 
456 	if (rpn == ULONG_MAX) {
457 		pr_debug("real page number out of range\n");
458 		return -EINVAL;
459 	}
460 
461 	/* window size is 2^(WSE+1) bytes */
462 	set_bf(paace->win_bitfields, PAACE_WIN_SWSE,
463 	       map_addrspace_size_to_wse(subwin_size));
464 
465 	set_bf(paace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
466 	paace->twbah = rpn >> 20;
467 	set_bf(paace->win_bitfields, PAACE_WIN_TWBAL, rpn);
468 	set_bf(paace->addr_bitfields, PAACE_AF_AP, prot);
469 
470 	/* configure snoop id */
471 	if (~snoopid != 0)
472 		paace->domain_attr.to_host.snpid = snoopid;
473 
474 	/* set up operation mapping if it's configured */
475 	if (omi < OME_NUMBER_ENTRIES) {
476 		set_bf(paace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
477 		paace->op_encode.index_ot.omi = omi;
478 	} else if (~omi != 0) {
479 		pr_debug("bad operation mapping index: %d\n", omi);
480 		return -EINVAL;
481 	}
482 
483 	if (~stashid != 0)
484 		set_bf(paace->impl_attr, PAACE_IA_CID, stashid);
485 
486 	smp_wmb();
487 
488 	if (enable)
489 		set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
490 
491 	mb();
492 
493 	return 0;
494 }
495 
496 /**
497  * get_ome_index() - Returns the index in the operation mapping table
498  *                   for device.
499  * @*omi_index: pointer for storing the index value
500  *
501  */
502 void get_ome_index(u32 *omi_index, struct device *dev)
503 {
504 	if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
505 		*omi_index = OMI_QMAN;
506 	if (of_device_is_compatible(dev->of_node, "fsl,qman"))
507 		*omi_index = OMI_QMAN_PRIV;
508 }
509 
510 /**
511  * get_stash_id - Returns stash destination id corresponding to a
512  *                cache type and vcpu.
513  * @stash_dest_hint: L1, L2 or L3
514  * @vcpu: vpcu target for a particular cache type.
515  *
516  * Returs stash on success or ~(u32)0 on failure.
517  *
518  */
519 u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
520 {
521 	const u32 *prop;
522 	struct device_node *node;
523 	u32 cache_level;
524 	int len, found = 0;
525 	int i;
526 
527 	/* Fastpath, exit early if L3/CPC cache is target for stashing */
528 	if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
529 		node = of_find_matching_node(NULL, l3_device_ids);
530 		if (node) {
531 			prop = of_get_property(node, "cache-stash-id", NULL);
532 			if (!prop) {
533 				pr_debug("missing cache-stash-id at %s\n",
534 					 node->full_name);
535 				of_node_put(node);
536 				return ~(u32)0;
537 			}
538 			of_node_put(node);
539 			return be32_to_cpup(prop);
540 		}
541 		return ~(u32)0;
542 	}
543 
544 	for_each_node_by_type(node, "cpu") {
545 		prop = of_get_property(node, "reg", &len);
546 		for (i = 0; i < len / sizeof(u32); i++) {
547 			if (be32_to_cpup(&prop[i]) == vcpu) {
548 				found = 1;
549 				goto found_cpu_node;
550 			}
551 		}
552 	}
553 found_cpu_node:
554 
555 	/* find the hwnode that represents the cache */
556 	for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
557 		if (stash_dest_hint == cache_level) {
558 			prop = of_get_property(node, "cache-stash-id", NULL);
559 			if (!prop) {
560 				pr_debug("missing cache-stash-id at %s\n",
561 					 node->full_name);
562 				of_node_put(node);
563 				return ~(u32)0;
564 			}
565 			of_node_put(node);
566 			return be32_to_cpup(prop);
567 		}
568 
569 		prop = of_get_property(node, "next-level-cache", NULL);
570 		if (!prop) {
571 			pr_debug("can't find next-level-cache at %s\n",
572 				 node->full_name);
573 			of_node_put(node);
574 			return ~(u32)0;  /* can't traverse any further */
575 		}
576 		of_node_put(node);
577 
578 		/* advance to next node in cache hierarchy */
579 		node = of_find_node_by_phandle(*prop);
580 		if (!node) {
581 			pr_debug("Invalid node for cache hierarchy\n");
582 			return ~(u32)0;
583 		}
584 	}
585 
586 	pr_debug("stash dest not found for %d on vcpu %d\n",
587 		 stash_dest_hint, vcpu);
588 	return ~(u32)0;
589 }
590 
591 /* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
592 #define QMAN_PAACE 1
593 #define QMAN_PORTAL_PAACE 2
594 #define BMAN_PAACE 3
595 
596 /**
597  * Setup operation mapping and stash destinations for QMAN and QMAN portal.
