xref: /openbmc/linux/drivers/iommu/fsl_pamu.c (revision 62975d27)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (C) 2013 Freescale Semiconductor, Inc.
5  */
6 
7 #define pr_fmt(fmt)    "fsl-pamu: %s: " fmt, __func__
8 
9 #include "fsl_pamu.h"
10 
11 #include <linux/fsl/guts.h>
12 #include <linux/interrupt.h>
13 #include <linux/genalloc.h>
14 
15 #include <asm/mpc85xx.h>
16 
17 /* define indexes for each operation mapping scenario */
18 #define OMI_QMAN        0x00
19 #define OMI_FMAN        0x01
20 #define OMI_QMAN_PRIV   0x02
21 #define OMI_CAAM        0x03
22 
23 #define make64(high, low) (((u64)(high) << 32) | (low))
24 
25 struct pamu_isr_data {
26 	void __iomem *pamu_reg_base;	/* Base address of PAMU regs */
27 	unsigned int count;		/* The number of PAMUs */
28 };
29 
30 static struct paace *ppaact;
31 static struct paace *spaact;
32 
33 static bool probed;			/* Has PAMU been probed? */
34 
35 /*
36  * Table for matching compatible strings, for device tree
37  * guts node, for QorIQ SOCs.
38  * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
39  * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
40  * string would be used.
41  */
42 static const struct of_device_id guts_device_ids[] = {
43 	{ .compatible = "fsl,qoriq-device-config-1.0", },
44 	{ .compatible = "fsl,qoriq-device-config-2.0", },
45 	{}
46 };
47 
48 /*
49  * Table for matching compatible strings, for device tree
50  * L3 cache controller node.
51  * "fsl,t4240-l3-cache-controller" corresponds to T4,
52  * "fsl,b4860-l3-cache-controller" corresponds to B4 &
53  * "fsl,p4080-l3-cache-controller" corresponds to other,
54  * SOCs.
55  */
56 static const struct of_device_id l3_device_ids[] = {
57 	{ .compatible = "fsl,t4240-l3-cache-controller", },
58 	{ .compatible = "fsl,b4860-l3-cache-controller", },
59 	{ .compatible = "fsl,p4080-l3-cache-controller", },
60 	{}
61 };
62 
63 /* maximum subwindows permitted per liodn */
64 static u32 max_subwindow_count;
65 
66 /* Pool for fspi allocation */
67 static struct gen_pool *spaace_pool;
68 
69 /**
70  * pamu_get_max_subwin_cnt() - Return the maximum supported
71  * subwindow count per liodn.
72  *
73  */
74 u32 pamu_get_max_subwin_cnt(void)
75 {
76 	return max_subwindow_count;
77 }
78 
79 /**
80  * pamu_get_ppaace() - Return the primary PACCE
81  * @liodn: liodn PAACT index for desired PAACE
82  *
83  * Returns the ppace pointer upon success else return
84  * null.
85  */
86 static struct paace *pamu_get_ppaace(int liodn)
87 {
88 	if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
89 		pr_debug("PPAACT doesn't exist\n");
90 		return NULL;
91 	}
92 
93 	return &ppaact[liodn];
94 }
95 
96 /**
97  * pamu_enable_liodn() - Set valid bit of PACCE
98  * @liodn: liodn PAACT index for desired PAACE
99  *
100  * Returns 0 upon success else error code < 0 returned
101  */
102 int pamu_enable_liodn(int liodn)
103 {
104 	struct paace *ppaace;
105 
106 	ppaace = pamu_get_ppaace(liodn);
107 	if (!ppaace) {
108 		pr_debug("Invalid primary paace entry\n");
109 		return -ENOENT;
110 	}
111 
112 	if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
113 		pr_debug("liodn %d not configured\n", liodn);
114 		return -EINVAL;
115 	}
116 
117 	/* Ensure that all other stores to the ppaace complete first */
118 	mb();
119 
120 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
121 	mb();
122 
123 	return 0;
124 }
125 
126 /**
127  * pamu_disable_liodn() - Clears valid bit of PACCE
128  * @liodn: liodn PAACT index for desired PAACE
129  *
130  * Returns 0 upon success else error code < 0 returned
131  */
132 int pamu_disable_liodn(int liodn)
133 {
134 	struct paace *ppaace;
135 
136 	ppaace = pamu_get_ppaace(liodn);
137 	if (!ppaace) {
138 		pr_debug("Invalid primary paace entry\n");
139 		return -ENOENT;
140 	}
141 
142 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
143 	mb();
144 
145 	return 0;
146 }
147 
148 /* Derive the window size encoding for a particular PAACE entry */
149 static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
150 {
151 	/* Bug if not a power of 2 */
152 	BUG_ON(addrspace_size & (addrspace_size - 1));
153 
154 	/* window size is 2^(WSE+1) bytes */
155 	return fls64(addrspace_size) - 2;
156 }
157 
158 /* Derive the PAACE window count encoding for the subwindow count */
159 static unsigned int map_subwindow_cnt_to_wce(u32 subwindow_cnt)
160 {
161 	/* window count is 2^(WCE+1) bytes */
162 	return __ffs(subwindow_cnt) - 1;
163 }
164 
165 /*
166  * Set the PAACE type as primary and set the coherency required domain
167  * attribute
168  */
169 static void pamu_init_ppaace(struct paace *ppaace)
170 {
171 	set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
172 
173 	set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
174 	       PAACE_M_COHERENCE_REQ);
175 }
176 
177 /*
178  * Set the PAACE type as secondary and set the coherency required domain
179  * attribute.
