xref: /openbmc/linux/drivers/iommu/fsl_pamu.c (revision 06ba8020)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (C) 2013 Freescale Semiconductor, Inc.
5  */
6 
7 #define pr_fmt(fmt)    "fsl-pamu: %s: " fmt, __func__
8 
9 #include "fsl_pamu.h"
10 
11 #include <linux/fsl/guts.h>
12 #include <linux/interrupt.h>
13 #include <linux/genalloc.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17 
18 #include <asm/mpc85xx.h>
19 
20 /* define indexes for each operation mapping scenario */
21 #define OMI_QMAN        0x00
22 #define OMI_FMAN        0x01
23 #define OMI_QMAN_PRIV   0x02
24 #define OMI_CAAM        0x03
25 
26 #define make64(high, low) (((u64)(high) << 32) | (low))
27 
28 struct pamu_isr_data {
29 	void __iomem *pamu_reg_base;	/* Base address of PAMU regs */
30 	unsigned int count;		/* The number of PAMUs */
31 };
32 
33 static struct paace *ppaact;
34 static struct paace *spaact;
35 
36 static bool probed;			/* Has PAMU been probed? */
37 
38 /*
39  * Table for matching compatible strings, for device tree
40  * guts node, for QorIQ SOCs.
41  * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
42  * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
43  * string would be used.
44  */
45 static const struct of_device_id guts_device_ids[] = {
46 	{ .compatible = "fsl,qoriq-device-config-1.0", },
47 	{ .compatible = "fsl,qoriq-device-config-2.0", },
48 	{}
49 };
50 
51 /*
52  * Table for matching compatible strings, for device tree
53  * L3 cache controller node.
54  * "fsl,t4240-l3-cache-controller" corresponds to T4,
55  * "fsl,b4860-l3-cache-controller" corresponds to B4 &
56  * "fsl,p4080-l3-cache-controller" corresponds to other,
57  * SOCs.
58  */
59 static const struct of_device_id l3_device_ids[] = {
60 	{ .compatible = "fsl,t4240-l3-cache-controller", },
61 	{ .compatible = "fsl,b4860-l3-cache-controller", },
62 	{ .compatible = "fsl,p4080-l3-cache-controller", },
63 	{}
64 };
65 
66 /* maximum subwindows permitted per liodn */
67 static u32 max_subwindow_count;
68 
69 /**
70  * pamu_get_ppaace() - Return the primary PACCE
71  * @liodn: liodn PAACT index for desired PAACE
72  *
73  * Returns the ppace pointer upon success else return
74  * null.
75  */
76 static struct paace *pamu_get_ppaace(int liodn)
77 {
78 	if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
79 		pr_debug("PPAACT doesn't exist\n");
80 		return NULL;
81 	}
82 
83 	return &ppaact[liodn];
84 }
85 
86 /**
87  * pamu_enable_liodn() - Set valid bit of PACCE
88  * @liodn: liodn PAACT index for desired PAACE
89  *
90  * Returns 0 upon success else error code < 0 returned
91  */
92 int pamu_enable_liodn(int liodn)
93 {
94 	struct paace *ppaace;
95 
96 	ppaace = pamu_get_ppaace(liodn);
97 	if (!ppaace) {
98 		pr_debug("Invalid primary paace entry\n");
99 		return -ENOENT;
100 	}
101 
102 	if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
103 		pr_debug("liodn %d not configured\n", liodn);
104 		return -EINVAL;
105 	}
106 
107 	/* Ensure that all other stores to the ppaace complete first */
108 	mb();
109 
110 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
111 	mb();
112 
113 	return 0;
114 }
115 
116 /**
117  * pamu_disable_liodn() - Clears valid bit of PACCE
118  * @liodn: liodn PAACT index for desired PAACE
119  *
120  * Returns 0 upon success else error code < 0 returned
121  */
122 int pamu_disable_liodn(int liodn)
123 {
124 	struct paace *ppaace;
125 
126 	ppaace = pamu_get_ppaace(liodn);
127 	if (!ppaace) {
128 		pr_debug("Invalid primary paace entry\n");
129 		return -ENOENT;
130 	}
131 
132 	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
133 	mb();
134 
135 	return 0;
136 }
137 
138 /* Derive the window size encoding for a particular PAACE entry */
139 static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
140 {
141 	/* Bug if not a power of 2 */
142 	BUG_ON(addrspace_size & (addrspace_size - 1));
143 
144 	/* window size is 2^(WSE+1) bytes */
145 	return fls64(addrspace_size) - 2;
146 }
147 
148 /*
149  * Set the PAACE type as primary and set the coherency required domain
150  * attribute
151  */
152 static void pamu_init_ppaace(struct paace *ppaace)
153 {
154 	set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
155 
156 	set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
157 	       PAACE_M_COHERENCE_REQ);
158 }
159 
160 /*
161  * Function used for updating stash destination for the coressponding
162  * LIODN.
