1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright (C) 2013 Freescale Semiconductor, Inc.
5 */
6
7 #define pr_fmt(fmt) "fsl-pamu: %s: " fmt, __func__
8
9 #include "fsl_pamu.h"
10
11 #include <linux/fsl/guts.h>
12 #include <linux/interrupt.h>
13 #include <linux/genalloc.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/platform_device.h>
17
18 #include <asm/mpc85xx.h>
19
20 /* define indexes for each operation mapping scenario */
21 #define OMI_QMAN 0x00
22 #define OMI_FMAN 0x01
23 #define OMI_QMAN_PRIV 0x02
24 #define OMI_CAAM 0x03
25
26 #define make64(high, low) (((u64)(high) << 32) | (low))
27
28 struct pamu_isr_data {
29 void __iomem *pamu_reg_base; /* Base address of PAMU regs */
30 unsigned int count; /* The number of PAMUs */
31 };
32
33 static struct paace *ppaact;
34 static struct paace *spaact;
35
36 static bool probed; /* Has PAMU been probed? */
37
38 /*
39 * Table for matching compatible strings, for device tree
40 * guts node, for QorIQ SOCs.
41 * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
42 * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
43 * string would be used.
44 */
45 static const struct of_device_id guts_device_ids[] = {
46 { .compatible = "fsl,qoriq-device-config-1.0", },
47 { .compatible = "fsl,qoriq-device-config-2.0", },
48 {}
49 };
50
51 /*
52 * Table for matching compatible strings, for device tree
53 * L3 cache controller node.
54 * "fsl,t4240-l3-cache-controller" corresponds to T4,
55 * "fsl,b4860-l3-cache-controller" corresponds to B4 &
56 * "fsl,p4080-l3-cache-controller" corresponds to other,
57 * SOCs.
58 */
59 static const struct of_device_id l3_device_ids[] = {
60 { .compatible = "fsl,t4240-l3-cache-controller", },
61 { .compatible = "fsl,b4860-l3-cache-controller", },
62 { .compatible = "fsl,p4080-l3-cache-controller", },
63 {}
64 };
65
66 /* maximum subwindows permitted per liodn */
67 static u32 max_subwindow_count;
68
69 /**
70 * pamu_get_ppaace() - Return the primary PACCE
71 * @liodn: liodn PAACT index for desired PAACE
72 *
73 * Returns the ppace pointer upon success else return
74 * null.
75 */
pamu_get_ppaace(int liodn)76 static struct paace *pamu_get_ppaace(int liodn)
77 {
78 if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
79 pr_debug("PPAACT doesn't exist\n");
80 return NULL;
81 }
82
83 return &ppaact[liodn];
84 }
85
86 /**
87 * pamu_enable_liodn() - Set valid bit of PACCE
88 * @liodn: liodn PAACT index for desired PAACE
89 *
90 * Returns 0 upon success else error code < 0 returned
91 */
pamu_enable_liodn(int liodn)92 int pamu_enable_liodn(int liodn)
93 {
94 struct paace *ppaace;
95
96 ppaace = pamu_get_ppaace(liodn);
97 if (!ppaace) {
98 pr_debug("Invalid primary paace entry\n");
99 return -ENOENT;
100 }
101
102 if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
103 pr_debug("liodn %d not configured\n", liodn);
104 return -EINVAL;
105 }
106
107 /* Ensure that all other stores to the ppaace complete first */
108 mb();
109
110 set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
111 mb();
112
113 return 0;
114 }
115
116 /**
117 * pamu_disable_liodn() - Clears valid bit of PACCE
118 * @liodn: liodn PAACT index for desired PAACE
119 *
120 * Returns 0 upon success else error code < 0 returned
121 */
pamu_disable_liodn(int liodn)122 int pamu_disable_liodn(int liodn)
123 {
124 struct paace *ppaace;
125
126 ppaace = pamu_get_ppaace(liodn);
127 if (!ppaace) {
128 pr_debug("Invalid primary paace entry\n");
129 return -ENOENT;
130 }
131
132 set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
133 mb();
134
135 return 0;
136 }
137
138 /* Derive the window size encoding for a particular PAACE entry */
map_addrspace_size_to_wse(phys_addr_t addrspace_size)139 static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
140 {
141 /* Bug if not a power of 2 */
142 BUG_ON(addrspace_size & (addrspace_size - 1));
143
144 /* window size is 2^(WSE+1) bytes */
145 return fls64(addrspace_size) - 2;
146 }
147
148 /*
149 * Set the PAACE type as primary and set the coherency required domain
150 * attribute
151 */
pamu_init_ppaace(struct paace * ppaace)152 static void pamu_init_ppaace(struct paace *ppaace)
153 {
154 set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
155
156 set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
157 PAACE_M_COHERENCE_REQ);
158 }
159
160 /*
161 * Function used for updating stash destination for the coressponding
162 * LIODN.