180  */
181 static void pamu_init_spaace(struct paace *spaace)
182 {
183 	set_bf(spaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_SECONDARY);
184 	set_bf(spaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
185 	       PAACE_M_COHERENCE_REQ);
186 }
187 
188 /*
189  * Return the spaace (corresponding to the secondary window index)
190  * for a particular ppaace.
191  */
192 static struct paace *pamu_get_spaace(struct paace *paace, u32 wnum)
193 {
194 	u32 subwin_cnt;
195 	struct paace *spaace = NULL;
196 
197 	subwin_cnt = 1UL << (get_bf(paace->impl_attr, PAACE_IA_WCE) + 1);
198 
199 	if (wnum < subwin_cnt)
200 		spaace = &spaact[paace->fspi + wnum];
201 	else
202 		pr_debug("secondary paace out of bounds\n");
203 
204 	return spaace;
205 }
206 
207 /**
208  * pamu_get_fspi_and_allocate() - Allocates fspi index and reserves subwindows
209  *                                required for primary PAACE in the secondary
210  *                                PAACE table.
211  * @subwin_cnt: Number of subwindows to be reserved.
212  *
213  * A PPAACE entry may have a number of associated subwindows. A subwindow
214  * corresponds to a SPAACE entry in the SPAACT table. Each PAACE entry stores
215  * the index (fspi) of the first SPAACE entry in the SPAACT table. This
216  * function returns the index of the first SPAACE entry. The remaining
217  * SPAACE entries are reserved contiguously from that index.
218  *
219  * Returns a valid fspi index in the range of 0 - SPAACE_NUMBER_ENTRIES on success.
220  * If no SPAACE entry is available or the allocator can not reserve the required
221  * number of contiguous entries function returns ULONG_MAX indicating a failure.
222  *
223  */
224 static unsigned long pamu_get_fspi_and_allocate(u32 subwin_cnt)
225 {
226 	unsigned long spaace_addr;
227 
228 	spaace_addr = gen_pool_alloc(spaace_pool, subwin_cnt * sizeof(struct paace));
229 	if (!spaace_addr)
230 		return ULONG_MAX;
231 
232 	return (spaace_addr - (unsigned long)spaact) / (sizeof(struct paace));
233 }
234 
235 /* Release the subwindows reserved for a particular LIODN */
236 void pamu_free_subwins(int liodn)
237 {
238 	struct paace *ppaace;
239 	u32 subwin_cnt, size;
240 
241 	ppaace = pamu_get_ppaace(liodn);
242 	if (!ppaace) {
243 		pr_debug("Invalid liodn entry\n");
244 		return;
245 	}
246 
247 	if (get_bf(ppaace->addr_bitfields, PPAACE_AF_MW)) {
248 		subwin_cnt = 1UL << (get_bf(ppaace->impl_attr, PAACE_IA_WCE) + 1);
249 		size = (subwin_cnt - 1) * sizeof(struct paace);
250 		gen_pool_free(spaace_pool, (unsigned long)&spaact[ppaace->fspi], size);
251 		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
252 	}
253 }
254 
255 /*
256  * Function used for updating stash destination for the coressponding
257  * LIODN.
258  */
259 int  pamu_update_paace_stash(int liodn, u32 subwin, u32 value)
260 {
261 	struct paace *paace;
262 
263 	paace = pamu_get_ppaace(liodn);
264 	if (!paace) {
265 		pr_debug("Invalid liodn entry\n");
266 		return -ENOENT;
267 	}
268 	if (subwin) {
269 		paace = pamu_get_spaace(paace, subwin - 1);
270 		if (!paace)
271 			return -ENOENT;
272 	}
273 	set_bf(paace->impl_attr, PAACE_IA_CID, value);
274 
275 	mb();
276 
277 	return 0;
278 }
279 
280 /* Disable a subwindow corresponding to the LIODN */
281 int pamu_disable_spaace(int liodn, u32 subwin)
282 {
283 	struct paace *paace;
284 
285 	paace = pamu_get_ppaace(liodn);
286 	if (!paace) {
287 		pr_debug("Invalid liodn entry\n");
288 		return -ENOENT;
289 	}
290 	if (subwin) {
291 		paace = pamu_get_spaace(paace, subwin - 1);
292 		if (!paace)
293 			return -ENOENT;
294 		set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
295 	} else {
296 		set_bf(paace->addr_bitfields, PAACE_AF_AP,
297 		       PAACE_AP_PERMS_DENIED);
298 	}
299 
300 	mb();
301 
302 	return 0;
303 }
304 
305 /**
306  * pamu_config_paace() - Sets up PPAACE entry for specified liodn
307  *
308  * @liodn: Logical IO device number
309  * @win_addr: starting address of DSA window
310  * @win-size: size of DSA window
311  * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
312  * @rpn: real (true physical) page number
313  * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
314  *	     stashid not defined
315  * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
316  *	     snoopid not defined
317  * @subwin_cnt: number of sub-windows
318  * @prot: window permissions
319  *
320  * Returns 0 upon success else error code < 0 returned
321  */
322 int pamu_config_ppaace(int liodn, phys_addr_t win_addr, phys_addr_t win_size,
323 		       u32 omi, unsigned long rpn, u32 snoopid, u32 stashid,
324 		       u32 subwin_cnt, int prot)
325 {
326 	struct paace *ppaace;
327 	unsigned long fspi;
328 
329 	if ((win_size & (win_size - 1)) || win_size < PAMU_PAGE_SIZE) {
330 		pr_debug("window size too small or not a power of two %pa\n",
331 			 &win_size);
332 		return -EINVAL;
333 	}
334 