598  * Memory accesses to QMAN and BMAN private memory need not be coherent, so
599  * clear the PAACE entry coherency attribute for them.
600  */
601 static void setup_qbman_paace(struct paace *ppaace, int  paace_type)
602 {
603 	switch (paace_type) {
604 	case QMAN_PAACE:
605 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
606 		ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
607 		/* setup QMAN Private data stashing for the L3 cache */
608 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
609 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
610 		       0);
611 		break;
612 	case QMAN_PORTAL_PAACE:
613 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
614 		ppaace->op_encode.index_ot.omi = OMI_QMAN;
615 		/* Set DQRR and Frame stashing for the L3 cache */
616 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
617 		break;
618 	case BMAN_PAACE:
619 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
620 		       0);
621 		break;
622 	}
623 }
624 
625 /**
626  * Setup the operation mapping table for various devices. This is a static
627  * table where each table index corresponds to a particular device. PAMU uses
628  * this table to translate device transaction to appropriate corenet
629  * transaction.
630  */
631 static void setup_omt(struct ome *omt)
632 {
633 	struct ome *ome;
634 
635 	/* Configure OMI_QMAN */
636 	ome = &omt[OMI_QMAN];
637 
638 	ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
639 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
640 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
641 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
642 
643 	ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
644 	ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
645 
646 	/* Configure OMI_FMAN */
647 	ome = &omt[OMI_FMAN];
648 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
649 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
650 
651 	/* Configure OMI_QMAN private */
652 	ome = &omt[OMI_QMAN_PRIV];
653 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READ;
654 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
655 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
656 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
657 
658 	/* Configure OMI_CAAM */
659 	ome = &omt[OMI_CAAM];
660 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
661 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
662 }
663 
664 /*
665  * Get the maximum number of PAACT table entries
666  * and subwindows supported by PAMU
667  */
668 static void get_pamu_cap_values(unsigned long pamu_reg_base)
669 {
670 	u32 pc_val;
671 
672 	pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
673 	/* Maximum number of subwindows per liodn */
674 	max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
675 }
676 
677 /* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
678 static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
679 			  phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
680 			  phys_addr_t omt_phys)
681 {
682 	u32 *pc;
683 	struct pamu_mmap_regs *pamu_regs;
684 
685 	pc = (u32 *) (pamu_reg_base + PAMU_PC);
686 	pamu_regs = (struct pamu_mmap_regs *)
687 		(pamu_reg_base + PAMU_MMAP_REGS_BASE);
688 
689 	/* set up pointers to corenet control blocks */
690 
691 	out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
692 	out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
693 	ppaact_phys = ppaact_phys + PAACT_SIZE;
694 	out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
695 	out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
696 
697 	out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
698 	out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
699 	spaact_phys = spaact_phys + SPAACT_SIZE;
700 	out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
701 	out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
702 
703 	out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
704 	out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
705 	omt_phys = omt_phys + OMT_SIZE;
706 	out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
707 	out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
708 
709 	/*
710 	 * set PAMU enable bit,
711 	 * allow ppaact & omt to be cached
712 	 * & enable PAMU access violation interrupts.