163 */
pamu_update_paace_stash(int liodn,u32 value)164 int pamu_update_paace_stash(int liodn, u32 value)
165 {
166 struct paace *paace;
167
168 paace = pamu_get_ppaace(liodn);
169 if (!paace) {
170 pr_debug("Invalid liodn entry\n");
171 return -ENOENT;
172 }
173 set_bf(paace->impl_attr, PAACE_IA_CID, value);
174
175 mb();
176
177 return 0;
178 }
179
180 /**
181 * pamu_config_ppaace() - Sets up PPAACE entry for specified liodn
182 *
183 * @liodn: Logical IO device number
184 * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
185 * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
186 * stashid not defined
187 * @prot: window permissions
188 *
189 * Returns 0 upon success else error code < 0 returned
190 */
pamu_config_ppaace(int liodn,u32 omi,u32 stashid,int prot)191 int pamu_config_ppaace(int liodn, u32 omi, u32 stashid, int prot)
192 {
193 struct paace *ppaace;
194
195 ppaace = pamu_get_ppaace(liodn);
196 if (!ppaace)
197 return -ENOENT;
198
199 /* window size is 2^(WSE+1) bytes */
200 set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
201 map_addrspace_size_to_wse(1ULL << 36));
202
203 pamu_init_ppaace(ppaace);
204
205 ppaace->wbah = 0;
206 set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
207
208 /* set up operation mapping if it's configured */
209 if (omi < OME_NUMBER_ENTRIES) {
210 set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
211 ppaace->op_encode.index_ot.omi = omi;
212 } else if (~omi != 0) {
213 pr_debug("bad operation mapping index: %d\n", omi);
214 return -ENODEV;
215 }
216
217 /* configure stash id */
218 if (~stashid != 0)
219 set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
220
221 set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
222 ppaace->twbah = 0;
223 set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, 0);
224 set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
225 set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
226 set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
227 mb();
228
229 return 0;
230 }
231
232 /**
233 * get_ome_index() - Returns the index in the operation mapping table
234 * for device.
235 * @omi_index: pointer for storing the index value
236 * @dev: target device
237 *
238 */
get_ome_index(u32 * omi_index,struct device * dev)239 void get_ome_index(u32 *omi_index, struct device *dev)
240 {
241 if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
242 *omi_index = OMI_QMAN;
243 if (of_device_is_compatible(dev->of_node, "fsl,qman"))
244 *omi_index = OMI_QMAN_PRIV;
245 }
246
247 /**
248 * get_stash_id - Returns stash destination id corresponding to a
249 * cache type and vcpu.
250 * @stash_dest_hint: L1, L2 or L3
251 * @vcpu: vpcu target for a particular cache type.
252 *
253 * Returs stash on success or ~(u32)0 on failure.