163  */
164 int pamu_update_paace_stash(int liodn, u32 value)
165 {
166 	struct paace *paace;
167 
168 	paace = pamu_get_ppaace(liodn);
169 	if (!paace) {
170 		pr_debug("Invalid liodn entry\n");
171 		return -ENOENT;
172 	}
173 	set_bf(paace->impl_attr, PAACE_IA_CID, value);
174 
175 	mb();
176 
177 	return 0;
178 }
179 
180 /**
181  * pamu_config_ppaace() - Sets up PPAACE entry for specified liodn
182  *
183  * @liodn: Logical IO device number
184  * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
185  * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
186  *	     stashid not defined
187  * @prot: window permissions
188  *
189  * Returns 0 upon success else error code < 0 returned
190  */
191 int pamu_config_ppaace(int liodn, u32 omi, u32 stashid, int prot)
192 {
193 	struct paace *ppaace;
194 
195 	ppaace = pamu_get_ppaace(liodn);
196 	if (!ppaace)
197 		return -ENOENT;
198 
199 	/* window size is 2^(WSE+1) bytes */
200 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
201 	       map_addrspace_size_to_wse(1ULL << 36));
202 
203 	pamu_init_ppaace(ppaace);
204 
205 	ppaace->wbah = 0;
206 	set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
207 
208 	/* set up operation mapping if it's configured */
209 	if (omi < OME_NUMBER_ENTRIES) {
210 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
211 		ppaace->op_encode.index_ot.omi = omi;
212 	} else if (~omi != 0) {
213 		pr_debug("bad operation mapping index: %d\n", omi);
214 		return -ENODEV;
215 	}
216 
217 	/* configure stash id */
218 	if (~stashid != 0)
219 		set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
220 
221 	set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
222 	ppaace->twbah = 0;
223 	set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, 0);
224 	set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
225 	set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
226 	set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
227 	mb();
228 
229 	return 0;
230 }
231 
232 /**
233  * get_ome_index() - Returns the index in the operation mapping table
234  *                   for device.
235  * @omi_index: pointer for storing the index value
236  * @dev: target device
237  *
238  */
239 void get_ome_index(u32 *omi_index, struct device *dev)
240 {
241 	if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
242 		*omi_index = OMI_QMAN;
243 	if (of_device_is_compatible(dev->of_node, "fsl,qman"))
244 		*omi_index = OMI_QMAN_PRIV;
245 }
246 
247 /**
248  * get_stash_id - Returns stash destination id corresponding to a
249  *                cache type and vcpu.
250  * @stash_dest_hint: L1, L2 or L3
251  * @vcpu: vpcu target for a particular cache type.
252  *
253  * Returs stash on success or ~(u32)0 on failure.