335 	if (win_addr & (win_size - 1)) {
336 		pr_debug("window address is not aligned with window size\n");
337 		return -EINVAL;
338 	}
339 
340 	ppaace = pamu_get_ppaace(liodn);
341 	if (!ppaace)
342 		return -ENOENT;
343 
344 	/* window size is 2^(WSE+1) bytes */
345 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
346 	       map_addrspace_size_to_wse(win_size));
347 
348 	pamu_init_ppaace(ppaace);
349 
350 	ppaace->wbah = win_addr >> (PAMU_PAGE_SHIFT + 20);
351 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL,
352 	       (win_addr >> PAMU_PAGE_SHIFT));
353 
354 	/* set up operation mapping if it's configured */
355 	if (omi < OME_NUMBER_ENTRIES) {
356 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
357 		ppaace->op_encode.index_ot.omi = omi;
358 	} else if (~omi != 0) {
359 		pr_debug("bad operation mapping index: %d\n", omi);
360 		return -EINVAL;
361 	}
362 
363 	/* configure stash id */
364 	if (~stashid != 0)
365 		set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
366 
367 	/* configure snoop id */
368 	if (~snoopid != 0)
369 		ppaace->domain_attr.to_host.snpid = snoopid;
370 
371 	if (subwin_cnt) {
372 		/* The first entry is in the primary PAACE instead */
373 		fspi = pamu_get_fspi_and_allocate(subwin_cnt - 1);
374 		if (fspi == ULONG_MAX) {
375 			pr_debug("spaace indexes exhausted\n");
376 			return -EINVAL;
377 		}
378 
379 		/* window count is 2^(WCE+1) bytes */
380 		set_bf(ppaace->impl_attr, PAACE_IA_WCE,
381 		       map_subwindow_cnt_to_wce(subwin_cnt));
382 		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0x1);
383 		ppaace->fspi = fspi;
384 	} else {
385 		set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
386 		ppaace->twbah = rpn >> 20;
387 		set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, rpn);
388 		set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
389 		set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
390 		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
391 	}
392 	mb();
393 
394 	return 0;
395 }
396 
397 /**
398  * pamu_config_spaace() - Sets up SPAACE entry for specified subwindow
399  *
400  * @liodn:  Logical IO device number
401  * @subwin_cnt:  number of sub-windows associated with dma-window
402  * @subwin: subwindow index
403  * @subwin_size: size of subwindow
404  * @omi: Operation mapping index
405  * @rpn: real (true physical) page number
406  * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
407  *			  snoopid not defined
408  * @stashid: cache stash id for associated cpu
409  * @enable: enable/disable subwindow after reconfiguration
410  * @prot: sub window permissions
411  *
412  * Returns 0 upon success else error code < 0 returned
413  */
414 int pamu_config_spaace(int liodn, u32 subwin_cnt, u32 subwin,
415 		       phys_addr_t subwin_size, u32 omi, unsigned long rpn,
416 		       u32 snoopid, u32 stashid, int enable, int prot)
417 {
418 	struct paace *paace;
419 
420 	/* setup sub-windows */
421 	if (!subwin_cnt) {
422 		pr_debug("Invalid subwindow count\n");
423 		return -EINVAL;
424 	}
425 
426 	paace = pamu_get_ppaace(liodn);
427 	if (subwin > 0 && subwin < subwin_cnt && paace) {
428 		paace = pamu_get_spaace(paace, subwin - 1);
429 
430 		if (paace && !(paace->addr_bitfields & PAACE_V_VALID)) {
431 			pamu_init_spaace(paace);
432 			set_bf(paace->addr_bitfields, SPAACE_AF_LIODN, liodn);
433 		}
434 	}
435 
436 	if (!paace) {
437 		pr_debug("Invalid liodn entry\n");
438 		return -ENOENT;
439 	}
440 
441 	if ((subwin_size & (subwin_size - 1)) || subwin_size < PAMU_PAGE_SIZE) {
442 		pr_debug("subwindow size out of range, or not a power of 2\n");
443 		return -EINVAL;
444 	}
445 
446 	if (rpn == ULONG_MAX) {
447 		pr_debug("real page number out of range\n");
448 		return -EINVAL;
449 	}
450 
451 	/* window size is 2^(WSE+1) bytes */
452 	set_bf(paace->win_bitfields, PAACE_WIN_SWSE,
453 	       map_addrspace_size_to_wse(subwin_size));
454 
455 	set_bf(paace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
456 	paace->twbah = rpn >> 20;
457 	set_bf(paace->win_bitfields, PAACE_WIN_TWBAL, rpn);
458 	set_bf(paace->addr_bitfields, PAACE_AF_AP, prot);
459 
460 	/* configure snoop id */
461 	if (~snoopid != 0)
462 		paace->domain_attr.to_host.snpid = snoopid;
463 
464 	/* set up operation mapping if it's configured */
465 	if (omi < OME_NUMBER_ENTRIES) {
466 		set_bf(paace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
467 		paace->op_encode.index_ot.omi = omi;
468 	} else if (~omi != 0) {
469 		pr_debug("bad operation mapping index: %d\n", omi);
470 		return -EINVAL;
471 	}
472 
473 	if (~stashid != 0)
474 		set_bf(paace->impl_attr, PAACE_IA_CID, stashid);
475 
476 	smp_wmb();
477 
478 	if (enable)
479 		set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
480 
481 	mb();
482 
483 	return 0;
484 }
485 
486 /**
487  * get_ome_index() - Returns the index in the operation mapping table
488  *                   for device.
