xref: /openbmc/linux/drivers/iommu/fsl_pamu.c (revision 61c1f340bc809a1ca1e3c8794207a91cde1a7c78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (C) 2013 Freescale Semiconductor, Inc.
5  */
6 
7 #define pr_fmt(fmt)    "fsl-pamu: %s: " fmt, __func__
8 
9 #include "fsl_pamu.h"
10 
11 #include <linux/fsl/guts.h>
12 #include <linux/interrupt.h>
13 #include <linux/genalloc.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17 
18 #include <asm/mpc85xx.h>
19 
20 /* define indexes for each operation mapping scenario */
21 #define OMI_QMAN        0x00
22 #define OMI_FMAN        0x01
23 #define OMI_QMAN_PRIV   0x02
24 #define OMI_CAAM        0x03
25 
26 #define make64(high, low) (((u64)(high) << 32) | (low))
27 
28 struct pamu_isr_data {
29 	void __iomem *pamu_reg_base;	/* Base address of PAMU regs */
30 	unsigned int count;		/* The number of PAMUs */
31 };
32 
33 static struct paace *ppaact;
34 static struct paace *spaact;
35 
36 static bool probed;			/* Has PAMU been probed? */
37 
38 /*
39  * Table for matching compatible strings, for device tree
40  * guts node, for QorIQ SOCs.
41  * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
42  * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
43  * string would be used.
44  */
45 static const struct of_device_id guts_device_ids[] = {
46 	{ .compatible = "fsl,qoriq-device-config-1.0", },
47 	{ .compatible = "fsl,qoriq-device-config-2.0", },
48 	{}
49 };
50 
51 /*
52  * Table for matching compatible strings, for device tree
53  * L3 cache controller node.
54  * "fsl,t4240-l3-cache-controller" corresponds to T4,
55  * "fsl,b4860-l3-cache-controller" corresponds to B4 &
56  * "fsl,p4080-l3-cache-controller" corresponds to other,
57  * SOCs.
58  */
59 static const struct of_device_id l3_device_ids[] = {
60 	{ .compatible = "fsl,t4240-l3-cache-controller", },
61 	{ .compatible = "fsl,b4860-l3-cache-controller", },
62 	{ .compatible = "fsl,p4080-l3-cache-controller", },
63 	{}
64 };
65 
66 /* maximum subwindows permitted per liodn */
67 static u32 max_subwindow_count;
68 
69 /**
70  * pamu_get_ppaace() - Return the primary PACCE
71  * @liodn: liodn PAACT index for desired PAACE
72  *
73  * Returns the ppace pointer upon success else return
74  * null.
75  */
76 static struct paace *pamu_get_ppaace(int liodn)
77 {
78 	if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
79 		pr_debug("PPAACT doesn't exist\n");
80 		return NULL;
81 	}
82 
83 	return &ppaact[liodn];
84 }
85 
86 /**
87  * pamu_enable_liodn() - Set valid bit of PACCE
88  * @liodn: liodn PAACT index for desired PAACE
89  *
90  * Returns 0 upon success else error code < 0 returned
91  */
92 int pamu_enable_liodn(int liodn)
93 {
94 	struct paace *ppaace;
95 
96 	ppaace = pamu_get_ppaace(liodn);
97 	if (!ppaace) {
98 		pr_debug("Invalid primary paace entry\n");
99 		return -ENOENT;
100 	}
101 
102 	if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
103 		pr_debug("liodn %d not configured\n", liodn);
104 		return -EINVAL;
105 	}
106 
107 	/* Ensure that all other stores to the ppaace complete first */
108 	mb();
109 
110 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
111 	mb();
112 
113 	return 0;
114 }
115 
116 /**
117  * pamu_disable_liodn() - Clears valid bit of PACCE
118  * @liodn: liodn PAACT index for desired PAACE
119  *
120  * Returns 0 upon success else error code < 0 returned
121  */
122 int pamu_disable_liodn(int liodn)
123 {
124 	struct paace *ppaace;
125 
126 	ppaace = pamu_get_ppaace(liodn);
127 	if (!ppaace) {
128 		pr_debug("Invalid primary paace entry\n");
129 		return -ENOENT;
130 	}
131 
132 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
133 	mb();
134 
135 	return 0;
136 }
137 
138 /* Derive the window size encoding for a particular PAACE entry */
139 static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
140 {
141 	/* Bug if not a power of 2 */
142 	BUG_ON(addrspace_size & (addrspace_size - 1));
143 
144 	/* window size is 2^(WSE+1) bytes */
145 	return fls64(addrspace_size) - 2;
146 }
147 
148 /*
149  * Set the PAACE type as primary and set the coherency required domain
150  * attribute
151  */
152 static void pamu_init_ppaace(struct paace *ppaace)
153 {
154 	set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
155 
156 	set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
157 	       PAACE_M_COHERENCE_REQ);
158 }
159 
160 /*
161  * Function used for updating stash destination for the coressponding
162  * LIODN.