713 	 */
714 
715 	out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
716 		 PAMU_ACCESS_VIOLATION_ENABLE);
717 	out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
718 	return 0;
719 }
720 
721 /* Enable all device LIODNS */
722 static void setup_liodns(void)
723 {
724 	int i, len;
725 	struct paace *ppaace;
726 	struct device_node *node = NULL;
727 	const u32 *prop;
728 
729 	for_each_node_with_property(node, "fsl,liodn") {
730 		prop = of_get_property(node, "fsl,liodn", &len);
731 		for (i = 0; i < len / sizeof(u32); i++) {
732 			int liodn;
733 
734 			liodn = be32_to_cpup(&prop[i]);
735 			if (liodn >= PAACE_NUMBER_ENTRIES) {
736 				pr_debug("Invalid LIODN value %d\n", liodn);
737 				continue;
738 			}
739 			ppaace = pamu_get_ppaace(liodn);
740 			pamu_init_ppaace(ppaace);
741 			/* window size is 2^(WSE+1) bytes */
742 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
743 			ppaace->wbah = 0;
744 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
745 			set_bf(ppaace->impl_attr, PAACE_IA_ATM,
746 			       PAACE_ATM_NO_XLATE);
747 			set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
748 			       PAACE_AP_PERMS_ALL);
749 			if (of_device_is_compatible(node, "fsl,qman-portal"))
750 				setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
751 			if (of_device_is_compatible(node, "fsl,qman"))
752 				setup_qbman_paace(ppaace, QMAN_PAACE);
753 			if (of_device_is_compatible(node, "fsl,bman"))
754 				setup_qbman_paace(ppaace, BMAN_PAACE);
755 			mb();
756 			pamu_enable_liodn(liodn);
757 		}
758 	}
759 }
760 
761 static irqreturn_t pamu_av_isr(int irq, void *arg)
762 {
763 	struct pamu_isr_data *data = arg;
764 	phys_addr_t phys;
765 	unsigned int i, j, ret;
766 
767 	pr_emerg("access violation interrupt\n");
768 
769 	for (i = 0; i < data->count; i++) {
770 		void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
771 		u32 pics = in_be32(p + PAMU_PICS);
772 
773 		if (pics & PAMU_ACCESS_VIOLATION_STAT) {
774 			u32 avs1 = in_be32(p + PAMU_AVS1);
775 			struct paace *paace;
776 
777 			pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
778 			pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
779 			pr_emerg("AVS1=%08x\n", avs1);
780 			pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
781 			pr_emerg("AVA=%016llx\n",
782 				 make64(in_be32(p + PAMU_AVAH),
783 					in_be32(p + PAMU_AVAL)));
784 			pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
785 			pr_emerg("POEA=%016llx\n",
786 				 make64(in_be32(p + PAMU_POEAH),
787 					in_be32(p + PAMU_POEAL)));
788 
789 			phys = make64(in_be32(p + PAMU_POEAH),
790 				      in_be32(p + PAMU_POEAL));
791 
792 			/* Assume that POEA points to a PAACE */
793 			if (phys) {
794 				u32 *paace = phys_to_virt(phys);
795 
796 				/* Only the first four words are relevant */
797 				for (j = 0; j < 4; j++)
798 					pr_emerg("PAACE[%u]=%08x\n",
799 						 j, in_be32(paace + j));
800 			}
801 
802 			/* clear access violation condition */
803 			out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
804 			paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
805 			BUG_ON(!paace);
806 			/* check if we got a violation for a disabled LIODN */
807 			if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
808 				/*
809 				 * As per hardware erratum A-003638, access
810 				 * violation can be reported for a disabled
811 				 * LIODN. If we hit that condition, disable
812 				 * access violation reporting.