489  * @*omi_index: pointer for storing the index value
490  *
491  */
492 void get_ome_index(u32 *omi_index, struct device *dev)
493 {
494 	if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
495 		*omi_index = OMI_QMAN;
496 	if (of_device_is_compatible(dev->of_node, "fsl,qman"))
497 		*omi_index = OMI_QMAN_PRIV;
498 }
499 
500 /**
501  * get_stash_id - Returns stash destination id corresponding to a
502  *                cache type and vcpu.
503  * @stash_dest_hint: L1, L2 or L3
504  * @vcpu: vpcu target for a particular cache type.
505  *
506  * Returs stash on success or ~(u32)0 on failure.
507  *
508  */
509 u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
510 {
511 	const u32 *prop;
512 	struct device_node *node;
513 	u32 cache_level;
514 	int len, found = 0;
515 	int i;
516 
517 	/* Fastpath, exit early if L3/CPC cache is target for stashing */
518 	if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
519 		node = of_find_matching_node(NULL, l3_device_ids);
520 		if (node) {
521 			prop = of_get_property(node, "cache-stash-id", NULL);
522 			if (!prop) {
523 				pr_debug("missing cache-stash-id at %pOF\n",
524 					 node);
525 				of_node_put(node);
526 				return ~(u32)0;
527 			}
528 			of_node_put(node);
529 			return be32_to_cpup(prop);
530 		}
531 		return ~(u32)0;
532 	}
533 
534 	for_each_of_cpu_node(node) {
535 		prop = of_get_property(node, "reg", &len);
536 		for (i = 0; i < len / sizeof(u32); i++) {
537 			if (be32_to_cpup(&prop[i]) == vcpu) {
538 				found = 1;
539 				goto found_cpu_node;
540 			}
541 		}
542 	}
543 found_cpu_node:
544 
545 	/* find the hwnode that represents the cache */
546 	for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
547 		if (stash_dest_hint == cache_level) {
548 			prop = of_get_property(node, "cache-stash-id", NULL);
549 			if (!prop) {
550 				pr_debug("missing cache-stash-id at %pOF\n",
551 					 node);
552 				of_node_put(node);
553 				return ~(u32)0;
554 			}
555 			of_node_put(node);
556 			return be32_to_cpup(prop);
557 		}
558 
559 		prop = of_get_property(node, "next-level-cache", NULL);
560 		if (!prop) {
561 			pr_debug("can't find next-level-cache at %pOF\n", node);
562 			of_node_put(node);
563 			return ~(u32)0;  /* can't traverse any further */
564 		}
565 		of_node_put(node);
566 
567 		/* advance to next node in cache hierarchy */
568 		node = of_find_node_by_phandle(*prop);
569 		if (!node) {
570 			pr_debug("Invalid node for cache hierarchy\n");
571 			return ~(u32)0;
572 		}
573 	}
574 
575 	pr_debug("stash dest not found for %d on vcpu %d\n",
576 		 stash_dest_hint, vcpu);
577 	return ~(u32)0;
578 }
579 
580 /* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
581 #define QMAN_PAACE 1
582 #define QMAN_PORTAL_PAACE 2
583 #define BMAN_PAACE 3
584 
585 /**
586  * Setup operation mapping and stash destinations for QMAN and QMAN portal.
587  * Memory accesses to QMAN and BMAN private memory need not be coherent, so
588  * clear the PAACE entry coherency attribute for them.
589  */
590 static void setup_qbman_paace(struct paace *ppaace, int  paace_type)
591 {
592 	switch (paace_type) {
593 	case QMAN_PAACE:
594 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
595 		ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
596 		/* setup QMAN Private data stashing for the L3 cache */
597 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
598 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
599 		       0);
600 		break;
601 	case QMAN_PORTAL_PAACE:
602 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
603 		ppaace->op_encode.index_ot.omi = OMI_QMAN;
604 		/* Set DQRR and Frame stashing for the L3 cache */
605 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
606 		break;
607 	case BMAN_PAACE:
608 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
609 		       0);
610 		break;
611 	}
612 }
613 
614 /**
615  * Setup the operation mapping table for various devices. This is a static
616  * table where each table index corresponds to a particular device. PAMU uses
617  * this table to translate device transaction to appropriate corenet
618  * transaction.