254 *
255 */
get_stash_id(u32 stash_dest_hint,u32 vcpu)256 u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
257 {
258 const u32 *prop;
259 struct device_node *node;
260 u32 cache_level;
261 int len, found = 0;
262 int i;
263
264 /* Fastpath, exit early if L3/CPC cache is target for stashing */
265 if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
266 node = of_find_matching_node(NULL, l3_device_ids);
267 if (node) {
268 prop = of_get_property(node, "cache-stash-id", NULL);
269 if (!prop) {
270 pr_debug("missing cache-stash-id at %pOF\n",
271 node);
272 of_node_put(node);
273 return ~(u32)0;
274 }
275 of_node_put(node);
276 return be32_to_cpup(prop);
277 }
278 return ~(u32)0;
279 }
280
281 for_each_of_cpu_node(node) {
282 prop = of_get_property(node, "reg", &len);
283 for (i = 0; i < len / sizeof(u32); i++) {
284 if (be32_to_cpup(&prop[i]) == vcpu) {
285 found = 1;
286 goto found_cpu_node;
287 }
288 }
289 }
290 found_cpu_node:
291
292 /* find the hwnode that represents the cache */
293 for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
294 if (stash_dest_hint == cache_level) {
295 prop = of_get_property(node, "cache-stash-id", NULL);
296 if (!prop) {
297 pr_debug("missing cache-stash-id at %pOF\n",
298 node);
299 of_node_put(node);
300 return ~(u32)0;
301 }
302 of_node_put(node);
303 return be32_to_cpup(prop);
304 }
305
306 prop = of_get_property(node, "next-level-cache", NULL);
307 if (!prop) {
308 pr_debug("can't find next-level-cache at %pOF\n", node);
309 of_node_put(node);
310 return ~(u32)0; /* can't traverse any further */
311 }
312 of_node_put(node);
313
314 /* advance to next node in cache hierarchy */
315 node = of_find_node_by_phandle(*prop);
316 if (!node) {
317 pr_debug("Invalid node for cache hierarchy\n");
318 return ~(u32)0;
319 }
320 }
321
322 pr_debug("stash dest not found for %d on vcpu %d\n",
323 stash_dest_hint, vcpu);
324 return ~(u32)0;
325 }
326
327 /* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
328 #define QMAN_PAACE 1
329 #define QMAN_PORTAL_PAACE 2
330 #define BMAN_PAACE 3
331
332 /*
333 * Setup operation mapping and stash destinations for QMAN and QMAN portal.
334 * Memory accesses to QMAN and BMAN private memory need not be coherent, so
335 * clear the PAACE entry coherency attribute for them.
336 */
setup_qbman_paace(struct paace * ppaace,int paace_type)337 static void setup_qbman_paace(struct paace *ppaace, int paace_type)
338 {
339 switch (paace_type) {
340 case QMAN_PAACE:
341 set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
342 ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
343 /* setup QMAN Private data stashing for the L3 cache */
344 set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
345 set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
346 0);
347 break;
348 case QMAN_PORTAL_PAACE:
349 set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
350 ppaace->op_encode.index_ot.omi = OMI_QMAN;
351 /* Set DQRR and Frame stashing for the L3 cache */
352 set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
353 break;
354 case BMAN_PAACE:
355 set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
356 0);
357 break;
358 }
359 }
360
361 /*
362 * Setup the operation mapping table for various devices. This is a static
363 * table where each table index corresponds to a particular device. PAMU uses
364 * this table to translate device transaction to appropriate corenet
365 * transaction.