254  *
255  */
256 u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
257 {
258 	const u32 *prop;
259 	struct device_node *node;
260 	u32 cache_level;
261 	int len, found = 0;
262 	int i;
263 
264 	/* Fastpath, exit early if L3/CPC cache is target for stashing */
265 	if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
266 		node = of_find_matching_node(NULL, l3_device_ids);
267 		if (node) {
268 			prop = of_get_property(node, "cache-stash-id", NULL);
269 			if (!prop) {
270 				pr_debug("missing cache-stash-id at %pOF\n",
271 					 node);
272 				of_node_put(node);
273 				return ~(u32)0;
274 			}
275 			of_node_put(node);
276 			return be32_to_cpup(prop);
277 		}
278 		return ~(u32)0;
279 	}
280 
281 	for_each_of_cpu_node(node) {
282 		prop = of_get_property(node, "reg", &len);
283 		for (i = 0; i < len / sizeof(u32); i++) {
284 			if (be32_to_cpup(&prop[i]) == vcpu) {
285 				found = 1;
286 				goto found_cpu_node;
287 			}
288 		}
289 	}
290 found_cpu_node:
291 
292 	/* find the hwnode that represents the cache */
293 	for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
294 		if (stash_dest_hint == cache_level) {
295 			prop = of_get_property(node, "cache-stash-id", NULL);
296 			if (!prop) {
297 				pr_debug("missing cache-stash-id at %pOF\n",
298 					 node);
299 				of_node_put(node);
300 				return ~(u32)0;
301 			}
302 			of_node_put(node);
303 			return be32_to_cpup(prop);
304 		}
305 
306 		prop = of_get_property(node, "next-level-cache", NULL);
307 		if (!prop) {
308 			pr_debug("can't find next-level-cache at %pOF\n", node);
309 			of_node_put(node);
310 			return ~(u32)0;  /* can't traverse any further */
311 		}
312 		of_node_put(node);
313 
314 		/* advance to next node in cache hierarchy */
315 		node = of_find_node_by_phandle(*prop);
316 		if (!node) {
317 			pr_debug("Invalid node for cache hierarchy\n");
318 			return ~(u32)0;
319 		}
320 	}
321 
322 	pr_debug("stash dest not found for %d on vcpu %d\n",
323 		 stash_dest_hint, vcpu);
324 	return ~(u32)0;
325 }
326 
327 /* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
328 #define QMAN_PAACE 1
329 #define QMAN_PORTAL_PAACE 2
330 #define BMAN_PAACE 3
331 
332 /*
333  * Setup operation mapping and stash destinations for QMAN and QMAN portal.
334  * Memory accesses to QMAN and BMAN private memory need not be coherent, so
335  * clear the PAACE entry coherency attribute for them.
336  */
337 static void setup_qbman_paace(struct paace *ppaace, int  paace_type)
338 {
339 	switch (paace_type) {
340 	case QMAN_PAACE:
341 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
342 		ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
343 		/* setup QMAN Private data stashing for the L3 cache */
344 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
345 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
346 		       0);
347 		break;
348 	case QMAN_PORTAL_PAACE:
349 		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
350 		ppaace->op_encode.index_ot.omi = OMI_QMAN;
351 		/* Set DQRR and Frame stashing for the L3 cache */
352 		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
353 		break;
354 	case BMAN_PAACE:
355 		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
356 		       0);
357 		break;
358 	}
359 }
360 
361 /*
362  * Setup the operation mapping table for various devices. This is a static
363  * table where each table index corresponds to a particular device. PAMU uses
364  * this table to translate device transaction to appropriate corenet
365  * transaction.