619  */
620 static void setup_omt(struct ome *omt)
621 {
622 	struct ome *ome;
623 
624 	/* Configure OMI_QMAN */
625 	ome = &omt[OMI_QMAN];
626 
627 	ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
628 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
629 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
630 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
631 
632 	ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
633 	ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
634 
635 	/* Configure OMI_FMAN */
636 	ome = &omt[OMI_FMAN];
637 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
638 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
639 
640 	/* Configure OMI_QMAN private */
641 	ome = &omt[OMI_QMAN_PRIV];
642 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READ;
643 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
644 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
645 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
646 
647 	/* Configure OMI_CAAM */
648 	ome = &omt[OMI_CAAM];
649 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
650 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
651 }
652 
653 /*
654  * Get the maximum number of PAACT table entries
655  * and subwindows supported by PAMU
656  */
657 static void get_pamu_cap_values(unsigned long pamu_reg_base)
658 {
659 	u32 pc_val;
660 
661 	pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
662 	/* Maximum number of subwindows per liodn */
663 	max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
664 }
665 
666 /* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
667 static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
668 			  phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
669 			  phys_addr_t omt_phys)
670 {
671 	u32 *pc;
672 	struct pamu_mmap_regs *pamu_regs;
673 
674 	pc = (u32 *) (pamu_reg_base + PAMU_PC);
675 	pamu_regs = (struct pamu_mmap_regs *)
676 		(pamu_reg_base + PAMU_MMAP_REGS_BASE);
677 
678 	/* set up pointers to corenet control blocks */
679 
680 	out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
681 	out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
682 	ppaact_phys = ppaact_phys + PAACT_SIZE;
683 	out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
684 	out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
685 
686 	out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
687 	out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
688 	spaact_phys = spaact_phys + SPAACT_SIZE;
689 	out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
690 	out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
691 
692 	out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
693 	out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
694 	omt_phys = omt_phys + OMT_SIZE;
695 	out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
696 	out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
697 
698 	/*
699 	 * set PAMU enable bit,
700 	 * allow ppaact & omt to be cached
701 	 * & enable PAMU access violation interrupts.
702 	 */
703 
704 	out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
705 		 PAMU_ACCESS_VIOLATION_ENABLE);
706 	out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
707 	return 0;
708 }
709 
710 /* Enable all device LIODNS */
711 static void setup_liodns(void)
712 {
713 	int i, len;
714 	struct paace *ppaace;
715 	struct device_node *node = NULL;
716 	const u32 *prop;
717 
718 	for_each_node_with_property(node, "fsl,liodn") {
719 		prop = of_get_property(node, "fsl,liodn", &len);
720 		for (i = 0; i < len / sizeof(u32); i++) {
721 			int liodn;
722 
723 			liodn = be32_to_cpup(&prop[i]);
724 			if (liodn >= PAACE_NUMBER_ENTRIES) {
725 				pr_debug("Invalid LIODN value %d\n", liodn);
726 				continue;
727 			}
728 			ppaace = pamu_get_ppaace(liodn);
729 			pamu_init_ppaace(ppaace);
730 			/* window size is 2^(WSE+1) bytes */
731 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
732 			ppaace->wbah = 0;
733 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
734 			set_bf(ppaace->impl_attr, PAACE_IA_ATM,
735 			       PAACE_ATM_NO_XLATE);
736 			set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
737 			       PAACE_AP_PERMS_ALL);
738 			if (of_device_is_compatible(node, "fsl,qman-portal"))
739 				setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
740 			if (of_device_is_compatible(node, "fsl,qman"))
741 				setup_qbman_paace(ppaace, QMAN_PAACE);
742 			if (of_device_is_compatible(node, "fsl,bman"))
743 				setup_qbman_paace(ppaace, BMAN_PAACE);
744 			mb();
745 			pamu_enable_liodn(liodn);
746 		}
747 	}
748 }
749 
750 static irqreturn_t pamu_av_isr(int irq, void *arg)
751 {
752 	struct pamu_isr_data *data = arg;
753 	phys_addr_t phys;
754 	unsigned int i, j, ret;
755 
756 	pr_emerg("access violation interrupt\n");
757 
758 	for (i = 0; i < data->count; i++) {
759 		void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
760 		u32 pics = in_be32(p + PAMU_PICS);
761 
762 		if (pics & PAMU_ACCESS_VIOLATION_STAT) {
763 			u32 avs1 = in_be32(p + PAMU_AVS1);
764 			struct paace *paace;
765 
766 			pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
767 			pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
768 			pr_emerg("AVS1=%08x\n", avs1);
769 			pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
770 			pr_emerg("AVA=%016llx\n",
771 				 make64(in_be32(p + PAMU_AVAH),
772 					in_be32(p + PAMU_AVAL)));
773 			pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
774 			pr_emerg("POEA=%016llx\n",
775 				 make64(in_be32(p + PAMU_POEAH),
776 					in_be32(p + PAMU_POEAL)));
777 
778 			phys = make64(in_be32(p + PAMU_POEAH),
779 				      in_be32(p + PAMU_POEAL));
780 
781 			/* Assume that POEA points to a PAACE */
782 			if (phys) {
783 				u32 *paace = phys_to_virt(phys);
784 
785 				/* Only the first four words are relevant */
786 				for (j = 0; j < 4; j++)
787 					pr_emerg("PAACE[%u]=%08x\n",
788 						 j, in_be32(paace + j));
789 			}
790 
791 			/* clear access violation condition */
792 			out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
793 			paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
794 			BUG_ON(!paace);
795 			/* check if we got a violation for a disabled LIODN */
796 			if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
797 				/*
798 				 * As per hardware erratum A-003638, access
799 				 * violation can be reported for a disabled
800 				 * LIODN. If we hit that condition, disable
801 				 * access violation reporting.