366 */
setup_omt(struct ome * omt)367 static void setup_omt(struct ome *omt)
368 {
369 struct ome *ome;
370
371 /* Configure OMI_QMAN */
372 ome = &omt[OMI_QMAN];
373
374 ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
375 ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
376 ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
377 ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
378
379 ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
380 ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
381
382 /* Configure OMI_FMAN */
383 ome = &omt[OMI_FMAN];
384 ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READI;
385 ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
386
387 /* Configure OMI_QMAN private */
388 ome = &omt[OMI_QMAN_PRIV];
389 ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
390 ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
391 ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
392 ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
393
394 /* Configure OMI_CAAM */
395 ome = &omt[OMI_CAAM];
396 ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READI;
397 ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
398 }
399
400 /*
401 * Get the maximum number of PAACT table entries
402 * and subwindows supported by PAMU
403 */
get_pamu_cap_values(unsigned long pamu_reg_base)404 static void get_pamu_cap_values(unsigned long pamu_reg_base)
405 {
406 u32 pc_val;
407
408 pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
409 /* Maximum number of subwindows per liodn */
410 max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
411 }
412
413 /* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
setup_one_pamu(unsigned long pamu_reg_base,unsigned long pamu_reg_size,phys_addr_t ppaact_phys,phys_addr_t spaact_phys,phys_addr_t omt_phys)414 static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
415 phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
416 phys_addr_t omt_phys)
417 {
418 u32 *pc;
419 struct pamu_mmap_regs *pamu_regs;
420
421 pc = (u32 *) (pamu_reg_base + PAMU_PC);
422 pamu_regs = (struct pamu_mmap_regs *)
423 (pamu_reg_base + PAMU_MMAP_REGS_BASE);
424
425 /* set up pointers to corenet control blocks */
426
427 out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
428 out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
429 ppaact_phys = ppaact_phys + PAACT_SIZE;
430 out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
431 out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
432
433 out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
434 out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
435 spaact_phys = spaact_phys + SPAACT_SIZE;
436 out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
437 out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
438
439 out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
440 out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
441 omt_phys = omt_phys + OMT_SIZE;
442 out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
443 out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
444
445 /*
446 * set PAMU enable bit,
447 * allow ppaact & omt to be cached
448 * & enable PAMU access violation interrupts.
449 */
450
451 out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
452 PAMU_ACCESS_VIOLATION_ENABLE);
453 out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
454 return 0;
455 }
456
457 /* Enable all device LIODNS */
setup_liodns(void)458 static void setup_liodns(void)
459 {
460 int i, len;
461 struct paace *ppaace;
462 struct device_node *node = NULL;
463 const u32 *prop;
464
465 for_each_node_with_property(node, "fsl,liodn") {
466 prop = of_get_property(node, "fsl,liodn", &len);
467 for (i = 0; i < len / sizeof(u32); i++) {
468 int liodn;
469
470 liodn = be32_to_cpup(&prop[i]);
471 if (liodn >= PAACE_NUMBER_ENTRIES) {
472 pr_debug("Invalid LIODN value %d\n", liodn);
473 continue;
474 }
475 ppaace = pamu_get_ppaace(liodn);
476 pamu_init_ppaace(ppaace);
477 /* window size is 2^(WSE+1) bytes */
478 set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
479 ppaace->wbah = 0;