366  */
367 static void setup_omt(struct ome *omt)
368 {
369 	struct ome *ome;
370 
371 	/* Configure OMI_QMAN */
372 	ome = &omt[OMI_QMAN];
373 
374 	ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
375 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
376 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
377 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
378 
379 	ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
380 	ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
381 
382 	/* Configure OMI_FMAN */
383 	ome = &omt[OMI_FMAN];
384 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
385 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
386 
387 	/* Configure OMI_QMAN private */
388 	ome = &omt[OMI_QMAN_PRIV];
389 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READ;
390 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
391 	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
392 	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
393 
394 	/* Configure OMI_CAAM */
395 	ome = &omt[OMI_CAAM];
396 	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
397 	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
398 }
399 
400 /*
401  * Get the maximum number of PAACT table entries
402  * and subwindows supported by PAMU
403  */
404 static void get_pamu_cap_values(unsigned long pamu_reg_base)
405 {
406 	u32 pc_val;
407 
408 	pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
409 	/* Maximum number of subwindows per liodn */
410 	max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
411 }
412 
413 /* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
414 static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
415 			  phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
416 			  phys_addr_t omt_phys)
417 {
418 	u32 *pc;
419 	struct pamu_mmap_regs *pamu_regs;
420 
421 	pc = (u32 *) (pamu_reg_base + PAMU_PC);
422 	pamu_regs = (struct pamu_mmap_regs *)
423 		(pamu_reg_base + PAMU_MMAP_REGS_BASE);
424 
425 	/* set up pointers to corenet control blocks */
426 
427 	out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
428 	out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
429 	ppaact_phys = ppaact_phys + PAACT_SIZE;
430 	out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
431 	out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
432 
433 	out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
434 	out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
435 	spaact_phys = spaact_phys + SPAACT_SIZE;
436 	out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
437 	out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
438 
439 	out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
440 	out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
441 	omt_phys = omt_phys + OMT_SIZE;
442 	out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
443 	out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
444 
445 	/*
446 	 * set PAMU enable bit,
447 	 * allow ppaact & omt to be cached
448 	 * & enable PAMU access violation interrupts.
449 	 */
450 
451 	out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
452 		 PAMU_ACCESS_VIOLATION_ENABLE);
453 	out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
454 	return 0;
455 }
456 
457 /* Enable all device LIODNS */
458 static void setup_liodns(void)
459 {
460 	int i, len;
461 	struct paace *ppaace;
462 	struct device_node *node = NULL;
463 	const u32 *prop;
464 
465 	for_each_node_with_property(node, "fsl,liodn") {
466 		prop = of_get_property(node, "fsl,liodn", &len);
467 		for (i = 0; i < len / sizeof(u32); i++) {
468 			int liodn;
469 
470 			liodn = be32_to_cpup(&prop[i]);
471 			if (liodn >= PAACE_NUMBER_ENTRIES) {
472 				pr_debug("Invalid LIODN value %d\n", liodn);
473 				continue;
474 			}
475 			ppaace = pamu_get_ppaace(liodn);
476 			pamu_init_ppaace(ppaace);
477 			/* window size is 2^(WSE+1) bytes */
478 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
479 			ppaace->wbah = 0;
480 			set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
481 			set_bf(ppaace->impl_attr, PAACE_IA_ATM,
482 			       PAACE_ATM_NO_XLATE);
483 			set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
484 			       PAACE_AP_PERMS_ALL);
485 			if (of_device_is_compatible(node, "fsl,qman-portal"))
486 				setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
487 			if (of_device_is_compatible(node, "fsl,qman"))
488 				setup_qbman_paace(ppaace, QMAN_PAACE);
489 			if (of_device_is_compatible(node, "fsl,bman"))
490 				setup_qbman_paace(ppaace, BMAN_PAACE);
491 			mb();
492 			pamu_enable_liodn(liodn);
493 		}
494 	}
495 }
496 
497 static irqreturn_t pamu_av_isr(int irq, void *arg)
498 {
499 	struct pamu_isr_data *data = arg;
500 	phys_addr_t phys;
501 	unsigned int i, j, ret;
502 
503 	pr_emerg("access violation interrupt\n");
504 
505 	for (i = 0; i < data->count; i++) {
506 		void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
507 		u32 pics = in_be32(p + PAMU_PICS);
508 
509 		if (pics & PAMU_ACCESS_VIOLATION_STAT) {
510 			u32 avs1 = in_be32(p + PAMU_AVS1);
511 			struct paace *paace;
512 
513 			pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
514 			pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
515 			pr_emerg("AVS1=%08x\n", avs1);
516 			pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
517 			pr_emerg("AVA=%016llx\n",
518 				 make64(in_be32(p + PAMU_AVAH),
519 					in_be32(p + PAMU_AVAL)));
520 			pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
521 			pr_emerg("POEA=%016llx\n",
522 				 make64(in_be32(p + PAMU_POEAH),
523 					in_be32(p + PAMU_POEAL)));
524 
525 			phys = make64(in_be32(p + PAMU_POEAH),
526 				      in_be32(p + PAMU_POEAL));
527 
528 			/* Assume that POEA points to a PAACE */
529 			if (phys) {
530 				u32 *paace = phys_to_virt(phys);
531 
532 				/* Only the first four words are relevant */
533 				for (j = 0; j < 4; j++)
534 					pr_emerg("PAACE[%u]=%08x\n",
535 						 j, in_be32(paace + j));
536 			}
537 
538 			/* clear access violation condition */
539 			out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
540 			paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
541 			BUG_ON(!paace);
542 			/* check if we got a violation for a disabled LIODN */
543 			if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
544 				/*
545 				 * As per hardware erratum A-003638, access
546 				 * violation can be reported for a disabled
547 				 * LIODN. If we hit that condition, disable
548 				 * access violation reporting.