802 				 */
803 				pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
804 			} else {
805 				/* Disable the LIODN */
806 				ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
807 				BUG_ON(ret);
808 				pr_emerg("Disabling liodn %x\n",
809 					 avs1 >> PAMU_AVS1_LIODN_SHIFT);
810 			}
811 			out_be32((p + PAMU_PICS), pics);
812 		}
813 	}
814 
815 	return IRQ_HANDLED;
816 }
817 
818 #define LAWAR_EN		0x80000000
819 #define LAWAR_TARGET_MASK	0x0FF00000
820 #define LAWAR_TARGET_SHIFT	20
821 #define LAWAR_SIZE_MASK		0x0000003F
822 #define LAWAR_CSDID_MASK	0x000FF000
823 #define LAWAR_CSDID_SHIFT	12
824 
825 #define LAW_SIZE_4K		0xb
826 
827 struct ccsr_law {
828 	u32	lawbarh;	/* LAWn base address high */
829 	u32	lawbarl;	/* LAWn base address low */
830 	u32	lawar;		/* LAWn attributes */
831 	u32	reserved;
832 };
833 
834 /*
835  * Create a coherence subdomain for a given memory block.
836  */
837 static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
838 {
839 	struct device_node *np;
840 	const __be32 *iprop;
841 	void __iomem *lac = NULL;	/* Local Access Control registers */
842 	struct ccsr_law __iomem *law;
843 	void __iomem *ccm = NULL;
844 	u32 __iomem *csdids;
845 	unsigned int i, num_laws, num_csds;
846 	u32 law_target = 0;
847 	u32 csd_id = 0;
848 	int ret = 0;
849 
850 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
851 	if (!np)
852 		return -ENODEV;
853 
854 	iprop = of_get_property(np, "fsl,num-laws", NULL);
855 	if (!iprop) {
856 		ret = -ENODEV;
857 		goto error;
858 	}
859 
860 	num_laws = be32_to_cpup(iprop);
861 	if (!num_laws) {
862 		ret = -ENODEV;
863 		goto error;
864 	}
865 
866 	lac = of_iomap(np, 0);
867 	if (!lac) {
868 		ret = -ENODEV;
869 		goto error;
870 	}
871 
872 	/* LAW registers are at offset 0xC00 */
873 	law = lac + 0xC00;
874 
875 	of_node_put(np);
876 
877 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
878 	if (!np) {
879 		ret = -ENODEV;
880 		goto error;
881 	}
882 
883 	iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
884 	if (!iprop) {
885 		ret = -ENODEV;
886 		goto error;
887 	}
888 
889 	num_csds = be32_to_cpup(iprop);
890 	if (!num_csds) {
891 		ret = -ENODEV;
892 		goto error;
893 	}
894 
895 	ccm = of_iomap(np, 0);
896 	if (!ccm) {
897 		ret = -ENOMEM;
898 		goto error;
899 	}
900 
901 	/* The undocumented CSDID registers are at offset 0x600 */
902 	csdids = ccm + 0x600;
903 
904 	of_node_put(np);
905 	np = NULL;
906 
907 	/* Find an unused coherence subdomain ID */
908 	for (csd_id = 0; csd_id < num_csds; csd_id++) {
909 		if (!csdids[csd_id])
910 			break;
911 	}
912 
913 	/* Store the Port ID in the (undocumented) proper CIDMRxx register */
914 	csdids[csd_id] = csd_port_id;
915 
916 	/* Find the DDR LAW that maps to our buffer. */
917 	for (i = 0; i < num_laws; i++) {
918 		if (law[i].lawar & LAWAR_EN) {
919 			phys_addr_t law_start, law_end;
920 
921 			law_start = make64(law[i].lawbarh, law[i].lawbarl);
922 			law_end = law_start +
923 				(2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
924 
925 			if (law_start <= phys && phys < law_end) {
926 				law_target = law[i].lawar & LAWAR_TARGET_MASK;
927 				break;
928 			}
929 		}
930 	}
931 
932 	if (i == 0 || i == num_laws) {
933 		/* This should never happen */
934 		ret = -ENOENT;
935 		goto error;
936 	}
937 
938 	/* Find a free LAW entry */
939 	while (law[--i].lawar & LAWAR_EN) {
940 		if (i == 0) {
941 			/* No higher priority LAW slots available */
942 			ret = -ENOENT;
943 			goto error;
944 		}
945 	}
946 
947 	law[i].lawbarh = upper_32_bits(phys);
948 	law[i].lawbarl = lower_32_bits(phys);
949 	wmb();
950 	law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
951 		(LAW_SIZE_4K + get_order(size));
952 	wmb();
953 
954 error:
955 	if (ccm)
956 		iounmap(ccm);
957 
958 	if (lac)
959 		iounmap(lac);
960 
961 	if (np)
962 		of_node_put(np);
963 
964 	return ret;
965 }
966 
967 /*
968  * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
969  * bit map of snoopers for a given range of memory mapped by a LAW.
970  *
971  * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
972  * table should never need to be updated.  SVRs are guaranteed to be unique, so
973  * there is no worry that a future SOC will inadvertently have one of these
974  * values.