163  */
164 int pamu_update_paace_stash(int liodn, u32 value)
165 {
166 	struct paace *paace;
167 
168 	paace = pamu_get_ppaace(liodn);
169 	if (!paace) {
170 		pr_debug("Invalid liodn entry\n");
171 		return -ENOENT;
172 	}
173 	set_bf(paace->impl_attr, PAACE_IA_CID, value);
174 
175 	mb();
176 
177 	return 0;
178 }
179 
180 /**
181  * pamu_config_paace() - Sets up PPAACE entry for specified liodn
182  *
183  * @liodn: Logical IO device number
184  * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
185  * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
186  *	     stashid not defined
187  * @prot: window permissions
188  *
189  * Returns 0 upon success else error code < 0 returned
190  */
191 int pamu_config_ppaace(int liodn, u32 omi, u32 stashid, int prot)
192 {
193 	struct paace *ppaace;
194 
195 	ppaace = pamu_get_ppaace(liodn);
196 	if (!ppaace)
197 		return -ENOENT;
198 
199 	/* window size is 2^(WSE+1) bytes */
200 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
201 	       map_addrspace_size_to_wse(1ULL << 36));
202 
203 	pamu_init_ppaace(ppaace);
204 
205 	ppaace->wbah = 0;
206 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
207 
208 	/* set up operation mapping if it's configured */
209 	if (omi < OME_NUMBER_ENTRIES) {
210 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
211 		ppaace->op_encode.index_ot.omi = omi;
212 	} else if (~omi != 0) {
213 		pr_debug("bad operation mapping index: %d\n", omi);
214 		return -EINVAL;
215 	}
216 
217 	/* configure stash id */
218 	if (~stashid != 0)
219 		set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
220 
221 	set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
222 	ppaace->twbah = 0;
223 	set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, 0);
224 	set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
225 	set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
226 	set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
227 	mb();
228 
229 	return 0;
230 }
231 
232 /**
233  * get_ome_index() - Returns the index in the operation mapping table
234  *                   for device.
235  * @*omi_index: pointer for storing the index value
236  *
237  */
238 void get_ome_index(u32 *omi_index, struct device *dev)
239 {
240 	if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
241 		*omi_index = OMI_QMAN;
242 	if (of_device_is_compatible(dev->of_node, "fsl,qman"))
243 		*omi_index = OMI_QMAN_PRIV;
244 }
245 
246 /**
247  * get_stash_id - Returns stash destination id corresponding to a
248  *                cache type and vcpu.
249  * @stash_dest_hint: L1, L2 or L3
250  * @vcpu: vpcu target for a particular cache type.
251  *
252  * Returs stash on success or ~(u32)0 on failure.