549 				 */
550 				pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
551 			} else {
552 				/* Disable the LIODN */
553 				ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
554 				BUG_ON(ret);
555 				pr_emerg("Disabling liodn %x\n",
556 					 avs1 >> PAMU_AVS1_LIODN_SHIFT);
557 			}
558 			out_be32((p + PAMU_PICS), pics);
559 		}
560 	}
561 
562 	return IRQ_HANDLED;
563 }
564 
565 #define LAWAR_EN		0x80000000
566 #define LAWAR_TARGET_MASK	0x0FF00000
567 #define LAWAR_TARGET_SHIFT	20
568 #define LAWAR_SIZE_MASK		0x0000003F
569 #define LAWAR_CSDID_MASK	0x000FF000
570 #define LAWAR_CSDID_SHIFT	12
571 
572 #define LAW_SIZE_4K		0xb
573 
574 struct ccsr_law {
575 	u32	lawbarh;	/* LAWn base address high */
576 	u32	lawbarl;	/* LAWn base address low */
577 	u32	lawar;		/* LAWn attributes */
578 	u32	reserved;
579 };
580 
581 /*
582  * Create a coherence subdomain for a given memory block.
583  */
584 static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
585 {
586 	struct device_node *np;
587 	const __be32 *iprop;
588 	void __iomem *lac = NULL;	/* Local Access Control registers */
589 	struct ccsr_law __iomem *law;
590 	void __iomem *ccm = NULL;
591 	u32 __iomem *csdids;
592 	unsigned int i, num_laws, num_csds;
593 	u32 law_target = 0;
594 	u32 csd_id = 0;
595 	int ret = 0;
596 
597 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
598 	if (!np)
599 		return -ENODEV;
600 
601 	iprop = of_get_property(np, "fsl,num-laws", NULL);
602 	if (!iprop) {
603 		ret = -ENODEV;
604 		goto error;
605 	}
606 
607 	num_laws = be32_to_cpup(iprop);
608 	if (!num_laws) {
609 		ret = -ENODEV;
610 		goto error;
611 	}
612 
613 	lac = of_iomap(np, 0);
614 	if (!lac) {
615 		ret = -ENODEV;
616 		goto error;
617 	}
618 
619 	/* LAW registers are at offset 0xC00 */
620 	law = lac + 0xC00;
621 
622 	of_node_put(np);
623 
624 	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
625 	if (!np) {
626 		ret = -ENODEV;
627 		goto error;
628 	}
629 
630 	iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
631 	if (!iprop) {
632 		ret = -ENODEV;
633 		goto error;
634 	}
635 
636 	num_csds = be32_to_cpup(iprop);
637 	if (!num_csds) {
638 		ret = -ENODEV;
639 		goto error;
640 	}
641 
642 	ccm = of_iomap(np, 0);
643 	if (!ccm) {
644 		ret = -ENOMEM;
645 		goto error;
646 	}
647 
648 	/* The undocumented CSDID registers are at offset 0x600 */
649 	csdids = ccm + 0x600;
650 
651 	of_node_put(np);
652 	np = NULL;
653 
654 	/* Find an unused coherence subdomain ID */
655 	for (csd_id = 0; csd_id < num_csds; csd_id++) {
656 		if (!csdids[csd_id])
657 			break;
658 	}
659 
660 	/* Store the Port ID in the (undocumented) proper CIDMRxx register */
661 	csdids[csd_id] = csd_port_id;
662 
663 	/* Find the DDR LAW that maps to our buffer. */
664 	for (i = 0; i < num_laws; i++) {
665 		if (law[i].lawar & LAWAR_EN) {
666 			phys_addr_t law_start, law_end;
667 
668 			law_start = make64(law[i].lawbarh, law[i].lawbarl);
669 			law_end = law_start +
670 				(2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