975  */
976 static const struct {
977 	u32 svr;
978 	u32 port_id;
979 } port_id_map[] = {
980 	{(SVR_P2040 << 8) | 0x10, 0xFF000000},	/* P2040 1.0 */
981 	{(SVR_P2040 << 8) | 0x11, 0xFF000000},	/* P2040 1.1 */
982 	{(SVR_P2041 << 8) | 0x10, 0xFF000000},	/* P2041 1.0 */
983 	{(SVR_P2041 << 8) | 0x11, 0xFF000000},	/* P2041 1.1 */
984 	{(SVR_P3041 << 8) | 0x10, 0xFF000000},	/* P3041 1.0 */
985 	{(SVR_P3041 << 8) | 0x11, 0xFF000000},	/* P3041 1.1 */
986 	{(SVR_P4040 << 8) | 0x20, 0xFFF80000},	/* P4040 2.0 */
987 	{(SVR_P4080 << 8) | 0x20, 0xFFF80000},	/* P4080 2.0 */
988 	{(SVR_P5010 << 8) | 0x10, 0xFC000000},	/* P5010 1.0 */
989 	{(SVR_P5010 << 8) | 0x20, 0xFC000000},	/* P5010 2.0 */
990 	{(SVR_P5020 << 8) | 0x10, 0xFC000000},	/* P5020 1.0 */
991 	{(SVR_P5021 << 8) | 0x10, 0xFF800000},	/* P5021 1.0 */
992 	{(SVR_P5040 << 8) | 0x10, 0xFF800000},	/* P5040 1.0 */
993 };
994 
995 #define SVR_SECURITY	0x80000	/* The Security (E) bit */
996 
997 static int fsl_pamu_probe(struct platform_device *pdev)
998 {
999 	struct device *dev = &pdev->dev;
1000 	void __iomem *pamu_regs = NULL;
1001 	struct ccsr_guts __iomem *guts_regs = NULL;
1002 	u32 pamubypenr, pamu_counter;
1003 	unsigned long pamu_reg_off;
1004 	unsigned long pamu_reg_base;
1005 	struct pamu_isr_data *data = NULL;
1006 	struct device_node *guts_node;
1007 	u64 size;
1008 	struct page *p;
1009 	int ret = 0;
1010 	int irq;
1011 	phys_addr_t ppaact_phys;
1012 	phys_addr_t spaact_phys;
1013 	struct ome *omt;
1014 	phys_addr_t omt_phys;
1015 	size_t mem_size = 0;
1016 	unsigned int order = 0;
1017 	u32 csd_port_id = 0;
1018 	unsigned i;
1019 	/*
1020 	 * enumerate all PAMUs and allocate and setup PAMU tables
1021 	 * for each of them,
1022 	 * NOTE : All PAMUs share the same LIODN tables.
1023 	 */
1024 
1025 	if (WARN_ON(probed))
1026 		return -EBUSY;
1027 
1028 	pamu_regs = of_iomap(dev->of_node, 0);
1029 	if (!pamu_regs) {
1030 		dev_err(dev, "ioremap of PAMU node failed\n");
1031 		return -ENOMEM;
1032 	}
1033 	of_get_address(dev->of_node, 0, &size, NULL);
1034 
1035 	irq = irq_of_parse_and_map(dev->of_node, 0);
1036 	if (irq == NO_IRQ) {
1037 		dev_warn(dev, "no interrupts listed in PAMU node\n");
1038 		goto error;
1039 	}
1040 
1041 	data = kzalloc(sizeof(*data), GFP_KERNEL);
1042 	if (!data) {
1043 		ret = -ENOMEM;
1044 		goto error;
1045 	}
1046 	data->pamu_reg_base = pamu_regs;
1047 	data->count = size / PAMU_OFFSET;
1048 
1049 	/* The ISR needs access to the regs, so we won't iounmap them */
1050 	ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
1051 	if (ret < 0) {
1052 		dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
1053 		goto error;
1054 	}
1055 
1056 	guts_node = of_find_matching_node(NULL, guts_device_ids);
1057 	if (!guts_node) {
1058 		dev_err(dev, "could not find GUTS node %pOF\n", dev->of_node);
1059 		ret = -ENODEV;
1060 		goto error;
1061 	}
1062 
1063 	guts_regs = of_iomap(guts_node, 0);
1064 	of_node_put(guts_node);
1065 	if (!guts_regs) {
1066 		dev_err(dev, "ioremap of GUTS node failed\n");
1067 		ret = -ENODEV;
1068 		goto error;
1069 	}
1070 
1071 	/* read in the PAMU capability registers */
1072 	get_pamu_cap_values((unsigned long)pamu_regs);
1073 	/*
1074 	 * To simplify the allocation of a coherency domain, we allocate the
1075 	 * PAACT and the OMT in the same memory buffer.  Unfortunately, this
1076 	 * wastes more memory compared to allocating the buffers separately.