813 				 */
814 				pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
815 			} else {
816 				/* Disable the LIODN */
817 				ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
818 				BUG_ON(ret);
819 				pr_emerg("Disabling liodn %x\n",
820 					 avs1 >> PAMU_AVS1_LIODN_SHIFT);
821 			}
822 			out_be32((p + PAMU_PICS), pics);
823 		}
824 	}
825 
826 	return IRQ_HANDLED;
827 }
828 
829 #define LAWAR_EN		0x80000000
830 #define LAWAR_TARGET_MASK	0x0FF00000
831 #define LAWAR_TARGET_SHIFT	20
832 #define LAWAR_SIZE_MASK		0x0000003F
833 #define LAWAR_CSDID_MASK	0x000FF000
834 #define LAWAR_CSDID_SHIFT	12
835 
836 #define LAW_SIZE_4K		0xb
837 
838 struct ccsr_law {
839 	u32	lawbarh;	/* LAWn base address high */
840 	u32	lawbarl;	/* LAWn base address low */
841 	u32	lawar;		/* LAWn attributes */
842 	u32	reserved;
843 };
844 
845 /*
846  * Create a coherence subdomain for a given memory block.
847  */
848 static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
849 {
850 	struct device_node *np;
851 	const __be32 *iprop;
852 	void __iomem *lac = NULL;	/* Local Access Control registers */
853 	struct ccsr_law __iomem *law;
854 	void __iomem *ccm = NULL;
855 	u32 __iomem *csdids;
856 	unsigned int i, num_laws, num_csds;
857 	u32 law_target = 0;
858 	u32 csd_id = 0;
859 	int ret = 0;
860 
861 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
862 	if (!np)
863 		return -ENODEV;
864 
865 	iprop = of_get_property(np, "fsl,num-laws", NULL);
866 	if (!iprop) {
867 		ret = -ENODEV;
868 		goto error;
869 	}
870 
871 	num_laws = be32_to_cpup(iprop);
872 	if (!num_laws) {
873 		ret = -ENODEV;
874 		goto error;
875 	}
876 
877 	lac = of_iomap(np, 0);
878 	if (!lac) {
879 		ret = -ENODEV;
880 		goto error;
881 	}
882 
883 	/* LAW registers are at offset 0xC00 */
884 	law = lac + 0xC00;
885 
886 	of_node_put(np);
887 
888 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
889 	if (!np) {
890 		ret = -ENODEV;
891 		goto error;
892 	}
893 
894 	iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
895 	if (!iprop) {
896 		ret = -ENODEV;
897 		goto error;
898 	}
899 
900 	num_csds = be32_to_cpup(iprop);
901 	if (!num_csds) {
902 		ret = -ENODEV;
903 		goto error;
904 	}
905 
906 	ccm = of_iomap(np, 0);
907 	if (!ccm) {
908 		ret = -ENOMEM;
909 		goto error;
910 	}
911 
912 	/* The undocumented CSDID registers are at offset 0x600 */
913 	csdids = ccm + 0x600;
914 
915 	of_node_put(np);
916 	np = NULL;
917 
918 	/* Find an unused coherence subdomain ID */
919 	for (csd_id = 0; csd_id < num_csds; csd_id++) {
920 		if (!csdids[csd_id])
921 			break;
922 	}
923 
924 	/* Store the Port ID in the (undocumented) proper CIDMRxx register */
925 	csdids[csd_id] = csd_port_id;
926 
927 	/* Find the DDR LAW that maps to our buffer. */
928 	for (i = 0; i < num_laws; i++) {
929 		if (law[i].lawar & LAWAR_EN) {
930 			phys_addr_t law_start, law_end;
931 
932 			law_start = make64(law[i].lawbarh, law[i].lawbarl);
933 			law_end = law_start +
934 				(2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
935 
936 			if (law_start <= phys && phys < law_end) {
937 				law_target = law[i].lawar & LAWAR_TARGET_MASK;
938 				break;
939 			}
940 		}
941 	}
942 
943 	if (i == 0 || i == num_laws) {
944 		/* This should never happen */
945 		ret = -ENOENT;
946 		goto error;
947 	}
948 
949 	/* Find a free LAW entry */
950 	while (law[--i].lawar & LAWAR_EN) {
951 		if (i == 0) {
952 			/* No higher priority LAW slots available */
953 			ret = -ENOENT;
954 			goto error;
955 		}
956 	}
957 
958 	law[i].lawbarh = upper_32_bits(phys);
959 	law[i].lawbarl = lower_32_bits(phys);
960 	wmb();
961 	law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
962 		(LAW_SIZE_4K + get_order(size));
963 	wmb();
964 
965 error:
966 	if (ccm)
967 		iounmap(ccm);
968 
969 	if (lac)
970 		iounmap(lac);
971 
972 	if (np)
973 		of_node_put(np);
974 
975 	return ret;
976 }
977 
978 /*
979  * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
980  * bit map of snoopers for a given range of memory mapped by a LAW.