253  *
254  */
255 u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
256 {
257 	const u32 *prop;
258 	struct device_node *node;
259 	u32 cache_level;
260 	int len, found = 0;
261 	int i;
262 
263 	/* Fastpath, exit early if L3/CPC cache is target for stashing */
264 	if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
265 		node = of_find_matching_node(NULL, l3_device_ids);
266 		if (node) {
267 			prop = of_get_property(node, "cache-stash-id", NULL);
268 			if (!prop) {
269 				pr_debug("missing cache-stash-id at %pOF\n",
270 					 node);
271 				of_node_put(node);
272 				return ~(u32)0;
273 			}
274 			of_node_put(node);
275 			return be32_to_cpup(prop);
276 		}
277 		return ~(u32)0;
278 	}
279 
280 	for_each_of_cpu_node(node) {
281 		prop = of_get_property(node, "reg", &len);
282 		for (i = 0; i < len / sizeof(u32); i++) {
283 			if (be32_to_cpup(&prop[i]) == vcpu) {
284 				found = 1;
285 				goto found_cpu_node;
286 			}
287 		}
288 	}
289 found_cpu_node:
290 
291 	/* find the hwnode that represents the cache */
292 	for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
293 		if (stash_dest_hint == cache_level) {
294 			prop = of_get_property(node, "cache-stash-id", NULL);
295 			if (!prop) {
296 				pr_debug("missing cache-stash-id at %pOF\n",
297 					 node);
298 				of_node_put(node);
299 				return ~(u32)0;
300 			}
301 			of_node_put(node);
302 			return be32_to_cpup(prop);
303 		}
304 
305 		prop = of_get_property(node, "next-level-cache", NULL);
306 		if (!prop) {
307 			pr_debug("can't find next-level-cache at %pOF\n", node);
308 			of_node_put(node);
309 			return ~(u32)0;  /* can't traverse any further */
310 		}
311 		of_node_put(node);
312 
313 		/* advance to next node in cache hierarchy */
314 		node = of_find_node_by_phandle(*prop);
315 		if (!node) {
316 			pr_debug("Invalid node for cache hierarchy\n");
317 			return ~(u32)0;
318 		}
319 	}
320 
321 	pr_debug("stash dest not found for %d on vcpu %d\n",
322 		 stash_dest_hint, vcpu);
323 	return ~(u32)0;
324 }
325 
326 /* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
327 #define QMAN_PAACE 1
328 #define QMAN_PORTAL_PAACE 2
329 #define BMAN_PAACE 3
330 
331 /**
332  * Setup operation mapping and stash destinations for QMAN and QMAN portal.
333  * Memory accesses to QMAN and BMAN private memory need not be coherent, so
334  * clear the PAACE entry coherency attribute for them.
335  */
336 static void setup_qbman_paace(struct paace *ppaace, int  paace_type)
337 {
338 	switch (paace_type) {
339 	case QMAN_PAACE:
340 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
341 		ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
342 		/* setup QMAN Private data stashing for the L3 cache */
343 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
344 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
345 		       0);
346 		break;
347 	case QMAN_PORTAL_PAACE:
348 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
349 		ppaace->op_encode.index_ot.omi = OMI_QMAN;
350 		/* Set DQRR and Frame stashing for the L3 cache */
351 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
352 		break;
353 	case BMAN_PAACE:
354 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
355 		       0);
356 		break;
357 	}
358 }
359 
360 /**
361  * Setup the operation mapping table for various devices. This is a static
362  * table where each table index corresponds to a particular device. PAMU uses
363  * this table to translate device transaction to appropriate corenet
364  * transaction.