480 set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
481 set_bf(ppaace->impl_attr, PAACE_IA_ATM,
482 PAACE_ATM_NO_XLATE);
483 set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
484 PAACE_AP_PERMS_ALL);
485 if (of_device_is_compatible(node, "fsl,qman-portal"))
486 setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
487 if (of_device_is_compatible(node, "fsl,qman"))
488 setup_qbman_paace(ppaace, QMAN_PAACE);
489 if (of_device_is_compatible(node, "fsl,bman"))
490 setup_qbman_paace(ppaace, BMAN_PAACE);
491 mb();
492 pamu_enable_liodn(liodn);
493 }
494 }
495 }
496
pamu_av_isr(int irq,void * arg)497 static irqreturn_t pamu_av_isr(int irq, void *arg)
498 {
499 struct pamu_isr_data *data = arg;
500 phys_addr_t phys;
501 unsigned int i, j, ret;
502
503 pr_emerg("access violation interrupt\n");
504
505 for (i = 0; i < data->count; i++) {
506 void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
507 u32 pics = in_be32(p + PAMU_PICS);
508
509 if (pics & PAMU_ACCESS_VIOLATION_STAT) {
510 u32 avs1 = in_be32(p + PAMU_AVS1);
511 struct paace *paace;
512
513 pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
514 pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
515 pr_emerg("AVS1=%08x\n", avs1);
516 pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
517 pr_emerg("AVA=%016llx\n",
518 make64(in_be32(p + PAMU_AVAH),
519 in_be32(p + PAMU_AVAL)));
520 pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
521 pr_emerg("POEA=%016llx\n",
522 make64(in_be32(p + PAMU_POEAH),
523 in_be32(p + PAMU_POEAL)));
524
525 phys = make64(in_be32(p + PAMU_POEAH),
526 in_be32(p + PAMU_POEAL));
527
528 /* Assume that POEA points to a PAACE */
529 if (phys) {
530 u32 *paace = phys_to_virt(phys);
531
532 /* Only the first four words are relevant */
533 for (j = 0; j < 4; j++)
534 pr_emerg("PAACE[%u]=%08x\n",
535 j, in_be32(paace + j));
536 }
537
538 /* clear access violation condition */
539 out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
540 paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
541 BUG_ON(!paace);
542 /* check if we got a violation for a disabled LIODN */
543 if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
544 /*
545 * As per hardware erratum A-003638, access
546 * violation can be reported for a disabled
547 * LIODN. If we hit that condition, disable
548 * access violation reporting.
549 */
550 pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
551 } else {
552 /* Disable the LIODN */
553 ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
554 BUG_ON(ret);
555 pr_emerg("Disabling liodn %x\n",
556 avs1 >> PAMU_AVS1_LIODN_SHIFT);
557 }
558 out_be32((p + PAMU_PICS), pics);
559 }
560 }
561
562 return IRQ_HANDLED;
563 }
564
565 #define LAWAR_EN 0x80000000
566 #define LAWAR_TARGET_MASK 0x0FF00000
567 #define LAWAR_TARGET_SHIFT 20
568 #define LAWAR_SIZE_MASK 0x0000003F
569 #define LAWAR_CSDID_MASK 0x000FF000
570 #define LAWAR_CSDID_SHIFT 12
571
572 #define LAW_SIZE_4K 0xb
573
574 struct ccsr_law {
575 u32 lawbarh; /* LAWn base address high */
576 u32 lawbarl; /* LAWn base address low */
577 u32 lawar; /* LAWn attributes */
578 u32 reserved;
579 };
580
581 /*
582 * Create a coherence subdomain for a given memory block.
583 */
create_csd(phys_addr_t phys,size_t size,u32 csd_port_id)584 static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
585 {
586 struct device_node *np;
587 const __be32 *iprop;
588 void __iomem *lac = NULL; /* Local Access Control registers */
589 struct ccsr_law __iomem *law;
590 void __iomem *ccm = NULL;
591 u32 __iomem *csdids;
592 unsigned int i, num_laws, num_csds;
593 u32 law_target = 0;
594 u32 csd_id = 0;
595 int ret = 0;
596
597 np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
598 if (!np)
599 return -ENODEV;
600
601 iprop = of_get_property(np, "fsl,num-laws", NULL);
602 if (!iprop) {
603 ret = -ENODEV;
604 goto error;
605 }
606
607 num_laws = be32_to_cpup(iprop);
608 if (!num_laws) {
609 ret = -ENODEV;
610 goto error;
611 }
612
613 lac = of_iomap(np, 0);
614 if (!lac) {
615 ret = -ENODEV;
616 goto error;
617 }
618
619 /* LAW registers are at offset 0xC00 */