981  *
982  * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
983  * table should never need to be updated.  SVRs are guaranteed to be unique, so
984  * there is no worry that a future SOC will inadvertently have one of these
985  * values.
986  */
987 static const struct {
988 	u32 svr;
989 	u32 port_id;
990 } port_id_map[] = {
991 	{(SVR_P2040 << 8) | 0x10, 0xFF000000},	/* P2040 1.0 */
992 	{(SVR_P2040 << 8) | 0x11, 0xFF000000},	/* P2040 1.1 */
993 	{(SVR_P2041 << 8) | 0x10, 0xFF000000},	/* P2041 1.0 */
994 	{(SVR_P2041 << 8) | 0x11, 0xFF000000},	/* P2041 1.1 */
995 	{(SVR_P3041 << 8) | 0x10, 0xFF000000},	/* P3041 1.0 */
996 	{(SVR_P3041 << 8) | 0x11, 0xFF000000},	/* P3041 1.1 */
997 	{(SVR_P4040 << 8) | 0x20, 0xFFF80000},	/* P4040 2.0 */
998 	{(SVR_P4080 << 8) | 0x20, 0xFFF80000},	/* P4080 2.0 */
999 	{(SVR_P5010 << 8) | 0x10, 0xFC000000},	/* P5010 1.0 */
1000 	{(SVR_P5010 << 8) | 0x20, 0xFC000000},	/* P5010 2.0 */
1001 	{(SVR_P5020 << 8) | 0x10, 0xFC000000},	/* P5020 1.0 */
1002 	{(SVR_P5021 << 8) | 0x10, 0xFF800000},	/* P5021 1.0 */
1003 	{(SVR_P5040 << 8) | 0x10, 0xFF800000},	/* P5040 1.0 */
1004 };
1005 
1006 #define SVR_SECURITY	0x80000	/* The Security (E) bit */
1007 
1008 static int fsl_pamu_probe(struct platform_device *pdev)
1009 {
1010 	struct device *dev = &pdev->dev;
1011 	void __iomem *pamu_regs = NULL;
1012 	struct ccsr_guts __iomem *guts_regs = NULL;
1013 	u32 pamubypenr, pamu_counter;
1014 	unsigned long pamu_reg_off;
1015 	unsigned long pamu_reg_base;
1016 	struct pamu_isr_data *data = NULL;
1017 	struct device_node *guts_node;
1018 	u64 size;
1019 	struct page *p;
1020 	int ret = 0;
1021 	int irq;
1022 	phys_addr_t ppaact_phys;
1023 	phys_addr_t spaact_phys;
1024 	struct ome *omt;
1025 	phys_addr_t omt_phys;
1026 	size_t mem_size = 0;
1027 	unsigned int order = 0;
1028 	u32 csd_port_id = 0;
1029 	unsigned i;
1030 	/*
1031 	 * enumerate all PAMUs and allocate and setup PAMU tables
1032 	 * for each of them,
1033 	 * NOTE : All PAMUs share the same LIODN tables.