365  */
366 static void setup_omt(struct ome *omt)
367 {
368 	struct ome *ome;
369 
370 	/* Configure OMI_QMAN */
371 	ome = &omt[OMI_QMAN];
372 
373 	ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
374 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
375 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
376 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
377 
378 	ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
379 	ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
380 
381 	/* Configure OMI_FMAN */
382 	ome = &omt[OMI_FMAN];
383 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
384 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
385 
386 	/* Configure OMI_QMAN private */
387 	ome = &omt[OMI_QMAN_PRIV];
388 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READ;
389 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
390 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
391 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
392 
393 	/* Configure OMI_CAAM */
394 	ome = &omt[OMI_CAAM];
395 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
396 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
397 }
398 
399 /*
400  * Get the maximum number of PAACT table entries
401  * and subwindows supported by PAMU
402  */
403 static void get_pamu_cap_values(unsigned long pamu_reg_base)
404 {
405 	u32 pc_val;
406 
407 	pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
408 	/* Maximum number of subwindows per liodn */
409 	max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
410 }
411 
412 /* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
413 static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
414 			  phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
415 			  phys_addr_t omt_phys)
416 {
417 	u32 *pc;
418 	struct pamu_mmap_regs *pamu_regs;
419 
420 	pc = (u32 *) (pamu_reg_base + PAMU_PC);
421 	pamu_regs = (struct pamu_mmap_regs *)
422 		(pamu_reg_base + PAMU_MMAP_REGS_BASE);
423 
424 	/* set up pointers to corenet control blocks */
425 
426 	out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
427 	out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
428 	ppaact_phys = ppaact_phys + PAACT_SIZE;
429 	out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
430 	out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
431 
432 	out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
433 	out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
434 	spaact_phys = spaact_phys + SPAACT_SIZE;
435 	out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
436 	out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
437 
438 	out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
439 	out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
440 	omt_phys = omt_phys + OMT_SIZE;
441 	out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
442 	out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
443 
444 	/*
445 	 * set PAMU enable bit,
446 	 * allow ppaact & omt to be cached
447 	 * & enable PAMU access violation interrupts.
448 	 */
449 
450 	out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
451 		 PAMU_ACCESS_VIOLATION_ENABLE);
452 	out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
453 	return 0;
454 }
455 
456 /* Enable all device LIODNS */
457 static void setup_liodns(void)
458 {
459 	int i, len;
460 	struct paace *ppaace;
461 	struct device_node *node = NULL;
462 	const u32 *prop;
463 
464 	for_each_node_with_property(node, "fsl,liodn") {
465 		prop = of_get_property(node, "fsl,liodn", &len);
466 		for (i = 0; i < len / sizeof(u32); i++) {
467 			int liodn;
468 
469 			liodn = be32_to_cpup(&prop[i]);
470 			if (liodn >= PAACE_NUMBER_ENTRIES) {
471 				pr_debug("Invalid LIODN value %d\n", liodn);
472 				continue;
473 			}
474 			ppaace = pamu_get_ppaace(liodn);
475 			pamu_init_ppaace(ppaace);
476 			/* window size is 2^(WSE+1) bytes */
477 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
478 			ppaace->wbah = 0;
479 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
480 			set_bf(ppaace->impl_attr, PAACE_IA_ATM,
481 			       PAACE_ATM_NO_XLATE);
482 			set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
483 			       PAACE_AP_PERMS_ALL);
484 			if (of_device_is_compatible(node, "fsl,qman-portal"))
485 				setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
486 			if (of_device_is_compatible(node, "fsl,qman"))
487 				setup_qbman_paace(ppaace, QMAN_PAACE);
488 			if (of_device_is_compatible(node, "fsl,bman"))
489 				setup_qbman_paace(ppaace, BMAN_PAACE);
490 			mb();
491 			pamu_enable_liodn(liodn);
492 		}
493 	}
494 }
495 
496 static irqreturn_t pamu_av_isr(int irq, void *arg)
497 {
498 	struct pamu_isr_data *data = arg;
499 	phys_addr_t phys;
500 	unsigned int i, j, ret;
501 
502 	pr_emerg("access violation interrupt\n");
503 
504 	for (i = 0; i < data->count; i++) {
505 		void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
506 		u32 pics = in_be32(p + PAMU_PICS);
507 
508 		if (pics & PAMU_ACCESS_VIOLATION_STAT) {
509 			u32 avs1 = in_be32(p + PAMU_AVS1);
510 			struct paace *paace;
511 
512 			pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
513 			pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
514 			pr_emerg("AVS1=%08x\n", avs1);
515 			pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
516 			pr_emerg("AVA=%016llx\n",
517 				 make64(in_be32(p + PAMU_AVAH),
518 					in_be32(p + PAMU_AVAL)));
519 			pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
520 			pr_emerg("POEA=%016llx\n",
521 				 make64(in_be32(p + PAMU_POEAH),
522 					in_be32(p + PAMU_POEAL)));
523 
524 			phys = make64(in_be32(p + PAMU_POEAH),
525 				      in_be32(p + PAMU_POEAL));
526 
527 			/* Assume that POEA points to a PAACE */
528 			if (phys) {
529 				u32 *paace = phys_to_virt(phys);
530 
531 				/* Only the first four words are relevant */
532 				for (j = 0; j < 4; j++)
533 					pr_emerg("PAACE[%u]=%08x\n",
534 						 j, in_be32(paace + j));
535 			}
536 
537 			/* clear access violation condition */
538 			out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
539 			paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
540 			BUG_ON(!paace);
541 			/* check if we got a violation for a disabled LIODN */
542 			if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
543 				/*
544 				 * As per hardware erratum A-003638, access
545 				 * violation can be reported for a disabled
546 				 * LIODN. If we hit that condition, disable
547 				 * access violation reporting.