671 
672 			if (law_start <= phys && phys < law_end) {
673 				law_target = law[i].lawar & LAWAR_TARGET_MASK;
674 				break;
675 			}
676 		}
677 	}
678 
679 	if (i == 0 || i == num_laws) {
680 		/* This should never happen */
681 		ret = -ENOENT;
682 		goto error;
683 	}
684 
685 	/* Find a free LAW entry */
686 	while (law[--i].lawar & LAWAR_EN) {
687 		if (i == 0) {
688 			/* No higher priority LAW slots available */
689 			ret = -ENOENT;
690 			goto error;
691 		}
692 	}
693 
694 	law[i].lawbarh = upper_32_bits(phys);
695 	law[i].lawbarl = lower_32_bits(phys);
696 	wmb();
697 	law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
698 		(LAW_SIZE_4K + get_order(size));
699 	wmb();
700 
701 error:
702 	if (ccm)
703 		iounmap(ccm);
704 
705 	if (lac)
706 		iounmap(lac);
707 
708 	if (np)
709 		of_node_put(np);
710 
711 	return ret;
712 }
713 
714 /*
715  * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
716  * bit map of snoopers for a given range of memory mapped by a LAW.
717  *
718  * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
719  * table should never need to be updated.  SVRs are guaranteed to be unique, so
720  * there is no worry that a future SOC will inadvertently have one of these
721  * values.
722  */
723 static const struct {
724 	u32 svr;
725 	u32 port_id;
726 } port_id_map[] = {
727 	{(SVR_P2040 << 8) | 0x10, 0xFF000000},	/* P2040 1.0 */
728 	{(SVR_P2040 << 8) | 0x11, 0xFF000000},	/* P2040 1.1 */
729 	{(SVR_P2041 << 8) | 0x10, 0xFF000000},	/* P2041 1.0 */
730 	{(SVR_P2041 << 8) | 0x11, 0xFF000000},	/* P2041 1.1 */
731 	{(SVR_P3041 << 8) | 0x10, 0xFF000000},	/* P3041 1.0 */
732 	{(SVR_P3041 << 8) | 0x11, 0xFF000000},	/* P3041 1.1 */
733 	{(SVR_P4040 << 8) | 0x20, 0xFFF80000},	/* P4040 2.0 */
734 	{(SVR_P4080 << 8) | 0x20, 0xFFF80000},	/* P4080 2.0 */
735 	{(SVR_P5010 << 8) | 0x10, 0xFC000000},	/* P5010 1.0 */
736 	{(SVR_P5010 << 8) | 0x20, 0xFC000000},	/* P5010 2.0 */
737 	{(SVR_P5020 << 8) | 0x10, 0xFC000000},	/* P5020 1.0 */
738 	{(SVR_P5021 << 8) | 0x10, 0xFF800000},	/* P5021 1.0 */
739 	{(SVR_P5040 << 8) | 0x10, 0xFF800000},	/* P5040 1.0 */
740 };
741 
742 #define SVR_SECURITY	0x80000	/* The Security (E) bit */
743 
744 static int fsl_pamu_probe(struct platform_device *pdev)
745 {
746 	struct device *dev = &pdev->dev;
747 	void __iomem *pamu_regs = NULL;
748 	struct ccsr_guts __iomem *guts_regs = NULL;
749 	u32 pamubypenr, pamu_counter;
750 	unsigned long pamu_reg_off;
751 	unsigned long pamu_reg_base;
752 	struct pamu_isr_data *data = NULL;
753 	struct device_node *guts_node;
754 	u64 size;
755 	struct page *p;
756 	int ret = 0;
757 	int irq;
758 	phys_addr_t ppaact_phys;
759 	phys_addr_t spaact_phys;
760 	struct ome *omt;
761 	phys_addr_t omt_phys;
762 	size_t mem_size = 0;
763 	unsigned int order = 0;
764 	u32 csd_port_id = 0;
765 	unsigned i;
766 	/*
767 	 * enumerate all PAMUs and allocate and setup PAMU tables
768 	 * for each of them,
769 	 * NOTE : All PAMUs share the same LIODN tables.