1034 	 */
1035 
1036 	pamu_regs = of_iomap(dev->of_node, 0);
1037 	if (!pamu_regs) {
1038 		dev_err(dev, "ioremap of PAMU node failed\n");
1039 		return -ENOMEM;
1040 	}
1041 	of_get_address(dev->of_node, 0, &size, NULL);
1042 
1043 	irq = irq_of_parse_and_map(dev->of_node, 0);
1044 	if (irq == NO_IRQ) {
1045 		dev_warn(dev, "no interrupts listed in PAMU node\n");
1046 		goto error;
1047 	}
1048 
1049 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1050 	if (!data) {
1051 		ret = -ENOMEM;
1052 		goto error;
1053 	}
1054 	data->pamu_reg_base = pamu_regs;
1055 	data->count = size / PAMU_OFFSET;
1056 
1057 	/* The ISR needs access to the regs, so we won't iounmap them */
1058 	ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
1059 	if (ret < 0) {
1060 		dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
1061 		goto error;
1062 	}
1063 
1064 	guts_node = of_find_matching_node(NULL, guts_device_ids);
1065 	if (!guts_node) {
1066 		dev_err(dev, "could not find GUTS node %s\n",
1067 			dev->of_node->full_name);
1068 		ret = -ENODEV;
1069 		goto error;
1070 	}
1071 
1072 	guts_regs = of_iomap(guts_node, 0);
1073 	of_node_put(guts_node);
1074 	if (!guts_regs) {
1075 		dev_err(dev, "ioremap of GUTS node failed\n");
1076 		ret = -ENODEV;
1077 		goto error;
1078 	}
1079 
1080 	/* read in the PAMU capability registers */
1081 	get_pamu_cap_values((unsigned long)pamu_regs);
1082 	/*
1083 	 * To simplify the allocation of a coherency domain, we allocate the
1084 	 * PAACT and the OMT in the same memory buffer.  Unfortunately, this
1085 	 * wastes more memory compared to allocating the buffers separately.
1086 	 */
1087 	/* Determine how much memory we need */
1088 	mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
1089 		(PAGE_SIZE << get_order(SPAACT_SIZE)) +
1090 		(PAGE_SIZE << get_order(OMT_SIZE));
1091 	order = get_order(mem_size);
1092 
1093 	p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1094 	if (!p) {
1095 		dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
1096 		ret = -ENOMEM;
1097 		goto error;
1098 	}
1099 
1100 	ppaact = page_address(p);
1101 	ppaact_phys = page_to_phys(p);
1102 
1103 	/* Make sure the memory is naturally aligned */
1104 	if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
1105 		dev_err(dev, "PAACT/OMT block is unaligned\n");
1106 		ret = -ENOMEM;
1107 		goto error;
1108 	}
1109 
1110 	spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
1111 	omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
1112 
1113 	dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
1114 
1115 	/* Check to see if we need to implement the work-around on this SOC */
1116 
1117 	/* Determine the Port ID for our coherence subdomain */
1118 	for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
1119 		if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
1120 			csd_port_id = port_id_map[i].port_id;
1121 			dev_dbg(dev, "found matching SVR %08x\n",
1122 				port_id_map[i].svr);
1123 			break;
1124 		}
1125 	}
1126 
1127 	if (csd_port_id) {
1128 		dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
1129 			&ppaact_phys, mem_size, csd_port_id);
1130 
1131 		ret = create_csd(ppaact_phys, mem_size, csd_port_id);
1132 		if (ret) {
1133 			dev_err(dev, "could not create coherence subdomain\n");
1134 			return ret;
1135 		}
1136 	}
1137 
1138 	spaact_phys = virt_to_phys(spaact);
1139 	omt_phys = virt_to_phys(omt);
1140 
1141 	spaace_pool = gen_pool_create(ilog2(sizeof(struct paace)), -1);
1142 	if (!spaace_pool) {
1143 		ret = -ENOMEM;
1144 		dev_err(dev, "Failed to allocate spaace gen pool\n");
1145 		goto error;
1146 	}
1147 
1148 	ret = gen_pool_add(spaace_pool, (unsigned long)spaact, SPAACT_SIZE, -1);