620 law = lac + 0xC00;
621
622 of_node_put(np);
623
624 np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
625 if (!np) {
626 ret = -ENODEV;
627 goto error;
628 }
629
630 iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
631 if (!iprop) {
632 ret = -ENODEV;
633 goto error;
634 }
635
636 num_csds = be32_to_cpup(iprop);
637 if (!num_csds) {
638 ret = -ENODEV;
639 goto error;
640 }
641
642 ccm = of_iomap(np, 0);
643 if (!ccm) {
644 ret = -ENOMEM;
645 goto error;
646 }
647
648 /* The undocumented CSDID registers are at offset 0x600 */
649 csdids = ccm + 0x600;
650
651 of_node_put(np);
652 np = NULL;
653
654 /* Find an unused coherence subdomain ID */
655 for (csd_id = 0; csd_id < num_csds; csd_id++) {
656 if (!csdids[csd_id])
657 break;
658 }
659
660 /* Store the Port ID in the (undocumented) proper CIDMRxx register */
661 csdids[csd_id] = csd_port_id;
662
663 /* Find the DDR LAW that maps to our buffer. */
664 for (i = 0; i < num_laws; i++) {
665 if (law[i].lawar & LAWAR_EN) {
666 phys_addr_t law_start, law_end;
667
668 law_start = make64(law[i].lawbarh, law[i].lawbarl);
669 law_end = law_start +
670 (2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
671
672 if (law_start <= phys && phys < law_end) {
673 law_target = law[i].lawar & LAWAR_TARGET_MASK;
674 break;
675 }
676 }
677 }
678
679 if (i == 0 || i == num_laws) {
680 /* This should never happen */
681 ret = -ENOENT;
682 goto error;
683 }
684
685 /* Find a free LAW entry */
686 while (law[--i].lawar & LAWAR_EN) {
687 if (i == 0) {
688 /* No higher priority LAW slots available */
689 ret = -ENOENT;
690 goto error;
691 }
692 }
693
694 law[i].lawbarh = upper_32_bits(phys);
695 law[i].lawbarl = lower_32_bits(phys);
696 wmb();
697 law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
698 (LAW_SIZE_4K + get_order(size));
699 wmb();
700
701 error:
702 if (ccm)
703 iounmap(ccm);
704
705 if (lac)
706 iounmap(lac);
707
708 if (np)
709 of_node_put(np);
710
711 return ret;
712 }
713
714 /*
715 * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
716 * bit map of snoopers for a given range of memory mapped by a LAW.
717 *
718 * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
719 * table should never need to be updated. SVRs are guaranteed to be unique, so
720 * there is no worry that a future SOC will inadvertently have one of these
721 * values.
722 */
723 static const struct {
724 u32 svr;
725 u32 port_id;
726 } port_id_map[] = {
727 {(SVR_P2040 << 8) | 0x10, 0xFF000000}, /* P2040 1.0 */
728 {(SVR_P2040 << 8) | 0x11, 0xFF000000}, /* P2040 1.1 */
729 {(SVR_P2041 << 8) | 0x10, 0xFF000000}, /* P2041 1.0 */
730 {(SVR_P2041 << 8) | 0x11, 0xFF000000}, /* P2041 1.1 */
731 {(SVR_P3041 << 8) | 0x10, 0xFF000000}, /* P3041 1.0 */
732 {(SVR_P3041 << 8) | 0x11, 0xFF000000}, /* P3041 1.1 */
733 {(SVR_P4040 << 8) | 0x20, 0xFFF80000}, /* P4040 2.0 */
734 {(SVR_P4080 << 8) | 0x20, 0xFFF80000}, /* P4080 2.0 */
735 {(SVR_P5010 << 8) | 0x10, 0xFC000000}, /* P5010 1.0 */
736 {(SVR_P5010 << 8) | 0x20, 0xFC000000}, /* P5010 2.0 */
737 {(SVR_P5020 << 8) | 0x10, 0xFC000000}, /* P5020 1.0 */
738 {(SVR_P5021 << 8) | 0x10, 0xFF800000}, /* P5021 1.0 */
739 {(SVR_P5040 << 8) | 0x10, 0xFF800000}, /* P5040 1.0 */
740 };
741
742 #define SVR_SECURITY 0x80000 /* The Security (E) bit */
743
fsl_pamu_probe(struct platform_device * pdev)744 static int fsl_pamu_probe(struct platform_device *pdev)
745 {
746 struct device *dev = &pdev->dev;
747 void __iomem *pamu_regs = NULL;
748 struct ccsr_guts __iomem *guts_regs = NULL;
749 u32 pamubypenr, pamu_counter;
750 unsigned long pamu_reg_off;
751 unsigned long pamu_reg_base;
752 struct pamu_isr_data *data = NULL;
753 struct device_node *guts_node;
754 u64 size;
755 struct page *p;
756 int ret = 0;
757 int irq;
758 phys_addr_t ppaact_phys;
759 phys_addr_t spaact_phys;
760 struct ome *omt;
761 phys_addr_t omt_phys;
762 size_t mem_size = 0;
763 unsigned int order = 0;
764 u32 csd_port_id = 0;
765 unsigned i;
766 /*
767 * enumerate all PAMUs and allocate and setup PAMU tables
768 * for each of them,
769 * NOTE : All PAMUs share the same LIODN tables.