1077 	 */
1078 	/* Determine how much memory we need */
1079 	mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
1080 		(PAGE_SIZE << get_order(SPAACT_SIZE)) +
1081 		(PAGE_SIZE << get_order(OMT_SIZE));
1082 	order = get_order(mem_size);
1083 
1084 	p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1085 	if (!p) {
1086 		dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
1087 		ret = -ENOMEM;
1088 		goto error;
1089 	}
1090 
1091 	ppaact = page_address(p);
1092 	ppaact_phys = page_to_phys(p);
1093 
1094 	/* Make sure the memory is naturally aligned */
1095 	if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
1096 		dev_err(dev, "PAACT/OMT block is unaligned\n");
1097 		ret = -ENOMEM;
1098 		goto error;
1099 	}
1100 
1101 	spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
1102 	omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
1103 
1104 	dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
1105 
1106 	/* Check to see if we need to implement the work-around on this SOC */
1107 
1108 	/* Determine the Port ID for our coherence subdomain */
1109 	for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
1110 		if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
1111 			csd_port_id = port_id_map[i].port_id;
1112 			dev_dbg(dev, "found matching SVR %08x\n",
1113 				port_id_map[i].svr);
1114 			break;
1115 		}
1116 	}
1117 
1118 	if (csd_port_id) {
1119 		dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
1120 			&ppaact_phys, mem_size, csd_port_id);
1121 
1122 		ret = create_csd(ppaact_phys, mem_size, csd_port_id);
1123 		if (ret) {
1124 			dev_err(dev, "could not create coherence subdomain\n");
1125 			return ret;
1126 		}
1127 	}
1128 
1129 	spaact_phys = virt_to_phys(spaact);
1130 	omt_phys = virt_to_phys(omt);
1131 
1132 	spaace_pool = gen_pool_create(ilog2(sizeof(struct paace)), -1);
1133 	if (!spaace_pool) {
1134 		ret = -ENOMEM;
1135 		dev_err(dev, "Failed to allocate spaace gen pool\n");
1136 		goto error;
1137 	}
1138 
1139 	ret = gen_pool_add(spaace_pool, (unsigned long)spaact, SPAACT_SIZE, -1);
1140 	if (ret)
1141 		goto error_genpool;
1142 
1143 	pamubypenr = in_be32(&guts_regs->pamubypenr);
1144 
1145 	for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
1146 	     pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
1147 
1148 		pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
1149 		setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
1150 			       spaact_phys, omt_phys);
1151 		/* Disable PAMU bypass for this PAMU */
1152 		pamubypenr &= ~pamu_counter;
1153 	}
1154 
1155 	setup_omt(omt);
1156 
1157 	/* Enable all relevant PAMU(s) */
1158 	out_be32(&guts_regs->pamubypenr, pamubypenr);
1159 
1160 	iounmap(guts_regs);
1161 
1162 	/* Enable DMA for the LIODNs in the device tree */
1163 
1164 	setup_liodns();
1165 
1166 	probed = true;
1167 
1168 	return 0;
1169 
1170 error_genpool:
1171 	gen_pool_destroy(spaace_pool);
1172 
1173 error:
1174 	if (irq != NO_IRQ)
1175 		free_irq(irq, data);
1176 
1177 	if (data) {
1178 		memset(data, 0, sizeof(struct pamu_isr_data));
1179 		kfree(data);
1180 	}
1181 
1182 	if (pamu_regs)
1183 		iounmap(pamu_regs);
1184 
1185 	if (guts_regs)
1186 		iounmap(guts_regs);
1187 
1188 	if (ppaact)
1189 		free_pages((unsigned long)ppaact, order);
1190 
1191 	ppaact = NULL;
1192 
1193 	return ret;
1194 }
1195 
1196 static struct platform_driver fsl_of_pamu_driver = {
1197 	.driver = {
1198 		.name = "fsl-of-pamu",
1199 	},
1200 	.probe = fsl_pamu_probe,
1201 };
1202 
1203 static __init int fsl_pamu_init(void)
1204 {
1205 	struct platform_device *pdev = NULL;
1206 	struct device_node *np;
1207 	int ret;
1208 
1209 	/*
1210 	 * The normal OF process calls the probe function at some
1211 	 * indeterminate later time, after most drivers have loaded.  This is
1212 	 * too late for us, because PAMU clients (like the Qman driver)
1213 	 * depend on PAMU being initialized early.
1214 	 *
1215 	 * So instead, we "manually" call our probe function by creating the
1216 	 * platform devices ourselves.
1217 	 */
1218 
1219 	/*
1220 	 * We assume that there is only one PAMU node in the device tree.  A
1221 	 * single PAMU node represents all of the PAMU devices in the SOC
1222 	 * already.   Everything else already makes that assumption, and the
1223 	 * binding for the PAMU nodes doesn't allow for any parent-child
1224 	 * relationships anyway.  In other words, support for more than one
1225 	 * PAMU node would require significant changes to a lot of code.
1226 	 */
1227 
1228 	np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
1229 	if (!np) {
1230 		pr_err("could not find a PAMU node\n");
1231 		return -ENODEV;
1232 	}
1233 
1234 	ret = platform_driver_register(&fsl_of_pamu_driver);
1235 	if (ret) {
1236 		pr_err("could not register driver (err=%i)\n", ret);
1237 		goto error_driver_register;
1238 	}
1239 
1240 	pdev = platform_device_alloc("fsl-of-pamu", 0);
1241 	if (!pdev) {
1242 		pr_err("could not allocate device %pOF\n", np);
1243 		ret = -ENOMEM;
1244 		goto error_device_alloc;
1245 	}
1246 	pdev->dev.of_node = of_node_get(np);
1247 
1248 	ret = pamu_domain_init();
1249 	if (ret)
1250 		goto error_device_add;
1251 
1252 	ret = platform_device_add(pdev);
1253 	if (ret) {
1254 		pr_err("could not add device %pOF (err=%i)\n", np, ret);
1255 		goto error_device_add;
1256 	}
1257 
1258 	return 0;
1259 
1260 error_device_add:
1261 	of_node_put(pdev->dev.of_node);
1262 	pdev->dev.of_node = NULL;
1263 
1264 	platform_device_put(pdev);
1265 
1266 error_device_alloc:
1267 	platform_driver_unregister(&fsl_of_pamu_driver);
1268 
1269 error_driver_register:
1270 	of_node_put(np);
1271 
1272 	return ret;
1273 }
1274 arch_initcall(fsl_pamu_init);
1275