770 	 */
771 
772 	if (WARN_ON(probed))
773 		return -EBUSY;
774 
775 	pamu_regs = of_iomap(dev->of_node, 0);
776 	if (!pamu_regs) {
777 		dev_err(dev, "ioremap of PAMU node failed\n");
778 		return -ENOMEM;
779 	}
780 	of_get_address(dev->of_node, 0, &size, NULL);
781 
782 	irq = irq_of_parse_and_map(dev->of_node, 0);
783 	if (!irq) {
784 		dev_warn(dev, "no interrupts listed in PAMU node\n");
785 		goto error;
786 	}
787 
788 	data = kzalloc(sizeof(*data), GFP_KERNEL);
789 	if (!data) {
790 		ret = -ENOMEM;
791 		goto error;
792 	}
793 	data->pamu_reg_base = pamu_regs;
794 	data->count = size / PAMU_OFFSET;
795 
796 	/* The ISR needs access to the regs, so we won't iounmap them */
797 	ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
798 	if (ret < 0) {
799 		dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
800 		goto error;
801 	}
802 
803 	guts_node = of_find_matching_node(NULL, guts_device_ids);
804 	if (!guts_node) {
805 		dev_err(dev, "could not find GUTS node %pOF\n", dev->of_node);
806 		ret = -ENODEV;
807 		goto error;
808 	}
809 
810 	guts_regs = of_iomap(guts_node, 0);
811 	of_node_put(guts_node);
812 	if (!guts_regs) {
813 		dev_err(dev, "ioremap of GUTS node failed\n");
814 		ret = -ENODEV;
815 		goto error;
816 	}
817 
818 	/* read in the PAMU capability registers */
819 	get_pamu_cap_values((unsigned long)pamu_regs);
820 	/*
821 	 * To simplify the allocation of a coherency domain, we allocate the
822 	 * PAACT and the OMT in the same memory buffer.  Unfortunately, this
823 	 * wastes more memory compared to allocating the buffers separately.
824 	 */
825 	/* Determine how much memory we need */
826 	mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
827 		(PAGE_SIZE << get_order(SPAACT_SIZE)) +
828 		(PAGE_SIZE << get_order(OMT_SIZE));
829 	order = get_order(mem_size);
830 
831 	p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
832 	if (!p) {
833 		dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
834 		ret = -ENOMEM;
835 		goto error;
836 	}
837 
838 	ppaact = page_address(p);
839 	ppaact_phys = page_to_phys(p);
840 
841 	/* Make sure the memory is naturally aligned */
842 	if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
843 		dev_err(dev, "PAACT/OMT block is unaligned\n");
844 		ret = -ENOMEM;
845 		goto error;
846 	}
847 
848 	spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
849 	omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
850 
851 	dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
852 
853 	/* Check to see if we need to implement the work-around on this SOC */
854 
855 	/* Determine the Port ID for our coherence subdomain */
856 	for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
857 		if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
858 			csd_port_id = port_id_map[i].port_id;
859 			dev_dbg(dev, "found matching SVR %08x\n",
860 				port_id_map[i].svr);
861 			break;
862 		}
863 	}
864 
865 	if (csd_port_id) {
866 		dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
867 			&ppaact_phys, mem_size, csd_port_id);
868 
869 		ret = create_csd(ppaact_phys, mem_size, csd_port_id);
870 		if (ret) {
871 			dev_err(dev, "could not create coherence subdomain\n");
872 			goto error;
873 		}
874 	}
875 
876 	spaact_phys = virt_to_phys(spaact);
877 	omt_phys = virt_to_phys(omt);
878 