1149 	if (ret)
1150 		goto error_genpool;
1151 
1152 	pamubypenr = in_be32(&guts_regs->pamubypenr);
1153 
1154 	for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
1155 	     pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
1156 
1157 		pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
1158 		setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
1159 			       spaact_phys, omt_phys);
1160 		/* Disable PAMU bypass for this PAMU */
1161 		pamubypenr &= ~pamu_counter;
1162 	}
1163 
1164 	setup_omt(omt);
1165 
1166 	/* Enable all relevant PAMU(s) */
1167 	out_be32(&guts_regs->pamubypenr, pamubypenr);
1168 
1169 	iounmap(guts_regs);
1170 
1171 	/* Enable DMA for the LIODNs in the device tree */
1172 
1173 	setup_liodns();
1174 
1175 	return 0;
1176 
1177 error_genpool:
1178 	gen_pool_destroy(spaace_pool);
1179 
1180 error:
1181 	if (irq != NO_IRQ)
1182 		free_irq(irq, data);
1183 
1184 	if (data) {
1185 		memset(data, 0, sizeof(struct pamu_isr_data));
1186 		kfree(data);
1187 	}
1188 
1189 	if (pamu_regs)
1190 		iounmap(pamu_regs);
1191 
1192 	if (guts_regs)
1193 		iounmap(guts_regs);
1194 
1195 	if (ppaact)
1196 		free_pages((unsigned long)ppaact, order);
1197 
1198 	ppaact = NULL;
1199 
1200 	return ret;
1201 }
1202 
1203 static struct platform_driver fsl_of_pamu_driver = {
1204 	.driver = {
1205 		.name = "fsl-of-pamu",
1206 	},
1207 	.probe = fsl_pamu_probe,
1208 };
1209 
1210 static __init int fsl_pamu_init(void)
1211 {
1212 	struct platform_device *pdev = NULL;
1213 	struct device_node *np;
1214 	int ret;
1215 
1216 	/*
1217 	 * The normal OF process calls the probe function at some
1218 	 * indeterminate later time, after most drivers have loaded.  This is
1219 	 * too late for us, because PAMU clients (like the Qman driver)
1220 	 * depend on PAMU being initialized early.
1221 	 *
1222 	 * So instead, we "manually" call our probe function by creating the
1223 	 * platform devices ourselves.
1224 	 */
1225 
1226 	/*
1227 	 * We assume that there is only one PAMU node in the device tree.  A
1228 	 * single PAMU node represents all of the PAMU devices in the SOC
1229 	 * already.   Everything else already makes that assumption, and the
1230 	 * binding for the PAMU nodes doesn't allow for any parent-child
1231 	 * relationships anyway.  In other words, support for more than one
1232 	 * PAMU node would require significant changes to a lot of code.
1233 	 */
1234 
1235 	np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
1236 	if (!np) {
1237 		pr_err("could not find a PAMU node\n");
1238 		return -ENODEV;
1239 	}
1240 
1241 	ret = platform_driver_register(&fsl_of_pamu_driver);
1242 	if (ret) {
1243 		pr_err("could not register driver (err=%i)\n", ret);
1244 		goto error_driver_register;
1245 	}
1246 
1247 	pdev = platform_device_alloc("fsl-of-pamu", 0);
1248 	if (!pdev) {
1249 		pr_err("could not allocate device %s\n",
1250 		       np->full_name);
1251 		ret = -ENOMEM;
1252 		goto error_device_alloc;
1253 	}
1254 	pdev->dev.of_node = of_node_get(np);
1255 
1256 	ret = pamu_domain_init();
1257 	if (ret)
1258 		goto error_device_add;
1259 
1260 	ret = platform_device_add(pdev);
1261 	if (ret) {
1262 		pr_err("could not add device %s (err=%i)\n",
1263 		       np->full_name, ret);
1264 		goto error_device_add;
1265 	}
1266 
1267 	return 0;
1268 
1269 error_device_add:
1270 	of_node_put(pdev->dev.of_node);
1271 	pdev->dev.of_node = NULL;
1272 
1273 	platform_device_put(pdev);
1274 
1275 error_device_alloc:
1276 	platform_driver_unregister(&fsl_of_pamu_driver);
1277 
1278 error_driver_register:
1279 	of_node_put(np);
1280 
1281 	return ret;
1282 }
1283 arch_initcall(fsl_pamu_init);
1284