770 */
771
772 if (WARN_ON(probed))
773 return -EBUSY;
774
775 pamu_regs = of_iomap(dev->of_node, 0);
776 if (!pamu_regs) {
777 dev_err(dev, "ioremap of PAMU node failed\n");
778 return -ENOMEM;
779 }
780 of_get_address(dev->of_node, 0, &size, NULL);
781
782 irq = irq_of_parse_and_map(dev->of_node, 0);
783 if (!irq) {
784 dev_warn(dev, "no interrupts listed in PAMU node\n");
785 goto error;
786 }
787
788 data = kzalloc(sizeof(*data), GFP_KERNEL);
789 if (!data) {
790 ret = -ENOMEM;
791 goto error;
792 }
793 data->pamu_reg_base = pamu_regs;
794 data->count = size / PAMU_OFFSET;
795
796 /* The ISR needs access to the regs, so we won't iounmap them */
797 ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
798 if (ret < 0) {
799 dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
800 goto error;
801 }
802
803 guts_node = of_find_matching_node(NULL, guts_device_ids);
804 if (!guts_node) {
805 dev_err(dev, "could not find GUTS node %pOF\n", dev->of_node);
806 ret = -ENODEV;
807 goto error;
808 }
809
810 guts_regs = of_iomap(guts_node, 0);
811 of_node_put(guts_node);
812 if (!guts_regs) {
813 dev_err(dev, "ioremap of GUTS node failed\n");
814 ret = -ENODEV;
815 goto error;
816 }
817
818 /* read in the PAMU capability registers */
819 get_pamu_cap_values((unsigned long)pamu_regs);
820 /*
821 * To simplify the allocation of a coherency domain, we allocate the
822 * PAACT and the OMT in the same memory buffer. Unfortunately, this
823 * wastes more memory compared to allocating the buffers separately.