548 				 */
549 				pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
550 			} else {
551 				/* Disable the LIODN */
552 				ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
553 				BUG_ON(ret);
554 				pr_emerg("Disabling liodn %x\n",
555 					 avs1 >> PAMU_AVS1_LIODN_SHIFT);
556 			}
557 			out_be32((p + PAMU_PICS), pics);
558 		}
559 	}
560 
561 	return IRQ_HANDLED;
562 }
563 
564 #define LAWAR_EN		0x80000000
565 #define LAWAR_TARGET_MASK	0x0FF00000
566 #define LAWAR_TARGET_SHIFT	20
567 #define LAWAR_SIZE_MASK		0x0000003F
568 #define LAWAR_CSDID_MASK	0x000FF000
569 #define LAWAR_CSDID_SHIFT	12
570 
571 #define LAW_SIZE_4K		0xb
572 
573 struct ccsr_law {
574 	u32	lawbarh;	/* LAWn base address high */
575 	u32	lawbarl;	/* LAWn base address low */
576 	u32	lawar;		/* LAWn attributes */
577 	u32	reserved;
578 };
579 
580 /*
581  * Create a coherence subdomain for a given memory block.
582  */
583 static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
584 {
585 	struct device_node *np;
586 	const __be32 *iprop;
587 	void __iomem *lac = NULL;	/* Local Access Control registers */
588 	struct ccsr_law __iomem *law;
589 	void __iomem *ccm = NULL;
590 	u32 __iomem *csdids;
591 	unsigned int i, num_laws, num_csds;
592 	u32 law_target = 0;
593 	u32 csd_id = 0;
594 	int ret = 0;
595 
596 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
597 	if (!np)
598 		return -ENODEV;
599 
600 	iprop = of_get_property(np, "fsl,num-laws", NULL);
601 	if (!iprop) {
602 		ret = -ENODEV;
603 		goto error;
604 	}
605 
606 	num_laws = be32_to_cpup(iprop);
607 	if (!num_laws) {
608 		ret = -ENODEV;
609 		goto error;
610 	}
611 
612 	lac = of_iomap(np, 0);
613 	if (!lac) {
614 		ret = -ENODEV;
615 		goto error;
616 	}
617 
618 	/* LAW registers are at offset 0xC00 */
619 	law = lac + 0xC00;
620 
621 	of_node_put(np);
622 
623 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
624 	if (!np) {
625 		ret = -ENODEV;
626 		goto error;
627 	}
628 
629 	iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
630 	if (!iprop) {
631 		ret = -ENODEV;
632 		goto error;
633 	}
634 
635 	num_csds = be32_to_cpup(iprop);
636 	if (!num_csds) {
637 		ret = -ENODEV;
638 		goto error;
639 	}
640 
641 	ccm = of_iomap(np, 0);
642 	if (!ccm) {
643 		ret = -ENOMEM;
644 		goto error;
645 	}
646 
647 	/* The undocumented CSDID registers are at offset 0x600 */
648 	csdids = ccm + 0x600;
649 
650 	of_node_put(np);
651 	np = NULL;
652 
653 	/* Find an unused coherence subdomain ID */
654 	for (csd_id = 0; csd_id < num_csds; csd_id++) {
655 		if (!csdids[csd_id])
656 			break;
657 	}
658 
659 	/* Store the Port ID in the (undocumented) proper CIDMRxx register */
660 	csdids[csd_id] = csd_port_id;
661 
662 	/* Find the DDR LAW that maps to our buffer. */
663 	for (i = 0; i < num_laws; i++) {
664 		if (law[i].lawar & LAWAR_EN) {
665 			phys_addr_t law_start, law_end;
666 
667 			law_start = make64(law[i].lawbarh, law[i].lawbarl);
668 			law_end = law_start +
669 				(2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