879 	pamubypenr = in_be32(&guts_regs->pamubypenr);
880 
881 	for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
882 	     pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
883 
884 		pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
885 		setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
886 			       spaact_phys, omt_phys);
887 		/* Disable PAMU bypass for this PAMU */
888 		pamubypenr &= ~pamu_counter;
889 	}
890 
891 	setup_omt(omt);
892 
893 	/* Enable all relevant PAMU(s) */
894 	out_be32(&guts_regs->pamubypenr, pamubypenr);
895 
896 	iounmap(guts_regs);
897 
898 	/* Enable DMA for the LIODNs in the device tree */
899 
900 	setup_liodns();
901 
902 	probed = true;
903 
904 	return 0;
905 
906 error:
907 	if (irq)
908 		free_irq(irq, data);
909 
910 	kfree_sensitive(data);
911 
912 	if (pamu_regs)
913 		iounmap(pamu_regs);
914 
915 	if (guts_regs)
916 		iounmap(guts_regs);
917 
918 	if (ppaact)
919 		free_pages((unsigned long)ppaact, order);
920 
921 	ppaact = NULL;
922 
923 	return ret;
924 }
925 
926 static struct platform_driver fsl_of_pamu_driver = {
927 	.driver = {
928 		.name = "fsl-of-pamu",
929 	},
930 	.probe = fsl_pamu_probe,
931 };
932 
933 static __init int fsl_pamu_init(void)
934 {
935 	struct platform_device *pdev = NULL;
936 	struct device_node *np;
937 	int ret;
938 
939 	/*
940 	 * The normal OF process calls the probe function at some
941 	 * indeterminate later time, after most drivers have loaded.  This is
942 	 * too late for us, because PAMU clients (like the Qman driver)
943 	 * depend on PAMU being initialized early.
944 	 *
945 	 * So instead, we "manually" call our probe function by creating the
946 	 * platform devices ourselves.
947 	 */
948 
949 	/*
950 	 * We assume that there is only one PAMU node in the device tree.  A
951 	 * single PAMU node represents all of the PAMU devices in the SOC
952 	 * already.   Everything else already makes that assumption, and the
953 	 * binding for the PAMU nodes doesn't allow for any parent-child
954 	 * relationships anyway.  In other words, support for more than one
955 	 * PAMU node would require significant changes to a lot of code.
956 	 */
957 
958 	np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
959 	if (!np) {
960 		pr_err("could not find a PAMU node\n");
961 		return -ENODEV;
962 	}
963 
964 	ret = platform_driver_register(&fsl_of_pamu_driver);
965 	if (ret) {
966 		pr_err("could not register driver (err=%i)\n", ret);
967 		goto error_driver_register;
968 	}
969 
970 	pdev = platform_device_alloc("fsl-of-pamu", 0);
971 	if (!pdev) {
972 		pr_err("could not allocate device %pOF\n", np);
973 		ret = -ENOMEM;
974 		goto error_device_alloc;
975 	}
976 	pdev->dev.of_node = of_node_get(np);
977 
978 	ret = pamu_domain_init();
979 	if (ret)
980 		goto error_device_add;
981 
982 	ret = platform_device_add(pdev);
983 	if (ret) {
984 		pr_err("could not add device %pOF (err=%i)\n", np, ret);
985 		goto error_device_add;
986 	}
987 
988 	return 0;
989 
990 error_device_add:
991 	of_node_put(pdev->dev.of_node);
992 	pdev->dev.of_node = NULL;
993 
994 	platform_device_put(pdev);
995 
996 error_device_alloc:
997 	platform_driver_unregister(&fsl_of_pamu_driver);
998 
999 error_driver_register:
1000 	of_node_put(np);
1001 
1002 	return ret;
1003 }
1004 arch_initcall(fsl_pamu_init);
1005