824 */
825 /* Determine how much memory we need */
826 mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
827 (PAGE_SIZE << get_order(SPAACT_SIZE)) +
828 (PAGE_SIZE << get_order(OMT_SIZE));
829 order = get_order(mem_size);
830
831 p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
832 if (!p) {
833 dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
834 ret = -ENOMEM;
835 goto error;
836 }
837
838 ppaact = page_address(p);
839 ppaact_phys = page_to_phys(p);
840
841 /* Make sure the memory is naturally aligned */
842 if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
843 dev_err(dev, "PAACT/OMT block is unaligned\n");
844 ret = -ENOMEM;
845 goto error;
846 }
847
848 spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
849 omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
850
851 dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
852
853 /* Check to see if we need to implement the work-around on this SOC */
854
855 /* Determine the Port ID for our coherence subdomain */
856 for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
857 if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
858 csd_port_id = port_id_map[i].port_id;
859 dev_dbg(dev, "found matching SVR %08x\n",
860 port_id_map[i].svr);
861 break;
862 }
863 }
864
865 if (csd_port_id) {
866 dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
867 &ppaact_phys, mem_size, csd_port_id);
868
869 ret = create_csd(ppaact_phys, mem_size, csd_port_id);
870 if (ret) {
871 dev_err(dev, "could not create coherence subdomain\n");
872 goto error;
873 }
874 }
875
876 spaact_phys = virt_to_phys(spaact);
877 omt_phys = virt_to_phys(omt);
878
879 pamubypenr = in_be32(&guts_regs->pamubypenr);
880
881 for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
882 pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
883
884 pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
885 setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
886 spaact_phys, omt_phys);
887 /* Disable PAMU bypass for this PAMU */
888 pamubypenr &= ~pamu_counter;
889 }
890
891 setup_omt(omt);
892
893 /* Enable all relevant PAMU(s) */
894 out_be32(&guts_regs->pamubypenr, pamubypenr);
895
896 iounmap(guts_regs);
897
898 /* Enable DMA for the LIODNs in the device tree */
899
900 setup_liodns();
901
902 probed = true;
903
904 return 0;
905
906 error:
907 if (irq)
908 free_irq(irq, data);
909
910 kfree_sensitive(data);
911
912 if (pamu_regs)
913 iounmap(pamu_regs);
914
915 if (guts_regs)
916 iounmap(guts_regs);
917
918 if (ppaact)
919 free_pages((unsigned long)ppaact, order);
920
921 ppaact = NULL;
922
923 return ret;
924 }
925
926 static struct platform_driver fsl_of_pamu_driver = {
927 .driver = {
928 .name = "fsl-of-pamu",
929 },
930 .probe = fsl_pamu_probe,
931 };
932
fsl_pamu_init(void)933 static __init int fsl_pamu_init(void)
934 {
935 struct platform_device *pdev = NULL;
936 struct device_node *np;
937 int ret;
938
939 /*
940 * The normal OF process calls the probe function at some
941 * indeterminate later time, after most drivers have loaded. This is
942 * too late for us, because PAMU clients (like the Qman driver)
943 * depend on PAMU being initialized early.
944 *
945 * So instead, we "manually" call our probe function by creating the
946 * platform devices ourselves.
947 */
948
949 /*
950 * We assume that there is only one PAMU node in the device tree. A
951 * single PAMU node represents all of the PAMU devices in the SOC
952 * already. Everything else already makes that assumption, and the
953 * binding for the PAMU nodes doesn't allow for any parent-child
954 * relationships anyway. In other words, support for more than one
955 * PAMU node would require significant changes to a lot of code.
956 */
957
958 np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
959 if (!np) {
960 pr_err("could not find a PAMU node\n");
961 return -ENODEV;
962 }
963
964 ret = platform_driver_register(&fsl_of_pamu_driver);
965 if (ret) {
966 pr_err("could not register driver (err=%i)\n", ret);
967 goto error_driver_register;
968 }
969
970 pdev = platform_device_alloc("fsl-of-pamu", 0);
971 if (!pdev) {
972 pr_err("could not allocate device %pOF\n", np);
973 ret = -ENOMEM;
974 goto error_device_alloc;
975 }
976 pdev->dev.of_node = of_node_get(np);
977
978 ret = pamu_domain_init();
979 if (ret)
980 goto error_device_add;
981
982 ret = platform_device_add(pdev);
983 if (ret) {
984 pr_err("could not add device %pOF (err=%i)\n", np, ret);
985 goto error_device_add;
986 }
987
988 return 0;
989
990 error_device_add:
991 of_node_put(pdev->dev.of_node);
992 pdev->dev.of_node = NULL;
993
994 platform_device_put(pdev);
995
996 error_device_alloc:
997 platform_driver_unregister(&fsl_of_pamu_driver);
998
999 error_driver_register:
1000 of_node_put(np);
1001
1002 return ret;
1003 }
1004 arch_initcall(fsl_pamu_init);
1005