670 
671 			if (law_start <= phys && phys < law_end) {
672 				law_target = law[i].lawar & LAWAR_TARGET_MASK;
673 				break;
674 			}
675 		}
676 	}
677 
678 	if (i == 0 || i == num_laws) {
679 		/* This should never happen */
680 		ret = -ENOENT;
681 		goto error;
682 	}
683 
684 	/* Find a free LAW entry */
685 	while (law[--i].lawar & LAWAR_EN) {
686 		if (i == 0) {
687 			/* No higher priority LAW slots available */
688 			ret = -ENOENT;
689 			goto error;
690 		}
691 	}
692 
693 	law[i].lawbarh = upper_32_bits(phys);
694 	law[i].lawbarl = lower_32_bits(phys);
695 	wmb();
696 	law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
697 		(LAW_SIZE_4K + get_order(size));
698 	wmb();
699 
700 error:
701 	if (ccm)
702 		iounmap(ccm);
703 
704 	if (lac)
705 		iounmap(lac);
706 
707 	if (np)
708 		of_node_put(np);
709 
710 	return ret;
711 }
712 
713 /*
714  * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
715  * bit map of snoopers for a given range of memory mapped by a LAW.
716  *
717  * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
718  * table should never need to be updated.  SVRs are guaranteed to be unique, so
719  * there is no worry that a future SOC will inadvertently have one of these
720  * values.
721  */
722 static const struct {
723 	u32 svr;
724 	u32 port_id;
725 } port_id_map[] = {
726 	{(SVR_P2040 << 8) | 0x10, 0xFF000000},	/* P2040 1.0 */
727 	{(SVR_P2040 << 8) | 0x11, 0xFF000000},	/* P2040 1.1 */
728 	{(SVR_P2041 << 8) | 0x10, 0xFF000000},	/* P2041 1.0 */
729 	{(SVR_P2041 << 8) | 0x11, 0xFF000000},	/* P2041 1.1 */
730 	{(SVR_P3041 << 8) | 0x10, 0xFF000000},	/* P3041 1.0 */
731 	{(SVR_P3041 << 8) | 0x11, 0xFF000000},	/* P3041 1.1 */
732 	{(SVR_P4040 << 8) | 0x20, 0xFFF80000},	/* P4040 2.0 */
733 	{(SVR_P4080 << 8) | 0x20, 0xFFF80000},	/* P4080 2.0 */
734 	{(SVR_P5010 << 8) | 0x10, 0xFC000000},	/* P5010 1.0 */
735 	{(SVR_P5010 << 8) | 0x20, 0xFC000000},	/* P5010 2.0 */
736 	{(SVR_P5020 << 8) | 0x10, 0xFC000000},	/* P5020 1.0 */
737 	{(SVR_P5021 << 8) | 0x10, 0xFF800000},	/* P5021 1.0 */
738 	{(SVR_P5040 << 8) | 0x10, 0xFF800000},	/* P5040 1.0 */
739 };
740 
741 #define SVR_SECURITY	0x80000	/* The Security (E) bit */
742 
743 static int fsl_pamu_probe(struct platform_device *pdev)
744 {
745 	struct device *dev = &pdev->dev;
746 	void __iomem *pamu_regs = NULL;
747 	struct ccsr_guts __iomem *guts_regs = NULL;
748 	u32 pamubypenr, pamu_counter;
749 	unsigned long pamu_reg_off;
750 	unsigned long pamu_reg_base;
751 	struct pamu_isr_data *data = NULL;
752 	struct device_node *guts_node;
753 	u64 size;
754 	struct page *p;
755 	int ret = 0;
756 	int irq;
757 	phys_addr_t ppaact_phys;
758 	phys_addr_t spaact_phys;
759 	struct ome *omt;
760 	phys_addr_t omt_phys;
761 	size_t mem_size = 0;
762 	unsigned int order = 0;
763 	u32 csd_port_id = 0;
764 	unsigned i;
765 	/*
766 	 * enumerate all PAMUs and allocate and setup PAMU tables
767 	 * for each of them,
768 	 * NOTE : All PAMUs share the same LIODN tables.
769 	 */
770 
771 	if (WARN_ON(probed))
772 		return -EBUSY;
773 
774 	pamu_regs = of_iomap(dev->of_node, 0);
775 	if (!pamu_regs) {
776 		dev_err(dev, "ioremap of PAMU node failed\n");
777 		return -ENOMEM;
778 	}
779 	of_get_address(dev->of_node, 0, &size, NULL);
780 
781 	irq = irq_of_parse_and_map(dev->of_node, 0);
782 	if (irq == NO_IRQ) {
783 		dev_warn(dev, "no interrupts listed in PAMU node\n");
784 		goto error;
785 	}
786 
787 	data = kzalloc(sizeof(*data), GFP_KERNEL);
788 	if (!data) {
789 		ret = -ENOMEM;
790 		goto error;
791 	}
792 	data->pamu_reg_base = pamu_regs;
793 	data->count = size / PAMU_OFFSET;
794 
795 	/* The ISR needs access to the regs, so we won't iounmap them */
796 	ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
797 	if (ret < 0) {
798 		dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
799 		goto error;
800 	}
801 
802 	guts_node = of_find_matching_node(NULL, guts_device_ids);
803 	if (!guts_node) {
804 		dev_err(dev, "could not find GUTS node %pOF\n", dev->of_node);
805 		ret = -ENODEV;
806 		goto error;
807 	}
808 
809 	guts_regs = of_iomap(guts_node, 0);
810 	of_node_put(guts_node);
811 	if (!guts_regs) {
812 		dev_err(dev, "ioremap of GUTS node failed\n");
813 		ret = -ENODEV;
814 		goto error;
815 	}
816 
817 	/* read in the PAMU capability registers */
818 	get_pamu_cap_values((unsigned long)pamu_regs);
819 	/*
820 	 * To simplify the allocation of a coherency domain, we allocate the
821 	 * PAACT and the OMT in the same memory buffer.  Unfortunately, this
822 	 * wastes more memory compared to allocating the buffers separately.
823 	 */
824 	/* Determine how much memory we need */
825 	mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
826 		(PAGE_SIZE << get_order(SPAACT_SIZE)) +
827 		(PAGE_SIZE << get_order(OMT_SIZE));
828 	order = get_order(mem_size);
829 
830 	p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
831 	if (!p) {
832 		dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
833 		ret = -ENOMEM;
834 		goto error;
835 	}
836 
837 	ppaact = page_address(p);
838 	ppaact_phys = page_to_phys(p);
839 
840 	/* Make sure the memory is naturally aligned */
841 	if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
842 		dev_err(dev, "PAACT/OMT block is unaligned\n");
843 		ret = -ENOMEM;
844 		goto error;
845 	}
846 
847 	spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
848 	omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
849 
850 	dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
851 
852 	/* Check to see if we need to implement the work-around on this SOC */
853 
854 	/* Determine the Port ID for our coherence subdomain */
855 	for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
856 		if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
857 			csd_port_id = port_id_map[i].port_id;
858 			dev_dbg(dev, "found matching SVR %08x\n",
859 				port_id_map[i].svr);
860 			break;
861 		}
862 	}
863 
864 	if (csd_port_id) {
865 		dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
866 			&ppaact_phys, mem_size, csd_port_id);
867 
868 		ret = create_csd(ppaact_phys, mem_size, csd_port_id);
869 		if (ret) {
870 			dev_err(dev, "could not create coherence subdomain\n");
871 			return ret;
872 		}
873 	}
874 
875 	spaact_phys = virt_to_phys(spaact);
876 	omt_phys = virt_to_phys(omt);
877 
878 	pamubypenr = in_be32(&guts_regs->pamubypenr);
879 
880 	for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
881 	     pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
882 
883 		pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
884 		setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
885 			       spaact_phys, omt_phys);
886 		/* Disable PAMU bypass for this PAMU */
887 		pamubypenr &= ~pamu_counter;
888 	}
889 
890 	setup_omt(omt);
891 
892 	/* Enable all relevant PAMU(s) */
893 	out_be32(&guts_regs->pamubypenr, pamubypenr);
894 
895 	iounmap(guts_regs);
896 
897 	/* Enable DMA for the LIODNs in the device tree */
898 
899 	setup_liodns();
900 
901 	probed = true;
902 
903 	return 0;
904 
905 error:
906 	if (irq != NO_IRQ)
907 		free_irq(irq, data);
908 
909 	kfree_sensitive(data);
910 
911 	if (pamu_regs)
912 		iounmap(pamu_regs);
913 
914 	if (guts_regs)
915 		iounmap(guts_regs);
916 
917 	if (ppaact)
918 		free_pages((unsigned long)ppaact, order);
919 
920 	ppaact = NULL;
921 
922 	return ret;
923 }
924 
925 static struct platform_driver fsl_of_pamu_driver = {
926 	.driver = {
927 		.name = "fsl-of-pamu",
928 	},
929 	.probe = fsl_pamu_probe,
930 };
931 
932 static __init int fsl_pamu_init(void)
933 {
934 	struct platform_device *pdev = NULL;
935 	struct device_node *np;
936 	int ret;
937 
938 	/*
939 	 * The normal OF process calls the probe function at some
940 	 * indeterminate later time, after most drivers have loaded.  This is
941 	 * too late for us, because PAMU clients (like the Qman driver)
942 	 * depend on PAMU being initialized early.
943 	 *
944 	 * So instead, we "manually" call our probe function by creating the
945 	 * platform devices ourselves.
946 	 */
947 
948 	/*
949 	 * We assume that there is only one PAMU node in the device tree.  A
950 	 * single PAMU node represents all of the PAMU devices in the SOC
951 	 * already.   Everything else already makes that assumption, and the
952 	 * binding for the PAMU nodes doesn't allow for any parent-child
953 	 * relationships anyway.  In other words, support for more than one
954 	 * PAMU node would require significant changes to a lot of code.
955 	 */
956 
957 	np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
958 	if (!np) {
959 		pr_err("could not find a PAMU node\n");
960 		return -ENODEV;
961 	}
962 
963 	ret = platform_driver_register(&fsl_of_pamu_driver);
964 	if (ret) {
965 		pr_err("could not register driver (err=%i)\n", ret);
966 		goto error_driver_register;
967 	}
968 
969 	pdev = platform_device_alloc("fsl-of-pamu", 0);
970 	if (!pdev) {
971 		pr_err("could not allocate device %pOF\n", np);
972 		ret = -ENOMEM;
973 		goto error_device_alloc;
974 	}
975 	pdev->dev.of_node = of_node_get(np);
976 
977 	ret = pamu_domain_init();
978 	if (ret)
979 		goto error_device_add;
980 
981 	ret = platform_device_add(pdev);
982 	if (ret) {
983 		pr_err("could not add device %pOF (err=%i)\n", np, ret);
984 		goto error_device_add;
985 	}
986 
987 	return 0;
988 
989 error_device_add:
990 	of_node_put(pdev->dev.of_node);
991 	pdev->dev.of_node = NULL;
992 
993 	platform_device_put(pdev);
994 
995 error_device_alloc:
996 	platform_driver_unregister(&fsl_of_pamu_driver);
997 
998 error_driver_register:
999 	of_node_put(np);
1000 
1001 	return ret;
1002 }
1003 arch_initcall(fsl_pamu_init);
1004